S 20010034878A
a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2001/0034878 A1

AHMAVUO et al. (43) Pub. Date: Oct. 25, 2001
(599 METHOD FOR PRODUCING (30) Foreign Application Priority Data
COMPUTER-CONTROLLED SERVICES
Oct. 11, 1995 (FDcoeveceecrrecrerererecereeeecerecirenines 954838
(75) Tnventors: PEKKA AHMAVUO, TAMPERE (FI); Publication Classification
MARTTI ALA-RANTALA 7
] ’ (51)  Int. CL7 e erinenes GO6F 9/44
TAMPERE (FD); PIA NARVANEN, (52) UuS. €l oot 771
PIRKKALA (FI)
57 ABSTRACT
Correspondence Address:
ALTERA LAW GROUP, LLC The invention relates to a method for producing application-
6500 CITY WEST PARKWAY, SUITE 100 specific computer-controlled services. An application-spe-
MINNEAPOLIS, MN 55344-7701 (US) cific program code is generated automatically and an appli-

cation-specific computer program for providing said service
(73) Assignee: NOKIA TELECOMMUNICATIONS is formed. In order to perform changes more easily than

oY before, the computer program is divided into three groups.
The first group (A) is formed only of such a code that
(*) Notice:  This is a publication of a continued pros- remains the same regardless of the application, and the
ecution application (CPA) filed under 37 second and the third group are provided with a code pro-
CFR 1.53(d). duced by means of said generation in such a way that (a) the
second group (B) only includes a code produced by means
(21) Appl. No.: 09/051,361 of said generation and (b) the third group (C) contains a code
produced with said generation that is to be changed by the
(22) PCT Filed: Oct. 9, 1996 designer after the generation. The generating means (11) are
informed of whether the code to be generated is produced for
(86) PCT No.: PCT/FI96/00530 the second or for the third group.
13
r—oT T - T e |
| 13a TEMPLATE FILES 2 3b | 10
i ¢ | 4
[ DEFAULT CLASS FRAME CLASS | A
| TEMPLATE FILES TEMPLATE FILES I
: : LIBRARY CODE MVC++BASE CLASSES
reads
gB
11 CLASSES WITH APPLI-
e . CATION SPECIFIC
ERATED CODE
DESCRIPTION OF | reads '/,‘”ﬂtes//”' GEN DEFAULT FUNCTIO-
APPLICATION GENERATOR NALITY {.E. DEFAULT

‘% A C CLASSES)
4
[ C1

~=~| GENERATED CODE
SRV FRAME CLASSES
Q L—==""1 [ MANUALLY WRITTEN

= CODE 2

21
g

N




Oct. 25,2001 Sheet 1 of 8 US 2001/0034878 A1

Patent Application Publication

22
HAd—HAd — an Has {Has Has
> S
o e
NOd
SN A _ \
gd NSM W
ZOA 3009 \m\\.ﬂ —1 \\\\ \\\\
39510 vy | NILLMMATIVANYI | | == A w/ S >>,v S "
1a,]  3000031MHIND 1~
Ow
(S3SSVY10 SolM/Speal
1INY430 T ALIWYN ] HOLYMINGD [ NOILYOITddY
ouoNnd LvEa | | — spear | 40 NOLLAI¥OS3C
O14103dS NOILYD . D ‘
TIddy HLM s388v10 L— )

d 4 speal speal
R A
SASSYID ISYE+OAN _ 3000 AYYYEI _ |
o “ S 3L TdWAL ST ILYIdWEL !
v | SSY1D INVH SSY10 L1Nv43a _
3 _ 5 S _
ol | ael ST ALY IdINEL eel _
L A

5
el

I "Old




Oct. 25,2001 Sheet 2 of 8 US 2001/0034878 A1

Patent Application Publication

ONIANIT®
NOILLVIdINOD

“““ TO0L AVd

0003 o
(raa3]
jfana]

[

©
p®

e
3

N

A

IONINNVHOOHd

sid

o —

|

|

SASSYTO MIIA R ||
mmJJOmkzoo++oz+///

|

d13H SONILLAS 3714 &
= NOILVO!I1ddY ddHSINIA = o 40/
V 4
\
SM
Z 'Ol

| YOLVHIANIO
\_«\ 7
SISSYI0 MAIN A L
WNSIA _
||||||||| ] NOLLYOddY
o 40 NOLLJINOS3a

NVHdOO0Hd
NOISH3aANQOD

J2INIA-3SVYD

mm_zw_m%



Patent Application Publication Oct. 25,2001 Sheet 3 of 8 US 2001/0034878 A1

— | Base station radio network parameters | A | W FIG. 3a
File Setfings Help
{dentifier

—
are — T

Max. transmit power [ | [(Select base station...]

Min. transmit power |:[

Selection of base station FIG. 3b
L
¥
== Base station radio network parameters | A | W FIG.7
File Settings Help

Identifier

[ |
Name ]

Max. transmitpower [ | (Select base station..)
Min. transmitpower [ |

Priority mode Yes [] No[]

Updating parameters FIG. 9

Updating radio network parameters,
please wait...

(oK ] (Cancel)




Oct. 25,2001 Sheet 4 of 8 US 2001/0034878 A1

Patent Application Publication

$9555001d

(pejosjesiususigoqy
(Juoneiseseglaiuq

(Js1oppwelediaug

(Jsisjpuweledies

Jamoduiw

(Jsuonejsesegisjug JOMOGXEU
ieypuept ||||; OIjuD 1aiuspl

aueu 1o awey

9 dnosBuopeisaseq 5 uone)seseq

{1oensqe} ()pelos(eSie]|0nu0dIqY

]

57 18]|0AUODUOROBI8S 0.

3 dOSUVISI0UOD UOOB[8SIge

()pajosjasieljoluodoqy

¢ ()peteAnoyuOINGI09|35qY
()psreanoyuopngeiepdnogy
{1oensqel()perosiesiuawa|3oqy <>
0719)|0JJUODUIENOTR
9™ dASAYMBIAUOHOB[DSOq. {1oensqe} ()pajennoyuonnglos|agoqy
{1oensqe} ()psteanoyuonngaiepdnogy
O<suews|3es 9 dASQyMRIAUIBINOGE
()N -sierpuweedmoys

9~ MBIALON0R]eS00e

Bojeip_djay~asoj0o1seq = 8dA) _
P

¥ "Old I

9" MBIAUIRIOGE

\\A asequoneoldde aiseq = adhl _ i

dv

9 welboldaqe

XuLsAoIpelage = uoneojjdde
asqe = xiyaud ool welboud
avyody = pIAjiwe}
in=2adk

sof =159) U0JeBYs

P
v




Patent Application Publication Oct. 25,2001 Sheet 5 of 8 US 2001/0034878 A1

FIG. 5

( application "abcradionetmx” # application name
# application specific declaration
( program_block_prefix "abc" ) # from varki
(family id  "ABCRAD") # from wmslibmx.h
( type IIU'IH ) #
( skeleton_test"yes" )
( main_controller ""
# main view
(view ""
(type "basic_application_base")
( public_method "#abcl# void ShowParametersFMV( name t nimi,
intID_t tunnus, float maxPower, float minPower)"
)

(abs_partner
( abs_partner method
“#abc2# void:: AbcUpdateButtonActivated( name t name,
intID _t identifier, float maxPower, float minPower)"

331}

)

( abs_partner method
"#abc3# void ::AbcSelectButtonActivated()"
)

)
)

( sub_controller "selection”
( public_method "#abc4# void EnterBasestation()" )
(view ""
(type "basic_close_help dialog" )
( public_method
"#abcS# void SetElementsfin(ElementList t elements)"

)
( abs_partner ""
(abs_partner method
"#abc6# void :AbcAlkioSelected(int alkio)"
)
)
)
( abs_partner ""
( abs_partner_method
"#abc7# void ::AbcOhjainSelected(intID_t tunnus)"
)
)
)
)




Oct. 25,2001 Sheet 6 of 8 US 2001/0034878 A1

Patent Application Publication

®

|

® ®

®

® ©

g9 wou

®

v v v v
(wwpeiunjpdniagiug {pousqo}()pawopdnissiuging
()wwnassaiduoingd|sy {pousqo’} ()(passarduonngssoping (\Wwpaluppiung {pousqn} () palunphiuiiding
(\Wwpassaiquoyngesop) {pousqo} ()pessaiguongdioping WWpaluopmixg {pousqo}()pauopiixging
3 maipBojoigdjegesopinp Y dAsqymatpBojoiqdiapesopyinp 3 Jmalpasguonoyddying )~ dAsuymaresoguony|ddying

sjusuo

dwioo aoejliajul Jasn

v

(W4moysIAw
{poipgo}(Ja0aAW

3" BS0GMAIAQNSIAL

v

v

{poiisq }{Jeioanaw
(etoaAW

(Jw4uoinalUMDISIAW
()waisAGBuImopUIMaZIDIUDAW
(JW4MoySIAW
{poipgo}(Jeia)Aw

(OISR IS
{poingo }(JatoaAw

(Juotpoia|ulIRISAW
{poisqo } (JdnuoiHAw
(Juoynrjddyezipu AW

) 8SDgI8{|0LUO)NSIAW

3 aSDgMAIALIDYAL

) 85Dg:9||01UO)UIDWDAL

7 asoguiBoiaw

sasse|o aseq ++JAWN

V9 'Ol

g9 'old

| V9 9Ol
9 'Ol




Oct. 25,2001 Sheet 7 of 8 US 2001/0034878 A1

Patent Application Publication

(Jpawunpdnissiuiging
()patunpiutigding
()passalquoningdjaping ()peluopyinqing
()passaiduopingssopiag ()paejagiaj|oiua)Igy
()panejasiusuBqy () paIDAPYUCHAGREBSIY o:;%@s;mu%
()uoynisasngieluy ()pesoniyuoingaiopdndqy 3 wosborpgo
{poysqo }{)papajasiueuse|qy (Jamaraw _ (Jai0aAW
ulﬂ_>£<3¢_>=c_cm_mmu€ 3 1aj|onu0)uoma|asgn ) Jajjoluo)uowdqo
{AUOL _ MV
(wdsiuawap3ies {pousqo} ()panejosa|[iLo gy (AL IoNUOIoITy
el & 3 )SOyI9|(0HUO)UONIBESIYD | ()powauoyuoldyIny (dnuoisyAw
Y MAAUOIP[ESIGD (JpauopasowmAY ) wosBoigyojsEqn
(pauomesopway « (s [
Qoo — Y lojjoLuO)uIDWy|AD{BGD
7 16[[0LUO)LOIPAJAGIADIAQID 3 d)SQYIS||0UOYUOIRBIRSHAD}RD «
v (JW4s1alaunindumoys ()pesoniyUONGIR|eSITY
{oisqo } (JparuopasopiRay (JaroampAw (Jpatonpyuonngeiopdngy
,w ) dNSUMANOIDASINTAPA0 3 MAIAUIDYAD 3 dASTYMAIAUIDYDGD
v v
(eiAM (emenaw | | {pousqu}()peiuopEsopRRY
Y MBIAUOLB[ASHNDIBEdYD 3 HOLAUIDYINDIAQIqD 3 JASqyMaLAUIDWINDIBE]D
S R R 2
1 (Jowan | (Josoan 1
e e e m = = R |
I ) |[DNSIAMOIAUOISIBSIGD | L Iul_cm_ﬁﬁcmswgﬁ mv_oo pajelauan
R

: ) y ¥
g9 914 ® ® ® ® ® @ @ voou



Patent Application Publication Oct. 25,2001 Sheet 8 of 8 US 2001/0034878 A1

FIG. 38

abcMainController_¢

controls AbcUpdateButtonActivated() {concrete}
AbcSelectButtonActivated() {concrete}
AbcControllerSelected() {concrete}

Basestation_c
BasestationController_c

l name
PriorityMode() controls P ﬁiigﬁlzer
SetPriorityMode() minPower
SetParameters()
EnterParameters()
EnterBasestationController()




US 2001/0034878 Al

METHOD FOR PRODUCING
COMPUTER-CONTROLLED SERVICES

[0001] The invention relates generally to systems similar
to network management systems that are provided by means
of software with services by means of which the end user
uses the system, for example controls the apparatuses in the
network. More precisely, the invention relates to a method
according to the preamble of the appended claim 1 for
producing application-specific computer-controlled services
for a user of such a system. The invention also relates to a
system according to the appended claim 8 for producing
application-specific computer-controlled services.

[0002] There are several systems intended for code gen-
eration in the market. Such generators are typically intended
for use at the beginning of programming and they cannot be
used for making significant changes in finished applications
rapidly and without any mistakes. In other words, known
generators do not provide sufficient support for repeated
changes and additions.

[0003] Several applications are also such that it should be
possible to make changes therein as rapidly and correctly as
possible. An example of such an application is a network
management system wherein the network to be managed
comprises several apparatuses of different types and the
network changes continuously as the operator acquires
devices from several different manufacturers and performs
updatings on existing devices and their software. Especially
with the new free competition in the field of telecommuni-
cations a need has occurred to continuously provide the
users with new services, which further increases the impor-
tance of flexible possibilities of change.

[0004] The known systems are not very well suitable for
applications of the type described above. This is for example
due to the fact that the systems provide the designer with a
great deal of detailed and therefore also secondary informa-
tion from which it is difficult to find the essential parts (to
which the A changes are directed). The designer must also be
able to control (understand) this information. Therefore the
person who makes the changes must be an expert in the field
of programming.

[0005] In such a system, there is also the danger that the
designer changes such a part of the software that is not to be
changed.

[0006] The purpose of the present invention is to eliminate
the aforementioned drawback by providing a new type of
arrangement for producing an application-specific service.
This object is achieved with the method according to the
invention that is characterized by what is described in the
characterizing portion of the appended claim 1.

[0007] The idea of the invention is to create an environ-
ment where changes are as simple and clear as possible for
the designer. This is possible by placing separately the code
to be generated (a) in such a part (containing the default
functionality) that the designer can ignore during the
changes (so that it can be invisible) and (b) in a part that is
visible to the designer and that requires changes to be made
by the designer in each situation of change. The separation
is based on the use of special template files and the changes
are carried out by making a change corresponding to the
change in the description file of the application, by regen-
erating the application framework and by thereafter making,

Oct. 25, 2001

if required, the changes that are to be carried out manually
by the designer. In connection with the generation, the code
generator modifies the template files on the basis of the
description file of the application.

[0008] Due to the arrangement according to the invention,
changes can be carried out rapidly and as faultlessly as
possible. The product to be delivered to the user of the
service can thus be made faultless rapidly. Due to the
invention, it is even possible that changes are made by a
person employed by the organization, such as the network
operator, using the service, in which case the changes will be
as flexible as possible.

[0009] The above-described advantages are based on the
fact that the system increases the abstraction level of the
designer’s work; the designer only sees the essential part
(the parts requiring changes) of the application and the
secondary matters (the complicated program code) are invis-
ible. Therefore it is easier for the designer to locate the parts
to which changes must be made. At the same time, this also
decreases the possibility for the designer to accidentally
change parts that are not to be edited.

[0010] In the following, the invention and the preferred
embodiments thereof will be described in greater detail with
reference to the examples according to the accompanying
drawings, in which

[0011]
tion,
[0012] FIG. 2 shows the generation of a finished appli-
cation with the system according to the invention,

[0013] FIG. 3a shows the main window in an illustrative
application,

[0014] FIG. 3b shows a subwindow of the illustrative
application,

[0015] FIG. 4 shows an object model of the illustrative
application,

[0016] FIG. 5 shows an application description supplied
to the code generator,

FIG. 1 illustrates a system according to the inven-

[0017] FIG. 6 shows a generated application framework,

[0018] FIG. 7 shows the main window of the application
in its changed form,

[0019] FIG. 8 shows the change to be made to the object
model, and

[0020] FIG. 9 illustrates another change to be made to the
application.

[0021] FIG. 1 illustrates the network management system
according to the invention. An object-based program, based
on the MVC++ application architecture (and the use of the
C++ programming language), is used as an example. It can
generally be stated that the method requires the use of a
simple application architecture, for example the MVC++
architecture. Since this architecture will be used as an
example below, such features that facilitate the understand-
ing of the following description will be described shortly in
this connection.

[0022] The MVC++ architecture is modified from the
known MVC (Model-View-Control) architecture and
according to it the application is divided into three parts:



US 2001/0034878 Al

model, view and control. The model part is a collection of
objects describing the area of the real world to which the
application relates. The view part is the outmost layer of the
application, visible to the end user. This part determines
what the user sees on the monitor. The view part is divided
into a visual and functional part. The visual part manages the
layout of the display and the functional part controls the
functionality related to the display. The view part is created
by the controller part, and for each view object there is one
controller object. The controller part controls the coopera-
tion of the model and view parts and forms the application-
specific logic. One controller object may have a relation to
several model objects and the same model object may be
connected to several controller objects. In the application
according to the MVC++ architecture, the objects of the
model part and the view part are not directly connected to
each other, but a view object can communicate with a model
object only via a controller object. Therefore the view part
interprets a command given by a user from the workstation
and indicates to the controller part which function is in
question. The controller part contains the knowledge about
how each command is to be processed, so that the controller
part requests the model part to carry out the measures
corresponding to the command. The model part informs the
controller part of the results of the measures, and the
controller part in turn asks the view part to show them to the
user. Each application according to the MVC++ architecture
has a main controller class, i.e. a main controller, that
controls the other controller classes and thus the entire
application. Also, a main controller object creates a main
view object and controls it. The main view object forms the
main window of the application. For every other window
(dialog) there are separate view and controller classes.

[0023] A more detailed description of the MVC++ archi-
tecture is provided for example in Implementing Interactive
Applications in C++by A. Jaaksi (Software Practice &
Experience, Volume 25, No. 3, March 1995, pp. 271-289).

[0024] The network management system according to the
invention can be in practice for example such as shown in
FIG. 1. Network operators sitting in operation and mainte-
nance centres MS use network management workstations
WS connected to a separate workstation network WSN that
may be for example an Ethernet network. The management
system is typically divided into several computers of the
workstation network, some of the computers comprising a
database DB containing the data required to control the
network. The management system is connected via a Q3
interface defined in the standards for example to a transmis-
sion network DCN that may comprise for example SDH
devices 21 and PDH devices 23. The control channels
between the SDH devices are formed in practice in header
bytes of an STM-N signal (N=1, 4, 16), so the control signals
between the SDH devices travel together with the payload
signal (i.e. also in the same physical network). Conventional
PDH devices 23 in turn require arrangements that are
specific for each manufacturer, wherefore they must be
connected to the management system via a separate media-
tion device 22.

[0025] The system according to the invention comprises a
code generator 11 that automatically generates a part of the
application-specific computer program 10 used in the system
and called hereinafter an application framework. This is the
program framework that is run when the operator uses the

Oct. 25, 2001

network management services from his workstation. The
finished application is stored in a server or an individual
workstation of the workstation network (or in both).

[0026] A high abstraction level description of the appli-
cation is formed for the generator, the description forming
the first input group of the generator. This description is
denoted with reference numeral 12. The description can be
written for example manually directly into a text form
understood by the generator and the description can there-
after be stored as a file in the system memory. The descrip-
tion can also be produced with a known CASE (Computer
Aided Software Engineering) device where the application
is displayed as a graphic description. In this case, the
description stored in the file by the CASE device is con-
verted into a form understood by the generator with a special
conversion program.

[0027] Another input group to the generator consists of
template files 13 acting as models to the generation of the
application framework. The code generator 11 generates the
application framework by regenerating the code to the
template files on the basis of the description 12 written by
the designer. The template files are divided into two groups,
134 and 13b, and a certain part of the application framework
is generated on the basis of each group. The template files
are fixed files that do not have to be changed when the
application is modified. In this respect, the template files
could also be considered to be a part of the internal imple-
mentation of the code generator 11.

[0028] From the above-described two input groups the
code generator forms its own part (denoted in FIG. 1 with
the term “generated code™) of the application-specific com-
puter program 10 (i.e. the application framework) shown on
the right side of FIG. 1. According to the invention, the
application framework is divided into three different groups
or layers A to C in such a way that the properties of group
A are inherited to group B and the properties of group B are
inherited to group C. In FIG. 1, the inheritance is indicated
with a triangle pointing upwards.

[0029] The first group A (the lowermost layer; even
though the layer is shown in the figure as the uppermost one,
it is the lowest layer for the designer) only contains such a
program code that remains the same regardless of the
application. Therefore this group does not have to be created
specifically, but it remains the same from one application to
another. The group contains the functionality that remains
the same from one application to another. Even though some
changes would have to be made to the application or the
application would be changed altogether, this group always
remains the same. In this example, the first group consists of
MVC++ base classes (that are the same for all applications).

[0030] The second group B (the middle layer) and the
third group C (the uppermost layer) are provided with a
program code produced with the code generator 11. The
division is performed in such a way that the second group is
only provided with a program code produced by means of
the generator and the third group in turn is provided with a
code produced both by the generator and manually by the
designer. During the generation, the third group is therefore
provided with a code to which the designer is intended to
make changes, e.g. additions. After the generation, the
designer makes the necessary changes to the third group.
The third group is therefore divided in its final form into two



US 2001/0034878 Al

parts: part C1 that only contains a code produced by the
generator and part C2 that contains a code produced manu-
ally by the designer.

[0031] The second group B comprises the classes that
contain the application-specific default functionality. These
classes are generated by means of the generator in a manner
described below, and the designer does not have to make any
changes in this group at any stage. This default functionality
is dependent on the application structure and the services
connected thereto, and it can be changed in such a way that
the properties the designer has added to the application (i.c.
to group C) are retained. The second group is generated on
the basis of the corresponding template files (13a) and the
description 12. The classes of the second group are stored in
the system into their own files which do not contain a code
written manually by the designer. These classes will be
called below default classes.

[0032] The third group (C) consists of skeleton classes that
are classes to which the designer manually writes an addi-
tional functionality required by the application. Due to the
technical properties of programming languages, changes
must also be made to the skeleton classes during the regen-
eration of the application framework. For that purpose, the
code (part C1) to be regenerated is separated from the rest
of the code (part C2) in the files containing the skeleton
classes. The separation employs character strings which are
reserved especially for this purpose and on the basis of
which the generator recognizes the parts of the files that are
to be regenerated during the changes.

[0033] Information about whether the code to be generated
is a part of the default classes (i.e. group B) or the skeleton
classes (i.e. group C) is given to the generator by means of
the template files. For this purpose, the template file section
13 comprises specifically a part corresponding to group B,
ie. the template files 13a of the classes containing the
default functionality, and a part corresponding to group C,
ie. the template files 13b of the skeleton classes. The
template files of the default classes are a model to the
functionality that can be implemented automatically on the
basis of the description file 12. By means of the template
files 13b of the skeleton classes one generates the frames that
are supplemented by the designer with the code that cannot
be automatically generated. The accompanying appendix 1
uses the template files of the default and skeleton main
controller classes as examples.

[0034] When the application framework is created for the
first time, the code generator writes the required code into
groups B and C. When changes are to be made to the final
application, the generator rewrites groups B and C. The
generator can rewrite group B in full on the basis of the
changed input data, but the contents of group C (skeleton
classes) must be read first so that the generator recognizes
the part added manually by the designer so that it can be left
as it is.

[0035] When the code to be generated is such that it
contains a code of the generator, the code to be generated is
supplemented with an identifier by means of which the code
to be generated and the manually written code are con-
nected. This will be described in greater detail below.

[0036] The generator reads template files. When the gen-
erator finds a certain character string reserved for this

Oct. 25, 2001

purpose from the template files, it replaces the string with
the code part it has generated. The generator forms these
code parts according to its own generation rules and the
application description. The generation rules depend on the
application architecture used, but they are independent of an
individual application. (The generation rules therefore form
a kind of a function providing a result that is dependent on
the parameter used, i.e. on the description 12 of the appli-
cation.)

[0037] As it is apparent from what is stated above, the
application framework to be generated has the following
characteristics:

[0038] 1. The manually written code and the automati-
cally generated code are separated from one another by
dividing the application into default classes and skel-
eton classes.

[0039] 2. The manually written code and the code to be
generated are separated within the skeleton classes by
means of character strings reserved for this purpose.

[0040] 3. The manually written code and the code to be
generated are combined with special identifiers when
the code to be generated contains a directly manually
written code.

[0041] FIG. 2 illustrates an example of the generation of
a finished application with the method according to the
invention. The designer first makes an object diagram e.g.
with a CASE device. The description is converted into a
form understood by the code generator 11 either by writing
it manually or alternatively by means of a conversion
program. The code generator then generates the application
framework 10 consisting in this example of files in the C++
language (controller classes and functional view classes) and
of files (visual view classes) in the format of the user
interface tool (e.g. X-Designer™, the trademark of Imperial
Software Limited). The designer supplements the function-
ality of the application by means of manual coding and (e.g.
the aforementioned) user interface tool of the user interface.
The program can then be compiled and linked as a program
to be run for example in a network management system
where the network and its network elements (physical
devices) are controlled from a workstation WS via a trans-
mission network. The above-described development tools
can also be located in one workstation of the network
management system so that the operator personnel can make
themselves the changes required in the network management
system.

[0042] In the following, the implementation of the appli-
cation will be illustrated by using as an example an imagi-
nary application The radio network parameters of the base
station related to the network management, the application
making it possible to view and set parameters related to the
radio network of the base station.

[0043] FIG. 3a shows the main window of the application
as it is seen on the display of the workstation WS of the
control centre in the network management system MS of
FIG. 1. The application is started from the main user
interface of the network management system, and the main
window of the application then appears on the display. The
data related to the transmission power of the base station can
be read and set from this main window. The application also



US 2001/0034878 Al

comprises one subwindow that is shown in FIG. 3b. The
base station to be treated can be selected from this subwin-
dow.

[0044] The designer first draws with the CASE device an
object model describing the application. The obtained model
is shown in FIG. 4, employing the commonly used OMT
notation described for example in Object Oriented Model-
ling and Design by James Rumbaugh et al. (Prentice-Hall,
New Jersey, USA, 1991, chapter 3). (It should be mentioned
that the frame 4a shown on the left side of FIG. 4 and not
connected to any class provides additional information about
the entire application described in greater detail below. By
means of the view type definitions 4B and 4C, the user
interface components inherited to the view classes are
selected.)

[0045] This graphic description is converted by a conver-
sion program or by manually writing into a form understood
by the code generator. The code thus obtained is shown in
FIG. 5. In order to understand this description file, the
accompanying appendix 2 shows the syntax of the descrip-
tion language used. (FIG. 5 shows by means of parenthetical
expressions a similar hierarchial structure as shown in FIG.
4 with the OMT notation).

[0046] The application framework 10 is then generated by
using the application generator 11. The listing shown in
FIG. 5 is then generated into the application framework
shown in FIG. 6. FIG. 6 shows the above-described group
division in such a way that of the generated code, the classes
belonging to group B (i.e. the default classes) are depicted
with thin frames and the classes of group C (i.c. the skeleton
classes) are shown with thick frames. The programmer thus
sees from the application framework as the C++ source code
the (view, controller and abstract partner) classes shown
with thick frames. The designer implements the functional-
ity of the application by adding a necessary amount of code
to theses skeleton classes. (Abstract partner is a class
describing what an object expects from a calling object.
Since the concept of abstract partner is not related to the
actual inventive idea, it will not be described in greater detail
in this connection. A more thorough description of the
abstract partner is provided in the aforementioned article on
the MVC++ .)

[0047] The designer implements the layout of the user
interface by editing the visual view classes (the classes
shown in the figure with broken thick frames) with a user
interface tool (e.g. X-Designer™). The other classes shown
in FIG. 6 are not visible to the designer. (The user interface
components shown in the figure and inherited to the visual
view classes are selected on the basis of the view type
definition set forth in the description file 12.) When FIGS.
4 and 6 are compared, it becomes apparent how the arrange-
ment according to the invention makes it possible to increase
the abstraction level of the programming work. A descrip-
tion on the abstraction level of FIG. 4 can be converted into
the (rather complicated) class hierarchy of FIG. 6. Of the
classes of FIG. 6, the designer only sees the classes depicted
with thick frames, so the designer also sees the generated
code on a high abstraction level.

[0048] The naming of the classes to be generated employs
the naming rule shown in the following table. In the table the
character string “abc” is a three-letter prefix of the applica-
tion given in the description file (FIG. 5).

Oct. 25, 2001

AbcDefaultProgram__c application default main program

class

abcProgram_c application skeleton main program
class

abcDefaultMainController__c application default main controller
class

abcMainController_c application skeleton main
controller class

application default main view class
application skeleton main view
class

application default main view
abstract partner class

application skeleton main view
abstract partner class

default subcontroller class where
<Sub> is the subcontroller name
given in the description file
skeleton subcontroller class where
<Sub> is the controller name
given in the description file
abcDefault<Sub>ControllerAbsCP__c  default subcontroller abstract
partner class where <Sub>

is the subcontroller name

given in the description file
skeleton subcontroller abstract
partner class where <Sub>

is the controller name given

in the description file

default subview class where <Sub>
is the subcontroller name given
in the description file

skeleton subview class where
<Sub> is the controller name
given in the description file
default subview abstract partner
class where <Sub> is the
subcontroller name given in the
description file

skeleton subcontroller abstract
partner class where <Sub> is

the controller name given in the
description file

abcDefaultMainView__c
abcMainView_ ¢

abcDefaultMainViewAbsVP__c
abcMainViewAbsVP__c

abcDefault<Sub>Conroller_c

abc<Sub>Controller_ ¢

abc<Sub>ControllerAbsCP_c

abcDefault<Sub>View__c

abc<Sub>View_c

abcDefault<Sub>ViewAbsVP__c

abc<Sub>ViewAbsVP_c

[0049] The following items A to E show as an example the
generation of the declaration of the default main controller
class (the class “abcDefaultMainController_c¢” of group B)
on the basis of the template file and the data in the descrip-
tion file. The frames show the parts of the files that are
changed. The frame has on one line an arrow, and the part
preceding the arrow describes the situation before the
change and the part following the arrow in turn describes the
situation after the change.

[0050] A.The name of the class is obtained by replacing
the character string “fft” in the class name (cf. appendix
1) of the template file with an application prefix pro-
vided in the description file, in this case “abc™:

class fftDefaultMainController_ ¢
=> class abcDefaultMainController

[0051] B. The name of the main view abstract partner
class to be inherited to the default class is obtained by
replacing from the character string “fftMainViewAb-
sVP_c” the part “fft” with “abc”. The names of the
subcontroller abstract partner classes to be inherited to
the main controller are formed according to the naming



US 2001/0034878 Al

rule. They are formed into a character string where the
names of the abstract partner classes are separated with
a comma and a line feed character. The character string
thus obtained replaces the character string INHERIT-
_ABS in the template file:

: public mvcMainControllerBase__c,
public kuiConfirmationDialogControllerAbsCP__c,
public fitMainViewAbsVP_ cINHERIT__ABS

=>

: public mvcMainControllerBase__c,

public kuiConfirmationDialogControllerAbsCP__c,
public abcMainViewAbsVP__c,

public abcSelectionControllerAbsCP__c

[0052] C.In the declaration of the methods of the public
part in the template file, the character string “fft” is
replaced with “abc™:

public:

=>

fitDefaultMainController_ c(fftDefaultProgram_ ¢ *fftPrg);
virtual ~fftDefaultMainController_ c();

virtual errAtom_ ¢ *MVCCreate();

// defived from abs. view partner

virtual void FitWMCloseWanted();

// confirmation controller abstract partner

// methods

virtual void KuiActionConfirmed();

virtual void KuiActionNotConfirmed();

public:

abcDefaultMainController__c(abeDefaultProgram_ ¢ *abcPrg);
virtual ~abeDefaultMainController_ c();

virtual errAtom_ ¢ *MVCCreate();

// defived from abs. view partner

virtual void AbcWMCloseWanted();

// confirmation controller abstract partner

// methods

virtual void KuiActionConfirmed();

virtual void KuiActionNotConfirmed();

[0053] D. In the declaration of the protected part of the
template file, the character string “fft” is replaced with
“abc” and MAINVIEW _C is replaced with a main view
name formed according to the naming rule. The char-
acter string SUB_CONT_DECLARATIONS is
replaced with a character string formed in the following
manner:

[0054] The following steps are repeated for each subcon-
troller defined in the description file:

Oct. 25, 2001

[0055] 1. A character string according to the naming
rule is formed as the name of the subcontroller class
on the basis of the name given with the sub_con-
troller definition of the template file.

[0056] 2. The character string is supplemented in
order with a space character and an asterisk.

[0057] 3.If an instance name has been defined for the
subcontroller by means of the instance definition, it
is added to the character string, otherwise a name
given with the sub_controller definition is added to
the character string.

[0058] 4. The character string is supplemented with a
semicolon and a line feed character.

[0059] The character strings thus obtained are combined.

protected:

mvcMainViewBase__¢ *MVCGetMainView();
MAINVIEW_C *view;

fftDefaultProgram_ ¢ *fftProgram;

// confirmation dialog
kuiConfirmationDialogControllerC__c *confirmationDialog;

SUB__CONT_DECLARATIONS

=>

protected:

mvcMainViewBase__¢ *MVCGetMainView();
abcMainView__c *View;

abcDefaultProgram__c *abcProgram;

// confirmation dialog
kuiConfirmationDialogControllerC__c *confirmationDialog;
abcSelectionController__c *selection;

[0060] E. The private part is formed by replacing the

character string “fft” with “abc” given in the descrip-
tion file 12:

private:

IS

=>

fitDefaultMainController__c( const fftDefaultMainController_c & );
fftDefaultMainController__c operator=
( const fitDefaultMainController_ ¢ & ) const;

private:

abcDefaultMainController_ c( const abcDefaultMainController_ ¢ &);
abcDefaultMainController__c operator=
( const abcDefaultMainController_c & ) const;

b

[0061] The files generated from the illustrative application
are shown in the table below:

Skeleton classes to which the programmer encodes the additional functionality required by

the application:
file

abeviewmainmx.h
abcviewmainmz.cce

abevivalintmx.h

abevivalintmx.ce

abccovalintmx.h

class

abcMainView__c, abcMain ViewAbsVP__c
abcMainView_ ¢

abcSelectionView__c, abcSelectionViewAbsVP__ ¢
abcSelectionView__c

abcSelectionController__c, abcSelectionControllerAbsCP__c



US 2001/0034878 Al

-continued

Oct. 25, 2001

abcSelectionController ¢
abcMainController_¢
abcMainController_¢
abcmainprogmx.h abcMainProgram_ ¢
abcmainprogmx.cc abcMainProgram_c

File where the version number of the application is set:
abcyourbvermx.h

abccovalintmx.cc
abccontmainmx.h
abccontmainmx.cc

Description in the format of the user interface tool about the visual view classes

The visual skeleton classes are generated on the basis of the view type determination, e.g

(type “basic_application_base™)
file class

abevsmainvimx.xd abcMainViewVisual__c
abevsvalintmx.xd abcSelection ViewVisual__c

Classes containing the application-specific default functionality:
file class

abeviewmadfmx.h
abeviewmadfmx.cc
abevdvalintmx.h
abcedvalintmx.cc
abcedvalintmx.h
abcedvalintmx.cc
abccontmadfmx.h

abcDefaultMainView_ ¢
abcDefaultSelectionView__c

abcDefaultSelectionController_ ¢
abcDefaultMainController__c
abccontmadfmx.ce abcDefaultMainController__c
abcmainprdfmx.h abcDefaultMainProgram__c

Visual view classes in the C++ language. The code generator starts the

XDesigner user interface tool that generates the visual view classes from the

descriptions in the XDesigner format.
file class

abcMainViewVisual_c
abcMainViewVisual_c
abcevsselectmx.cc abcSelection View Visual_c
abcvsselectmx.h abcSelectionViewVisual__c¢

File containing data about the generated application framework:
README.1st

Makefile for compiling the application:

abcyourbankmx.mak

abevsmainvimx.cc
abevsmainvimx.h

abcDefaultMainView__c, abcDefaultMainViewAbsVP__c

abcDefaultSelectionView__c, abcDefaultSelectionViewAbsVP__c

abcDefaultSelectionController_c, abcDefaultSelectionController AbsCP

[0062] As the table and FIG. 4 show, one controller class
of the application description is converted into two classes:
a skeleton class (belonging to group C) and a default class
(belonging to group B). The view classes in turn are con-
verted into three classes: for the functional part of the view,
default and skeleton classes, and for the visual part of the
view, only a skeleton class (since this part can be processed
with the user interface tool on a level higher than the source
code).

[0063]
default and skeleton classes are shown. The header and

In the following, examples of main controller

implementation files of the default class are shown first and
the header and implementation files of the skeleton class are
shown next. A header file shows the interface of the object
visible to the outside, i.e. the functions that another object
can call. An implementation file in turn contains the actual

code that is performed when a function is called.

[0064] The header file (in the C++ language) “abceont-
madfmx.h” of the default main controller class is as follows
(when the template file shown in the appendix has been
amended in the above-described manner):

RS 8 8 5 8 8 8 8 8 0 6
s

e

* $RCSfile$
*

s sk sk 3 3 s sk o s ok o s sl ok ok 3 3R sk o s s ok o s e ok ok 3k sk sk R s s ok o e ok ok ok sk ok R s ok ok ke e ok ok ke ok sk sk

e

* $Author$
*

* Copyright (c) Nokia Telecommunications 1991-1995

s sk sk 3 3 s sk o s ok o s sl ok ok 3 3R sk o s s ok o s e ok ok 3k sk sk R s s ok o e ok ok ok sk ok R s ok ok ke e ok ok ke ok sk sk

e

* Application Framework generated file

* This is a header file for default main controller class.
* You should not edit this file!!

* RUNGOXMX version: @(#) Version 1.9 (t8mcl)

e

* *
¥ K ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ k¥ ¥ ¥ ¥ % ¥

s e sk 3 3 s sk o o e s o e sl ok ok 3 3 sk sk o e s ok o ol e Sk ok o R sk o R e s ok ol ol Sk o R sk sk o R e oo ke ke ok ok o sk sk ook

T

* ok $113g$

R RS EF SKF8 5F 5 8 6

#ifndef ABCDEFAULTMAINTCONTROLLER_H
#define ABCDEFAULTMAINTCONTROLLER_H
/* MODULE IDENTIFICATION

R RS EF SKF8 5F 5 8 6

static char abecontmadfmx_ resid[] = “$Id$™;



US 2001/0034878 Al

-continued

#include <stdio.h>
#include <stdlib.h>
#include <weratomx.h> // Errors
#include <kuicocfmdlgmx.h> // controller confirmation dialog
#include “abcviewmainmx.h”  // Main View and abstract view partner
// header files of sub controllers
# include “abccoselectmx.h”
class abcDefaultProgram_ c;
class abcDefaultMainController_ ¢
: public mvcMainControllerBase__c,
public kuiConfirmationDialogControllerAbsCP__c,
public abcMainViewAbsVP__c,
public abcSelectionControllerAbsCP__c
{
public:
abcDefaultMainController__c(abeDefaultProgram_ ¢ *abcPrg);
virtual ~abcDefaultMainController_ c();
virtual errAtom_ ¢ *MVCCreate();
// defived from abs. view partner
virtual void AbcWMCloseWanted();
// confirmation controller abstract partner
// methods
virtual void KuiActionConfirmed();

Oct. 25, 2001

-continued

virtual void KuiActionNotConfirmed();

protected:
mvcMainViewBase__¢ *MVCGetMainView();
abcMainView__c *View;

abcDefaultProgram__c *abcProgram;
// confirmation dialog
kuiConfirmationDialogControllerC__c *confirmationDialog;
abcSelectionController__c *selection;
private:
abcDefaultMainController__c( const abeDefaultMainController_c
&)
abcDefaultMainController__c operator=
(const abcDefaultMainController__¢ & ) const;
¥
#endif
/* ABCDEFAULTMAINCONTROLLER _H */

[0065] The implementation file “abccontmadfmx.cc” of
the default main controller class is as follows:

RS 8K 8 8 8 8 8 8 8 8 0 0

e

Ea

* * $RCSfile$
* %

e

s sk sk 3 3 s s o o s ok ok sl sl sk sk o R s ok s ke ok ok ol ko o R s s o o e e ok ok ke sk sk o R s s o ok ke ok ok kR sk sk o s o ok ke

Ea

* * $ Author$

Ea

* * Copyright (¢) Nokia Telecommunications 1991-1995
*

s sk sk 3 3 s sk o o e ok o sl sl ok ok 3 3 sk o R e s ok ok sl sl ok o 3R sk sk o R s s ook ke sk ok o 3R sk sk o R e ok ok ke ke ok ok R sk sk ok

e

¥ % % %

* Application Framework generated file
* This is a implementation file for default main controller class.
* You should not edit this file!!

* * RUNGOXMX version: @(#) Version 1.9 (t8mecl)

Ea

e

s sk sk 3 3 s sk o o e ok o sl sl ok ok 3 3 sk o R e s ok ok sl sl ok o 3R sk sk o R s s ook ke sk ok o 3R sk sk o R e ok ok ke ke ok ok R sk sk ok

Ea

* *$Lﬂg$

R RS SES S

// MODULE IDENTIFICATION
o ok ok 3k ke ke ok ok s ok ok sk sk ok ok ok ok e ok ok Sk sk ok ok 3k sk sk ok ok ke ke ok ok sk sk ok ok 3k ke ke ok ok sk
static char resid[] = “$1d$™;
#include “abecontmadfmx.h” // Header of this main controller
#include “abecmainprogmx.h” // Header of program module
// message text for WM close confirmation dialog
const char *closeText =

“This will close the application. Do you want to proceed?”;
/***********************************************************

e

* <PUBLIC> FUNCTION:
abcDefaultMainController_c::abeDefaultMainController_c()

s sk sk 3 3 s s o o s ok ok sl sl sk sk o R s ok s ke ok ok ol ko o R s s o o e e ok ok ke sk sk o R s s o ok ke ok ok kR sk sk o s o ok ke

e

e

* Constructor.

e

s sk sk 3 3 s s o o s ok ok sl sl sk sk o R s ok s ke ok ok ol ko o R s s o o e e ok ok ke sk sk o R s s o ok ke ok ok kR sk sk o s o ok ke

*/

abcDefaultMainController__c::abeDefaultMainController_ ¢

(



US 2001/0034878 Al

-continued

abcDefaultProgram__c¢ *abcPrg
)
{
abcProgram = abcPrg;
view = 0;
confirmationDialog = 0;
selection = 0;

RS 686 8 K 8 58 5 8 8 8 8 8
e

* <PUBLIC> FUNCTION:
abcDefaultMainController_ c:i~abeDefaultMainController_ c()

o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
*
*
* Destructor
*
o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
*/
abcDefaultMainController_ c:i~abeDefaultMainController_ c()
{
view->MVCHideFM();
delete view;
view = 0;
delete confirmationDialog;
delete selection;
selection = 0;

RS 5686 8K 8 58 5 8 8 8 8 8
e

* <PRIVATE> FUNCTION: errAtom_ ¢ *abcDefaultMainController ¢::MVCCreate()

o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
#
#
* Controller creation
#
o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
*/
errAtom_ ¢
*abcDefaultMainController__c::MVCCreate()
{
errAtom_ ¢ *err = 0;
// Instantiate The Main Window
1
view = new abcMainView_ c¢( this );
// Motif things will be initialized (Only main view should do this)
1
err = view->MVClnitializeWindowingSystem();
if (err) return(err);
// Create the main view
1
err = view->MVCCreate();
if (err) return(err);
// instantiate confirmation dialog

1

confirmationDialog = new kuiConfirmationDialogControllerC_ c( this );
err = confirmationDialog->MVCCreate( view->MVCGetParentCandidateQM() );

if (err) return err;

// Instantiate sub controllers and create them

1

selection = new abcSelectionController_c( this );

err = selection->MVCCreate( view->MVCGetParentCandidateQM() );
if (err) return(err);

return OK,

RS K 8 8 88 8 8 K 0 0
e

* <PROTECTED> FUNCTION: mvcViewBase_c
* abcDefaultMainController_ c::MVCGetMainView()

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
*

*

* Returns the main view

*

s sk sk 3 3 s s o e s ok ok e sl sk Sk o R s o s e ok ok ol ok o R s s ok o e e ok ok i sk sk o R s s ook ke ok ok kR sk sk o ook ok ke

*/

Oct. 25, 2001



US 2001/0034878 Al

-continued

Oct. 25, 2001

mvcMainViewBase__c
*abcDefaultMainController_c::MVCGetMainView()

return(view);

RS 8K 8 8 8 8 8 8 8 8 8 K 0 0
e

* <PUBLIC> FUNCTION: void abcDefaultMainController_ c::AbcWMCloseWanted()

o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
#

#

#

* Shuts the application down

#
o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
*/
void abcDefaultMainControllerc::AbcWMCloseWanted ()

if( view->MVClIslconifiedQM() )

{

view->MVCUnlconifyFM();

confirmationDialog->AskConfirmation( (char *) closeText);

RS 8K 8 8 8 8 8 8 8 8 8 K 0 0
e

* <PUBLIC> FUNCTION: void abcDefaultMainController_ c::KuiActionConfirmed()

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
¥

¥

* Shuts the application down

¥
s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
*/
void abcDefaultMainController c::KuiActionConfirmed()

abcProgram->MVCShutdown();

RS K 8 8 88 8 8 K 0 0
e

* <PUBLIC> FUNCTION: void
abcDefaultMainController_ c::KuiActionNotConfirmed()

o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
#

#

* Shuts the application down

#
o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
*/
void abcDefaultMainController c::KuiActionNotConfirmed()

// does’t need any actions

[0066] A skeleton main controller class will be described
next. The header file “abccontmainmx.h” of the skeleton
class is as follows (cf. the corresponding template file shown
in Appendix 1).

RS K 5 8 8 8 8 8 8 8 8 0 0
e

Ea

* * $RCSfile$
* %

e
s sk sk 3 3 s s o e s ok ok e sl sk Sk o R s o s e ok ok ol ok o R s s ok o e e ok ok i sk sk o R s s ook ke ok ok kR sk sk o ook ok ke
Ea

* * $ Author$

Ea

* * Copyright (¢) Nokia Telecommunications 1991-1995

-continued

#
o sk ok ok ok ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk ok ok sk sk sk sk ok s ok ok ok ok ok ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok sk sk ok ke ok
* ok
* * Application Framework generated file
* * This is a header file for skeleton main controller class.
* * Complete the required functionality in this file.
* * RINGOXMX version: @(#) Version 1.9 (t8mcl)

* ok

.
o sk ok ok ok ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk ok ok sk sk sk sk ok s ok ok ok ok ok ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok sk sk ok ke ok
* ok

* * $Togh

.

R RS EF SKF8 5F 5 8 6

#ifndef ABCMAINCONTROLLER_H
#define ABCMAINCONTROLLER_H



US 2001/0034878 Al

-continued

Oct. 25, 2001

-continued

/* MODULE IDENTIFICATION
***********************************************************/
static char abecontmainmx__resid[] = “$1d$™;

#include “abccontmadfmx.h”

class abcMainController_ ¢

: public abcDefaultMainController__c

public:
abcMainController__c(abeDefaultProgram_ ¢ *abcPrg);
~abcMainController_ ¢();
virtual errAtom_ ¢ *MVCCreate();
// AF_TOKEN__START#publicmethods#
// AFTool generated abstract partner methods.
// Don’t add your own code between AF_TOKENS
// AF_TOKEN_ END#public_ methods#
/| AF_TOKEN__START#abspartner__methods#
// AFTool generated abstract partner methods.
// Don’t add your own code between AF_TOKENS
void AbcUpdateButtonActivated (name_ t name intID_ t identifier,
float maxPower, float minPower);
void AbcSelectButtonActivated();
void BuiExitWanted(); // inherited from a gui component
void BuiPrintSetupWanted(); // inherited from a gui component
void BuiPrintWanted(); // inherited from a gui component
void AbcControllerSelected(intID_t identifier);
// AF_TOKEN__ END#abs__partner__methods#
protected:
private:
abcMainController__c( const abcMainController_c¢ &);
abcMainController__c operator=( const abcMainController_c¢ & )
const;
e
#endif
/* ABCMAINCONTROLLER_H */

[0067] The implementation file “abccontmainmax.cc” of

the skeleton main controller class in turn is as follows.

RS K 5 8 8 8 8 8 8 8 8 0 0

Ea

* * $RCSfile$

Ea

*

s s sk sk 3 3 sk o o s s ok o e sl ok ok 3 sk sk o s s ok o ke ok ok o 3R sk sk o R s e ok ke e sk ok o R sk sk o e e ok ok ke ke ok ok sk sk o

Ea

* $Author$
*

*
*
* * Copyright (¢) Nokia Telecommunications 1991-1995

*

o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok

Ea

* * Application Framework generated file

* This is a implementation file for skeleton main controller class.
* Complete the required functionality in this file.

* RUNGOXMX version: @(#) Version 1.9 (t8mcl)

e
e
e
Ea
e

s sk sk 3 3 s s o e s ok ok e sl sk Sk o R s o s e ok ok ol ok o R s s ok o e e ok ok i sk sk o R s s ook ke ok ok kR sk sk o ook ok ke

Ea

* ok $L0g$
*

s sk sk 3 3 s s o e s ok ok e sl sk Sk o R s o s e ok ok ol ok o R s s ok o e e ok ok i sk sk o R s s ook ke ok ok kR sk sk o ook ok ke

// MODULE IDENTIFICATION

o o ok ke ke ok ok sk ok ok sk sk ok ok ok 3K ke sk ok sk sk ok ok sk sk ok sk oK ke ke ok ok Sk sk ok ok 3k 3k sk ok o e ke ok ok ok sk ok
static char resid[] = “$1d$™;

#include <wmtracmx.h>

// trace object

extern wmtTrace c *trace;

#include “abccontmainmx.h™ // Header of this main controller

#include “abemainprdfmx.h” // Header of the program module
/************************************************************

e

* <PUBLIC> FUNCTION: abcMainController_ c::
abcMainController__c()

e e sk 3 3 s sk o o e s o e e ok ok 3 3 sk sk o s s ok o o sl Sk ok o 3R sk o R s ook o sl ol ok o 3R sk sk ok R e e o ke ke ok ok o sk sk ook
e

e

* Constructor.
*

s e sk 3 3 s sk o o e s o e sl ok ok 3 3 sk sk o e s ok o ol e Sk ok o R sk o R e s ok ol ol Sk o R sk sk o R e oo ke ke ok ok o sk sk ook
*/

abcMainController_c::abecMainController_ ¢
abcDefaultProgram__c *abcPrg

)
:abcDefaultMainController__c(abePrg)

/************************************************************
¥

* «<PUBLIC> FUNCTION:abcMainController c::
~abcMainController_ ¢()

o sk ok ok ok ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk ok ok sk sk sk sk ok s ok ok ok ok ok ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok sk sk ok ke ok
*

*

* Destructor

*

o sk ok ok ok ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk ok ok sk sk sk sk ok s ok ok ok ok ok ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok sk sk ok ke ok
*/

abcMainControllerc::i~abcMainController c()

{

RS 8 8 58 8 8 8 8 88 K 0 6

e

* <PUBLIC> FUNCTION:abcMainController__c::MVCCreate()

e e sk 3 3 s sk o o e s o e e ok ok 3 3 sk sk o s s ok o ol sl ok ok o R sk o R e s ok o ke ol Sk o 3R sk sk o R e e o ke ok ok ok R sk sk ook
e

e

* Controller creation
¥

o sk ok ok ok ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk ok ok sk sk sk sk ok s ok ok ok ok ok ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok sk sk ok ke ok
*/
errAtom_ ¢ *abcMainController__c::MVCCreate()

errAtom__c *err = abcDefaultMainController__c::MVCCreate();

// add actions needed in conroller construction here

return err;

RS 8 8 5 8 8 8 8 8 0 6

e

* <PUBLIC> FUNCTION: void abcMainController_ c::
AbcUpdateButtonActivated

(name_ t name, intID_ t identifier, float maxPower, float minPower)
o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke

¥
* Implementation of an abstract partner method

¥

¥

o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke
*/

// AF_TOKEN#abc2# - Don’t remove this token

void abcMainController_ c::AbcUpdateButtonActivated (name_ t name,
intID_t identifier, float maxPower, float minPower)

AF_TRACE(“void abcMainController_ c::AbcUpdateButtonActivated
(name__t name, intID_ t identifier, float maxPower, float minPower)”);
// Add your own code here.

RS 56 8 8 8 8 8 8 8 8 8 8 8 0

e

* «<PUBLIC> FUNCTION: void abcMainController_ c::
AbcSelectButtonActivated()

s e sk 3 3 s sk o o e s o e sl ok ok 3 3 sk sk o e s ok o ol e Sk ok o R sk o R e s ok ol ol Sk o R sk sk o R e oo ke ke ok ok o sk sk ook

e

* Implementation of an abstract partner method
#



US 2001/0034878 Al

-continued

#
o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
*/

// AF_TOKEN#abc3# - Don’t remove this token

void abcMainController_c::AbcSelectButtonActivated()

AF_TRACE(“void abcMainController_ c::AbcSelectButtonActivated()”);
// Add your own code here.

/************************************************************
¥

* <PUBLIC> FUNCTION: void abcMainController_ c::BuiExitWanted()
s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
¥

* Implementation of an abstract partner method

¥

¥

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
*/

/f AF_TOKEN#buil2# - Don’t remove this token

void abcMainController_c::BuiExitWanted()

AF_TRACE(“void abcMainController_ c::BuiExitWanted()”);
// Add your own code here.

RS 8K 8 8 8 8 8 8 8 8 8 K 0 0

e

* <PUBLIC> FUNCTION: void abcMainController_ c::
BuiPrintSetup Wanted()

o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
#

* Implementation of an abstract partner method

#

#

o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
*/

/f AF_TOKENbuil3# - Don’t remove this token

void abcMainController_c::BuiPrintSetup Wanted()

AF_TRACE(“void abcMainController_c::BuiPrintSetupWanted()”);
// Add your own code here.

RS K 8 8 88 8 8 K 0 0

e

* <PUBLIC> FUNCTION: void abcMainController_ c::
BuiPrintWanted()

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
¥

* Implementation of an abstract partner method

¥

¥

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
*/

/f AF_TOKEN#build# - Don’t remove this token

void abcMainController_c::BuiPrintWanted()

AF_TRACE(“void abcMainController_ c::BuiPrintWanted()”);
// Add your own code here.

/************************************************************

¥

* «<PUBLIC> FUNCTION: void abcMainController_ c::
AbcControllerSelected(intID__t identifier)

* %

* Implementation of an abstract partner method

¥

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok

*/

// AF_TOKEN#abc7# - Don’t remove this token

void abcMainController_c::AbcControllerSelected(intID__t identifier)

AF_TRACE(“void abcMainController_c::AbcControllerSelected
(intID__t identifier)”);
// Add your own code here.

}

Oct. 25, 2001

[0068] The designer implements the functionality required
by the application by adding a sufficient amount of code to
the skeleton classes. The user interface is supplemented for
example with the aforementioned X-Designer™ tool by
using generated descriptions of the visual view classes
having the format of the X-Designer™.

[0069] The classes of the model part, BaseStation_c and
BaseStationGroup_c (cf. FIG. 4), have already been imple-
mented in the class library of the model part, wherefore they
do not have to be carried out in connection with the present
application.

[0070] Asitis apparent from the above, the code generator
creates default and skeleton classes automatically by modi-
fying the corresponding template files on the basis of the
data provided in the description file of the application.

[0071] 1t has been described above in detail how the
application framework is generated. This example thus
described a situation where an application is created for the
first time. A situation where changes must be made to the
application framework will be examined next. The example
relates to a situation where the operator using the network
management system requests for the addition of a new
property, a so-called priority service, to the base station
controller. In the network of this operator the clients are
divided into two classes: those who have a gold card and
those who have a silver card. If all the channels are being
used during heavy traffic and a user with a gold card makes
a call, one of the users of a silver card is removed from the
channel. This service requires a new parameter indicating
whether the priority service is being used.

[0072] FIG. 7 illustrates the change required in the user
interface. As FIGS. 3a and 7 show, the window will be
provided with a new parameter “priority mode” which may
have two values (yes or no).

[0073] FIG. 8 illustrates the change required in the object
diagram that was shown earlier in FIG. 4. FIG. 8 only
shows the part of the diagram that is changed. The diagram
will thus be provided with a new class “BaseStationCon-
troller_c” the attribute of which is “priorityMode” and the
method is “SetPriorityMode”.

[0074] 1t is also noted in this connection that the updating
of the radio network parameters in a base station takes a long
time. Therefore the application must be provided with a
so-called working dialog that indicates to the user that the
operation is still in process. FIG. 9 illustrates a working
dialog window.

[0075] The addition of the priority service will be
described first. In order to implement this change (the
addition of a new parameter to the methods “ShowParam-
etersFM” and “AbcUpdateButtonActivated” that the change
concerns), the new boolean_t parameter “priorityMode” is
added to the declaration of the methods in the description file
12 of the application. The frame below shows a part of the
description file shown above. The frame shows in boldface
the additions that are made to the description file when the
priority service is added.



US 2001/0034878 Al

Oct. 25, 2001
12

#..
(public__method “#abcl# void ShowParametersFM(name__t name,
intID_t identifier,

float maxPower, float minPower,

boolean__t priorityMode)”

( abs_partner*”
( abs_ partner__method
“#abc2# void:: AbcUpdateButtonActivated(name__t name,

intID_t identifier,

float maxPower, float minPower

boolean__t priorityMode)”

[0076] The identifiers #abcl# and #abc2# indicate that
logically the same methods are still used (i.e. the implemen-
tation written for the methods remains the same) even
though the declaration changes.

[0077] When the required changes have been made to the
description file, the code is regenerated by means of the code
generator. The code generator then updates in the header
files of the skeleton main view and main controller classes
the parts that are to be regenerated. The parts to be regen-
erated are indicated with the character strings AF_TO-
KEN_END and AF_TOKEN_START and they can there-
fore be updated without any other parts in the file being
changed (AF_TOKEN_START is the initial character and
AF_TOKEN_END is the stop character for the part to be
regenerated.)

[0078] Before the change, the shared header file of the
skeleton main view and abstract partner classes is as fol-
lows:

class abcMainViewAbsVP__c
:public abcDefaultMainViewAbsVP__c

public:

// AF_TOKEN__START#abs__partner__methods#

// AFTool generated abstract partner methods.

// Don’t add your own code between AF_TOKENS

virtual void AbcUpdateButtonActivated (name_ t name, intID_t
identifier, float maxPower, minPower) = 0;

virtual void AbcSelectButtonActivated() = 0;

// AF_TOKEN_ END#abs__partner__methods#

I8

class abcMainView_ ¢

:public abcDefaultMainView__c

public:
/.
// AF_TOKEN__START#public__methods#

// AFTool generated abstract partner methods.

// Don’t add your own code between AF_TOKENS

virtual void ShowParametersFM (name_t name, intID_t identifier,
float maxPower, minPower) = 0;

virtual void AbcSelectButtonActivated() = 0;

// AF_TOKEN__ END#public__methods#

IS

[0079] After the change, the situation is as follows (the
added parts are shown in boldface).

class abcMainViewAbsVP__c
:public abcDefaultMainViewAbsVP__c

public:
// AF_TOKEN__START#abs__partner__methods#
// AFTool generated abstract partner methods.
// Don’t add your own code between AF_TOKENS
virtual void AbcUpdateButtonActivated (name_ t name, intID_ t
identifier, float maxPower, float minPower, boolean__t priorityMode ) =
0;
virtual void AbcSelectButtonActivated() = 0;
// AF_TOKEN_ END#abs__partner__methods#
I3
class abcMainView__c
:public abcDefaultMainView__c
{
public:
/.
// AF_TOKEN__START#public__methods#
// AFTool generated abstract partner methods.
// Don’t add your own code between AF_TOKENS
virtual void ShowParametersfFM (name_t name, intID_ t identifier,
float maxPower, float minPower, boolean__t priorityMode)=0;
virtual void AbcSelectButtonActivated() = 0;
// AF_TOKEN__END#public__methods#

IS

[0080] The above-described header file of the skeleton
main controller class in turn is as follows after the change
(only a part of the file is shown, the changed parts are in
boldface).

class abcMainController_ ¢
:public abcDefaultMainController_ ¢

public:

/.

// AF_TOKEN__START#abs__partner__methods#

// AFTool generated abstract partner methods.

// Don’t add your own code between AF_TOKENS

void AbcUpdateButtonActivated (name_ t name, intID_ t identifier,
float maxPower, float minPower, boolean__t priorityMode );

void AbcSelectButtonActivated();

void BuiExitWanted(); // inherited from a gui component
void BuiPrintSetupWanted();  // inherited from a gui component
void BuiPrintWanted(); // inherited from a gui component

void AbcControllerSelected (intID_t identifier);
// AF_TOKEN__ END#abs__partner__methods#
/=

[0081] Adding the aforementioned parameter (boolean_t
priorityMode) automatically to the declaration of the “void
AbcUpdateButtonActivated( )” method in the declarations
of the skeleton main controller class and the skeleton main
view abstract partner class illustrates how easy it is to add
new properties to the application framework with the
arrangement according to the invention. The aforementioned
addition was carried out by making the addition to the
description file and by regenerating the code by the code
generator. It should be noted that also the default classes are
regenerated in this connection, but in this example no
changes occur in the default classes (since no changes
concerning them were made to the description file).

[0082] The partner method to be changed in the imple-
mentation file of the skeleton main controller class is iden-



US 2001/0034878 Al

tified with the identifier #abc2# (provided in the description
file) following AF_TOKEN. The change takes place in the
following manner: the code generator reads the file and
eliminates the characters beginning from the line following
AF_TOKEN to the first “{” sign and writes in that place the
new declaration of the partner method (on the basis of the
new declaration of the description file). The code generator
then goes on scanning the file until it sees the first
AF_TRACE character string. The code generator replaces
the characters in the brackets following AF_TRACE with a
new partner method declaration. The code generator then
scans the file backwards until it sees the character string
<PUBLIC> FUNCTION:. The code generator eliminates the
characters following <PUBLIC> FUNCTION: until the next
line feed character and writes in their place the new partner
method declaration (N. B. Even though in the code example
given below the declaration of the abstract partner method
continues on the following line, the line feed character only
comes at the end of the method declaration.)

RS K 5 8 8 8 8 8 8 8 8 0 0

E

* <PUBLIC> FUNCTION: void abcMainController_ c::
AbcUpdateButtonActivated (name_ t name intID_ t identifier,

float maxPower, float minPower, boolean__t priorityMode )
o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok

* %

* Implementation of an abstract partner method

¥

¥

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
*V

/| AF_TOKEN#abc2#

void abcMainController__c:: AbcUpdateButtonActivated

(name_t name, intID__t identifier, float maxPower,

float minPower, boolean__t priorityMode )

AF_TRACE(“void abcMainController_c::
AbcUpdateButtonActivated (name_t name, intID_t identifier,
float maxPower, float minPower, boolean__t priorityMode)”);

// Add your own code here.

// the programmer’s own code may be provided here

[0083] The above-described changing of the method dec-
laration (i.e. adding the parameter to the declaration) is an
example of how a connection is maintained between a code
generated by the code generator and a code written by the
programmer. In this example, the character string “abc2” is
an identifier which corresponds to the method (UpdateBut-
tonActivated) and by means of which the connection is
maintained. The programmer had earlier written a code
manually in the frame generated for this method in order to
update the parameters to the base station controller.

[0084] The method “ShowParametersFM()” is changed in
the implementation file “abcviewmainmx.cc” of the main
view class in the same manner as the above-described
abstract partner method in the implementation file of the
main controller. The identifer corresponding to this method
is “abc1”, as the description file of the application shows. By
means of these identifiers given in the description file, it is
known even after the changes made to the description file
and the regeneration of the skeleton classes to which part of
the skeleton class each change corresponds.

[0085] The addition of the priority service to the applica-
tion has been described above. In the following, the addition
of the aforementioned working dialog will be described.

Oct. 25, 2001

[0086] In order to carry out this change, the header files of
the main controller classes must be supplemented with the
header file of the working dialog component, the abstract
partner class of the working dialog must be inherited to the
main controller, the abstract partner methods of the working
dialog must be declared, and a variable must be declared as
a pointer to the working dialog object. A pointer must be
initialized in the implementation file of the main controller
class to the working dialog, a new working dialog object
instance must be created, the working dialog object dialog
must be deleted and the abstract partner methods of the
working dialog must be implemented.

[0087] The change is carried out in practice by writing the
line:

(service “working dialog™)

[0088] to the definition part of the main controller in the
description file (reference numeral 12, FIG. 1) of the
application and by regenerating the application framework.
In the following, the changes caused in the regeneration by
a change made to the description file are shown.

[0089] The code generator regencrates the header file
“abccontmadfmx.h” of the default class to which header file
the header file of the working dialog component has been
added, the abstract partner class of the working dialog has
been inherited and a link to the working dialog object has
been added to the protected part of the class (these changes
are shown in boldface):

// for working dialog
#include “kuicewrkdlgmx.h”
/e
class abcDefaultMainController_ ¢
:public mvcMainControllerBase__c,
public kuiConfirmationDialogControllerAbsCP__c,
public abcMainViewAbsVP__c
public abcSelectionControllerAbsCP__c
public kuiWorkingDialogControllerAbsCP_c

{
/e
protected:
/e
// working dialog
kuiWorkingDialogControllerC__c *workingDialog;
b

[0090] The code generator also regenerates the implemen-
tation file “abccontmadfmx.cc” of the default class, wherein

[0091] 1. the working dialog pointer is initialized:

abcDefaultMainController__c::abeDefaultMainController_ ¢

(

abcDefaultProgram__c *abcPrg

/o
workingDialog = 0;




US 2001/0034878 Al

[0092] 2. the working dialog is deleted:

abcDefaultMainController_ c:i~abeDefaultMainController_ c()
{

/o

delete workingDialog;

workingDialog = 0;

[0093] and

[0094] 3. a new working dialog object instance is
created:

errAtom_ ¢
*abcDefaultMainController__c::MVCCreate()

/e

// create new working dialog

workingDialog = new kuiWorkingDialogControllerC_ c( this );
err = workingDialog->MVCCreate(view->MVCGetParent
CandidateQM());

if (err) return(err);

[0095] Abstract partner declarations are regenerated in the
header file “abccontmainmx.h” of the skeleton main con-
troller class, the abstract partner method of the working
dialog being included therein:

class abcMainController__c
:public abcDefaultMainController_c

public:
/o
// AF_TOKEN__START#abs__partner__methods#
// AFTool generated abstract partner methods.
// Don’t add your own code between AF_TOKENS
void AbcUpdateButtonActivated (name_t name, intID_t
identifier, float maxPower, float minPower boolean_t priorityMode);
void AbcSelectButtonActivated();
void BuiExitWanted(); // inherited from a gui component
void BuiPrintSetupWanted();  // inherited from a gui component
void BuiPrintWanted(); // inherited from a gui component
void AbcControllerSelected (intID_t identifier);
virtual void KuiCancelWanted();  // for working dialog
// AF_TOKEN__ END#abs__partner__methods#

[0096] The code generator identifies the part to be regen-
erated by means of AF_TOKEN START and AF_TO-
KEN_END and it can therefore change a part of the file so
that the rest of the code remains the same.

[0097] A frame is generated in the implementation file
“abccontmainmx.cc” of the skeleton main controller class
for the implementation of the abstract partner method:

Oct. 25, 2001

RS 8 8 5 8 8 8 8 8 0 6

* <PUBLIC> FUNCTION: void abcMainController_ c::
KuiCancelWanted()

o sk ok ok ok ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk ok ok sk sk sk sk ok s ok ok ok ok ok ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok sk sk ok ke ok
* ok

* Implementation of an abstract partner method

#

RS S SR F 8 8 F 8 6

/f AF__TOKEN#kui3# -don’t remove this token
void abcMainController_c::KuiCancelWanted()

AF_TRACE(“void abcMainController_ c::KuiCancel Wanted()™);
// Add your own code here.

[0098] In this frame of the abstract partner method, the
designer implements a functionality that is to follow the
pressing of the Cancel button of the working dialog.

[0099] The designer activates (shows on the display) the
working dialog by writing the request workingDialog—
ShowLongDelay(MESSAGE_TEXT) before the part of the
code that begins the time-consuming operation, for example:

void abcMainController_c:: AbcUpdateButtonActivated (name__t name,
intID__t identifier, float maxPower, float minPower,
boolean_t priorityMode )

AF_TRACE(“void abcMainController_c::
AbcUpdateButtonActivated (name__t name, intID_ t identifier, float
maxPower, float minPower boolean_t priorityMode )”);

// Add your own code here.

// a time-consuming operation begins

workingDialog->ShowLongDelay(MESSAGE__TEXT);
basestation->SetParameters(maxPower, minPower, priorityMode)

}

[0100] The above example (the addition of the working
dialog) shows how easy it is to add a new property to the
application framework. The change was implemented by
adding one line to the description file and by regenerating
the application framework on the basis of the changed
description file. The abstraction level of the application also
remains high since only the methods “KuiCancelWanted( )”
and “ShowLongDelay( )” are shown in the application part
visible to the designer from the working dialog service. The
more complicated code for adding the working dialog object
to the application was generated (automatically) to a default
class that is not visible to the designer.

[0101] Even though the invention is described above with
reference to the examples according to the accompanying
drawings, it is clear that the invention is not restricted
thereto, but it can be modified within the scope of the
inventive idea disclosed above and in the appended claims.
Even though an object-based application is described above,
it is in principle possible to use a similar arrangement also
in other types of arrangements. Similarly, the method can
also be used for producing services in other systems besides
the network management systems, even though the latter
systems constitute an advantageous environment of imple-
mentation for the reasons given at the beginning. The means
according to the invention can form a part of such a system
providing services or the method can be carried out sepa-
rately from the system and a finished application can be
transferred thereafter to the system.



US 2001/0034878 Al

Template for header file of default main controller class.

/************************************************************
* ok

L

* = $RCSfile$

L

.

o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok
L

* * SAuthor$

Ea

* * Copyright (¢) Nokia Telecommunications 1991-1995
*

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
* ok

* * Template file for Application Framework generated class

* ok

¥

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok

Ea

* ok $L0g$
*

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
BODY__START
#ifndef FFTDEFAULTMAINTCONTROLLER _H
#define FFTDEFAULTMAINTCONTROLLER _H
/* MODULE IDENTIFICATION
************************************************/
static char fftcontmadfmx_ resid[] = “$Id$”;
#include <stdio.h>
#include <stdlib.h>
#include <weratomx.h> // Errors
#include <kuicocfmdlgmx.h> // controller confirmation dialog
#include “MAINVIEW_H”  // Main View and abstract view partner
// header files of sub controllers
INC_SUB__CONTROLLERS
class fftDefaultProgram__c;
RENAMER__CLASSES
class fftDefaultMainController_c
:public mveMainControllerBase_c,
public kuiConfirmationDialogControllerAbsCP__c,
public fitMainViewAbsVP__ cINHERIT__ABS
{
public:
fitDefaultMainController_ c(fftDefaultProgram_ ¢ *fftPrg);
virtual ~fftDefaultMainController_ c();
virtual errAtom_ ¢ *MVCCreate();
// defived from abs. view partner
virtual void FitWMCloseWanted();
// confirmation controller abstract partner
// methods
virtual void KuiActionConfirmed();
virtual void KuiActionNotConfirmed();

protected:
mvcMainViewBase__¢ *MVCGetMainView();
MAINVIEW_C *View;

fftDefaultProgram_ ¢
// confirmation dialog
kuiConfirmationDialogControllerC_ ¢ *confirmationDialog;
SUB__CONT_DECLARATIONS
private:
fftDefaultMainController_ c(const fitDefaultMainController_c &);
fftDefaultMainController__c operator=
(const fitDefaultMainController_c¢ & ) const;

*fftProgram;

I3
#endif
/* FFTDEFAULTMAINCONTROLLER__H */

Oct. 25, 2001

[0102]

Template for implementation file of default main controller class.

/************************************************************
* ok

L

* = SRCSfile$

L

.

o sk ok ok ok ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk ok ok sk sk sk sk ok s ok ok ok ok ok ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok sk sk ok ke ok

e

* $Author$
*

¥ % % %

* Copyright (¢) Nokia Telecommunications 1991-1995
*

o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke
* ok

* * Template file for Application Framework generated class

* ok

¥

o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke

Ea

* ok $L0g$
*

s e sk 3 3 s sk o o e s o e sl ok ok 3 3 sk sk o e s ok o ol e Sk ok o R sk o R e s ok ol ol Sk o R sk sk o R e oo ke ke ok ok o sk sk ook

BODY__START

/* MODULE IDENTIFICATION

o ok ok ke ke ok ok sk sk ok ok sk ok ok ok oK ke ke ok ok sk ok ok sk sk ok sk ok ok ke sk ok sk sk ok ok 3k 3k ok sk 3K e ke ok ok ok ok ok

static char resid[] = “$1d$7;

#include “fftcontmadfmx.h” // Header of this main controller
#include “fftmainprogmx.h” // Header of program module

// message text for WM close confirmation dialog

const char *closeText=

“This will close the application.\nDo you want to proceed?”;
B
/************************************************************

e ke

* «<PUBLIC> FUNCTION: fftDefaultMainController c::
fitDefaultMainController__c()

o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke
£

*

* Constructor.

*

o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke
*N

fftDefaultMainController_ c::fftDefaultMainController__¢

fitDefaultProgram__c *fftPrg

fitProgram = fftPrg;

view = 0;

confirmationDialog = 0;
SUB__CONTROLLERS_TO_NULL

RS 8 8 58 8 8 8 8 88 K 0 6

e ke

* <PUBLIC> FUNCTION:
fitDefaultMainController__c::~fftDefaultMainController_ ¢()

o sk ok ok ok ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk ok ok sk sk sk sk ok s ok ok ok ok ok ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok sk sk ok ke ok
* ok
#
* Destructor
#
o sk ok ok ok ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk ok ok sk sk sk sk ok s ok ok ok ok ok ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok sk sk ok ke ok
*N
fitDefaultMainController__c::~fftDefaultMainController_ ¢()
{
view->MVCHideFM();
delete view;
view = 0;
delete confirmationDialog;
DELETE__SUB_ CONTROLLERS
SUB__CONTROLLERS_TO_NULL

RS 8 8 58 8 8 8 8 88 K 0 6

e ke



US 2001/0034878 Al

-continued

Oct. 25, 2001

-continued

Template for implementation file of default main controller class.

* <PRIVATE> FUNCTION: errAtom_ ¢ *fftDefaultMainController_ c::
MVCCreate()

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
* %

*

* Controller creation

*

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
*V

errAtom_c

*fitDefaultMainController__c::MVCCreate()

errAtom_ ¢ *err = 0;

// Instantiate The MainWindow

1

view = new MAINVIEW__C( this );

// Motif things will be initialized (Only main view should do this)
1

err = view->MVClnitializeWindowingSystem();

if (err) return(err);

// Create the main view

1

err = view->MVCCreate();

if (err) return(err);

// instantiate confirmation dialog

confirmationDialog = new kuiConfirmationDialogControllerC__c
( this );

err = confirmationDialog->MVCCreate
(view->MVCGetParentCandidateQM();

if (err) return err;

// Instantiate sub controllers and create them

/
CREATE__SUB_ CONTROLLERS
return OK;

RS 8K 8 8 8 8 8 8 8 8 8 K 0 0

E

* <PROTECTED> FUNCTION: mvcViewBase_c
*fitDefaultMainController_c::MVCGetMainView()

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
* %

¥

* Returns the main view

¥

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
*V

mvcMainViewBase_ ¢

*fitDefaultMainController_ c::MVCGetMainView()

return(view);

RS 8K 8 8 8 8 8 8 8 8 8 K 0 0

E

* <PUBLIC> FUNCTION: void fftDefaultMainController_c::
FitWMCloseWanted()

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
* %

¥

* Shuts the application down

¥

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
*V

void fitDefaultMainController c::FftWMCloseWanted()

{
if(view->MVClslconifiedQM())

view->MVCUnlconifyFM();

confirmationDialog->AskConfirmation((char *)closeText);

RS 8K 8 8 8 8 8 8 8 8 8 K 0 0

E

* <PUBLIC> FUNCTION: void fftDefaultMainController_c::
KuiActionConfirmed()

Template for implementation file of default main controller class.

o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke
£

¥

* Shuts the application down

¥

o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke
*N

void fftDefaultMainControllerc::KuiActionConfirmed()

{
¥

RS 8 8 5 8 8 8 8 8 0 6

fftProgram->MVCShutdown();

e ke

* <PUBLIC> FUNCTION: void
fitDefaultMainController__c::KuiActionNotConfirmed()

o sk ok ok ok ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk ok ok sk sk sk sk ok s ok ok ok ok ok ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok sk sk ok ke ok
* ok

#

* Shuts the application down

#

o sk ok ok ok ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk ok ok sk sk sk sk ok s ok ok ok ok ok ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok sk sk ok ke ok
*N

void fftDefaultMainController_c::KuiActionNotConfirmed()

// does’t need any actions

[0103] Template for header file of skeleton main controller
class.

RS 8 8 5 8 8 8 8 8 0 6
e ke

e

* $RCSfile$
*

¥ % % %

s e sk 3 3 s sk o o e s o e sl ok ok 3 3 sk sk o e s ok o ol e Sk ok o R sk o R e s ok ol ol Sk o R sk sk o R e oo ke ke ok ok o sk sk ook
Ea

* * S Author$
*

e

* * Copyright (¢) Nokia Telecommunications 1991-1995
*

o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke
* ok

* * Template file for Application Framework generated class

* ok

¥

o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke

* ok
* ok $L0g$
*

s e sk 3 3 s sk o o e s o e sl ok ok 3 3 sk sk o e s ok o ol e Sk ok o R sk o R e s ok ol ol Sk o R sk sk o R e oo ke ke ok ok o sk sk ook

BODY__START

#ifndef FFTDEFAULTMAINCONTROLLER _H

#define FFTDEFAULTMAINCONTROLLER__H

/* MODULE IDENTIFICATION
***********************************************ﬁ
static char abecontmainmx__resid[] = “$1d$™;

#include “abccontmadfmx.h”

class abcMainController_ ¢

:public abcDefaultMainController_c

public:
abcMainController_c(abcDefaultProgram_ ¢ *abcPrg);
~abcMainController_ c();
virtual errAtom_ ¢ *MVCCreate();



US 2001/0034878 Al

-continued

Oct. 25, 2001

-continued

// AF_TOKEN__START#public__methods#

// AFTool generated abstract partner methods.

// Don’t add your own code between AF_TOKENS

// AF_TOKEN_ END#public_ methods#

// AF_TOKEN__START#abs__partner__methods#

// AFTool generated abstract partner methods.

// Don’t add your own code between AF_TOKENS

// AF_TOKEN_ END#abs__partner__methods#
protected:
private:

abcMainController__c(const abcMainController_¢ & );

abcMainController__c operaton=(const abcMainController_c & )

const;

#endif
/* ABCMAINCONTROLLER_H */

[0104] Template for implementation file of skeleton main
controller class.

/************************************************************
* %

* ok

* * $RCSfile$

* ok

¥

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
* ok

* * $Author$

* ok

* * Copyright (¢) Nokia Telecommunications 1991-1995

¥

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
* ok

* * Template file for Application Framework generated class

* ok

¥

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok

Ea

* ok $L0g$
*

s sk sk 3 3 s s o e s ok ok e sl sk Sk o R s o s e ok ok ol ok o R s s ok o e e ok ok i sk sk o R s s ook ke ok ok kR sk sk o ook ok ke

BODY__START

/* MODULE IDENTIFICATION

o o ok ke ke ok ok sk ok ok sk sk ok ok ok 3K ke sk ok sk sk ok ok sk sk ok sk oK ke ke ok ok Sk sk ok ok 3k 3k sk ok o e ke ok ok ok sk ok

static char resid[] = “$1d$™;

TRACE_DECLARATION

#include “fftcontmainmx.h™ // Header of this main controller

#include “fftmainprdfmx.h” // Header of program module
/************************************************************

* %

* <PUBLIC> FUNCTION: fftMainController_ c::fftMainController_c()
s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
* %

¥

* Constructor.

¥

s ok 3k ke ke ok ok sk ok ok sk sk ok ok ok oK ke ke ok sk sk ok ok sk sk ok ok 3K ke ke ok ok sk sk ok ok sk sk sk ok oK e ke ok sk Sk Sk ok sk sk sk sk ok ok ke ke ok sk sk ok
*V

ffitMainController_ c::fftMainController ¢
fftDefaultProgram__c *fftPrg

fftDefaultMainController_ c(fftPrg)

{

/************************************************************
* ok

* <PUBLIC> FUNCTION: fftMainController_ c::~fftMainController_c()
o ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok sk ok ok sk ok sk sk ke sk ok ke sk ok ke ok ok ok ok sk sk sk sk sk e sk ok ke ok ok ok ok ok ok ok sk ok ke sk ok sk sk ok ok

E

¥
* Destructor

¥

o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke
*N

fitMainController_c::~fftMainController_ c()

{

/************************************************************
£
* <PUBLIC> FUNCTION: fftMainController_ c::MvCCreate()
o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke
£
¥
* Controller creation
¥
o ok 3k ke ke ok ok sk sk ok ok sk ok ok 3k 3K ke ke ok ok sk ok ok sk sk ok ok 3k 3k ke ke ok sk sk ok ok sk sk ok ok 3K sk ke ok ok sk sk ok ok sk ok ok 3k 3k ke ke ok ok sk ke
*N
errAtom_ ¢ *fftMainController _¢::MVCCreate()
errAtom_ c *err = fitDefaultMainController_ c¢::MVCCreate();
// add actions needed in conroller construction here
return err;

ABS_STUBS

[0105] Appendix 2—The syntax of the description file of
the code generator

[0106] The following table shows the syntax of the
description file of the code generator. The symbols printed in
italics are metasymbols. The metasymbols are not shown as
such in the description file, but their purpose is only to show
the syntax in a more easily readable form. The terminal
symbols are shown in quotation marks. The terminal sym-
bols are shown in the description file in the same form as in
the table below. Symbols that are shown in brackets “[”, “]”
are optional. Symbols shown in braces “{”, “}” may be
repeated a zero or more times. The comment lines begin with
the sign #.

[0107] The design of the structure of the description file
was restricted by the general structure of the configuration
files that is of the form:

ConfFile
item

“(< item )
token value {“(“item™)”}

[0108] wherein token is any character string containing
alphanumeric characters and value is any character string in
quotation marks.

ConfFile ::= “o«
“application” value
PrefixDeclaration
FamilyldDeclaration
TypeDeclaration
[SkelTestDeclaration |
{ServDeclaration}
Main ContDeclaration

2955

PrefixDeclaration ::= “(« “program__block_ prefix value”)”
FamilyldDeclaration “(« “family_id” value”)”
SkelTestDeclaration ::= “(« “skeleton__test” value ”)”



US 2001/0034878 Al Oct. 25, 2001
18

-continued -continued
ServDeclaration ::= “(“service value™)” [ViewDeclaration]
Main ContDeclaration ::= “r: [AbsPartnerDeclaration]
“main.icontroller” Valu.e {ServDeclaration}
{PublicMethodDeclaration} {SubContDeclaration}
[ViewDeclaration] y
{SevDeclaration} . AbsPartnerDeclaration ::= “o«
{Sub ContDeclaration} w "
) abs__partner” value
ViewDeclaration :e (e {)A”bsMethodDeclaranon}
“view” value
{PublicMethodDeclaration} AbsMethodDeclaration ::= “(« “abs__partner__method” value”)”
; i PublicMethodDeclaration ::= “(* “public__method” value”)”
[FileDeclaration] P
TypeDeclaration InstanceDeclaration ::= “(* “instance” value”)”
{AbsPartnerDeclaration} FileDeclaration ::= “( “file” value™)”
”y? Typedeclaration ::= “(« “type” value”)”
yp yp
Sub ContDeclaration ::= “« value ::= “«fany character expect’™’}"”

“sub__controller” value
{InstanceDeclaration}
{PublicMethodDeclaration}
[FileDeclaration] [0109] The following example clarifies the semantics of

the configuration file.

# Application name, must comply with the form rule.
(application “fooprgmx”
# Prefix for application classes and file names.
(program_ block_ prefix “foo™)
# Application identifier. Used as an identifier with which the signalling service
# identifies the process
(family_id “FOOPRG”)
# Application type. “UI” for user interface, applications,
# “BG” for background applications
(type “UI")
# Indicates that the method frames generated by the application are
# to be provided with the program AF_TRACE service that prints on
# the terminal information about implementing the method
(skeleton__test “yes”)
# List of services employed by the application.
(service “wne__manager”)
(service “process___control”)
# Main controller definition. The name of the main controller class
# is generated automatically to correspond to the form rule
(main_ controller ""
# Main controller definition. The name of the main view class
# is generated automatically to correspond to the form rule.
(view ™
# Main view type. Determines the GUI component from
# which the main view visual # class is inherited.
(type “basic_application_base™)
# public interface definition
(public__method “void ShowThisFM(char *txt)”)
(public__method “void ShowThatFM(int valur)”)
# Main view abstract partner definition. The name of the
# abstract partner class is generated automatically
# to correspond to the form rule.
(abs__partner ™
# Declaration of abstract partner methods. Methods inherited
# from the # GUI component do not have to be # declared.
(abs__partner__method “void::FoolsDone()”)
(abs__partner__method “void::FooSomethingWanted()”")

)

# list of services to be used in the main controller
(service “working dialog™)
# Subcontroller definition. The subcontroller name is generated from the
# given character string to correspond to the form rule. E.g. Subl =>
# fooSubl1Controller_ ¢
(sub__controller “sub1”
# If there are several instances of the subcontroller, they must be
# separated from one another with different instance names. If there
# is only one instance, it can be left without definition, and the
# character string given in the subcontroller definition is used as the



US 2001/0034878 Al
19

-continued

Oct. 25, 2001

# instance name
(instance “donald”™)
(instance “mickey™)
# Character string used for generating the subcontroller file names
# can be left out, in which case the character string given in the
# subcontroller definition is used.
(file “subcon™)
# public interface definition
(public__method “void Action()”)
(public__method “int OtherAction()”)
# Subview definition. If no subview name is given the controller
# name is used for generating the class name.
(view “sub1”

# Subview type. Defines the components from which the

# subview visual class is inherited.

(type “basic__yes_ no_ help_ dialog”

# Subview abstract partner class definition
(abs__partner
(abs__partner__method”
void::FooSubViewTellsSomething()”
)

)

# Subcontroller abstract partner class definition.
(abs__partner ™
(abs__partner__method “void::FooSubContWantsThis()”")
(abs__partner_ method “void::FooSubContWantsThat()”)

(sub__controller “sub2”
(view ™
(type “bui__ok_ help_ dialog”)
)

)

(sub__controller “sub3”
iew ™
(type “bui__ok_cancel help_ dialog™)
)

1. A method for producing application-specific computer-

controlled services for a user, the method comprising

forming a description file wherein the application for
which the service is intended is described with the
terms of the application architecture used,

generating automatically an application-specific program
code from which the application-specific computer
program is formed by using software generating means
(11) and by following the rules of the application
architecture used, and

running said computer program in order to provide the
user with said service,

characterized in that the computer program is divided into
different groups in such a way that

the first group (A) is formed only of such a program code
that remains the same regardless of the application,

the second and the third group are provided with a
program code produced by means of said generation in
such a way that (a) the second group (B) only includes
a program code produced by means of said generation
and (b) the third group (C) contains such a code
produced with said generating that the designer is
intended to change after the generation, and

the generating means (11) are informed of whether the
code to be generated is produced for the second or for
the third group.

2. Amethod according to claim 1, characterized in that the
application is object-based and that the properties of the first
group are inherited to the second group and the properties of
the second group to the third group.

3. A method according to claim 1, characterized in that
inside the third group the part to be modified by the designer
is separated from the rest of the group with character strings
reserved for this purpose.

4. A method according to claim 1, characterized in that in
the description an individual identifier is given to the infor-
mation that is supplemented by means of said generation
with a code to which changes made by the designer are to be
added.

5. Amethod according to claim 2, characterized in that the
input data provided to the generating means is divided into
two parts in such a way that one corresponds to said second
group and the other one corresponds to said third group.

6. A method according to claim 5, characterized in that
said parts consist of template files, and that the generation is
performed by supplementing the template files on the basis
of the application description.



US 2001/0034878 Al

7. Amethod according to claim 1, characterized in that the
method produces network management services with which
the user of the network management system controls the
telecommunication network.

8. A system for producing application-specific computer-
controlled services, the system comprising

a description stored in a memory about the application for
which the service is intended, the description being
made with the terms of the application architecture
used,

software generating means (11) for generating an appli-
cation-specific program code according to the rules of
the application architecture used, characterized in that
said generating means are operationally coupled to
separation means (12, 13) for separating the generated

Oct. 25, 2001

code into two different groups in such a way that one
group (B) only contains a program code produced by
means of said generation and the other group (C)
contains such a code produced by said generation that
is to be changed by the designer after the generation.

9. A system according to claim 8, characterized in that the
separation means comprise said description and separate
template files (134, 13b) for each group.

10. A system according to claim &, characterized in that it
is a part of a network management system where the system
is used to produce network management services by means
of which the user of the network management system
controls the telecommunication network.



