PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

(11) International Publication Number:

WO 98/49612

GOGF 3/00, 9/06, 9/44, 17/00, 15/20, Al
15/00, 15/40 (43) International Publication Date: 5 November 1998 (05.11.98)
(21) International Application Number: PCT/US98/08618 | (81) Designated States: AU, CA, JP, NZ, European patent (AT, BE,

(22) International Filing Date: 29 April 1998 (29.04.98)

(30) Priority Data:

08/845,984 1 May 1997 (01.05.97) Us

(71) Applicant: STRATUM TECHNOLOGIES CORPORATION
[US/US]; 334 Fifth Street, Montara, CA 94037 (US).

(72) Inventor;: JENKINS, Jimmy, 1., 334 Fifth Street, Montara, CA
94037 (US).

(74) Agents: TEST, Aldo, J. et al.; Flehr, Hohbach, Test, Albritton
& Herbert LLP, Suite 3400, 4 Embarcadero Center, San
Francisco, CA 94111-4187 (US).

CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: UNIVERSAL SOFTWARE STRUCTURE FOR REPRESENTING MODEL STRUCTURES

(57) Abstract

An embodiment of a com-
puter for storing, manipulating and
retrieving data structures includes a
memory configured to store a plu-

Struduve,
External

J

rality of data in a plurality of data
structures types including a first data

“-?N

12 interface

structure type (18), a second data
structure type (20) and a relationship

data structure type (22). An inter-

face (14) is configured to receive in-

el

structions and calls from an external
structure and to respond to the in-

Bulld Primitives

2‘\}22

structions and the calls. A processor

Builld Component

Object,
Object Value Descriptor,
Structure Value

(12) is coupled to the memory and

Structure

the interface circuit and configured
to receive the instructions and to as-

sociate information in the instruc- Retrival

»
»

AR

tions with the first data structure Recursive

L=

g

type (18), the second data structure
type (20) and the relationship data
structure type (22). The instruction
including information to store in the
relationship data structure type (22)
that relates one or more of the first

Reletionship
Structure
" -
.

data structure type (18) and the sec-
ond data structure type (20). The
processor (12) is also configured to
receive the calls and to manipulate

‘

10

the first data structure type (18), the second data structure type (20) and the relationship data structure type (22) according to the call, to
retrieve a data structure type based on the call and to provide information in the first data structure type (18) as a call response. Advantages
of the invention include the ability to characterize information and data structure types in a minimal set of primitives in order to model

more complex systems.

AL
AM
AT
AU
AZ
BA
BB

BE
BF

BG
BJ

BY
CA
CF
CG
CH
Cl
CM
CN
cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia SZ Swaziland
Azerbaijan GB United Kingdom MC Monaco D Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania uG Uganda
Belarus IS Iceland MW Malawi us United States of America
Canada IT Ttaly MX Mexico UzZ Uzbekistan
Central African Republic Jp Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway W Zimbabwe
Cote d’'Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea . PT Portugal

Cuba KZ Kazakstan " RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

10

15

20

WO 98/49612 PCT/US98/08618

UNIVERSAL SOFTWARE STRUCTURE FOR
REPRESENTING MODEL STRUCTURES

FIELD
The invention relates to a universal software structure for representing model
structures. The invention is used to define a computer software “Meta-Model” that is
used to create other software models. The invention has the capabilities of capturing

and embodying structures, activities, triggers/controls and contexts.

BACKGROUND

Models are often used to characterize various static and dynamic structures and
systems in order to predict behavior. In this specification, the word system is used to
refer to static and dynamic models. One reason for models is to reduce cost and
improve predictability of systems so that a system will operate as designed. For
example, models of automobile traffic are made before the roads are built in order to
determine whether the planned roads are sufficient for the expected amount of traffic.
Moreover, the models are helpful for determining what happens to the system, for
example, when an accident causes congestion on one of the roads or when traffic
patterns change.

The computer software industry has created a mynad of specialized programs
intended to be “turn-key” solutions for specific tasks. Many of these progranis are very
usefull for the specific jobs they were intended to address. These software programs
effectively address the single need of each job, but are incapable of application to

address multiple needs within the same organization across multiple industries/markets.

10

15

20

25

30

WO 98/49612 PCT/US98/08618

Accordingly, the limitation of existing models is the inability to apply structure and
information for a variety of different applications.

What is needed is a universal software structure for representing model
structures, or “Meta-Model,” which is implemented as a single system with numerous
processes that provide the ability to represent several different models simultaneously.
This would allow a single implementation layer to represent several different
specialized models to address the individual needs of applications within the same
organization or software system. By addressing the specialized needs across several
software models at the same time, a Meta-Model can reduce the effort required to

create specialized models.

SUMMARY

The invention represents a universal set of computer software model structures,
or “Meta-Model,” having the ability to represent a multitude of software models. The
invention provides a set of primitives that represents fiindamental elements of software
models. The primitives are used to create virtual models to manage and control
sequences of activities, information content and information relationships, and decision
points within processes. The primitives can further define models from a particular
point of view or perspective.

The foundation of the Meta-Model is based on a set of primitives that are
defined using a symbolic language described below. This symbolic language represents
a set of unchanging primitive level of procedures, giving it a “plug in” functionality to
adapt to other requirements. Construction of a model is accomplished by defining the
structures, activities and processes of the virtual model. These definitions are then
implemented and executed by accessing the procedures within the Meta-Model
representing the individual definitions and context of perspective used by the virtual
model.

A computer according to an embodiment of the invention includes a memory
configured to store a plurality of data in a plurality of data structure types including a
first data structure type, a second data structure type and a relationship data structure
type. An interface is configured to receive instructions and calls from an external

structure and to respond to the instructions and the calls. A processor is coupled to the

10

15

20

25

30

WO 98/49612

PCT/US98/08618

memory and the interface circuit and configured to receive the instructions and to
associate information in the instructions with the first data structure type, the second
data structure type and the relationship data structure type, the instruction including
information to store in the relationship data structure type that relates one or more of
the second data structure type(s) and another second data structure type. The
processor is also configured to receive the calls and to manipulate the first data
structure type, the second data structure type and the relationship data structure type
according to the call, to retrieve a data structure type based on the call and to provide
information in the first data structure type as a call response.

Advantages of the invention include the ability to characterize information and
data structure types in a minimal set of primitives in order to model more complex

systems.

BRIEF DESCRIPTION OF THE FIGURES

Additional advantages of the invention will become apparent upon reading the
following detailed description and upon reference to the drawings, in which:

Figures 1A-D represent objects that are related to one another as shown;

Figure 2 is a block diagram of a computer according to an embodiment of the
invention;

Figure 3 depicts an object structure type according to an embodiment of the
invention;

Figure 4 depicts a value data structure type according to an embodiment of the
invention;

Figure 5 depicts a relationship data structure type according to an embodiment
of the invention;

Figure 6 depicts a relationship-value data structure type according to an
embodiment of the invention;

Figure 7 illustrates a train network example;

Figure 8 is a block diagram of a computer according to another embodiment of
the invention; and

Figure 9 is a block diagram of a value descriptor data structure type according

to an embodiment of the invention.

10

15

20

25

30

WO 98/49612 PCT/US98/08618

DETAILED DESCRIPTION
The exemplary embodiments are described herein with reference to specific
configurations. Those skilled in the art will appreciate that various changes and
modifications can be made to the exemplary embodiments while remaining within the

scope of the invention.

A Meta-Models

Software construction is extremely labor-intensive and expensive. If changes
need to be made during the life cycle of the software, which is normally the case, this
increases the overall expense of the project or product. To decrease costs and
repetitive efforts, there is clearly a need for the base software to have a substantially
fixed structure. A Meta-Model allows a reduction in both the original construction
effort and the ongoing maintenance of a system. This is because the same basic
structure is used throughout the life cycle of the system. The initial design for the
implementation of a Meta Model is greater than for normal software models, but any
maintenance and rework efforts are decreased. A Meta-Model must be based on a set
of substantially fixed principles that are described within a language that delineates
models (i.e. a Meta Language). By using a Meta Language, new concepts, structures
and processes can be implemented within a Meta-Model that supports that language.

Identified advantages of using a Meta-Model to create Virtual Models include:
enabling the creation of truly customized virtual models; dramatically decreased
development time for follow-on projects; dramatically reduced maintenance effort; and
since the Meta-Model has the ability to accommodate and adapt to unforeseen
requirements of a system it can dynamically adapt its own structures of deployed
models and can even dynamically change data within an already deployed Meta-Model.
Further, Meta-Models are not required to be implemented within any specific software
language. The Meta-Model’s fundamental principles are substantially the same across
software languages. This allows transporting of the virtual model’s logic to another
Meta-Model that has been implemented in a different software language.

A Meta-Model is used to create other software models. The exemplary
embodiments describe in detail the Meta-Model structure and process of implementing

and interacting with the Meta-Model. The preferred embodiments are based on three

10

15

20

25

30

WO 98/49612 PCT/US98/08618

core data structures and a set of procedures to manipulate these data structures. The
data structures are used to contain the low level primitives. The Meta-Model
procedures are used to store, update and animate the primitives within the data
structures.

For a Meta-Model to function, it must be able to emulate a wide variety of
virtual models. Virtual morphing is possible through an implementation layer that has
the ability to manage and store a set of unchanging universal primitives that are used to
define virtual models. Software models in general, address a major problem domain
that commonly contains three sub-domains: Structure, Process (or energy expended),
and Trigger/Event.

Virtual models embodied in a Meta-Model should address the same three
problem domains. This covers some aspects of a Meta-Model and required
functionality virtual models. Some aspects of Meta-Language must also be addressed,
such as, for a Meta-Language to function it must address the same problem domains.
To further explain the concepts regarding Meta-Models and the Meta-Language
examples shown below will be based on a simple train system. In this virtual model, the

train will be traveling from New York to Los Angeles through several stations.

B. Software Models Using Meta-Models

Software models contain several structures that are used to address the problem
sub-domains. These structures are based on several basic principles. To convey an
understanding of a Meta-Model and the concepts required to create the virtual models
that are stored within a Meta-Model, we will start with some basic structures that
software systems address. Software models are built within code and data structures to
address the problem sub-domains. The Meta-Model addresses the same problem
domains via implementing the primitives defined within the Meta-Language.

The examples here are based on a very simple train system to describe how a
virtual model is stored within a Meta-Model. To begin, several basic structures are
shown. In essence, these are very small virtual models. The Meta-Model clearly needs
to have the ability to describe these basic virtual models. These examples are overly
simplified and are not intended to be a real-world description of an actual train system,

but will demonstrate certain aspects of constructing a Meta-Model.

10

15

20

25

30

WO 98/49612 PCT/US98/08618

1. Basic Structures
Shown below are examples of basic structures (virtual models) that the Meta-
Language needs to describe. Examples based on a train system are shown for each of

the basic conceptual models.

(a) One to One

One to one relationships carry information about each object and their
relationship to each other. The relationship itself can also be classified as an object that
can carry details about the relationship between the objects. This type of object
recursion of objects spawning other objects is common within the Meta-Model. The
spawned object is treated just as another object within the Meta-Model.

An example of a one to one relationship:

The train system example has several one-to-one relationships of both object to
object and object to value. Figure 1A depicts “Object 1” related to “Object 2”. The
two objects could be the New York and Philadelphia train stations. The relationship
object (Train Network Relationship 1) could have an attached value of 90 miles
describing the distance between the two stations. The term “Train Network
Relationship 17 is the declaration of the concept of one object related to another object
and in itself is also an object. The term is arbitrary and is only used to declare the

unique relationship between two objects.

(b) One to Many

Another basic relationship is from one object to many objects. A relationship of
this type is used to relate one object to several other objects for a specific subject, such
as that shown in Figure 1B. The objects that are being related can be of the same basic
type or of several different types. Like different children who share the same mother or
the parts of an internal combustion engine.

Example - One to Many

An example of this would be one train having a relationship to each of the
passengers being transported on that train. The parent object would be the train and

the related objects would be each passenger.

10

15

20

25

30

WO 98/49612 PCT/US98/08618

(©) Many to Many

Multiple objects can have a set of relationships between each other. This allows
a group of objects to have several interconnections to other members within the same
group, as shown in Figure 1C.

Example - Many to Many

All passengers are related to all other passengers when taking the 9:00 AM train
from New York to Philadelphia.

(d) Ordered List

Objects can have an “ordered” relationship between themselves. This
relationship may be used to imply the order in which something occurs (like siblings in
the order of birth- child #1, child #2, child #3) or to imply a priority (Step #1 occurs
prior to Step #2, etc.). A relationship of this type is shown in Figure 1D.

Example - Ordered List

An example of an ordered list in our Train System is the locomotive (first
object) to the caboose (last object) and the cars in between in the sequence in which

they are joined. This example is shown in Table 1.

Locomotive Object #1

Coal Transport Car Object #2

Passenger Car #1 Object #3

Passenger Car #2 Object #4

Lumber Transport Car Object #5

Caboose Object #6
TABLE 1

These structures form the basis for the objects and relationships used to develop

more complex models.

C. First Embodiment
A first embodiment is described with reference to Figures 2 through 5. Figure 2
is a block diagram of a computer 10 according to an embodiment of the invention. A

processor (CPU) 12 is coupled to a syste;n interface 14, data storage 16 and program

10

15

20

30

WO 98/49612 PCT/US98/08618

storage 30. The data storage and program storage can reside on any known memory
structure such as a disk memory, read only memory, random access memory or other
types of memory. The system interface 14 provides for communication between the
processor 12 and any external structures such as a user interface or other computers.
The data storage 16 includes a plurality of data structure types such as an object data
structure type 18, an object relationship data structure type 20 and an object-value
descriptor-value data structure type 22. These data structure types are the primitives
that serve to define the model.

The procedures in the program memory 30 are also important to defining the
model. These procedures include a load procedure 32 for loading the primitives into
the data structures. A build primitives procedure 34 is used to construct the low level
primitives. A build component procedure 36 is used for assembly of the primitives into
higher level components. A set of primitive retrieval procedures 38 is used to retrieve
the low level primitives. A set of component retrieval procedures 40 is used to retrieve
higher level components based on the information of the low level primitives. A
recursive procedure 42 is to iterate across the higher level components to manage
virtual models. These procedures serve to provide the functions to build and run the
desired virtual model. The procedures further have the ability to manipulate the Meta-

language primitives and components within the data structures.

1. The Meta-Language

(a) Meta-Language Definitions:

The following primitives form the foundation of this Meta-Language. They are
the most basic building blocks of the language and are used to construct higher level
components within the language itself. These primitives are assembled with a specific
syntax to describe these higher level components, which are then used in “sets” by
assembling several components into a group. These sets are used to address specific

virtual model definitions within the Meta-Model. The Meta-Language symbols for the

»

primitives are “3,C, ., 4, v 1 -

5

10

15

20

25

30

WO 98/49612 PCT/US98/08618

(b) Meta-Language Primitives

The 3 symbol is be used to declare fundamental existence. By combining 3
with one of the subscript symbols, this will be used to declare existence for that type of
item. The following list shows the possible subscript items, a detailed description

follows within this section of the document for each of the subscript items:

Item Subscript
object 3
value descriptor 34
value 3y
relationship 3

Examples of these combinations are as follows. 3 is a declaration of a physical
object or concept. The term object within the Meta-Language is used in a larger sense
than just the meaning of physical objects. Within the language the word “Object” is
also used to reference concepts like the ones listed here. As an example the types of
physical objects that can be declared are: John Doe; Locomotive #99; or New York.
As an example the types of concept objects that could be declared are: Relationship
between two cities, New York to Philadelphia; Price of a Train Ticket; and Virtual
Model.

34 1s a declaration of the existence of a descriptor for a value, which has a label
for a value type. As an example the types of descriptor that could be declared are: hair
color; weight; dollar amount; and height.

3, is an assignment of a value for a specific combination of Jyand 34 An
3, value can also be a reference to another 3, within the system. As an example the
types of combinations with values that could be declared are: John Doe, Hair Color,
Brown; Locomotive #99, Weight, 85 Tons; and Train Ticket, Dollar Amount, $85.00.

3, is a declaration of a relationship between primitives. This declaration is a
grouping of the primitives within a Meta-Model. This grouping is usually an implied
relationship managed within the implementation layer of the model.

There is one more primitive used for context. The symbol “C” will be used for
the declaration of context. Context is important in a Meta-Language that is used to
define Meta-Models, because it defines the circumstances in which information within

the system is viewed, analyzed, impacted, ‘or another function performed on it.

10

15

20

25

30

WO 98/49612 PCT/US98/08618

There are some basic rules on the use and assembly of these primitives. These
rules are explained in detail within this section, and apply to all types of Meta-Language
primitives.

Rule 1: C, 3, 3, 3, and 3, are the lowest level primitives. In this
embodiment, this set of primitives is the complete set of low level primitives.

Rule 2: Any item or declaration that is not a value is an object by default
(1.e. process, action, concept, physical things, locations, etc.). All are of the primitive
“object” type.

Rule 3: Values cannot be directly related to other values (values must always be
associated to an object). A value that needs to be related to another value must be
related to an Object, and then the objects can be related to each other.

Rule 4: Data structures M, M, M, and M,,, are the compound definitions
based on the lower level primitives except for M,. These symbols are described below.
While these data structures provide a basic set of data structures to describe the
invention, additional data structures can be constructed with the Meta-Language

primitives.

2. Meta-Models

With the defined primitives, a meta-model is constructed according to rules that
define the respective model data structures. Higher level components will be indicated
with an “M”, which stands for a model, comprised of the lower level primitives. These
M subscript models are managed within the implementation layer of a Meta-Model at a
very low management level. These models are assembled from the low level primitives
list above. The exemplary meta-model includes three data structure types. The first
represents a value of an object, and is called an M,,. The second represents a
relationship between objects, and is called an M. The third represents a relationship
between objects and also a value, and is called an M. Using these three data structure

types virtual models can be generated.

(a) Object, M,
An M, is an example of a component that is used to declare and describe an

object. Figure 3 depicts the object descriptor structure type 18 according to an

10

10

15

20

25

30

WO 98/49612 PCT/US98/08618

embodiment of the invention. The object data structure includes a structure containing
an object 18a. The definition of M is ([3,]). This is explained as 3, represents the

existence of an object.

(b) Value, M,,

An M, is an example of a higher level component that is assembled from the
lower level primitives and is used to describe a value attached to an object. Figure 4
depicts the object-value descriptor-value structure type 20 according to an embodiment
of the invention. The object data structure includes a structure containing a context
20a and an object 20b. The definition of M, is ([C, 3o 3¢ 3v] 3p). These are
explained as C represents context, 3, represents the existence of an object, 34
represents the existence of a value descriptor, 3, represents the existence of a value,
and 3y represents an imposed relationship between the components C, 3, 34, 3, of the
data structure.

The listed primitives will be used as input parameters to this component with.
the imposed relationship. When defining virtual models, the symbol M, is used instead
of referring to the primitives that constitute the structure, thereby permitting the
shortening of definitions and easier management.

To retrieve an object value (M), the retrieval requires identification of the
primitives C, 3, and 34 to identify the specific value. To perform this procedure, the

inputs are (C, 3, 34) and the output is 3,,.

(c) Relationship, M,

An M, is an example of a higher level component that is assembled from the
lower level primitives and is used to describe a relationship between objects. Figure 5
depicts a relationship data object according to an embodiment of the invention. The
relationship data object includes a structure containing a context 22a, object 22b, object
1 22c and object 2 22d. The definition of M is ([C, 3o Jo1> Fo2] 3p)- These are
explained as C represents context, 3, represents the existence of an object which is the
object identifier for the relationship, 3, represents the existence of a second object,
Jy, represents the existence of a third object, and 3, represents the application of a

relationship between the three objects and context of the data structure.

11

10

15

20

25

30

WO 98/49612 PCT/US98/08618

To retrieve a relationship between objects M,, the retrieval requires
identification of the primitives C and 3, to identify the context and object. To perform
this procedure, the inputs are (C, 3,) and the output is (3,5, Fo2)-

(d) Relationship and Value, M,,,

An M, is an example of a higher level component that is assembled from the
lower level primitives and is used to describe a relationship between objects including a
value. By combining an M, and M, which is expressed as M,,,, compound definitions
can be formed to define more complex components. Figure 6 depicts a relationship-
value data object according to an embodiment of the invention. The relationship-value
data object includes a structure containing a context 24a, object 24b, object 1 24c,
object 2 24d, value descriptor 24e and value 24f. The definition of M, is ([C, 3o G015
Jp2) (3¢, 3y)1 3p, or [M, M,]. These are explained as C represents context, 3,
represents the existence of an object which is the object identifier for the relationship,
3,1 represents the existence of a second object, 3, represents the existence of a third
object, 34 represents the existence of a value descriptor, 3, represents the existence of
avalue and 3, represents the application of a relationship between the three objects,

value descriptor, value and context of the data structure.

D. Train Example

The following is an example of a Meta-Model describing a train system that
would define and allow a train to travel from New York to Los Angeles according to
Figure 7. The worksheets below define the Meta-Model information and components
that are subsequently assembled into the Meta-Model to build the virtual train model.
To begin, some basic examples of M, and M, are defined to see how small sub-models
are defined within a Meta-Model.

A basic example of Mv = ([C, 3, 34, 3,1 3))

This example shows the primitives for two structures (M,,) to define two ticket

prices for a First Class Passenger and for Economy Class Passenger.

12

10

15

20

25

30

35

WO 98/49612 PCT/US98/08618
M-Type: M,, | Context (C) | Object (3;) Value Descriptor | Value (3,
M, Ticketing First Class Ticket Ticket Price 125
M, Ticketing Economy Class Ticket | Ticket Price 85

TABLE 2

A basic example of M; = ([C, 3, 351, 3o 1 3p)

This example shows the primitives for two components (M,) that define two

relationships between train stations. The first M, defines the relationship between New
York and Philadelphia the second M, defines the relationship between Philadelphia and
Pittsburgh. Note that the first “Object” (3)) for each M, is an arbitrary description that

is unique within the system with the same context. This description can be used to retrieve

the object 3 and related 35.

M-Type: | Context (C) | Object (3,) Object (3,1) Object (355)

M, Train Train Network Station #1 Station #2

M, Train Train Network Station #2 Station #3
TABLE 3

A basic example of M, = ([C, 3, (351, 3p) 3> 3] 3p)

This example shows the primitives for a component (M) that defines the

relationship between train stations and the distance between the stations in miles.

M-Type: | Context | Object (3 Object Object (35) | Value Value
M, Train Train Network | Station #1 | Station #2 Distance in | 90
TABLE 4
An Evaluator Example:

Within a Meta-Model several small virtual models can be defined. By

combining several M, and M_’s, an evaluator can be assembled to do evaluations. An

evaluator is constructed by defining all of the components needed to do the math.

13

10

15

20

25

30

WO 98/49612

PCT/US98/08618

These are the components of the equation like the operator and the items that need to

be compared.

The following example is a basic evaluator used to determine whether a

passenger can afford to take a trip from New York to Philadelphia based on their

current checking account balance. The M, defines the Object to the left of the

“Operator”, the Operator, the Object to the right of the Operator and the values for the

left and right Objects. By defining the items to the left and right of the Operator as

references to other Objects the process of the evaluation can become generic and the

values of the objects can be used or changed by other actions within the same Meta-

Model.
Step M-type © 3, 301 =)
1 M, Evaluator checking evaluator my checking
2 M, Evaluator checking operator
3 M, Evaluator checking evaluator cost of
4 M, Evaluator my checking | evaluator $100
5 M, Evaluator cost of a evaluator $85
TABLE 5

To process an evaluator like the one described above we need to retrieve the

details of the evaluator. The steps listed in Table 6 shows the actions of retrieving each

M,, to construct the math equation. Shown in the “Result” column is the math equation

as each step 1s processed to build up the equation.

Symbol | Description of Step Result

M, Retrieve and insert “Evaluator Object” My checking account

M, Locate the Operator Greater than or equal to

M, Retrieve and insert “Evaluator Object” Cost of the ticket to Philadelphia
M, Retrieve left value based on left object $100

M, Retrieve right value based on right object | $85

TABLE 6

14

10

15

20

25

WO 98/49612 PCT/US98/08618

The results of the retrieval and replacement of the left and right “Evaluator
Objects” the formula $100 > $85 is assembled. By performing the math, the passenger
can afford to take a trip from New York to Philadelphia.

E. Second Embodiment

Figure 8 is a block diagram of a computer according to a second embodiment of
the invention. The second embodiment employs many of the same components as the
figure embodiment and those components are commonly numbered. The primary
difference is the addition of a value-descriptor structure 26 (M). This additional
structure explicitly delineates the value-descriptors 34 that are referenced within the
object-value descriptor-value structure. The definition of My is ([34]). These are
explained as 34 represents the existence of a value descriptor. The value-descriptor
data structure type 26 (M) is similar to the object data structure type 18 (M,) in the
first embodiment but instead of an object, the structure contains a value descriptor.
This structure is used to contain the value descriptors for the second embodiment
versus the object structure 18 that stores both the value descriptors and all objects.
The addition of the value-descriptor structure can provide in some cases, an increase in
performance and reduction the number of abstractions that are required to implement

the model.

F. Conclusion

Advantages of the invention include the ability to characterize information and
data types in a minimal set of contents to model various more complex systems.

Having disclosed exemplary embodiments and the best mode, modifications and
variations may be made to the exemplary embodiments while remaining within the

scope of the invention as defined by the following claims.

15

10

15

20

25

30

WO 98/49612 PCT/US98/08618

CLAIMS
What is claimed is:
1. A computer for storing, manipulating and retrieving data structures,
comprising:

a memory configured to store a plurality of data in a plurality of data structure
types including a first data structure type, a second data structure type and a
relationship data structure type;

an interface configured to receive instructions and calls from an external
structure and to respond to said instructions and said calls;

a processor coupled to said memory and said interface circuit and configured to
receive said instructions and to associate information in said instructions with said first
data structure type, said second data structure type and said relationship data structure
type, said instruction including information to store in said relationship data structure
type that relates one or more of said first data structure type and said second data
structure type, and configured to receive said calls and to manipulate said first data
structure type, said second data structure type and said relationship data structure type
according to said call, to retrieve a data structure type based on said call and to provide

information in said first data structure type as a call response.

2. The computer of claim 1, wherein:

said first data structure type is a declarative data structure including an object;

said second data structure type is a value data structure including a context,
object, value descriptor and value;

said relationship data structure type includes a context, a first object, a second
object and a third object to identify a relationship between said context and said first
object, said second object and said third object; and

said computer further comprises a composite data structure type including a

context, a first object, a second object, a third object, a value descriptor and a value.
3. The computer of claim 1, wherein:
said first data structure type is a declarative data structure consisting of an

object;

16

10

15

20

25

30

WO 98/49612 PCT/US98/08618

said second data structure type is a value data structure consisting of a context,
object, value descriptor and value;

said relationship data structure type consists of a context, a first object, a
second object and a third object to identify a relationship between said context and said
first object, said second object and said third object; and

said computer further comprises a composite data structure type consisting of a

context, a first object, a second object, a third object, a value descriptor and a value.

4, The computer of claim 1, further comprising:
an evaluator configured to manipulate said first data structure type, said second
data structure type and said relationship data structure type and to provide information

to respond to said call.

5. The computer of claim 2, further comprising;
an evaluator configured to manipulate said first data structure type, said second
data structure type and said relationship data structure type and to generate at least one

evaluator object type.

6. The computer of claim 4, wherein:
said evaluator is configured to modify at least one if said first data structure
type, said second data structure type and said relationship data structure type in

response to said call.

7. The computer of claim 5, wherein:
said evaluator is configured to modify at least one if said first data structure
type, said second data structure type and said relationship data structure type in

response to said call.

8. A structure for use with a computer system having a processor, a memory and a
user interface, said structure comprising:
a plurality of data structures including a first data structure type, a second data

structure type and a relationship data structure type;

17

10

15

20

25

30

WO 98/49612 PCT/US98/08618

an instruction interface configured to receive instructions from said user
interface and to respond to said instructions;

a call interface configured to receive calls from other structures and to respond
to said calls; and

an execution procedure configured to receive said instructions and to associate
information in said instructions with said first data structure type, said second data
structure type and said relationship data structure type, said instruction including
information to store in said relationship data structure type that relates one or more of
said first data structure type and said second data structure type, and configured to
receive said calls and to manipulate said first data structure type, said second data
structure type and said relationship data structure type according to said call, to
retrieve a data structure type based on said call and to provide information in said first

data structure type as a call response.

9. The structure of claim 8, wherein:

said first data structure type is a declarative data structure including an object;

said second data structure type is a value data structure including a context,
object, value descriptor and value;

said relationship data structure type includes a context, a first object, a second
object and a third object to identify a relationship between said context and said first
object, said second object and said third object; and

said computer further comprises a composite data structure type including a

context, a first object, a second object, a third object, a value descriptor and a value.

10. The structure of claim 8, wherein:

said first data structure type is a declarative data structure consisting of an
object;

said second data structure type is a value data structure consisting of a context,
object, value descriptor and value;

said relationship data structure type consists of a context, a first object, a
second object and a third object to identify a relationship between said context and said

first object, said second object and said third object; and

18

10

15

20

25

30

WO 98/49612 PCT/US98/08618

said computer further comprises a composite data structure type consisting of a

context, a first object, a second object, a third object, a value descriptor and a value.

11. The structure of claim 8, further comprising;
an evaluator procedure configured to manipulate said first data structure type,
said second data structure type and said relationship data structure type and to provide

information to respond to said call.

12. The structure of claim 9, further comprising:
an evaluator procedure configured to manipulate said first data structure type,
said second data structure type and said relationship data structure type and to generate

at least one evaluator object type.

13. The structure of claim 11, wherein:
said evaluator procedure is configured to modify at least one if said first data
structure type, said second data structure type and said relationship data structure type

in response to said call.

14. The structure of claim 12, wherein:
said evaluator procedure is configured to modify at least one if said first data
structure type, said second data structure type and said relationship data structure type

in response to said call.

15. A method of storing, manipulating and retrieving data structures, comprising
the steps of:

storing a plurality of data structures including a first data structure type, a
second data structure type and a relationship data structure type;

receiving instructions from an external structure and responding to the
instructions;

receiving calls from an external structure and responding to the calls;

associating information in the instructions with the first data structure type, the

second data structure type and the relationship data structure type, the instruction

19

10

15

20

25

30

WO 98/49612 PCT/US98/08618

including information to store in the relationship data structure type that relates one or
more of the first data structure type and the second data structure type; and
manipulating the first data structure type, the second data structure type and the
relationship data structure type according to the call, to retrieve a data structure type
based on the call and to provide information in the first data structure type as a call

response.

16. The method of claim 15, wherein:

said storing step includes the steps of storing the plurality of data structures
where the first data structure type is a declarative data structure including an object;

said storing step includes the steps of storing the plurality of data structures
where the second data structure type is a value data structure including a context,
object, value descriptor and value;

said storing step includes the steps of storing the plurality of data structures
where the relationship data structure type includes a context, a first object, a second
object and a third object to identify a relationship between the context and the first
object, the second object and the third object; and

said storing step includes the steps of storing a composite data structure type
including a context, a first object, a second object, a third object, a value descriptor and

a value.

17. The method of claim 15, wherein:

said storing step includes the steps of storing the plurality of data structures
where the first data structure type is a declarative data structure consisting of an object;

said storing step includes the steps of storing the plurality of data structures
where the second data structure type is a value data structure consisting of a context,
object, value descriptor and value;

said storing step includes the steps of storing the plurality of data structures
where the relationship data structure type consists of a context, a first object, a second
object and a third object to identify a relationship between the context and the first

object, the second object and the third object; and

20

10

15

20

WO 98/49612 PCT/US98/08618

said storing step includes the steps of storing a composite data structure type
consisting of a context, a first object, a second object, a third object, a value descriptor

and a value.

18. The method of claim 15, further comprising the step of:
evaluating the calls and manipulating the first data structure type, the second
data structure type and the relationship data structure type and providing information

to respond to the call.

19. The method of claim 16, further comprising the step of:
evaluating the calls and manipulating the first data structure type, the second
data structure type and the relationship data structure type and providing information

to respond to the call.

20. The method of claim 18, wherein:
said evaluating step includes to step of modifying at least one if the first data
structure type, the second data structure type and the relationship data structure type in

response to the call.

21. The method of claim 19, wherein:
said evaluating step includes to step of modifying at least one if the first data
structure type, the second data structure type and the relationship data structure type in

response to the call.

21

WO 98/49612 PCT/US98/08618
1/7

bject 1 : bject 2

Figure 1A

Object A bject X

bject Y
Object

bject Z
Object

Figure 1C

Parent Object

_‘—-‘ist Object

econd Object

___e/——ﬂlird Object
Figure 1D)

PCT/US98/08618

WO 98/49612

2/7

Z anbyg

1] 3

/.Q

22
N 8t

ananng \
diysuoyelay

199fq0 aA|sINIIY ANI
ozln leAuioy 34
U jusuodwo) < N
aImong oy
anjep 1 amnjonys leatliay sapiuiid N
‘jo03duasaq anjep 199[q0 juauoduiod ping |« 8¢
108[q0 _ ANI
saApuud piing ANI 9t
6 peo’] ANI ve
r4%
P (11

H||||||' ndos ¢ P sainpadoid

asepaju|

waysks AN JOVHOLS
viva
14 ol

ﬁ|»

jewrayxy
\v\ST nrs

WO 98/49612 PCT/US98/08618
3/7
G—S— "
Object
Structure
18a
Figure 3
22
Object S
Relationship 22a
Structure Context
ontex 22
bject
Obje 22¢
Object o1
2d
Object 02
Figure &
Object 20
Value Description, /_\ 20a
Value
Structure Context 20b
Object S
Z20¢

Figure 4

Value Descriptor

Value

WO 98/49612

O Lj‘ ect
Relationship
Vadve

PCT/US98/08618
4/7

24

Styvaure
| TTYVATE |

ob ,\e,d
objed o

ob,”ec(' 0L
valve Jﬁcvi?hfy

?:15~é

PCT/US98/08618

WO 98/49612

5/7

/2By

obaiq ueg
anbsanbaq)y

sino1 s
xjuaoyd

K19 sesuey

6
neuuduLD sajabuy so

elydjapejiyd sonueg

obesjys

yBingsid

puejaas|d

HioA maN

PCT/US98/08618

WO 98/49612

6/7

g aunbig

v , 2
aanjons amang
10ydpasaq diysuopejoy

anjea

ﬁ

n_ 190[q0

|

8l

aAIsINdaYy

JeALIaY
jusuodwon

[eAU}oY ARG

juauodwo9 pjing

e1njous
' «&._a:_.s < ainjonyg
‘103duasag anjep 109
jv wolgo [N 1o
Ndo =

LTI
wa)shs

«I»

jewsayxgy
npugs

saapuud pling

peo

sainpasosd

NNt

'

JOVAUOLS

viva

N NN

[44

oy

‘8¢

-9¢

1 £
4

ot

PCT/US98/08618

WO 98/49612

7/7

Y9T

& ainbyy

Joyduasaq anjep q

anons
J10)duaseq
onjep

S

INTERNATIONAL SEARCH REPORT International application No.
PCT/US98/08618

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOG6F 3/00, 9/06, 9/44, 17/00, 15/20, 15/00, 15/40,

UsS CL :707/1, 100, 101, 395/703, 706, 712
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

u.s. @ 707/1, 100, 101; 395/703, 706, 712

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

NONE

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

APS, IEEE ONLINE, MAYA(EDS)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 5,247,666 A (BUCKWOLD) 21 September 1993 (21.09.93), col. | 1-21
4, lines 1-53.

Y US 5,193,183 A (BACHMAN) 09 March 1993 (09.03.93), col. 2,] 1-21
line 60-col. 3, line 27.

X, P US 5,724,589 A (WOLD) 03 March 1998 (03.03.98), col. 3, line| 1-21
58-col. 4, line 67.

Y US 5,390,330 A (TALATI) 14 February 1995 (14.02.95), col. 2, | 1-21
line 8-col. 4, line 36.

Y US 4,558,413 A (SCHMIDT et al.)10 December 1985 (10.12.85), | 1-21
col. 9, line 28-col. 11, line 59.

Y,P US 5,640,567 A (PHIPPS) 17 June 1997 (17.06.97, col. 3, line 53-| 1-21
col.4, line 3.

Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: . later document published after the international filing date or priority
an . L . date and not in conflict with the application but cited to understand
A document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
"E" earlier document published on or after the international filing date X document of particular relavance‘,»t.he clain}ed invemipn cannot be
considered novel or cannot be considered to involve an inventive step
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone .
cited to establish the publication date of another citation or other
special reason (as specificd) "y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"o document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
*pr document publishcd_prior to the international filing date but later than ~ wg document member of the same patent family
the priority date claimed
Date of the actual completion of the international search _| Date of mailing of the international search report
19 AUGUST 1998 1 3 OCT]998
Name and mailing address of the ISA/US Authorized officer

Commissioner of Patents and Trademarks 2 . '
Box PCT FRANTZ COBY y24%4% 7)1&6(— /L"

Washington, D.C. 20231
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9707

Form PCT/ISA/210 (second sheet)July 1992)%

INTERNATIONAL SEARCH REPORT International application No.

PCT/US98/08618

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 5,587,935 A (BROOKS et al.) 24 December 1996 (24.12.96), 1-21
col. 3, line 39-col.4, line 51.

Y,P US 5,689,711 A (BARDASZ et al.) 18 November 1997 (18.11.97), |1-21
col. 2, line 33-col.3, line 41.

Y US 5,421,017 A (SCHOLTZ et al.) 30 MAY 1995 (30.05.95), col. |1-21
1, line 15-col. 2, line 15.

Y US 4,809,170 A (LEBLANG et al.) 28 February 1989 (28.02.89), 1-21
col. 4, line 59-col. 6, line 41.

Y US 5,303,367 A (LEENSTRA, SR. et al.) 12 April 1994 1
(12.04.94), see abstract.

Y US 4,951,192 A (CHASE, JR. et al.) 21 August 1990 (21.08.90), 1-21

col. see abstract.

Form PCT/ISA/210 (continuation of second sheet)(July 1992)«x

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

