
US 20010034878A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2001/0034878 A1

AHMAVUO ct al. (43) Pub. Date: Oct. 25, 2001

(54) METHOD FOR PRODUCING (30) Foreign Application Priority Data
COMPUTER-CONTROLLED SERVICES

Oct. 11, 1995 (F1) 954838

(75) Inventors: PEKKA AHMAVUO, TAMPERE (FI); Publication Classi?ca?m‘
MARTTI ALA-RANTALA 7

_ ’ (51) Int. Cl. G06F 9/44

TAMPERE (F1) PIA NARVANEN (52) US. Cl. 717/1
PIRKKALA (Fl)

(57) ABSTRACT
Correspondence Address:
ALTERA LAW GROUP, LLC The invention relates to a method for producing application
6500 CITY WEST PARKWAY, SUITE 100 speci?c computer-controlled services. An application-spe
MINNEAPOLIS, MN 55344_7701 (Us) ci?c program code is generated automatically and an appli

cation-speci?c computer program for providing said service
(73) Assignee. NOKIA TELECOMMUNICATIONS is formed. In order to perform changes more easily than

OY before, the computer program is divided into three groups.
The ?rst group (A) is formed only of such a code that

(*) Notice. This is a publication of a Continued pros_ remains the same' regardless of the' application, and the
ecution application (CPA) ?led under 37 second and the third group are provided With a code pro
CFR 1_53(d)_ duced by means of said generation in such a Way that (a) the

second group (B) only includes a code produced by means
(21) App1_ No; 09/051,361 of said generation and (b) the third group (C) contains a code

produced With said generation that is to be changed by the
(22) PCT Filed; Oct, 9, 1996 designer after the generation. The generating means (11) are

informed of Whether the code to be generated is produced for
(86) PCT No.: PCT/FI96/00530 the second or for the third group.

1 3
l- _ ' _ _ T _ _ _ T _ _6 _ _ T _ T T T _ _ _ — H u _ _|

| 13a TEMPLATE FILES 23b | 10
1 Q | S

{ DEFAULT CLASS FRAME CLASS : QA
| TEMPLATE FILES TEMPLATE FILES l

l : LIBRARY CODE MVCH- BASE CLASSES

reads
gB

1 1 CLASSES WITH APPLI
4 . CATION SPEClFlC ERATED CODE

DESCRIPTION OF reads JV” GEN DEFAULT FUNCT|O.
APPUCAHON GENERATOR NALITY (LE. DEFAULT

‘Kites A C CLASSES)

S
‘PCT \ GENERATED CODE

% MANUALLY WRITTEN FRAME CLASSES
CODE 2

_J

Patent Application Publication Oct. 25, 2001 Sheet 2 0f 8 US 2001/0034878 A1

flll

N .QE

1‘ NEW ‘ 3 "A
a o
Q 1‘ Q 4‘ z a m a

< h 2 N1 . g!
“55 woz?mi 5E g

H. 29205551225 U \ \\\
\\\\ / w>>

SZEOOMQ ZO_wmm_>ZO0
MOEQNEZMU V

R

Patent Application Publication Oct. 25, 2001 Sheet 3 0f 8 US 2001/0034878 A1

I: Base station radio network parameters ‘ ‘1 FIG, 33

File Settings Help

identi?er I:
Name [:3 @
Max. transmit power I | [Select base station...]
Min. transmit power |:[

Selection of base station FIG . 3b

+

one
‘:1 Base station radio network parameters A Y 7

File Settings Help

identi?er [:1
Name C: [HE]
Maxtransmitpower I I @lect base station..]
Min. transmit power [:I
Priority mode Yes |:] Nolj

Updating parameters FIG _ 9

Updating radio network parameters,
please wait...

[EDGE]

Patent Application Publication Oct. 25, 2001 Sheet 4 0f 8 US 2001/0034878 A1

wwwwmooa
roggmsgsmawzwewmo?

OEWEEQEE

oléabcoosm 28m

Susana cvmgécogmgmwoi gogw? @552:252N832

olzggmsgm

oiEmaoionm XEEEUESFN u cozmoznam 0% n éwaixoozlemaoa
2%? H 25E

5 n 35

Patent Application Publication Oct. 25, 2001 Sheet 5 0f 8 US 2001/0034878 A1

FIG. 5

(application "abcradionetnm" # application name
application speci?c declaration
(program_block_pre?x "abc") # from varki
(family_id "ABCRAD“) # from wmslibnnih
(HUI”) #
(skeleton_test“yes“)
(main__controller ""

main view
(View ""

(type "basic_application_base")
(public_rnethod "#abcl# void ShoWPaIametersFM(namevt nimi,

intID_t tunnus, ?oat maXPoWer, ?oat minPoWer)"
)
(abs_partner ""

(abs _partner_method
“#abc2# void:: AbcUpdateButtonActivated(name_t name,
intlID_t identi?en?oat maXPoWer, ?oat minPoWer)“

)
(abs _partner_method

"#abc3# void ::AbcS electButtonActivated()"
)

)

)
(sub_controller "selection“

(public_n1ethod "#abc4# void EnterBasestationO")
(View ""

(type IIbasic_close_help_dialog")
(public_method
"#abc5# void SetElementsfm(ElementList_t elements)"
)
(abs_partner ""

(abs _pa1tner_method
"#abc6# void ::AbcA1kioSelected(int alkio)"

)
)

)
(abs _partner ""

(abs _partner_method
“#abc7# void I:AbcOhjainSelected(intID_t tunnus)"
)

)
)
)

I) J

Patent Application Publication Oct. 25, 2001 Sheet 6 0f 8 US 2001/0034878 A1

@ _

®

® @

no

m5 .0E 16% @ .oE

Patent Application Publication Oct. 25, 2001 Sheet 7 0f 8 US 2001/0034878 A1

Patent Application Publication Oct. 25, 2001 Sheet 8 0f 8 US 2001/0034878 A1

FIG. 8

abcMainContro|ler_c

controls AbcU pdateButtonActivatedQ {concrete}
AbcSetectButtonActivated() {concrete}
AbcControHerSelected() {concrete}

Basestation_c
BasestationControtter_c name

PriorityModeO __c_%___d {giggle/Car
SetPriorityModeQ minPower

SetParameters()
EnterParameters()
EnterBasestationControllerO

US 2001/0034878 A1

METHOD FOR PRODUCING
COMPUTER-CONTROLLED SERVICES

[0001] The invention relates generally to systems similar
to network management systems that are provided by means
of software With services by means of Which the end user
uses the system, for example controls the apparatuses in the
netWork. More precisely, the invention relates to a method
according to the preamble of the appended claim 1 for
producing application-speci?c computer-controlled services
for a user of such a system. The invention also relates to a
system according to the appended claim 8 for producing
application-speci?c computer-controlled services.

[0002] There are several systems intended for code gen
eration in the market. Such generators are typically intended
for use at the beginning of programming and they cannot be
used for making signi?cant changes in ?nished applications
rapidly and Without any mistakes. In other Words, knoWn
generators do not provide sufficient support for repeated
changes and additions.

[0003] Several applications are also such that it should be
possible to make changes therein as rapidly and correctly as
possible. An example of such an application is a netWork
management system Wherein the netWork to be managed
comprises several apparatuses of different types and the
netWork changes continuously as the operator acquires
devices from several different manufacturers and performs
updatings on existing devices and their softWare. Especially
With the neW free competition in the ?eld of telecommuni
cations a need has occurred to continuously provide the
users With neW services, Which further increases the impor
tance of ?exible possibilities of change.

[0004] The knoWn systems are not very Well suitable for
applications of the type described above. This is for example
due to the fact that the systems provide the designer With a
great deal of detailed and therefore also secondary informa
tion from Which it is dif?cult to ?nd the essential parts (to
Which the Achanges are directed). The designer must also be
able to control (understand) this information. Therefore the
person Who makes the changes must be an expert in the ?eld
of programming.

[0005] In such a system, there is also the danger that the
designer changes such a part of the softWare that is not to be
changed.

[0006] The purpose of the present invention is to eliminate
the aforementioned draWback by providing a neW type of
arrangement for producing an application-speci?c service.
This object is achieved With the method according to the
invention that is characteriZed by What is described in the
characteriZing portion of the appended claim 1.

[0007] The idea of the invention is to create an environ
ment Where changes are as simple and clear as possible for
the designer. This is possible by placing separately the code
to be generated (a) in such a part (containing the default
functionality) that the designer can ignore during the
changes (so that it can be invisible) and (b) in a part that is
visible to the designer and that requires changes to be made
by the designer in each situation of change. The separation
is based on the use of special template ?les and the changes
are carried out by making a change corresponding to the
change in the description ?le of the application, by regen
erating the application frameWork and by thereafter making,

Oct. 25, 2001

if required, the changes that are to be carried out manually
by the designer. In connection With the generation, the code
generator modi?es the template ?les on the basis of the
description ?le of the application.

[0008] Due to the arrangement according to the invention,
changes can be carried out rapidly and as faultlessly as
possible. The product to be delivered to the user of the
service can thus be made faultless rapidly. Due to the
invention, it is even possible that changes are made by a
person employed by the organiZation, such as the netWork
operator, using the service, in Which case the changes Will be
as ?exible as possible.

[0009] The above-described advantages are based on the
fact that the system increases the abstraction level of the
designer’s Work; the designer only sees the essential part
(the parts requiring changes) of the application and the
secondary matters (the complicated program code) are invis
ible. Therefore it is easier for the designer to locate the parts
to Which changes must be made. At the same time, this also
decreases the possibility for the designer to accidentally
change parts that are not to be edited.

[0010] In the folloWing, the invention and the preferred
embodiments thereof Will be described in greater detail With
reference to the examples according to the accompanying
draWings, in Which

[0011]
tion,
[0012] FIG. 2 shoWs the generation of a ?nished appli
cation With the system according to the invention,

[0013] FIG. 3a shoWs the main WindoW in an illustrative
application,
[0014] FIG. 3b shoWs a subWindoW of the illustrative
application,
[0015] FIG. 4 shoWs an object model of the illustrative
application,
[0016] FIG. 5 shoWs an application description supplied
to the code generator,

FIG. 1 illustrates a system according to the inven

[0017] FIG. 6 shoWs a generated application frameWork,

[0018] FIG. 7 shoWs the main WindoW of the application
in its changed form,

[0019] FIG. 8 shoWs the change to be made to the object
model, and

[0020] FIG. 9 illustrates another change to be made to the
application.

[0021] FIG. 1 illustrates the netWork management system
according to the invention. An object-based program, based
on the MVC++ application architecture (and the use of the
C++ programming language), is used as an example. It can
generally be stated that the method requires the use of a
simple application architecture, for example the MVC++
architecture. Since this architecture Will be used as an
example beloW, such features that facilitate the understand
ing of the folloWing description Will be described shortly in
this connection.

[0022] The MVC++ architecture is modi?ed from the
knoWn MVC (Model-VieW-Control) architecture and
according to it the application is divided into three parts:

US 2001/0034878 A1

model, view and control. The model part is a collection of
objects describing the area of the real world to which the
application relates. The view part is the outmost layer of the
application, visible to the end user. This part determines
what the user sees on the monitor. The view part is divided
into a visual and functional part. The visual part manages the
layout of the display and the functional part controls the
functionality related to the display. The view part is created
by the controller part, and for each view object there is one
controller object. The controller part controls the coopera
tion of the model and view parts and forms the application
speci?c logic. One controller object may have a relation to
several model objects and the same model object may be
connected to several controller objects. In the application
according to the MVC++ architecture, the objects of the
model part and the view part are not directly connected to
each other, but a view object can communicate with a model
object only via a controller object. Therefore the view part
interprets a command given by a user from the workstation
and indicates to the controller part which function is in
question. The controller part contains the knowledge about
how each command is to be processed, so that the controller
part requests the model part to carry out the measures
corresponding to the command. The model part informs the
controller part of the results of the measures, and the
controller part in turn asks the view part to show them to the
user. Each application according to the MVC++ architecture
has a main controller class, ie a main controller, that
controls the other controller classes and thus the entire
application. Also, a main controller object creates a main
view object and controls it. The main view object forms the
main window of the application. For every other window
(dialog) there are separate view and controller classes.

[0023] A more detailed description of the MVC++ archi
tecture is provided for eXample in Implementing Interactive
Applications in C++by A. Jaaksi (Software Practice &
Experience, Volume 25, No. 3, March 1995, pp. 271-289).

[0024] The network management system according to the
invention can be in practice for eXample such as shown in
FIG. 1. Network operators sitting in operation and mainte
nance centres MS use network management workstations
WS connected to a separate workstation network WSN that
may be for eXample an Ethernet network. The management
system is typically divided into several computers of the
workstation network, some of the computers comprising a
database DB containing the data required to control the
network. The management system is connected via a Q3
interface de?ned in the standards for eXample to a transmis
sion network DCN that may comprise for eXample SDH
devices 21 and PDH devices 23. The control channels
between the SDH devices are formed in practice in header
bytes of an STM-N signal (N=1, 4, 16), so the control signals
between the SDH devices travel together with the payload
signal (i.e. also in the same physical network). Conventional
PDH devices 23 in turn require arrangements that are
speci?c for each manufacturer, wherefore they must be
connected to the management system via a separate media
tion device 22.

[0025] The system according to the invention comprises a
code generator 11 that automatically generates a part of the
application-speci?c computer program 10 used in the system
and called hereinafter an application framework. This is the
program framework that is run when the operator uses the

Oct. 25, 2001

network management services from his workstation. The
?nished application is stored in a server or an individual
workstation of the workstation network (or in both).

[0026] A high abstraction level description of the appli
cation is formed for the generator, the description forming
the ?rst input group of the generator. This description is
denoted with reference numeral 12. The description can be
written for eXample manually directly into a teXt form
understood by the generator and the description can there
after be stored as a ?le in the system memory. The descrip
tion can also be produced with a known CASE (Computer
Aided Software Engineering) device where the application
is displayed as a graphic description. In this case, the
description stored in the ?le by the CASE device is con
verted into a form understood by the generator with a special
conversion program.

[0027] Another input group to the generator consists of
template ?les 13 acting as models to the generation of the
application framework. The code generator 11 generates the
application framework by regenerating the code to the
template ?les on the basis of the description 12 written by
the designer. The template ?les are divided into two groups,
13a and 13b, and a certain part of the application framework
is generated on the basis of each group. The template ?les
are ?Xed ?les that do not have to be changed when the
application is modi?ed. In this respect, the template ?les
could also be considered to be a part of the internal imple
mentation of the code generator 11.

[0028] From the above-described two input groups the
code generator forms its own part (denoted in FIG. 1 with
the term “generated code”) of the application-speci?c com
puter program 10 (i.e. the application framework) shown on
the right side of FIG. 1. According to the invention, the
application framework is divided into three different groups
or layers A to C in such a way that the properties of group
A are inherited to group B and the properties of group B are
inherited to group C. In FIG. 1, the inheritance is indicated
with a triangle pointing upwards.

[0029] The ?rst group A (the lowermost layer; even
though the layer is shown in the ?gure as the uppermost one,
it is the lowest layer for the designer) only contains such a
program code that remains the same regardless of the
application. Therefore this group does not have to be created
speci?cally, but it remains the same from one application to
another. The group contains the functionality that remains
the same from one application to another. Even though some
changes would have to be made to the application or the
application would be changed altogether, this group always
remains the same. In this eXample, the ?rst group consists of
MVC++ base classes (that are the same for all applications).

[0030] The second group B (the middle layer) and the
third group C (the uppermost layer) are provided with a
program code produced with the code generator 11. The
division is performed in such a way that the second group is
only provided with a program code produced by means of
the generator and the third group in turn is provided with a
code produced both by the generator and manually by the
designer. During the generation, the third group is therefore
provided with a code to which the designer is intended to
make changes, eg additions. After the generation, the
designer makes the necessary changes to the third group.
The third group is therefore divided in its ?nal form into two

US 2001/0034878 A1

parts: part C1 that only contains a code produced by the
generator and part C2 that contains a code produced manu
ally by the designer.

[0031] The second group B comprises the classes that
contain the application-speci?c default functionality. These
classes are generated by means of the generator in a manner
described beloW, and the designer does not have to make any
changes in this group at any stage. This default functionality
is dependent on the application structure and the services
connected thereto, and it can be changed in such a Way that
the properties the designer has added to the application (i.e.
to group C) are retained. The second group is generated on
the basis of the corresponding template ?les (13a) and the
description 12. The classes of the second group are stored in
the system into their oWn ?les Which do not contain a code
Written manually by the designer. These classes Will be
called beloW default classes.

[0032] The third group (C) consists of skeleton classes that
are classes to Which the designer manually Writes an addi
tional functionality required by the application. Due to the
technical properties of programming languages, changes
must also be made to the skeleton classes during the regen
eration of the application frameWork. For that purpose, the
code (part C1) to be regenerated is separated from the rest
of the code (part C2) in the ?les containing the skeleton
classes. The separation employs character strings Which are
reserved especially for this purpose and on the basis of
Which the generator recogniZes the parts of the ?les that are
to be regenerated during the changes.

[0033] Information about Whether the code to be generated
is a part of the default classes (i.e. group B) or the skeleton
classes (i.e. group C) is given to the generator by means of
the template ?les. For this purpose, the template ?le section
13 comprises speci?cally a part corresponding to group B,
i.e. the template ?les 13a of the classes containing the
default functionality, and a part corresponding to group C,
i.e. the template ?les 13b of the skeleton classes. The
template ?les of the default classes are a model to the
functionality that can be implemented automatically on the
basis of the description ?le 12. By means of the template
?les 13b of the skeleton classes one generates the frames that
are supplemented by the designer With the code that cannot
be automatically generated. The accompanying appendix 1
uses the template ?les of the default and skeleton main
controller classes as examples.

[0034] When the application frameWork is created for the
?rst time, the code generator Writes the required code into
groups B and C. When changes are to be made to the ?nal
application, the generator reWrites groups B and C. The
generator can reWrite group B in full on the basis of the
changed input data, but the contents of group C (skeleton
classes) must be read ?rst so that the generator recogniZes
the part added manually by the designer so that it can be left
as it is.

[0035] When the code to be generated is such that it
contains a code of the generator, the code to be generated is
supplemented With an identi?er by means of Which the code
to be generated and the manually Written code are con
nected. This Will be described in greater detail beloW.

[0036] The generator reads template ?les. When the gen
erator ?nds a certain character string reserved for this

Oct. 25, 2001

purpose from the template ?les, it replaces the string With
the code part it has generated. The generator forms these
code parts according to its oWn generation rules and the
application description. The generation rules depend on the
application architecture used, but they are independent of an
individual application. (The generation rules therefore form
a kind of a function providing a result that is dependent on
the parameter used, i.e. on the description 12 of the appli
cation.)
[0037] As it is apparent from What is stated above, the
application frameWork to be generated has the folloWing
characteristics:

[0038] 1. The manually Written code and the automati
cally generated code are separated from one another by
dividing the application into default classes and skel
eton classes.

[0039] 2. The manually Written code and the code to be
generated are separated Within the skeleton classes by
means of character strings reserved for this purpose.

[0040] 3. The manually Written code and the code to be
generated are combined With special identi?ers When
the code to be generated contains a directly manually
Written code.

[0041] FIG. 2 illustrates an eXample of the generation of
a ?nished application With the method according to the
invention. The designer ?rst makes an object diagram eg
with a CASE device. The description is converted into a
form understood by the code generator 11 either by Writing
it manually or alternatively by means of a conversion
program. The code generator then generates the application
frameWork 10 consisting in this eXample of ?les in the C++
language (controller classes and functional vieW classes) and
of ?les (visual vieW classes) in the format of the user
interface tool (e.g. X-DesignerTM, the trademark of Imperial
SoftWare Limited). The designer supplements the function
ality of the application by means of manual coding and (eg
the aforementioned) user interface tool of the user interface.
The program can then be compiled and linked as a program
to be run for eXample in a netWork management system
Where the netWork and its netWork elements (physical
devices) are controlled from a Workstation WS via a trans
mission netWork. The above-described development tools
can also be located in one Workstation of the netWork
management system so that the operator personnel can make
themselves the changes required in the netWork management
system.

[0042] In the folloWing, the implementation of the appli
cation Will be illustrated by using as an eXample an imagi
nary application The radio netWork parameters of the base
station related to the netWork management, the application
making it possible to vieW and set parameters related to the
radio netWork of the base station.

[0043] FIG. 3a shoWs the main WindoW of the application
as it is seen on the display of the Workstation WS of the
control centre in the netWork management system MS of
FIG. 1. The application is started from the main user
interface of the netWork management system, and the main
WindoW of the application then appears on the display. The
data related to the transmission poWer of the base station can
be read and set from this main WindoW. The application also

US 2001/0034878 A1

comprises one subWindoW that is shown in FIG. 3b. The
base station to be treated can be selected from this subWin
doW.

[0044] The designer ?rst draws With the CASE device an
object model describing the application. The obtained model
is shoWn in FIG. 4, employing the commonly used OMT
notation described for example in Object Oriented Model
ling and Design by James Rumbaugh et al. (Prentice-Hall,
NeW Jersey, USA, 1991, chapter 3). (It should be mentioned
that the frame 4a shoWn on the left side of FIG. 4 and not
connected to any class provides additional information about
the entire application described in greater detail beloW. By
means of the vieW type de?nitions 4B and 4C, the user
interface components inherited to the vieW classes are

selected.)
[0045] This graphic description is converted by a conver
sion program or by manually Writing into a form understood
by the code generator. The code thus obtained is shoWn in
FIG. 5. In order to understand this description ?le, the
accompanying appendix 2 shoWs the syntax of the descrip
tion language used. (FIG. 5 shoWs by means of parenthetical
expressions a similar hierarchial structure as shoWn in FIG.
4 With the OMT notation).

[0046] The application frameWork 10 is then generated by
using the application generator 11. The listing shoWn in
FIG. 5 is then generated into the application frameWork
shoWn in FIG. 6. FIG. 6 shoWs the above-described group
division in such a Way that of the generated code, the classes
belonging to group B (i.e. the default classes) are depicted
With thin frames and the classes of group C (i.e. the skeleton
classes) are shoWn With thick frames. The programmer thus
sees from the application frameWork as the C++ source code
the (vieW, controller and abstract partner) classes shoWn
With thick frames. The designer implements the functional
ity of the application by adding a necessary amount of code
to theses skeleton classes. (Abstract partner is a class
describing What an object expects from a calling object.
Since the concept of abstract partner is not related to the
actual inventive idea, it Will not be described in greater detail
in this connection. A more thorough description of the
abstract partner is provided in the aforementioned article on
the MVC++ .)

[0047] The designer implements the layout of the user
interface by editing the visual vieW classes (the classes
shoWn in the ?gure With broken thick frames) With a user
interface tool (e.g. X-DesignerTM). The other classes shoWn
in FIG. 6 are not visible to the designer. (The user interface
components shoWn in the ?gure and inherited to the visual
vieW classes are selected on the basis of the vieW type
de?nition set forth in the description ?le 12.) When FIGS.
4 and 6 are compared, it becomes apparent hoW the arrange
ment according to the invention makes it possible to increase
the abstraction level of the programming Work. A descrip
tion on the abstraction level of FIG. 4 can be converted into
the (rather complicated) class hierarchy of FIG. 6. Of the
classes of FIG. 6, the designer only sees the classes depicted
With thick frames, so the designer also sees the generated
code on a high abstraction level.

[0048] The naming of the classes to be generated employs
the naming rule shoWn in the folloWing table. In the table the
character string “abc” is a three-letter pre?x of the applica
tion given in the description ?le (FIG. 5).

Oct. 25, 2001

AbcDefaultProgramic application default main program
class

abcProgramic application skeleton main program
class

abcDefaultMainControlleric application default main controller
class

abcMainControlleric application skeleton main
controller class
application default main vieW class
application skeleton main vieW
class
application default main vieW
abstract partner class
application skeleton main vieW
abstract partner class
default subcontroller class Where
<Sub> is the subcontroller name
given in the description ?le
skeleton subcontroller class Where
<Sub> is the controller name
given in the description ?le

abcDefault<Sub>ControllerAbsCPic default subcontroller abstract
partner class Where <Sub>
is the subcontroller name
given in the description ?le
skeleton subcontroller abstract
partner class Where <Sub>
is the controller name given
in the description ?le
default subvieW class Where <Sub>
is the subcontroller name given
in the description ?le
skeleton subvieW class Where
<Sub> is the controller name
given in the description ?le
default subvieW abstract partner
class Where <Sub> is the
subcontroller name given in the
description ?le
skeleton subcontroller abstract
partner class Where <Sub> is
the controller name given in the
description ?le

abcDefaultMainVieWic
abcMainVieWic

abcDefaultMainVieWAbsVPic

abcMainVieWAbsVPic

abcDefault<Sub >Conrolleric

abc<Sub >Controlleric

abc<Sub >ControllerAbsCPic

abcDefault<Sub >V16WiC

abcDefault<Sub >V16WAbSVPiC

[0049] The folloWing items Ato E shoW as an example the
generation of the declaration of the default main controller
class (the class “abcDefaultMainController_c” of group B)
on the basis of the template ?le and the data in the descrip
tion ?le. The frames shoW the parts of the ?les that are
changed. The frame has on one line an arroW, and the part
preceding the arroW describes the situation before the
change and the part folloWing the arroW in turn describes the
situation after the change.

[0050] A. The name of the class is obtained by replacing
the character string “fft” in the class name (cf. appendix
1) of the template ?le With an application pre?x pro
vided in the description ?le, in this case “abc”:

class fftDefaultMainControlleric
=> class abcDefaultMainController

[0051] B. The name of the main vieW abstract partner
class to be inherited to the default class is obtained by
replacing from the character string “fftMainVieWAb
sVP_c” the part “fft” With “abc”. The names of the
subcontroller abstract partner classes to be inherited to
the main controller are formed according to the naming

US 2001/0034878 A1

rule. They are formed into a character string Where the
names of the abstract partner classes are separated With
a comma and a line feed character. The character string
thus obtained replaces the character string INHERIT
_ABS in the template ?le:

: public mvcMainControllerBaseic,
public kuiCon?rmationDialogControllerAbsCPic,
public fftMainVieWAbsVPicINHERITiABS

: public mvcMainControllerBaseic,
public kuiCon?rmationDialogControllerAbsCPic,
public abcMainVieWAbsVPic,
public abcSelectionControllerAbsCPic

[0052] C. In the declaration of the methods of the public
part in the template ?le, the character string “fft” is
replaced With “abc”:

public:
fftDefaultMainControlleric(fftDefaultProgramic *fftPrg);
virtual ~fftDefaultMainControllericO;
virtual errAtomic *MVCCreateO;
// de?ved from abs. vieW partner
virtual void FftWMCloseWanted();
// con?rmation controller abstract partner
// methods
virtual void KuiActionCon?rmedO;
virtual void KuiActionNotCon?rmed();

public:
abcDefaultMainControlleric(abcDefaultProgramic *abcPrg);
virtual ~abcDefaultMainControllericO;
virtual errAtomic *MVCCreateO;
// de?ved from abs. vieW partner
virtual void AbcWMCloseWanted();
// con?rmation controller abstract partner
// methods
virtual void KuiActionCon?rmedO;
virtual void KuiActionNotCon?rmed();

[0053] D. In the declaration of the protected part of the
template ?le, the character string “fft” is replaced With
“abc” and MAINVIEW_C is replaced With a main vieW
name formed according to the naming rule. The char
acter string SUB_CONT_DECLARATTONS is
replaced With a character string formed in the folloWing
manner:

[0054] The folloWing steps are repeated for each subcon
troller de?ned in the description ?le:

Oct. 25, 2001

[0055] 1. A character string according to the naming
rule is formed as the name of the subcontroller class

on the basis of the name given With the sub_con
troller de?nition of the template ?le.

[0056] 2. The character string is supplemented in
order With a space character and an asterisk.

[0057] 3. If an instance name has been de?ned for the
subcontroller by means of the instance de?nition, it
is added to the character string, otherWise a name
given With the sub_controller de?nition is added to
the character string.

[0058] 4. The character string is supplemented With a
semicolon and a line feed character.

[0059] The character strings thus obtained are combined.

protected:
mvcMainVieWBaseic *MVCGetMainVieWO;
MAINVIEWiC *vieW;
fftDefaultProgramic *fftProgram;
// con?rmation dialog
kuiCon?rmationDialogControllerCic *con?rmationDialog;

SUBiCONTiDECLARATIONS
=>

protected:
mvcMainVieWBaseic *MVCGetMainVieWO;
abcMainVieWic *vieW;
abcDefaultProgramic
// con?rmation dialog
kuiCon?rmationDialogControllerCic *con?rmationDialog;
abcSelectionControlleric *selection;

*abcProgram;

[0060] E. The private part is formed by replacing the
character string “fft” With “abc” given in the descrip
tion ?le 12:

private:
fftDefaultMainControlleric(const fftDefaultMainControlleric &);
fftDefaultMainControlleric operator=

(const fftDefaultMainControlleric &) const;
};
= >

private:
abcDefaultMainControlleric(const abcDefaultMainControlleric 8c);
abcDefaultMainControlleric operator=

(const abcDefaultMainControlleric &) const;
a

[0061] The ?les generated from the illustrative application
are shoWn in the table beloW:

Skeleton classes to Which the programmer encodes the additional functionality required by
the application:
?le

abcvieWmainmX.h
abcviewmainmxcc
abcvivalintmxh

abcvivalintmxcc
abccovalintmxh

class

abcMainVieWic, abcMainVieWAbsVPic
abcMainVieWic
abcSelectionVieWic, abcSelectionVieWAbsVPic
abcSelectionVieWic
abcSelectionControlleric, abcSelectionControllerAbsCPic

US 2001/0034878 A1

-continued

Oct. 25, 2001

abcSelectionControlleric
abcMainControlleric
abcMainControlleric

abcmainprogmx.h abcMainProgramic
abcmainprogmx.cc abcMainProgramic
File Where the version number of the application is set:
abcyourbvermx.h

abccovalintmx.cc
abccontmainmx.h
abccontmainmx.cc

Description in the format of the user interface tool about the visual vieW classes
The visual skeleton classes are generated on the basis of the vieW type determination, e.g
(type “basiciapplicationibase")
?le class

abcvsmainvimx.xd abcMainVieWVisualic
abcvsvalintmx.xd abcSelectionVieWVisualic
Classes containing the application-speci?c default functionality:
?le class

abcvieWmadfmx.h
abcvieWmadfmx.cc
abcvdvalintmx.h
abccdvalintmx.cc
abccdvalintmx.h
abccdvalintmx.cc
abccontmadfmx.h

abcDefaultMainVieWic

abcDefaultSelectionVieWic

abcDefaultSelectionControlleric
abcDefaultMainControlleric

abccontmadfmx.cc abcDefaultMainControlleric
abcmainprdfmx.h abcDefaultMainProgramic
Visual vieW classes in the C++ language. The code generator starts the
XDesigner user interface tool that generates the visual vieW classes from the
descriptions in the XDesigner format.
?le class

abcMainVieWVisualic
abcMainVieWVisualic

abcvsselectmx.cc abcSelectionVieWVisualic
abcvsselectmxh abcSelectionVieWVisualic
File containing data about the generated application framework:
README.1st
Make?le for compiling the application:
abcyourbankmx.ma_k

abcvsmainvimx.cc
abcvsmainvimx.h

abcDefaultMainVieWic, abcDefaultMainVieWAbsVPic

abcDefaultSelectionVieWic, abcDefaultSelectionVieWAbsVPic

abcDefaultSelectionControlleric, abcDefaultSelectionControllerAbsCP

[0062] As the table and FIG. 4 show, one controller class

of the application description is converted into tWo classes:

a skeleton class (belonging to group C) and a default class

(belonging to group B). The vieW classes in turn are con

verted into three classes: for the functional part of the vieW,

default and skeleton classes, and for the visual part of the

vieW, only a skeleton class (since this part can be processed

With the user interface tool on a level higher than the source

code).

[0063]
default and skeleton classes are shoWn. The header and

In the folloWing, examples of main controller

implementation ?les of the default class are shoWn ?rst and

the header and implementation ?les of the skeleton class are

shoWn next. A header ?le shoWs the interface of the object

visible to the outside, i.e. the functions that another object

can call. An implementation ?le in turn contains the actual

code that is performed When a function is called.

[0064] The header ?le (in the C++ language) “abccont
madfmx.h” of the default main controller class is as folloWs

(When the template ?le shoWn in the appendix has been
amended in the above-described manner):

/*96*96*96*96*9696*9696969696969696*96*96*96*96*9696*96*9696969696*********************
*

*

9696*96*969696969696*96*96*96*9696*96*96*96*9696*96*96*************************

* $Author$
i

* Copyright (c) Nokia Telecommunications 1991-1995

9696*96*969696969696*96*96*96*9696*96*96*96*9696*96*96*************************

* Application FrameWork generated ?le
* This is a header ?le for default main controller class.
* You should not edit this ?lel!

* RUNGOXMX version: @(#) Version 1.9 (t8mcl)

as as

as as as as as as as as as as as as as as as as as as as

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx*xwwwwwxxxxxxxxxxxxxxxxx

* x

x * Log
*

96*9696*96*96*96*9696*96*96*96*9696969696969696*96*9696*96*96**96/
#ifndef ABCDEFAULTMAINTCONTROLLERiH
#de?ne ABCDEFAULTMAINTCONTROLLERiH
/* MODULE IDENTIFICATION

96*9696*96*96*96*9696*96*96*96*9696969696969696*96*9696*96*96**96/
static char abccontmadfmxircsid[] = “Id”;

US 2001/0034878 A1

-continued

#include <stdio.h>
#include <stdlib.h>
#include <weratomX.h> // Errors
#include <kuicocfmdlgmX.h> // controller con?rmation dialog
#include “abcviewmainmX.h” // Main View and abstract view partner
// header ?les of sub controllers
include “abccoselectmX.h”
class abcDefaultProgramic;
class abcDefaultMainControlleric
: public mvcMainControllerBaseic,
public kuiCon?rmationDialogControllerAbsCPic,
public abcMainViewAbsVPic,
public abcSelectionControllerAbsCPic

{
public:

abcDefaultMainControlleric(abcDefaultProgramic *abcPrg);
virtual ~abcDefaultMainControllericO;
virtual errAtomic *MVCCreateO;
// de?ved from abs. view partner
virtual void AbcWMCloseWanted();
// con?rmation controller abstract partner
// methods
virtual void KuiActionCon?rmedO;

Oct. 25, 2001

-continued

virtual void KuiActionNotCon?rmed();
protected:

mvcMainViewBaseic *MVCGetMainViewO;
abcMainViewic *view;
abcDefaultProgramic *abcProgram;
// con?rmation dialog
kuiCon?rmationDialogControllerCic *con?rmationDialog;

abcSelectionControlleric *selection;
private:

abcDefaultMainControlleric(const abcDefaultMainControlleric
&);
abcDefaultMainControlleric operator=

(const abcDefaultMainControlleric &) const;

l‘;
#endif

/* ABCDEFAULTMAINCONTROLLEREH */

[0065] The implementation ?le “abccontmadfmxcc” of
the default main controller class is as follows:

/***************************$6*****9‘**************************
*

* *

**

* *

* * $Author$
* *

* * Copyright (c) Nokia Telecommunications 1991-1995
1.

***********9‘******$6********$6*******************************

*

as as as as * Application Framework generated ?le
* This is a implementation ?le for default main controller class.
* You should not edit this ?lel!

* * RUNGOXMX version: @(#) Version 1.9 (t8mcl)
* *

*

***********9‘******$6********$6*******************************

* *

* * Log

***/
// MODULE IDENTIFICATION
**********9‘********************************

static char rcsid[] = “Id”;
#include “abccontmadfmX.h” // Header of this main controller
#include “abcmainprogmX.h” // Header of program module
// message teXt for WM close con?rmation dialog
const char *closeTeXt =

“This will close the application. Do you want to proceed?”;
/***
*

* <PUBLIC> FUNCTION:

abcDefaultMainControlleric: :abcDefaultMainControllericO
**

*

*

* Constructor.

**

abcDefaultMainControlleric: :abcDefaultMainControlleric
(

US 2001/0034878 A1

-c0ntinued

abcDefaultPrograrnic *abcPrg
)
{

abcPrograrn = abcPrg;
vieW = O;

con?rmationDialog = 0;
selection = O;

/*******$6********$6*9‘******$6*********************************
*

* <PUBLIC> FUNCTION:

abcDefaultMainControlleric: :~abcDefaultMainControllericO
**************************9‘9696*******************************

*

i

* Destructor
*

**************************9‘9696*******************************

*/
abcDefaultMainControlleric: :~abcDefaultMainControllericO
{

vieW—>MVCHideFM();
delete vieW;
vieW = O;

delete con?rmationDialog;
delete selection;
selection = O;

/***96*9696*96969696969696969696*9696969696*9696*9696969696969696***********************
*

* <PRIVATE> FUNCTION: errAtornic *abcDefaultMainControlleric::MVCCreate()
96969696969696*96969696969696969696*96*969696969696*9696969696969696************************

*

i

* Controller creation
*

96969696969696*96969696969696969696*96*969696969696*9696969696969696************************

*/
errAtornic
*abcDefaultMainControlleric::MVCCreateO
{

errAtornic *err = O;
// Instantiate The Main WindoW
//
vieW = neW abcMainVieWic(this);
// Motif things Will be initialized (Only rnain vieW should do this)
//
err = vieW->MVCInitialiZeWindoWingSysternO;

if (err) return(err);
// Create the main vieW
//

if (err) return(err);
// instantiate con?rmation dialog
//
con?rmationDialog = neW kuiCon?rrnationDialogControllerCic(this);
err = con?rmationDialog->MVCCreate(VieW->MVCGetParentCandidateQMO);
if (err) return err;
// Instantiate sub controllers and create them
//
selection = neW abcSelectionControlleric(this);
err = selection->MVCCreate(VieW->MVCGetParentCandidateQMO);
if (err) return(err);
return OK,

/*********************************9‘**************************
*

* <PROTECTED> FUNCTION: rnvcVieWBaseic

* abcDefaultMainControlleric::MVCGetMainVieWO
**

i

i

* Returns the main VieW
*

**

*/

Oct. 25, 2001

US 2001/0034878 A1

-continued

Oct. 25, 2001

rnvcMainVieWBaseic
* abcDefaultMainControlleric: :MVCGetMainVieW()

return(vieW);

/*w‘**wwww**w‘***www**w‘***www**w‘************************
*

* <PUBLIC> FUNCTION: void abcDefaultMainControlleric::AbcWMCloseWantedO

*

* Shuts the application doWn
*

96

*/
void abcDefaultMainControlleric::AbcWMCloseWantedO

VieW- >MVCUnIconifyFMO;

con?rrnationDialog->AskCon?rrnation((char *) closeTeXt);

/*w‘**wwww**w‘***www**w‘***www**w‘************************
*

* <PUBLIC> FUNCTION: void abcDefaultMainControlleric::KuiActionCon?rrned()
96

*

i

* Shuts the application doWn
*

96

*/
void abcDefaultMainControlleric::KuiActionCon?rrnedO

abcPrograrn- >MVCShutdoWn();

/*w‘**wwww**w‘***www**w‘***www**w‘************************
*

* <PUBLIC> FUNCTION: void

abcDefaultMainControlleric: :KuiActionNotCon?rrned()
96

*

i

* Shuts the application doWn
*

96

*/
void abcDefaultMainControlleric::KuiActionNotCon?rrned()

// does’t need any actions

[0066] A skeleton rnain controller class Will be described
next. The header ?le “abccontrnainrnxh” of the skeleton -continued
class is as folloWs (cf. the corresponding template ?le shoWn *
in Appendix 1).

/96
*

96 96

96 96

*

96

96 96

* * $Author$
* *

* * Copyright (c) Nokia Telecornrnunications 1991-1995

96

96 96

* * Application Framework generated ?le
* * This is a header ?le for skeleton rnain controller class.

* * Complete the required functionality in this ?le.
* * RINGOXMX version: @(#) Version 1.9 (t8rncl)
* *

*

w‘***www***w‘**www***w‘**www***w‘************************

* *

* * Log

w‘***www***w‘**www***w‘**www***w‘************************/
#ifndef ABCMAINCONTROLLERiH
#de?ne ABCMAINCONTROLLERiH

US 2001/0034878 A1

-continued

/* MODULE IDENTIFICATION
9696*96*96*969696969696*96*96*9696*96*96*96*9696*96*96*96*96*96/
static char abccontmainmXircsid[] = “Id”;
#include “abccontmadfmX.h”
class abcMainControlleric
: public abcDefaultMainControlleric

public:
abcMainControlleric(abcDefaultProgramic *abcPrg);
~abcMainControllericO;
virtual errAtomic *MVCCreateO;
// AFiTOKENiSTART#publicmethods#
// AFTool generated abstract partner methods.
// Don’t add your oWn code betWeen AFiTOKENS
// AFiTOKENiEND#publicimethods#
// AFiTOKENiSTART#abspartnerimethods#
// AFTool generated abstract partner methods.
// Don’t add your oWn code betWeen AFiTOKENS

void AbcUpdateButtonActivated (nameit name intIDit identi?er,
?oat maXPoWer, ?oat minPoWer);
void AbcSelectButtonActivatedO;

void BuiEXitWanted(); // inherited from a gui component
void BuiPrintSetupWanted(); // inherited from a gui component
void BuiPrintWantedO; // inherited from a gui component
void AbcControllerSelected(intIDit identi?er);
// AFiTOKENiEND#absipartnerimethods#

protected:
private:

abcMainControlleric(const abcMainControlleric 8c);
abcMainControlleric operator=(const abcMainControlleric &)
const;

l‘;
#endif
/* ABCMAINCONTROLLERiH */

[0067] The implementation ?le “abccontmainmaxcc” of
the skeleton main controller class in turn is as folloWs.

/*********************************9‘**************************

* *

* *

as ***

* *

* $Author$
I

* Copyright (c) Nokia Telecommunications 1991-1995
as as as as

**

* *

* * Application Framework generated ?le
* * This is a implementation ?le for skeleton main controller class.
* * Complete the required functionality in this ?le.
* * RUNGOXMX version: @(#) Version 1.9 (t8mcl)
* *

I

**

* *

* * Log
I

**

// MODULE IDENTIFICATION
9696*96*96*9696*96*96*96*96*9696*96*96************************

static char rcsid[] = “Id”;

// trace object
eXtern WmtTraceic *trace;
#include “abccontmainmX.h” // Header of this main controller
#include “abcmainprdfmXh” // Header of the program module
/********************9‘***************************************
I

Oct. 25, 2001

-continued

* <PUBLIC> FUNCTION: abcMainControlleric:

abcMainControllericO
**

I

I

* Constructor.
I

**

*/
abcMainControlleric: :abcMainControlleric

abcDefaultProgramic * abcPrg
)
:abcDefaultMainControlleric(abcPrg)

/*96*96*969696969696*96*96*969696969696*96*969696969696*96*96*************************
I

* <PUBLIC> FUNCTION:abcMainControlleric::

~abcMainControllericO
96*9696*96*96*96*9696*96*96*96*9696*96*96**********************************

I

I

* Destructor
I

96*9696*96*96*96*9696*96*96*96*9696*96*96**********************************

*/
abcMainControlleric: :~abcMainControlleric()

/*****************************$6******************************
I

* <PUBLIC> FUNCTION:abcMainControlleric::MVCCreate()
**

I

I

* Controller creation
I

******9‘**96*$6**

*/
errAtomic *abcMainControlleric::MVCCreate()

errAtomic *err = abcDefaultMainControlleric::MVCCreateO;
// add actions needed in conroller construction here
return err;

/*****************************$6******************************
I

* <PUBLIC> FUNCTION: void abcMainControlleric:

AbcUpdateButtonActivated
(nameit name, intIDit identi?er, ?oat maXPoWer, ?oat minPoWer)
********9‘***

I

* Implementation of an abstract partner method
I

I

********9‘***

*/
// AFiTOKEN#abc2# — Don’t remove this token

void abcMainControlleric::AbcUpdateButtonActivated (nameit name,
intIDit identi?er, ?oat maXPoWer, ?oat minPoWer)

AFiTRACEC‘void abcMainControlleric::AbcUpdateButtonActivated
(nameit name, intIDit identi?er, ?oat maXPoWer, ?oat minPoWer)”);
// Add your oWn code here.

/*********$6********96**********$6*****************************
I

* <PUBLIC> FUNCTION: void abcMainControlleric:

AbcSelectButtonActivatedO
**

I

* Implementation of an abstract partner method
I

US 2001/0034878 A1

-continued

**

*/
// AFiTOKEN#abc3# — Don’t remove this token

void abcMainControlleric::AbcSelectButtonActivated()

AFiTRACEC‘void abcMainControlleric::AbcSelectButtonActivated()");
// Add your oWn code here.

/*96*96*96*9696*96*96*96*9696*96*96*96*9696*96*96*96*96*************************
i

* <PUBLIC> FUNCTION: void abcMainControlleric::BuiExitWanted()

* Implementation of an abstract partner method
i

i

**

*/
// AFiTOKEN#bui12# — Don’t remove this token

void abcMainControlleric::BuiExitWantedO

AFiTRACEC‘void abcMainControlleric::BuiExitWanted()”);
// Add your oWn code here.

/*********************************9‘**************************
*

* <PUBLIC> FUNCTION: void abcMainControlleric:
BuiPrintSetupWantedO
****************96*?‘***

i

* Implementation of an abstract partner method
i

i

********6**

*/
// AFiTOKENbui13# — Don’t remove this token

void abcMainControlleric::BuiPrintSetupWanted()

AFiTRACEC‘void abcMainControlleric::BuiPrintSetupWantedO”);
// Add your oWn code here.

/*********************************9‘**************************
*

* <PUBLIC> FUNCTION: void abcMainControlleric:

BuiPrintWanted()
****************96*?‘***

i

* Implementation of an abstract partner method
i

i

**

*/
// AFiTOKEN#bui14»# — Don’t remove this token

void abcMainControlleric::BuiPrintWantedO

AFiTRACEC‘void abcMainControlleric::BuiPrintWanted()”);
// Add your oWn code here.

/***96*************************
i

* <PUBLIC> FUNCTION: void abcMainControlleric:

AbcControllerSelected(intIDit identi?er)

* Implementation of an abstract partner method
i

**

*/
// AFiTOKEN#abc7# — Don’t remove this token

void abcMainControlleric::AbcControllerSelected(intIDit identi?er)

AFiTRACEC‘void abcMainControlleric::AbcControllerSelected
(intIDit identi?er)”);
// Add your oWn code here.

Oct. 25, 2001

[0068] The designer implements the functionality required
by the application by adding a sufficient amount of code to
the skeleton classes. The user interface is supplemented for
example With the aforementioned X-DesignerTM tool by
using generated descriptions of the visual vieW classes
having the format of the X-DesignerTM.

[0069] The classes of the model part, BaseStation_c and
BaseStationGroup_c (cf. FIG. 4), have already been imple
mented in the class library of the model part, Wherefore they
do not have to be carried out in connection With the present
application.

[0070] As it is apparent from the above, the code generator
creates default and skeleton classes automatically by modi
fying the corresponding template ?les on the basis of the
data provided in the description ?le of the application.

[0071] It has been described above in detail hoW the
application framework is generated. This example thus
described a situation Where an application is created for the
?rst time. A situation Where changes must be made to the
application framework Will be examined next. The example
relates to a situation Where the operator using the netWork
management system requests for the addition of a neW
property, a so-called priority service, to the base station
controller. In the netWork of this operator the clients are
divided into tWo classes: those Who have a gold card and
those Who have a silver card. If all the channels are being
used during heavy traf?c and a user With a gold card makes
a call, one of the users of a silver card is removed from the
channel. This service requires a neW parameter indicating
Whether the priority service is being used.

[0072] FIG. 7 illustrates the change required in the user
interface. As FIGS. 3a and 7 shoW, the WindoW Will be
provided With a neW parameter “priority mode” Which may
have tWo values (yes or no).

[0073] FIG. 8 illustrates the change required in the object
diagram that Was shoWn earlier in FIG. 4. FIG. 8 only
shoWs the part of the diagram that is changed. The diagram
Will thus be provided With a neW class “BaseStationCon
troller_c” the attribute of Which is “priorityMode” and the
method is “SetPriorityMode”.

[0074] It is also noted in this connection that the updating
of the radio netWork parameters in a base station takes a long
time. Therefore the application must be provided With a
so-called Working dialog that indicates to the user that the
operation is still in process. FIG. 9 illustrates a Working
dialog WindoW.

[0075] The addition of the priority service Will be
described ?rst. In order to implement this change (the
addition of a neW parameter to the methods “ShoWParam
etersFM” and “AbcUpdateButtonActivated” that the change
concerns), the neW boolean_t parameter “priorityMode” is
added to the declaration of the methods in the description ?le
12 of the application. The frame beloW shoWs a part of the
description ?le shoWn above. The frame shoWs in boldface
the additions that are made to the description ?le When the
priority service is added.

