This invention relates to a device for greasing or oiling new or used cables while running; the major object being to provide a portable device, adapted to be readily and quickly disposed in operative relation to a cable, and by means of which a running cable may be quickly greased, as is necessary at times to keep the different strands thereof in properly lubricated condition.

A further object is to provide a device of this character, which when made in somewhat different types, can be used with either oil or grease, as any particular cable may require; and also can be used either on horizontal or vertical cables.

Fig. 1 is a longitudinal view of the cable greasing device, closed.

Fig. 2 is a similar view, partly in section and taken at right angles to Fig. 1.

Fig. 3 is an end view of the device.

Fig. 4 is a longitudinal view of the device, opened up for placing about a cable.

Fig. 5 is a transverse section on line 5—5 of Fig. 4.

Fig. 6 is a longitudinal view of a modified form of the device, for greasing a cable.

Fig. 7 is a sectional elevation of the device, as on line 7—7 of Fig. 8.

Fig. 8 is a longitudinal view of the modified device taken at right angles to Fig. 6.

Fig. 9 is an end view of the device.

Fig. 10 is a fragmentary side elevation of the device.

Reverting to the numerals on the drawings, and particularly at present to the form shown in Figs. 1 to 5, the device comprises a pair of duplicate semicircular elongated outer shell sections 1 having coacting longitudinal flanges 2 connected along adjacent abutting edges by hinges 3, and disengagably held together along the opposite edges by suitable clips 4. Sealing gasket strips 5 are disposed between the flanges and across the ends of the shell sections, which are closed except for central cable receiving openings 6. Internal sleeve or shell sections 7 of semicircular form are suitably mounted in sections 1 in spaced and concentric relation therewith; these sections 7 along their edges being also engaged by the gaskets 5, which have openings 8 providing communication between the chambers or reservoirs 9 formed in the device between sections 1 and 7 on opposite sides of the gaskets.

The sections 7 terminate short of the ends of sections 1; heavy yieldable washer sections 10 of felt or the like, filling the spaces between the ends of shell sections 1 and 7, these washer sections becoming compressed and closing in sealing relation about a cable when the device is placed thereabout and closed.

Chambers 9 form a reservoir for heavy oil of a suitable grade which is poured in thru a normally capped opening 11 in one section 1. Controlled admission of this oil to the internal chamber about the cable and within shell sections 1 is had by means of radial screw needle-type valves 12 adjustable from outside shell section 1 and projecting thru inner sections 7 as shown in Fig. 2. One of the sections 1 has a handle 13 for holding and manipulating the device.

In operation, the device is opened up, placed about a cable C, and then closed and latched, the device being held by the handle 13. The reservoir is then filled with oil, which flowing into the inner chamber past valves 12, is held therein by the lower washer 10 and contacts the cable traveling therepast, whether moving up or down.

The oil is allowed to enter the internal chamber only as fast as it is transferred to the cable, and such feeding of the oil is aided by the suctional action of the moving cable.

The felt washers 10 have the added function of cleaning a cable or wire rope, removing metal dust, steel fragments and other foreign matter. The washers are of course removable so that they may be readily cleaned out or replaced if necessary.

The form of device shown in Figs. 6 to 10 is for greasing cables and comprises a pair of elongated semicircular shell sections 14 hinged together as at 15 for opening and closing movement. The sections at their ends are formed with relatively aligned small cable orifices 16; heavy similarly orificed felt washer sections 17 being disposed inside the shell sections at the ends thereof and held in place by metal washer sections 18 reeved into sections 14 as shown in Fig. 7.

One section 14 is provided with a handle 19, while the other section 14 at its ends is provided with transverse flat plates 20 to support the device on a flat surface if desired and preventing rotation of the device.

In the operation of the form of device, the manner of placing the same about the cable is the same as with the other type; in this case, however, the grease, which is non-flowing, may be placed within the shell sections in the space between washers 18 before the latter are placed about the cable.
I claim:

1. A cable lubricating device comprising a pair of matching shell sections of larger diameter than a cable and adapted to be closed about the same, means adjacent the ends of the sections forming restricted cable-passage openings and sealing washer units inwardly of said openings to engage about a cable in lubricant-sealing relation; the shell sections between the washer units forming, when closed about the cable, an enclosed chamber for lubricant, a lubricant reservoir in each shell section, and valves controlling the flow of lubricant from said reservoirs to said chamber.

2. A cable lubricating device comprising a pair of matching shell sections of larger diameter than a cable and adapted to be closed about the same, means adjacent the ends of the sections forming restricted cable-passage openings for disposing a cable in centralized relation to the shell sections; the latter together forming a chamber for lubricant, a lubricant reservoir in each section, and valves controlling the flow of lubricant from said reservoirs to said chamber.

3. A cable lubricating device comprising a pair of matching shell sections of larger diameter than a cable and adapted to be closed about the same, means adjacent the ends of the sections forming restricted cable-passage openings, means forming an oil reservoir about the sections, and means to control the flow of oil from the reservoir to the interior area enclosed by the shell sections.

4. A cable lubricating device comprising a pair of matching shell sections of larger diameter than a cable and adapted to be closed about the same, means adjacent the ends of the sections forming restricted cable-passage openings, means forming an oil reservoir about the sections, and means to control the flow of oil from the reservoir to the interior area enclosed by the shell sections, in which said control means comprises an exteriorly adjustable needle valve extending across the reservoir on one side and thru an opening in the adjacent shell section.

5. A cable oiling device comprising a pair of elongated outer shell sections of semicircular form and open to each other, means hinging the sections together along adjacent longitudinal edges for opening and closing movement, means forming restricted cable-passage openings at the ends of the sections, yieldable sealing washer units in the sections at their ends, inner opened shell sections inside and concentric with the outer sections and of larger diameter than said openings and extending the full distance between the washers; oil chambers being formed between the outer and inner sections and the washers, and means to control the flow of oil from the chambers thru one inner section.

6. A cable oiling device comprising a pair of elongated outer shell sections of semicircular form and open to each other, means hinging the sections together along adjacent longitudinal edges for opening and closing movement, means forming restricted cable-passage openings at the ends of the sections, yieldable sealing washer units in the sections at their ends, inner opened shell sections inside and concentric with the outer sections and of larger diameter than said openings and extending the full distance between the washers; oil chambers being formed between the outer and inner sections and the washers, and means to control the flow of oil from the chambers thru one inner section.

HARRY E. BAKER.

REFERENCES CITED
The following references are of record in the file of this patent:

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,471,583</td>
<td>Anderson</td>
<td>Oct. 23, 1923</td>
</tr>
<tr>
<td>1,504,966</td>
<td>Sawtelle</td>
<td>Sept. 30, 1924</td>
</tr>
<tr>
<td>1,584,704</td>
<td>Swan</td>
<td>May 11, 1926</td>
</tr>
<tr>
<td>1,811,505</td>
<td>Kennedy</td>
<td>June 23, 1931</td>
</tr>
</tbody>
</table>