0O 03/038601 A1l

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

8 May 2003 (08.05.2003) PCT

(10) International Publication Number

WO 03/038601 Al

(51) International Patent Classification”: GO6F 9/315,
9/308

(21) International Application Number: PCT/US02/34404

(22) International Filing Date: 28 October 2002 (28.10.2002)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
09/952,891 29 October 2001 (29.10.2001) US
10/280,612 25 October 2002 (25.10.2002) US

(71) Applicant: INTEL CORPORATION [US/US]; 2200
Mission College Boulevard, Santa Clara, CA 95052 (US).

(72) Inventors: SEBOT, Julien; 2323 NW 188th Street, Apt.
1322, Hillsboro, OR 97124 (US). MACY, William, Jr.;
151 Melville Avenue, Palo Alto, CA 94301 (US). DEBES,
Eric; 1365 Lexington Street, Santa Clara, CA 95054 (US).
NGUYEN, Huy; 16909 Isle Of Man Road, Pflugerville,
TX 78660 (US).

74

(31

G2

Agents: MALLIE, Michael, J. et al.; Blakely Sokoloff
Tayor & Zafman, 7th Floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Buropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BE, BJ, CE CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Titlee METHOD AND APPARATUS FOR PARALLEL SHIFT RIGHT MERGE OF DATA

DATA OPERAND 1

DATA OPERAND 2 COUNT

[PTo[n[w[c [« [uT1] [#[c[Flele o A] [r]

/7—!
/ 64 / 64 8
1102 1104 1106
y Y A
SHIFTLEFTLOGIC |] SHIFTRIGHTLOGIC | |
1122 1124
EXECUTION
UNIT
16 1120
1108 64

FL el IETe]

RESULTANT

(57) Abstract: A method for a parallel shift right merge of data. The method of one embodiment comprises receiving a shift count
of M. A first operand having a first set of L data elements is shifted left by "L - M’ data elements. A second operand having a second
set of L. data elements is shifted right by M data elements. The shifted first set is merged with the shifted second set to generate a

resultant having L data elements.

wO 03/038601 A1 NI 000 00O 0 O

— before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gazette.

WO 03/038601 PCT/US02/34404

10

15

20

25

METHOD AND APPARATUS FOR PARALLEL SHIFT RIGHT

MERGE OF DATA

[0001] This patent application is a Continuation In Part of U.S. Patent Application No.
09/952,891, entitled “An Apparatus And Method For Efficient Filtering And Convolution
Of Content Data”, filed October 29, 2001.

[0002] The patent application is related to co-pending U.S. Patent Application No.
/___, _,entitled “Fast Full Search Motion Estimation With SIMD Merge Instruction”

filed on October 25, 2002.

FIELD OF THE INVENTION

[0003] The present invention relates generally to the field of microprocessors and
computer systems. More particularly, the present invention relates to a method and
apparatus for parallel shift right merge of data.

BACKGROUND OF THE INVENTION

[0004] A processor technology advances, newer software code is also being generated
to run on machines with these processors. Users generally expect and demand higher
performance from their computers regardless of the type of software being used. One such
issue can arise from the kinds of instructions and operations that are actually being
performed within the processor. Certain types of operations require more time to
complete based on the complexity of the operations and/or type of circuitry needed. This
provides an opportunity to optimize the way certain complex operations are executed
inside the processor.

[0005] Media applications have been driving microprocessor development for more
than a decade. In fact, most computing upgrades in recent years have been driven by

media applications. These upgrades have predominantly occurred within consumer
1

WO 03/038601 PCT/US02/34404

segments, although significant advances have also been seen in enterprise segments for

entertainment enhanced education and communication purposes. Nevertheless, future

media applications will require even higher computational requirements. As a result,

tomorrow’s personal computing (PC) experience will be even richer in audio-visual
5 effects, as well as being easier to use, and more importantly, computing will merge with

communications.

[0006] Accordingly, the display of images, as well as playback of audio and video

data, which is collectively referred to herein as content, have become increasingly popular

applications for current computing devices. Filtering and convolution operations are some
10 of the most common operations performed on content data, such as image audio and video
data. As known to those skilled in the art, filtering and correlation calculations are
computed with a multiply-accumulate operation that adds the products of data and co-
efficients. The correlation of two vectors, A and B, consists in the calculation of the sum
S:

N-1

15 S[k]=]—1/_-2 a[i]-bli + k], Equation (1)

i=0

that is very often used with k=0:

1 N-1) .
S[0]= v Z ali]-bli] Equation (2)
i=0
In case of an N tap filter f applied to a vector V, the sum S to be calculated is the

following:

N-1 ‘
20 S=>" flil-Vi] Equation (3)
i=0
Such operations are computationally intensive, but offer a high level of data parallelism
that can be exploited through an efficient implementation using various data storage

devices, such as for example, single instruction multiple data (SIMD) registers.

2

WO 03/038601 PCT/US02/34404

10

15

[0007] Applications of filtering operations are found in a wider array of image and
video processing tasks and communications. Examples of uses of filters are reduction of
block artifacts in motion picture expert group (MPEG) video, reducing noise and audio,
decoupling watermarks from pixel values to improve watermark detection, correlation for
smoothing, sharpening, reducing noise, finding edges and scaling the sizes of images or
video frames, up sampling video frames for sub-pixel motion estimation, enhancing audio
signal quality, and pulse shaping and equalizing the signal in communications.
Accordingly, filtering as well as convolution operations are vital to computing devices
which offer playback of content, including image, audio and video data.

[0008] Unfortunately, current methods and instructions target the general needs of
filtering and are not comprehensive. In fact, many architectures do not support a means
for efficient filter calculations for a range of filter lengths and data types. In addition, data
ordering within data storage devices such as SIMD registers, as well as a capability of
adding adjacent values in a register and for partial data transfers between registers, are
generally not supported. As a result, current architectures require unnecessary data type
changes which minimizes the number of operations per instruction and significantly

increases the number of clock cycles required to order data for arithmetic operations.

WO 03/038601 PCT/US02/34404

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention is illustrated by way of example and not limitations in
the figures of the accompanying drawings, in which like references indicate similar
elements, and in which:

[0010] FIG. 1 depicts a block diagram illustrating a computer system capable of
implementing of one embodiment of the present invention.

[0011] FIG. 2 depicts a block diagram illustrating an embodiment of the processor as
depicted in FIG. 1 in accordance with a further embodiment of the present invention.
[0012] FIG. 3 depicts a block diagram illustrating a packed data types according to a
further embodiment of the present invention.

[0013] FIG. 4A illustrates an in-régister packed byte representations according to one
embodiment of the present invention.

[0014] FIG. 4B illustrates an in-register packed word representation according to one
embodiment of the present invention.

[0015] FIG. 4C illustrates an in-register packed double word representations
according to one embodiment of the present invention.

[0016] FIG. S depicts a block diagram illustrating operation of a byte shuffle
instruction in accordance with an embodiment of the present invention.

[0017] FIG. 6 depicts a block diagram illustrating a byte multiply-accumulate
instruction in accordance with an embodiment of the present invention.

[0018] FIGS. 7A-7C depict block diagrams illustrating the byte shuffle instruction of
FIG. 5 combined with the byte multiply accumulate instruction as depicted in FIG. 6 to
generate a plurality of summed-product pairs in accordance with a further embodiment of

the present invention.

WO 03/038601 PCT/US02/34404

10

15

20

25

[0019] FIGS. 8A-8D depict block diagrams illustrating an adjacent-add instruction in
accordance with a further embodiment of the present invention;

[0020] FIGS. 9A and 9B depict a register merge instruction in accordance with a
further embodiment of the present invention.

[0021] FIG. 10 depicts a block diagram illustrating a flowchart for efficient data
processing of content data in accordance with one embodiment of the present invention.
[0022] FIG. 11 depicts a block diagram illustrating an additional method for
processing content data according to a data processing operation in accordance with a
further embodiment of the present invention.

[0023] FIG. 12 depicts a block diagram illustrating a flowchart for continued
processing of content data in accordance with a further embodiment of the present
invention.

[0024] FIG. 13 depicts a block diagram illustrating a flowchart illustrating a register
merge operation in accordance with a further embodiment of the present invention.
[0025] FIG. 14 depicts a flowchart illustrating an additional method for selecting
unprocessed data elements from a source data storage device in accordance with an
exemplary embodiment of the present invention.

[0026] Figure 15 is a block diagram of the micro-architecture for a processor of one
embodiment that includes logic circuits to perform parallel shift right merge operations in
accordance with the present invention;

[0027] Figure 16A is a block diagram of one embodiment of logic to perform a
parallel shift right merge operation on data operands in accordance with the present
invention;

[0028] Figure 16B is a block diagram of another embodiment of logic to perform a

shift right merge operation;

WO 03/038601 PCT/US02/34404

[0029] Figure 17A illustrates the operation of a paraliel shift right merge instruction
in accordance with a first embodiment of the present invention;
[0030] Figure 17B illustrates the operation of a shift right merge instruction in
accordance with a second embodiment;
5 [0031] Figure 18A is a flow chart illustrating one embodiment of a method to shift
right and merge data operands in parallel;
[0032] Figure 18B is a flow chart illustrating another embodiment of a method to shift
right and merge data;
[0033] Figures 19A-B illustrate an examples of motion estimation;
10 [0034] Figure 20 illustrates an example application of motion estimation and a
resulting prediction;
[0035] Figures 21A-B illustrate example current and previous frames that are
processed during motion estimation;
[0036] Figure 22A-D illustrate the operations of motion estimation on frames in
15 accordance with one embodiment of the present invention; and
[0037] Figures 23A-B is a flow chart illustrating one embodiment of a method to

predict and estimation motion.

10

135

20

25

WO 03/038601 PCT/US02/34404

DETAILED DESCRIPTION

[0038] A method and apparatus for performing a parallel shift right merge on data is
disclosed. A method and apparatus for efficient filtering and convolution of content data
are also described. A method and apparatus for a fast full search motion estimation with
SIMD merge operations is also disclosed. The embodiments) described herein are
described in the context of a microprocessor, but are not so limited. Although the
following embodiments are described with reference to a processor, other embodiments
are applicable to other types of integrated circuits and logic devices. The same techniques
and teachings of the present invention can easily be applied to other types of circuits or
semiconductor devices that can benefit from higher pipeline throughput and improved
performance. The teachings of the present invention are applicable to any processor or
machine that performs data manipulations. However, the present invention is not limited
to processors or machines that perform 256 bit, 128 bit, 64 bit, 32 bit, or 16 bit data
operations and can be applied to any processor and machine in which shift right merge of
data is needed.

[0039] In the following description, for purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention.
One of ordinary skill in the art, however, will appreciate that these specific details are not
necessary in order to practice the present invention. In other instances, well known
electrical structures and circuits have not been set forth in particular detail in order to not
necessarily obscure the present invention. In addition, the following description provides
examples, and the accompanying drawings show various examples for the purposes of
illustration. However, these examples should not be construed in a limiting sense as they
are merely intended to provide examples of the present invention rather than to provide an

exhaustive list of all possible implementations of the present invention.
7

WO 03/038601 PCT/US02/34404

10

15

20

[0040] In an embodiment, the methods of the present invention are embodied in
machine-executable instructions. The instructions can be used to cause a general-purpose
or special-purpose processor that is programmed with the instructions to perform the steps
of the present invention. Alternatively, the steps of the present invention might be
performed by specific hardware components that contain hardwired logic for performing
the steps, or by any combination of programmed computer components and custom
hardware components.

[0041] The present invention may be provided as a computer program product or
software which may include a machine or computer-readable medium having stored
thereon instructions which may be used to program a computer (or other electronic
devices) to perform a process according to the present invention. Such software can be
stored within a memory in the system. Similarly, the code can be distributed via a
network or by way of other computer readable media. The computer-readable medium
may include, but is not limited to, floppy diskettes, optical disks, Compact Disc, Read-
Only Memory (CD-ROMs), and magneto-optical disks, Read-Only Memory (ROMs),
Random Access Memory (RAM), Erasable Programmable Read-Only Memory (EPROM),
Electrically Erasable Programmable Read-Only Memory (EEPROM), magnetic or optical
cards, flash memory, a transmission over the Internet, or the like.

[0042] Accordingly, the computer-readable medium includes any type of
media/machine-readable medium suitable for storing or transmitting electronic
instructions or information in a form readable by a machine (e.g., a computer). Moreover,
the present invention may also be downloaded as a computer program product. As such,
the program may be transferred from a remote computer (e.g., a server) to a requesting

computer (e.g., a client). The transfer of the program may be by way of electrical, optical,

WO 03/038601 PCT/US02/34404

10

15

20

25

acoustical, or other forms of data signals embodied in a carrier wave or other propagation
medium via a communication link (e.g., 2 modem, network connection or the like).
[0043] Inmodern processors, a number of different execution units are used to process
and execute a variety of code and instructions. Not all instructions are created equal as
some are quicker to complete while others can take an enormous number of clock cycles.
The faster the throughput of instructions, the better the overall performance of the
processor. Thus it would be advantageous to have as many instructions execute as fast as
possible. However, there are certain instructions that have greater complexity and require
more in terms of execution time and processor resources. For example, there are floating
point instructions, load/store operations, data moves, etc.

[0044] As more and more computer systems are used in internet and multimedia
applications, additional processor support has been introduced over time. For instance,
Single Instruction, Multiple Data (SIMD) integer/floating point instructions and Streaming
SIMD Extensions (SSE) are instructions that reduce the overall number of instructions
required to execute a particular program task. These instructions can speed up software
performance by operating on multiple data elements in parallel. As a result, performance
gains can be achieved in a wide range of applications including video, speech, and
image/photo processing. The implementation of SIMD instructions in microprocessors
and similar types of logic circuit usually involve a number of issues. Furthermore, the
complexity of SIMD operations often leads to a need for additional circuitry in order to
correctly process and manipulate the data.

[0045] Embodiments of the present invention provide a way to implement a parallel
shift right instruction as an algorithm that makes use of SIMD related hardware. For one
embodiment, the algorithm is based on the concept of right shifting a desired number of

data segments from one operand into the most significant side of a second operand as the
9

WO 03/038601 PCT/US02/34404

10

15

20

same number of data segments are shifted out the least significant side of the second
operand. Conceptually, the right shift merge operation can be viewed as merging two
block of data together as one block and shifting the joined block to align the data segments
at the desired location to form a new pattern of data. Thus embodiments of a shift right
merge algorithm in accordance with the present invention can be implemented in a
processor to support SIMD operations efficiently without seriously compromising overall
performance.

Computing Architecture

[0046] FIG. 1 shows a computer system 100 upon which one embodiment of the
present invention can be implemented. Computer system 100 comprises a bus 101 for
communicating information, and processor 109 coupled to bus 101 for processing
information. The computer system 100 also includes a memory subsystem 104-107
coupled to bus 101 for storing information and instructions for processor 109.

[0047] Processor 109 includes an execution unit 130, a register file 200, a cache
memory 160, a decoder 165, and an internal bus 170. Cache memory 160 is coupled to
execution unit 130 and stores frequently and/or recently used information for processor
109. Register file 200 stores information in processor 109 and is coupled to execution unit
130 via internal bus 170. In one embodiment of the invention, register file 200 includes
multimedia registers, for example, SIMD registers for storing multimedia information. In
one embodiment, multimedia registers each store up to one hundred twenty-eight bits of
packed data. Multimedia registers may be dedicated multimedia registers or registers
which are used for storing multimedia information and other information. In one
embodiment, multimedia registers store multimedia data when performing multimedia

operations and store floating point data when performing floating point operations.

10

10

15

20

WO 03/038601 PCT/US02/34404

' [0048] Execution unit 130 operates on packed data according to the instructions

received by processor 109 that are included in packed instruction set 140. Execution unit
130 also operates on scalar data according to instructions implemented in general-purpose
processors. Processor 109 is capable of supporting the Pentium® microprocessor
instruction set and the packed instruction set 140. By including packed instruction set 140
in a standard microprocessor instruction set, such as the Pentium® microprocessor
instruction set, packed data instructions can be easily incorporated into existing software
(previously written for the standard ﬁicroprocessor instruction set). Other standard
instruction sets, such as the PowerPC™ and the Alpha™ processor instruction sets may
also be used in accordance with the described invention. (Pentium® is a registered

trademark of Intel Corporation. PowerPC™ is a trademark of IBM, APPLE COMPUTER

and MOTOROLA. Alpha™ is a trademark of Digital Equipment Corporation.)

[0049] In one embodiment, the packed instruction set 140 includes instructions (as
described in further detail below) for a move data (MOVD) operation 143, and a data
shuffle operation (PSHUFD) 145 for organizing data within a data storage device. A
packed multiply and accumulate for an unsigned first source register and a signed second
source register (PMADDUSBW operation 147). A packed multiply-accumulate operatibn
(PMADDUUBW operation 149) for performing a multiply and accumulate for an
unsigned first source register and an unsigned second source register. A packed multiply-
accumulate (PMADDSSBW operation 151) for signed first and second source registers
and a standard multiply accumulate (PMADDWD operation 153) for signed first and
second source registers containing 16-bit data. Finally, the packed instruction set includes
an adjacent-add instruction for adding adjacent bytes (PAADDNB operation 155), words

(PAADDNWD operation 157), and doublewords (PAADDNDWD 159), two word values

11

WO 03/038601 PCT/US02/34404

10

15

20

25

(PAADDWD 161), two words to produce a 16-bit result (PAADDNWW operation 163),
two quadwords to produce a quadword result (PAADDNDD operation 165) and a register
merger operation 167.

[0050] By including the packed instruction set 140 in the instruction set of the general-
purpose processor 109, along with associated circuitry to execute the instructions, the
operations used by many existing multimedia applications may be performed using packed
data in a general-purpose processor. Thus, many multimedia applications may be
accelerated and executed more efficiently by using the full width of a processor’s data bus
for performing operations on packed data. This eliminates the need to transfer smaller
units of data across the processor’s data bus to perform one or more operations one data
element at a time.

[0051] Still referring to FIG. 1, the computer system 100 of the present invention may
include a display device 121 such as a monitor. The display device 121 may include an
intermediate device such as a frame buffer. The computer system 100 also includes an
input device 122 such as a keyboard, and a cursor control 123 such as a mouse, or
trackball, or trackpad. The display device 121, the input device 122, and the cursor
control 123 are coupled to bus 101. Computer system 100 may also include a network
connector 124 such that computer system 100 is part of a local area network (LAN) or a
wide area network (WAN).

[0052] Additionally, computer system 100 can be coupled to a device for sound
recording, and/or playback 125, such as an audio digitizer coupled to a microphone for
recording voice input for speech recognition. Computer system 100 may aiso include a
video digitizing device 126 that can be used to capture video images, a hard copy device
127 such as a printer, and a CD-ROM device 128. The devices 124-128 are also coupled

to bus 101.
12

WO 03/038601 PCT/US02/34404

10

15

20

25

Processor

[0053] FIG. 2 illustrates a detailed diagram of processor 109. Processor 109 can be
implemented on one or more substrates using any of a number of process technologies,
such as, BiCMOS, CMOS, and NMOS. Processor 109 comprises a decoder 202 for
decoding control signals and data used by processor 109. Data can then be stored in
register file 200 via internal bus 205. As a matter of clarity, the registers of an
embodiment should not be limited in meaning to a particular type of circuit. Rather, a
register of an embodiment need only be capable of storing and providing data, and
performing the functions described herein.

[0054] Depending on the type of data, the data may be stored in integer registers 201,
registers 209, status registers 208, or instruction pointer register 211. Other registers can
be included in the register file 204, for example, floating point registers. In one
embodiment, integer registers 201 store thirty-two bit integer data. In one embodiment,
registers 209 contains eight multimedia registers, Ro212a through Ry 2124, for example,
SIMD registers containing packed data. Each register in registers 209 is one hundred
twenty-eight bits in length. R1 212, R2 212b and R3 212¢ are examples of individual
registers in registers 209. Thirty-two bits of a register in registers 209 can be moved into
én integer register in integer registers 201. Similarly, a value in an integer register can be
moved into thirty-two bits of a register in registers 209.

[0055] Status registers 208 indicate the status of processor 109. Instruction pointer
register 211 stores the address of the next instruction to be executed. Integer registers 201,
registers 209, status registers 208, and instruction pointer register 211 all connect to
internal bus 20S. Any additional registers would also connect to the internal bus 205.
[0056] In another embodiment, some of these registers can be used for two different

types of data. For example, registers 209 and integer registers 201 can be combined where
13

WO 03/038601 PCT/US02/34404

10

15

20

each register can store either integer data or packed data. In another embodiment,
registers 209 can be used as floating point registers. In this embodiment, packed data can
be stored in registers 209 or floating point data. In one embodiment, the combined
registers are one hundred twenty-eight bits in length and integers are represented as one
hundred twenty-eight bits. In this embodiment, in storing packed data and integer data,
the registers do not need to differentiate between the two data types.

[0057] Functional unit 203 performs the operations carried out by processor 109.
Such operations may include shifts, addition, subtraction and multiplication, etc.
Functional unit 203 connects to internal bus 205. Cache 160 is an optional element of
processor 109 and can be used to cache data and/or control signals from, for example,
main memory 104. Cache 160 is connected to decoder 202, and is connected to receive
control signal 207.

Data and Storage Formats

[0058] FIG. 3 illustrates three packed data-types: packed byte 221, packed word 222,
and packed doubleword (dword) 223. Packed byte 221 is one hundred twenty-eight bits
long containing sixteen packed byte data elements. Generally, a data element is an
individual piece of data that is stored in a single register (or memory location) with other
data elements of the same length. In packed data sequences, the number of data elements
stored in a register is one hundred twenty-eight bits divided by the length in bits of a data
element.

[0059] Packed word 222 is one hundred twenty-eight bits long and contains eight
packed word data elements. Each packed word contains sixteen bits of information.
Packed doubleword 223 is one hundred twenty-eight bits long and contains four packed

doubleword data elements. Each packed doubleword data element contains thirty-two bits

14

WO 03/038601 PCT/US02/34404

10

15

20

25

of information. A packed quadword is one hundred twenty-eight bits long and contains
two packed quad-word data elements.

[0060] FIGS. 4A-4C illustrate the in-register packed data storage representation
according to one embodiment of the invention. Unsigned packed byte in-register
representation 310 illustrates the storage of an unsigned packed byte 201 in one of the
multimedia registers 209, as shown in FIG. 4A. Information for each byte data element is
stored in bit seven through bit zero for byte zero, bit fifteen through bit eight for byte one,
bit twenty-three through bit sixteen for byte two, and finally bit one hundred twenty
through bit one hundred twenty-seven for byte fifteen.

[0061] Thus, all available bits are used in the register. This storage arrangement
increases the storage efficiency of the processor. As well, with sixteen data elements
accessed, one operation can now be performed on sixteen data elements simultaneously.
Signed packed byte in-register representation 311 illustrates the storage of a signed packed
byte 221. Note that the eighth bit of every byte data element is the sign indicator.

[0062] Unsigned packed word in-register representation 312 illustrates how word
seven through word zero are stored in a register of multimedia registers 209, as illustrated
in FIG. 4B. Signed packed word in-register representation 313 is similar to the unsigned
packed word in-register representation 312. Note that the sixteenth bit of each word data
element is the sign indicator. Unsigned packed doubleword in-register representation 314
shows how multi-media registers 209 store two doubleword data elements, as illustrated in
FIG. 4C. Signed packed doubleword in-register representation 315 is similar to unsigned
packed doubleword in-register representation 314. Note that the necessary sign bit is the
thirty-second bit of the doubleword data element.

[0063] Efficient filtering and convolution of content data, as taught by the present

invention, begins with loading of data source devices with data and filter/convolution co-
15

WO 03/038601 PCT/US02/34404

10

15

20

25

efficients. In many cases, the order of data or co-efficients within a data storage device,
such as for example a single instruction multiple data (SIMD) register, require change
before arithmetic calculations can be made. Accordingly, efficient filter calculations and
convolution require not only appropriate arithmetic instructions, but also efficient methods
for organizing the data required to make the calculations.

[0064] For example, using the notation in the background section, images are filtered
by replacing the value of, for example pixel I given by S[I]. Values of pixels on either
side of pixel I are used in the filter calculation of S[I]. Similarly, pixels on either side of
pixel [+ 1 are required to compute the S[I+1]. Consequently, to compute filter results for
more than one pixel in an SIMD register, data is duplicated and arranged in the SIMD
register for the calculation.

[0065] Unfortunately, current computing architectures lack an efficient way of
arranging data for all of the appropriate data sizes within the computing architecture.
Accordingly, as depicted in FIG. 5, the present invention includes a byte shuffle
instruction (PSHUFB) 145 that efficiently orders data of any size. The byte shuffle
operation 145 orders data sizes, which are larger than bytes, by maintaining the relative
position of bytes within the larger data during the shuffle operation. In addition, the byte
shuffle operation 145 can change the relative position of data in an SIMD register and can
also duplicate data.

[0066] Referring again to FIG. 5, FIG. 5 depicts an example of a byte shuffle
operation 145 for a filter with three co-efficients. Using conventional techniques, filter
co—efficients (not shown) would be applied to three pixels and then the filter co-efficients
are moved to another pixel and applied again. However, in order to perform these
operations in parallel, the present invention describes a new instruction for the data

arrangement. Accordingly, as depicted in FIG. §, the data 404 is organized within a
' 16

10

15

20

25

WO 03/038601 PCT/US02/34404

destination data storage device 406, which in one embodiment is the source data storage
device 404, utilizing a mask 402 to specify the address wherein respective data elements
are stored in the destination register 406. In one embodiment, the arrangement of the
mask is based on the desired data processing operation, which may include for example, a
filtering operation, a convolution operation or the like.

[0067] Accordingly, using the mask 402, processing of the data 406, along with the
co-efficients, can be performed in parallel. In the example described, the source data
storage device 404 is a 128-bit SIMD register, which initially stores sixteen 8-bit pixels.
As such, when utilizing a pixel filter with three co-efficients, the fourth co-efficient is set
to zero. In one embodiment, depending on the number of data elements within the source
data storage device 404, the source register 404 can be utilized as the destination data
storage device or register, thereby reducing the number of registers than is generally
necessary. As stich, overwritten data within the source data storage device 404 may be
reloaded from memory or from another register. In addition, multiple registers may be
used as the source data storage device 404, with their respective data organized within the
destination data storage device 406 as desired.

[0068] Once ordering of data elements, as well as co-efficients is complete, the data
and corresponding co-efficients must be processed in accordance with a data processing
operation. It is recognized by those skilled in the art that operations with different
precisions are needed for filter calculation, as well as convolution calculation, utilizing
different numbers of filter co-efficients and data sizes. The most basic filter operation
multiplies two pairs of numbers and adds their products. This operation is called a
multiply-accumulate instruction.

[0069] Unfortunately, current computing architectures do not provide support for

efficient multiply-accumulate calculations for multiple array or filter lengths and multiple
17

10

15

20

WO 03/038601 PCT/US02/34404

data sizes utilizing either signed or unsigned co-efficients. In addition, byte operations are
not supported. As a result, conventional computer architectures must convert 16 bit data
using unpack instructions. These computer architectures generally include support for
multiply-accumulate operations that compute the product of 16-bit data in separate
registers and then add adjacent products to give a 32-bit result. This solution is acceptable
for filter co-efficients for data that require 16-bit precision, but for 8-bit filter co-efficients,
in 8 bit data (which is the general case for image and video), instructions and data level
parallelism are wasted.

[0070] Referring now to FIG. 6, FIG. 6 depicts a first source register 452 and a
second source register 454. In one embodiment, the first and second source registers are
N-bit long SIMD registers, such as for example 128-bit Intel® SSE2 XMM registers. | The
multiply and accumulate instruction implemented on such a register would give the
following results for two pixel vectors 452 and 454, which is stored within the destination
register 456. Accordingly, the example shows an 8-bit byte to 16 word multiply-
accumulate instruction called PMADDUSBW operation 147 (FIG. 1), in which the U and
the S in the instruction mnemonically refer to unsigned and signed bytes. Bytes in one of
the source registers are signed and in the other they are unsigned.

[0071] In one embodiment of the present invention, the register with the unsigned data
is the destination and the 16 multiply-accumulate results. The reason for this choice is that
in most implementations, data is unsigned and co-efficients are signed. Accordingly, it is
preferable to overwrite the data because the data is less likely to be needed in future
calculations. Additional byte multiply-accumulate instructions as depicted in FIG. 1 are
PMADDUUBW operation 149 for unsigned bytes in both registers and PMADDSSBW

operation 151 for signed bytes in both source registers. The multiply-accumulate

18

WO 03/038601 PCT/US02/34404

10

15

20

25

instructions are completed by a PMADDWD instruction 153 that applies to pairs of 16-bit
signed words to produce a 32-bit signed product.

[0072] Asis generally the case of filtering operations, the second vector generally
contains the filter co-efficients. Accordingly, to prepare an XMM register, the co-
efficients can be loaded within a portion of the register and copied to the rest of the
register using the shuffle instruction 145. For example, as depicted in FIG. 7A, a co-
efficient data storage device 502, such as for example an XMM 128 bit register, is initially
loaded with three co-efficients in response to execution of a data load instruction.
However, those skilled in the art will recognize that filter co-efficients may be organized
in memory prior to data processing. As such, the co-efficient may be initially loaded as
depicted in FIG. 7B based on their organization within memory, prior to filtering.

[0073] As such, the co-efficient register 502 includes filter co-efficients F3, F2 and F1,
which can be coded as signed or unsigned bytes. Once the co-efficient register 502 is
loaded, the existing instruction PSHUFD can be used to copy the filter co-efficients within
the remaining portions of the co-efficient register to obtain the following result as depicted
in FIG. 7B. As depicted in FIG. 7B, the co-efficient register 504 now includes shuffled
co-efficients as required to perform a data processing operation in parallel. As known to
those skilled in the art, filters including three co-efficients are very common in image
processing algorithms. However, thdse skilled in the art will recognize that certain
filtering operations, such as JPEG 2000 utilize nine and seven 16-bit coefficients.
Accordingly, processing of such co-efficient exceeds the capacity of co-efficient registers,
resulting in a partially filtered result. Consequently, processing continues until a final
result is obtained using each co—efficient.

[0074] Referring now to FIG. 7C, FIG. 7C illustrates the arrangement of pixel data

within a source register 506 that was initially contained within the source register 404 as
19

10

15

20

25

WO 03/038601 PCT/US02/34404

depicted in FIG. 5 and shuffled within the destination register 406. Accordingly, in .
response to execution of a data processing operation, the PMADDUSBW instruction can
be used to compute the sum of the two multiplications with the result stored in the
destination register 510. Unfortunately, in order to complete calculation and generate data
processing results for the selected data processing operation, adjacent summed-product
pairs within the destination register 510 must be added.

[0075] Accordingly, if the sum of a multiply-accumulate instruction is longer than two
pixels, which is generally the case, the separate sums have to be added. Unfortunately,
current computing architectures do not provide an efficient method of adding adjacent
sums, due to the fact that the adjacent sums are within the same destination register.
Accordingly, the present invention utilizes adjacent-add instructions, the results of which
are depicted in FIGS. 8A-8D.

[0076] Referring now to FIG. 8A, FIG. 8A depicts a destination register 552
following adding of two adjacent 16 bit values (PADDD2WD operation 157) to give a 32
bit sum. As such, FIG. 8A depicts two adjacent 16 bit results of a multiply-accumulate
instruction, which are added to give 32 bit sum of 4 byte products. FIG. 8B depicts an
adjacent-add instruction (PAADDD4 WD operation 157), which adds 4 adjacent 16-bit
values to give a 32-bit sum. As such, 4 adjacent 16-bit results of a byte multiply-
accumulate instruction are added to give 32-bit sum of 8 byte products. FIG. 8C
illustrates an adjacent-add instruction (PAADD8WD operation 157), which adds 8
adjacent 16-bit values to give a 32-bit sum. As such, the example illustrates 8 adjacent 16-
bit results of a byte multiply-accumulate operation, which are added to give a 32-bit sum
of 16 byte products.

[0077] Accordingly, the selection of the instruction to perform an adjacent-add

operation is based on the number of turns in a sum (N). For example, utilizing a three tap
20

WO 03/038601 PCT/US02/34404

10

15

20

filter as depicted in FIGS. 7A-7C, a first instruction (PAADD2WD operation 157) will
obtain the following result as depicted in FIG. 8D. However, for correlation between two
16 bit pixel vectors (for example, the first line of a macro block), the last instruction
(PAADD8WD operation 157), as depicted in FIG. 8C, is utilized. Such an operation is
becoming increasingly important for an efficient implementation as SIMD registers
increase in size. Without such an operation, many additional instructions are required.
[0078] Assuch, the set of adjacent-add instructions, as described by the present
invention, support a wide range of numbers of adjacent values which can be added and a
full range of common data types. In one embodiment, addition of adjacent 16 bit valués
includes a set of instructions (PAADDNWD operation 157) whose range begins with
addition of two adjacent values (N=2) and doubles the number added to four (N=4) then to
eight (N=8) and up to a total number in the register. The data size of the sum of 16 bit
adjacent-additions is 32 bits. In an alternate embodiment, adjacent 16 bit values
(PAADDWD operation 161) are added to yield a 32 bit sum.

[0079] In this alternate embodiment, no other instruction with the 16 bit data size is
included because adjacent-add instructions with a 32 bit input are used to add the sum
produced by the instruction with a 16 bit input. Both embodiments include a set of 32 bit
adjacent-addition instructions (PAADDNDWD operation 159), whose range begins with
the addition of two adjacent values (N=2) and doubles the number added to four (N=4),
then eight (N=8), etc., up to the total number in the register. The data size of the sum of
32 bit adjacent-additions is 32 bits. In some cases, the results do not fill the register. For
example, instructions as shown in FIGS. 8A, 8B and 8C, three different adjacent-adds
yield 4, 2 and 1 32-bit results. In one embodiment, the results are stored in the lower, least

significant parts of the destination data storage device.

21

WO 03/038601 PCT/US02/34404

10

15

20

25

[0080] Accordingly, when there are two 32-bit results, as depicted in FIG. 8B, the
results are stored iﬁ the lower 64 bits. In the case of one 32-bit result, as illustrated in
FIG. 8C, the results are stored in the lower 32 bits. As recognized by those skilled in the
art, some applications utilize the sum of adjacent bytes. The present invention supports
adjacent-addition of bytes with an instruction (PAADDNB operation 155) that adds two
adjacent signed bytes giving a 16-bit word and an instruction that adds two adjacent
unsigned bytes giving a 16-bit word result. Applications that require addition of more
than two adjacent bytes add the 16-bit sum of two bytes with an appropriate 16 bit
adjacent-add operation.

[0081] Once data processing operation results have been calculated, the next operation
consists in routing the results back to a memory device. As illustrated by the
embodiments described above, the results can be coded with a 32-bit precision. Therefore,
results can be written back to memory using simple move operations acting on
doublewords, for example, the MOVD operation 143 described above as well as Shift
Right logical operations acting on the whole register (PSRLDQ), shift double quad-word
right logical. As such, writing all results back to memory would need four MOVD and
three PSRLDQ in the first case (FIG. 8A), two MOVD and one PSRLDQ in the second
case (FIG. 8B) and finally, just one MOVD in the final case, as depicted in FIG. 8C.
[0082] Unfortunately, although the adjacent-add operations, as depicted in FIG. 7C,
can be performed in parallel, filtering computations generally require the next pixel in the
image. As such, one or more pixels need to be loaded in a source data storage device or
register. In order to avoid loading the eight pixels each time in the registers, two solutions
are proposed for this operation. In one embodiment, the present invention describes a
register merge operation 163, as depicted in FIG. 9A. As such, in order to process pixels

A1-A8 within a destination register 606, pixels A7-A1 are concatenated with pixel A8 to
22

10

15

20

25

WO 03/038601 PCT/US02/34404

form pixels A8—A1 in destination register 606. Accordingly, the register merge operation
utilizes the number of bytes to select registers, which is provided by an input argument.
[0083]. Referring now to FIG. 9B, FIG. 9B depicts an alternate embodiment for
performance of the register merge operation. Initially, eight pixels are loaded into a first
source register 608 (MMO). Next, a subsequent eight pixels are loaded in a second source
register (MM1) 610. Next, a permute operation is performed on the second source register
610. Once performed, register 610 is copied to a third source register (MM2) 612. Next,
the first source register 608 is right-shifted by eight bits. In addition, the second source
register 610 and a mask register 614 are combined in accordance with a packed logical
AND instruction and stored within the first source register 608.

[0084] Next, a logical OR operation is performed between the second source register
610 and the first source register 608 to produce the following result within the destination
register 620, resulting in the register merge operation. The process continues as illustrated
by shifting the first source register 608. Next, the second source register 610 is shifted to
yield the register 612. Next, a logical AND operation is performed between the mask
register 614 and the second source register 612, with the results stored in a destination
register 622. Finally, a packed OR operation is performed between the second source
register 612 and the first source register 608 to yield a subsequent register merge operation
within the destination register 624. Procedural methods for implementing the teachings of
the present invention are now described.

Operation

[0085] Referring now to FIG. 10, FIG. 10 depicts a block diagram illustrating a
method 700 for efficient filtering and convolution of content data within, for example, the
computer system 100 as depicted in FIGS. 1and 2. As described herein, content data

refers to image, audio, video and speech data. In addition, the present invention refers to
23

WO 03/038601 PCT/US02/34404

10

15

20

25

data storage devices, which as recognized by those skilled in the art, include various
devices capable of storing digital data including, for example, data registers such as 128-
bit Intel® architecture SSE2 MMX registers.

[0086] Referring again to FIG. 10, the method begins at process block 702, wherein it
is determined whether a data processing operation is executed. As described herein, the
data processing operation includes, but it is not limited to, convolution and filtering
operations performed on pixel data. Once executed process block 704 is performed. At
process block 704, a data load instruction is executed. In the response to execution of the
data load instruction, at process block 706 input data stream data is loaded within a source
data storage device 212A and a secondary data storage device 212B, for example as
depicted in FIG. 2.

[0087] At process block 708, it is determined whether the data processing operation
has executed a data shuffle instruction. In response to executing a data shuffle instruction,
at process block 710, a selected portion of data from, for example, a source data storage
device 212B is organized within a destination data storage device or according to an
arrangement of co-efficients within a co-efficient data storage device (see FIG. 5). Co-
efficients within a co-efficient data storage device are organized according to the desired
data processing operation calculations (for example, as illustrated in FIGS. 7A and 7B).
In one embodiment, co-efficients are organized within memory prior to any filtering
operations. Accordingly, co-efficients may be loaded in a co-efficient data storage
without the need for shuffling (see FIG. 7B).

[0088] As described above, ordering data and co-efficients is required to implement
parallel calculations, as required by the data processing operation, as depicted in FIGS.
7A~TC. However, since the co-efficients are known prior to the data processing dperation,

co-efficients may be organized in memory, to enable loading into a co-efficient register as
24

WO 03/038601 PCT/US02/34404

10

15

20

25

organized within memory without the need to shuffle the co-efficients during the data
processing operation. Finally, at process block 720, the loaded data is processed
according to the data processing operation to generate one or more data processing results.
Once generated, the data processing operation results can be written back to memory.
[0089] Referring now to FIG. 11, FIG. 11 depicts a block diagram illustrating a
method 722 for processing data according to the data processing operation. At process
block 724, it is determined whether the data processing operation has executed a multiply-
accumulate instruction. In response to execution of the multiply-accumulate instruction, at
process block 726, a plurality of summed-product pairs of data within the destination
storage device and co-efficients within the co-efficient data storage device are generated,
as depicted in FIG. 7C. Next, at process block 728, it is determined whether the data
processing operation has executed an adjacent-add instruction.

[0090] In response to execution of the adjacent-add, at process block 730, adjacent
summed-product pairs within the destination data storage device 510 (FIG. 7C) are added
in response to execution of the adjacent-add instruction to form one or more data
processing operation results (see FIG. 8D). However, in certain embodiments, where the
number of co-efficients exceeds a capacity of the co-efficient register (see process block
732), partial data processing results are obtained. Consequently, processing and
organizing of co-efficients (process block 734) data (process block 736) and continues
until final data processing operation results are obtained, as indicated in optional process
blocks 732-736. Otherwise, at process block 738, the one or more data processing
operation results are stored. Finally, at process block 790, it is determined whether
processing of input data stream data is complete. As such, process blocks 724-732 are
repeated until processing of input data stream data is complete. Once processing is

complete, control flow returns to process block 720, wherein the method 700 terminates.
25

WO 03/038601 PCT/US02/34404

10

15

20

[0091] Referring now to FIG. 12, FIG. 12 depicts a block diagram illustrating an
additional method 740 for processing additional input data. At process block 742, it is
determined whether there is any unaccessed data within the source data storage device
212A. As described herein, unaccessed data refers to data within the source data storage
device 212A that has not been shuffled within the data storage device in order to perform a
multiply-accumulate instruction. When the data storage device contains unaccessed data,
at process block 744, a portion of data is selected from the source data storage device as
the selected data. Once selected, process block 786 is performed.

[0092] Otherwise, at process block 746, one or more unprocessed data elements are
selected from the source data storage device, as well as one or more data elements from a
secondary data storage device. As described herein, unprocessed data elements refer to
data elements for which a data processing operation result has not yet been calculated.
Next, at process block 780, a register merger instruction (see FIGS. 9A and 9B) is
performed which concatenates the unprocessed data elements of the source data storage
device with the data elements selected from the secondary data storage device to form the
selected data. Next, at process block 782, data from the secondary data storage device is
moved to the source data storage device.

[0093] As such, the source data storage device data is no longer required, since it has
all been accessed. Accordingly, the secondary storage of data, which contains unaccessed
data, can be used to overwrite data within the source data storage device. At process block
784, the secondary data storage device is loaded with input data stream data from a
memory device, which requires additional data processing, such as filtering or
convolution. Finally, at process block 786, the selected data is organized within a

destination data storage device or according to the arrangement of co-efficients within the

26

WO 03/038601 PCT/US02/34404

10

15

20

25

co-efficient data storage device (see FIG. 5). Once performed, control flow returns to
process block 790, as depicted in FIG. 11 for continued processing of the selected data.
[0094] Referring now to FIG. 13, FIG. 13 depicts an additional method 748 for
selecting unprocessed data elements. At process block 750, it is determined whether the
source data storage device contains unprocessed data. When each portion of data within
the source data storage device has been processed, process block 770 is performed. At
process block 770, a portion of data is selected from the secondary data storage device,
which functions as the selected data, which is then processed in accordance with the data
processing operation.

[0095] Otherwise, at process block 752, one or more unprocessed data elements are
selected from the source data storage device. Finally, at process block 766, additional data
elements are selected from the secondary data storage device according to a count of the
unprocessed data elements to form the selected data. As such, data selected for shuffling
within a destination data storage device prior to performing of the data processing
operation is limited to a count of data elements based on the number of filter co-efficients.
Accordingly, using this data element count, the number of unprocessed data elements is
subtracted from the data element count in order to determine the number of elements to
select from the secondary data storage device in order to perform the register merge
operation.

[0096] Finally, referring to FIG. 14, FIG. 14 depicts an additional method 754 for
selecting unprocessed data elements of process block 752, as depicted in FIG. 13. At
process block 756, a data element is selected from the source data storage device. Next, at
process block 758, it is determined whether a data processing operation result has been
calculated for the data element. When such a result has been calculated, the selected data

element is discarded. Otherwise, at process block 760, the selected data element is an
27

10

15

20

WO 03/038601 PCT/US02/34404

unprocessed data element and is stored. Next, at process block 762, an unprocessed data
element count is incremented. Finally, at process block 764, process blocks 756-762 are
repeated until each data element within the source data storage device is processed.

[0097] Assnch, uti]izing' the teachings of the present invention, unnecessary data type
changes are avoided, resulting in a maximization of the number of SIMD operations per
instructions. In addition, a significant reduction in the number of clock cycles required to
order data for arithmetic operations is also achieved. Accordingly, Table 1 gives estimates
speed-up values for several filtering applications using the teachings and instructions
described by the present invention.

TABLE 1

Operation Speedup
9-7 wavelet 17
3x3 filter with byte co-efficients 4.3
watermark correlation 6.8

Alternate Embodiments

' [0098] Several aspects of one implementation of the computing architecture for

providing efficient filtering and convolution cf contezt data ysing SIMD registefs have
been described. However, various implementations of the computing architecture provide
numerous features including, complemenfing, supplementing, and/or replacing the features
described abeve. Features can be implemented as part of thé computing architecture or as
part of specific software or hardware components in different implementations. In
addition, the foregoing description, for purposes of explanation, ‘used specific
nomenclature to provide 4 thorough understanding of the (nvention. However, it will be
apparent to ore skilled in the art that the specific details are not required in order to
practice the inveption.

28

WO 03/038601 PCT/US02/34404

10

15

20

25

[0099] In addition, although an embodiment described herein is directed to a system
for efficient filtering and convolution of content data using SIMD registers, it will be
appreciated by those skilled in the art that the teaching of the present invention can be
applied to other systems. In fact, systems for processing image, audio and video data are
within the teachings of the present invention, without departing from the scope and spirit
of the present invention. The embodiments described above were chosen and described in
order to best explain the principles of the invention and its practical applications. These
embodiment were chosen to thereby enable others skilled in the art to best utilize the
invention and various embodiments with various modifications as are suited to the
particular use contemplated.

[00100] Embodiments of the present invention provides many advantages over known
techniques. The present invention includes the ability to efficiently implement operations
for filtering/convolution for multiple array lengths and data sizes and co-efficient signs.
These operations are accomplished by using a few instructions that are a part of a small
group of single instruction multiple data (SIMD) instructions. Accordingly, the present
invention avoids unnecessary data type changes. As a result, by avoiding unnecessary data
type changes,‘ the present invention maximizes the number of SIMD operations per
instruction, while significantly reducing the number of clock cycles required to order data
for arithmetic operations such as multiply-accumulate operations.

[00101] Figure 15 is a block diagram of the micro-architecture for a processor of éne
embodiment that includes logic circuits to perform parallel shift right merge operations in
accordance with the present invention. The shift right merge operation may also be
referred to as a register merge operation and register merge instruction as in the discussion
above. For one embodiment of the shift right merge instruction (PSRMRG), the

instruction produces the same results as the register merge operation 167 of Figs. 1, 9A
29

WO 03/038601 PCT/US02/34404

10

15

20

25

and 9B. The in-order front end 1001 is the part of the processor 1000 that fetches the
macro-instructions to be executed and prepares them to be used later in the processor
pipeline. The front end of this embodiment includes several units. The instruction
prefetcher 1026 fetches macro-instructions from memory and feeds them to an instruction
decoder 1028 which in turn decodes them into primitives called micro-instructions or
micro-operations (also called micro op or uops) that the machine know how to execute.
The trace cache 1030 takes decoded uops and assembles them into program ordered
sequences or traces in the uop queue 1034 for execution. When the trace cache 1030
encounters a complex macro-instruction, the microcode ROM 1032 provides the uops
needed to complete the operation.

[00102] Many macro-instructions are converted into a single micro-op, and others need
several micro-ops to complete the full operation. In this embodiment, if more than four
micro-ops are needed to complete a macro-instruction, the decoder 1028 accesses the
microcode ROM 1032 to do the macro-instruction. In one embodiment, an instruction for
a parallel shift right merge algorithm can be stored within the microcode ROM 1032
should a number of micro-ops be needed to accomplish the operation. The trace cache
1030 refers to a entry point programmable logic array (PLA) to determine a correct micro-
instruction pointer for reading the micro-code sequences for the divide algorithms in the
micro-code ROM 1032. After the microcode ROM 1032 finishes sequencing micro-ops
for the current macro-instruction, the front end 1001 of the machine resumes fetching
micro-ops from the trace cache 1030.

[00103] Some SIMD and other multimedia types of instructions are considered
complex instructions. Most floating point related instructions are also complex
instructions. As such, when the instruction decoder 1028 encounters a complex macro-

instruction, the microcode ROM 1032 is accessed at the appropriate location to retrieve
30

WO 03/038601 PCT/US02/34404

10

15

120

25

the microcode sequence for that macro-instruction. The various micro-ops needed for
performing that macro-instruction are communicated to the out-of-order execution engine
1003 for execution at the appropriate integer and floating point execution units.

[00104] The out-of-order execution engine 1003 is where the micro-instructions are
prepared for execution. The out-of-order execution logic has a number of buffers to
smooth out and re-order the flow of micro-instructions to optimize performance as they go
down the pipeline and get scheduled for execution. The allocator logic allocates the
machine buffers and resources that each uop needs in order to execute. The register
renaming logic renames logic registers onto entries in a register file. The allocator also
allocates an entry for each uop in one of the two uop queues, one for memory operations
and one for non-memory operations, in front of the instruction schedulers: memory
scheduler, fast scheduler 1002, slow/general floating point scheduler 1004, and simple
floating point scheduler 1006. The uop schedulers 1002, 1004, 1006, determine when a
uop is ready to execute based on the readiness of their dependent input register operand
sources and the availability of the execution resources the uops need to complete their
operation. The fast scheduler 1002 of this embodiment can schedule on each half of the
main clock cycle while the other schedulers can only schedule once per main processor
clock cycle. The schedulers arbitrate for the dispatch ports to schedule uops for execution.
[00105] Register files 1008, 1010, sit between the schedulers 1002, 1004, 1006, and the
execution units 1012, 1014, 1016, 1018, 1020, 1022, 1024 in the execution block 1011.
There is a separate register file 1008, 1010, for integer and floating point operations,
respectively. Each register file 1008, 1010, of this embodiment also includes a bypass
network that can bypass or forward just completed results that have not yet been written
into the register file to new dependent uops. The integer register file 1008 and the floating

point register file 1010 are also capable of communicating data with the other. For one
31

WO 03/038601 PCT/US02/34404

10

15

20

25

embodiment, the integer register file 1008 is split into two separate register files, one
register file for the low order 32 bits of data and a second register file for the high order 32
bits of data. The floating point register file 1010 of one embodiment has 128 bit wide
entries because floating point instructions typically have operands from 64 to 128 bits in
width.

[00106] The execution block 1011 contains the execution units 1012, 1014, 1016, 1018,
1020, 1022, 1024, where the instructions are actually executed. This section includes the
register files 1008, 1010, that store the integer and floating point data operand values that
the micro-instructions need to execute. The processor 1000 of this embodiment is
comprised of a number of execution units: address generation unit (AGU) 1012, AGU
1014, fast ALU 1016, fast ALU 1018, slow ALU 1020, floating point ALU 1022, floating
point move unit 1024. For this embodiment, the floating point execution blocks 1022,
1024, execute floating point, MMX, SIMD, and SSE operations. The floating point ALU
322 of this embodiment includes a 64 bit by 64 bit floating point divider to execute divide,
square root, and remainder micro-ops. For embodiments of the present invention, any act
involving a floating point value occurs with the floating point hardware. For example,
conversions between integer format and floating point format involve a floating point
register file. Similarly, a floating point divide operation happens at a floating point
divider. On the other hand, non-floating point numbers and integer type are handled with
integer hardware resources. The simple, very frequent ALU operations go to the high-
speed ALU execution units 1016, 1018. The fast ALUs 1016, 1018, of this embodiment
can execute fast operations with an effective latency of half a clock cycle. For one
embodiment, most complex integer operations go to the slow ALU 1020 as the slow ALU
1020 includes integer execution hardware for long latency type of operations, such as a

multiplier, shifts, flag logic, and branch processing. Memory load/store operations are
32

WO 03/038601 PCT/US02/34404

10

15

20

25

executed by the AGUs 1012, 1014. For this embodiment, the integer AL Us 1016, 1018,
1020, are described in the context of performing integer operations on 64 bit data
operands. In alternative embodiments, the ALUs 1016, 1018, 1020, can be implemented
to support a variety of data bits including 16, 32, 128, 256, etc. Similarly, the floating
point units 1022, 1024, can be implemented to support a range of operands having bits of
various widths. For one embodiment, the floating point units 1022, 1024, can operate on
128 bits wide packed data operands in conjunction with SIMD and multimedia
instructions.

[00107] Inthis erﬁbodiment, the uops schedulers 1002, 1004, 1006, dispatch dependent
operations before the parent load has finished executing. As uops are speculatively
scheduled and executed in processor 1000, the processor 1000 also includes logic to
handle memory misses. If a data load misses in the data cache, there can be dependent
operations in flight in the pipeline that have left the scheduler with temporarily incorrect
data. A replay mechanism tracks and re-executes instructions that use incorrect data.
Only the dependent operations need to be replayed and the independent ones are allowed
to complete. The schedulers and replay mechanism of one embodiment of a processor are
also designed to catch instruction sequences for extended precision integer divide
operations.

[00108] The term “registers” is used herein to refer to the on-board processor storage
locations that are used as part of macro-instructions to identify operands. In other words,
the registers referred to herein are those that are visible from the outside of the processor
(from a programmer’s perspective). However, the registers described herein can be
implemented by circuitry within a processor using any number of different techniques,
such as dedicated physical registers, dynamically allocated physical registers using register

renaming, combinations of dedicated and dynamically allocated physical registers, etc.
33

10

15

20

25

WO 03/038601 PCT/US02/34404

For the discussions below, the registers are understood to be data registers designed to
hold packed data, such as 64 bits wide MMX™ registers (mm registers) in
microprocessors enabled with MMX technology from Intel Corporation of Santa Clara,
California. These MMX registers, available in both integer and floating point forms, can
operated with packed data elements that accompany SIMD and SSE instructions.
Similarly, 128 bits wide XMM registers relating to SSE2 technology can also be used to
hold such packed data operands.

[00109] In the examples of the following figures, a number of data operands are
described. For simplicity, the data segments are labeled from letter A onwards
alphabetically, wherein A is located at the lowest address and Z would be located at the
highest addfess. Thus, A may be at address 0, B at address 1, C at address 3, and so on.
Although the data sequences in some of the examples appear with the letters arranged in
reverse alphabetic order, the addressing would still start with A at 0, B at 1, etc.
Conceptually, a shift right operation, as in the shift right merge for one embodiment,
entails right shifting the lower address data segments out if the sequence is D, C, B, A.
Thus, a right shift simply shifts the data elements of a data block to the right past a
stationary line. Furthermore, a shift right merge operation can conceptually right shift the
rightmost data segments from one operand into the left side of another data operand as if
the two operands were on a continuum.

[00110] Figure 16A is a block diagram of one embodiment of logic to perform a
parallel shift right merge operation on data operands in accordance with the present
invention. The instruction (PSRMRG) for a shift right merge (also, a register shift)
operation of this embodiment begins with three pieces of information: a first data operand
1102, a second data operand 1104, and a shift count 1106. In one embodiment, the shift

PSRMRG instruction is decoded into one micro-operation. In an alternate embodiment,
34

10

15

20

25

WO 03/038601 PCT/US02/34404

Y Wy AT il N

the instruction may be decoded into a various number of micro-ops to perform the shift
merge operation on the data operands. For this example, the data operands 1102, 1104,
are 64 bit wide pieces of data stored in a register/memory and the shift count 1106 is an 8
bit wide immediate value. Depending on the particular implementation, the data operands
and shift count can be other widths such as 128/256 bits and 16 bits, respectively. The
first operand 1102 in this example is comprised of eight data segments: P, O, N, M, L, K,
J, and I. The second operand 1104 is also comprised of eight data segments: H, G, F, E,
D, C, B, and A. The data segments here are of equal length and each comprise of a single
byte (8 bits) of data. However, another embodiment of the present invention operates with
longer 128 bit operands wherein the data segments are comprised of a single byte (8 bits)
each and the 128 bit wide operand would have sixteen byte wide data segments.

Similarly, if each data segment was a double word (32 bits) or a quad word (64 bits), the
128 bit operand would have four double word wide or two quad word wide data segments,
respectively. Thus embodiments of the present invention are not restricted to particular
length data operands, data segments, ér shift counts, and can be sized appropriately for
each implementation.

[00111] The operands 1102, 1104 can reside either in a register or a memory location or
a register file or a mix. The data operands 1102, 1104, and the count 1106 are sent to an
execution unit 1110 in the processor along with a shift right merge instruction. By the
time the shift right merge instruction reaches the execution unit 1110, the instruction
should have been decoded earlier in the processor pipeline. Thus the shift right merge
instruction can be in the form of a micro operation (uop) or some other decoded format.
For this embodiment, the two data operands 1102, 1104, are received at concatenate logic
and a temporary register. The concatenate logic merges/joins the data segments for the

two operands and places the new block of data in a temporary register. Here, the new data
35

10

15

20

WO 03/038601 PCT/US02/34404

block is comprised of sixteen data segments: P, O,N,M, L, K, J, L H, G, F,E, D, C, B, A.
As this example is working with 64 bits wide operands, the temporary register need to
hold the combined data is 128 bits wide. For 128 bits wide data operands, a 256 bits wide
temporary register is needed.
[00112] Right shift logic 1114 in the execution unit 1110 takes the contents of the
temporary register and performs a logical shift right of the data block by » data segments
as requested by the count 1106. In this embodiment, the count 1106 indicates the number
of bytes to right shift. Depending on the particular implementation, the count 1106 can
also be used to indicated the number of bits, nibbles, words, double words, quad words,
etc. to shift, depending on the granularity of the data segments. For this example, 7 is
equal to 3, so the temporary register contents are shifted by three bytes. If each data
segment was a word or double word wide, then the count can indicate the number of
words or double words to shift, respectively. For this embodiment, 0’s are shifted in from
the left side of the temporary register to fill up the vacated spaces as the data in the register
is shifted right. Thus if the shift count 1106 is greater than the number of data segments in
a data operand (eight in this case), one or more 0’s can appear in the resultant 1108.
Furthermore, if the shift count 1106 is equal to or exceeds the total number of data
_segments for both operands, the resultant will comprise of all 0s, as all the data segments
will have been shifted away. The right shift logic 1114 outputs the appropriate number of
data segments from the temporary register as the resultant 1108. In another embodiment,
an output multiplexer or latch can be included after the right shift logic to output the
resultant. For this example, the resultant is 64 bits wide and includes eight bytes. Due to
the shift right merge operation on the two data operands 1102, 1104, the resultant is

comprised of the following eight data segments: K, J, L, H, G, F, E, and D.

36

10

15

20

25

WO 03/038601 PCT/US02/34404

[00113] Figure 16B is a block diagram of another embodiment of logic to perform a
shift right merge operation. Like the previous example of Fig. 16A, the shift right merge
operation of this embodiment begins with three pieces of information: a first 64 bits wide
data operand 1102, a second 64 bits wide data operand 1104, and a 8 bits wide shift count
1106. The shift count 1106 indicates how many places to shift the data segments. For this
embodiment, the count 1106 is stated in number of bytes. In an alternate embodiment, the
count may indicate the number of bits, nibbles, words, double words, or quad words to
shift the data. The first and second operands 1102 in this example are each comprised of
eight equal length, byte size data segments (H, G, F, E, D, C, B, A) and the second
operand 1104 is comprised of eight data segments (P, O, N, M, L, K, J, I). The count # is
equal to 3. Another embodiment of the invention can operate with alternative length
operands and data segments, such as 128/256/512 bits wide operands and
bit/byte/word/double word/quad word sized data segments and 8/16/32 bits wide shift
counts. Thus embodiments of the present invention are not restricted to particular length
data operands, data segments, or shift counts, and can be sized appropriately for each
implementation.

[00114] The data operands 1102, 1104, and the count 1106 are sent to an execution unit
1120 in the processor along with a shift right merge instruction. For this embodiment, the
first data operand 1102 and the second data operand 1104 are received at shift left logic
1122 and shift right logic 1124, respectively. The count 1106 is also sent to the shift logic
1122, 1124. The shift left logic 1122 shifts data segments for the first operand 1102 left
by the “number of data segments in the first operand ~ »” number of segments. As the
data segments are shifted left, 0°s are shifted in from the right side to fill up the vacated
spaces. In this case, there are eight data segments, so the first operand 1102 is shifted left

by eight minus three, or five, places. The first operand 1102 is shifted by this different
37

10

15

20

25

WO 03/038601 PCT/US02/34404

value to achieve the correct data alignment for merging at the logic OR gate 1126. After
the left shift here, the first data operand becomes: K, J, 1, 0, 0, 0, 0, 0. Ifthe count 1106 is
greater than the number of number of data segments in the operand, the shift left
calculation can yield a negative number, indicating a negative left shift. A logical left shift
with a negative count is interpreted as a shift in the negative direction and is essentially a
logical right shift. A negative left shift will bring in 0’s from the left side of the first
operand 1102.

[00115] Similarly, the shift right logic 1124 shifts data segments for the second operand
right by » number of segments. As the data segments are shifted right, 0’s are shifted in
from the left side to fill up the vacated spaces. The second data operand becomes: 0, 0, 0,
H, G, F, E, D. The shifted operands are outputted from the shift left/right logic 1122,
1124, and merged together at the logic OR gate 1126. The OR gate performs a logical or-
ing of the data segments and provides a 64 bits wide resultant 1108 of this embodiment.
The or-ing together of “K, J,1, 0, 0, 0, 0, 0 with “0, 0, 0, H, G, F, E, D” generates a
resultant 1108 comprising eight bytes: K, J, I, H, G, F, E, D. This result is the same as that
for the first embodiment of the present invention in Fig. 16A. Note that for a count » 1106
greater than the number of data elements in an operand, the appropriate x;umber of 0’s can
appear in the resultant starting on the left side. Furthermore, if the count 1106 is greater
than or equal to the total number of data elements in both operands, the resultant will
comprise of all 0’s.

[00116] Figure 17A illustrates the operation of a parallel shift right merge instruction
in accordance with a first embodiment of the present invention. For these discussions,
MM1 1204, MM2 1206, TEMP 1232, and DEST 1242, are generally referred to as
operands or data blocks, but are not restricted as such and also include registers, register

files, and memory locations. In one embodiment MM1 1204 and MM?2 1206 are 64 bits
38

10

15

20

25

WO 03/038601 PCT/US02/34404

wide MMX registers (also referred to as ‘mm’ in some instances). At the state I 1200, a
shift count imm[y] 1202, a first operand MM1[x] 1204, and a second operand MM2[x]
1206 are sent with the parallel shift right merge instruction. The count 1202 is an
immediate value of y bits width. The first 1204 and second 1206 operands are data blocks
including x data segments and having total widths of 8x bits each if each data segment is a
byte (8 bits). The first 1204 and second 1206 operands are each packed with a number of
smaller data segments. For this example, the first data operand MM1 1204 is comprised
of eight equal length data segments: P 1211, O 1212, N 1213, M 1214, L. 1215, K 1216, J
1217, 11218. Similarly, the second data operand MM2 1206 is comprised of eight equal
length data segments: H 1221, G 1222, F 1223, E 1224, D 1225, C 1226, B 1227, A 1228.
Thus each of these data segments are “x + 8 bits wide. So ifx is 8, each operand is 8 bytes
or 64 bits wide. For other embodiments, a data element can be a nibble (4 bits), word (16
bits), double word (32 bits), quad word (64 bits), etc. In alternate embodiments, x can be
16, 32, 64, etc. data elements wide. The count y is equal to 8 for this embodiment and the
immediate can be represented as a byte. For alternate embodiments, y can be 4, 16, 32,
etc. bits wide. Furthermore, the count 1202 is not limited to an immediate value and can
also be stored in a register or memory location.

[00117] The operands MM1 1204 and MM2 1206 are merged together at state II 1230
to form a temporary data block TEMP[2x] 1232 of 2x data elements (or bytes in this case)
wide. The merged data 1232 of this example is comprised of sixteen data segments
arranged as: P, O,N,M, L, K, J, LH, G, F,E, D, C, B, and A. An eight byte wide
window 1234 frames eight data segments of the temporary data block 1232, starting from
the rightmost edge. Thus the right edge of the window 1234 would line up with the right
edge of the data block 1232 such that the window 1234 frames data segments: H, G, F, E,

D, C, B, and A. The shift count » 1202 indicates the desired amount to right shift the
39

10

15

20

25

WO 03/038601 PCT/US02/34404

merged data. The count value can be implemented to state the shift amount in terms of
bits, nibbles, bytes, words, double words, quad words, etc., or particular number of data
segments. Based on the count value 1202, the data block 1232 is shifted right 1236 by n
data segments here. For this example, # is equal to 3 and the data block 1232 is slid three
places to the right. Another way of looking at this is to shift the window 1234 in the
opposite direction. In other words, the window 1234 can be conceptually viewed as
shifting three places to the left from the right edge of the temporary data block 1232. For
one embodiment, if the shift count » is greater than the total number of data segments, 2x,
present in the combiﬁed data block, the resultant would comprise of all ‘0’s. Similarly, if
the shift count n is greater than or equal to the number data segments, x, in an the first
operand 1204, the resultant would include one or more “0’s starting from the left side of
the resultant. At state III 1240, the data segments (K,J,LH, G, F, E, D) framed by the
window 1234 is outputted as a resultant to an x data elements wide destination DEST[x]
1242.

[00118] Figure 17B illustrates the operation of a shift right merge instruction in
accordance with a second embodiment. The shift right merge instruction is accompanied
at state I 1250 by a count imm[y] éf y bits, a first data operand MM 1[x] of x data
segments, and as second data operand MM2[x] of x data segments. As with the example
of the Fig. 17A, y is equal to 8 and x is equal to 8, wherein MM1 and MM2 each being 64
bits or 8 bytes wide. The first 1204 and second 1206 of this embodiment are packed with
a number of equally sized data segments, each a byte wide in this case, “P 1211, O 1212,
N 1213, M 1214, L 1215, K 1216, J 1217, 1 1218 and H 1221, G 1222, F 1223, E 1224, D
1225, C 1226, B 1227, A 1228”, respectively.

[00119] At state IT 1260, the shift count » 1202 is used to shift the first 1204 and second

1206 operands. The count of this embodiment indicates the number of data segments to
40

10

15

20

25

WO 03/038601 PCT/US02/34404

right shift the merged data. For this embodiment, the shifting occurs before the merging
of the first 1204 and second 1206 operands. As a result, the first operand 1204 is shifted
differently. In this example, the first operand 1204 is shifted left by x minus 7 data
segments. The “x —»” calculation allows for proper data alignment at later data merging.
Thus for a count » of 3, the first operand 1204 is shifted to the left by five data segments
or five bytes. There are 0’s shifted in from the right side to fill the vacated spaces. But if
shift count n 1202 is greater than the number of number of data segments x available in
first operand 1204, the shift left calculation of “x — »” can yield a negative number, which
in essence indicates a negative left shift. In one embodiment, a logical left shift with a
negative count is interpreted as a left shift in the negative direction and is essentially a
logical right shift. A negative left shift will bring in 0’s from the left side of the first
operand 1204. Similarly, the second operand 1206 is shifted right by the shift count of 3
and 0’s are shifted in from the left side to fill the vacancies. The shifted results are held
for the first 1204 and second 1206 operands are stored in x data segments wide registers
TEMP1 1266 and TEMP2 1268, respectively. The shifted results from TEMP1 1266 and
TEMP2 1268 are merged together 1272 to generate the desired shift merged data at
register DEST 1242 at state III 1270. If shift count n 1202 is greater than x, the operand
can contain one or more 0’s in the resultant from the left side. Furthermore, if shift count
rn 1202 is equal to 2x or greater, the resultant in DEST 1242 will comprise of all 0’s.
[00120] In the above examples, such as in Figs. 17A and 17B, one or both MM 1 and
MM?2 can be 64 bits data registers in a processor enabled with MMX/SSE technology or
128 bits data registers with SSE2 technology. Depending on the implementation, these
registers can be 64/128/256 bits wide. Similarly, one or both of MM and MM2 can be
memory locations other than a register. In the processor architecture of one embodiment,

MMI and MM2 are source operands to a shift right merge instruction (PSRMRG) as
41

10

15

20

25

WO 03/038601 PCT/US02/34404

described above. The shift count IMM is also an immediate to such a PSRMRG
instruction. For one embodiment, the destination for the resultant, DEST, is also a MMX
or XMM data register. Furthermore, DEST may be the same register as one of the source
operands. For instance, in one architecture, a PSRMRG instruction has a first source
operand MM 1 and a second source operand MM2. The predefined destination for the

resultant can be the register for the first source operand, MM1 in this case.

[00121] Figure 18A is a flow chart illustrating one embodiment of a method to shift

right and merge data operands in parallel. The length values of L is generally used here to
represent the width of the operands and data blocks. Depending on the particular
embodiment, L can be used to designate the width in terms of number of data segments,
bits, bytes, words, etc. At block 1302, a first length L data operand is received for use
with the execution of a shift merge operation. A second length L data operand for the shift
merge operation is also received at block 1304. A shift count to indicated how many data
segments or distance, in bits/nibbles/bytes/words/double words/quad words, is received at
block 1306. Execution logic at block 1308 concatenates the first operand and the second
operand together. For one embodiment, a temporary length 2L register holds the
concatenated data block. In an alternated embodiment, the merged data is held ina
memory location. At block 1310, the concatenated data block is shifted right by the shift
count. If the count is expressed as a data segment count, then the data block is shifted
right by that many data segments and 0’s are shifted in from the left along the most
significant end of the data block to fill the vacancies; If the count is expressed in bits or
bytes, for example, the data block is similarly right shifted by that distance. At block
1312, a length L resultant is generated from the right hand side or least significant end of
the shifted data block. For one embodiment, the length L amount of data segments are

muxed from the shifted data block to a destination register or memory location.
42

10

15

20

WO 03/038601 PCT/US02/34404

[00122] Figure 18B is a flow chart illustrating another embodiment of a method to shift
right and merge data. A first length L data operand is received for processing with a shift
right and merge operation at block 1352. A second length L data operand is received at
block 1354. At block 1356, a shift count to indicate the desired right shift distance. The
first data operand is shifted left at block 1358 based on a calculation with the shift count.
The calculation of one embodiment comprises subtracting the shift count from L. For
instance, if operand length L and shift count are in terms of data segments, then the first
operand is shifted left by “L — shift count” segments, with 0°s shifting in from the least
significant end of the operand. Similarly, if L is expressed in bits and the count is in bytes,
the first operand would be shifted left by “L — shift count « 8" bits. The second data
operand is shifted right at block 1360 by the shift count and 0’s shifted in from the most
significant end of the second operand to fill vacancies. At block 1362, the shifted first
operand and the shifted second operand are merged together to generate a length L
resultant. For one embodiment, the merging yields a result comprising the desired data
segments from both the first and second operands.

[00123] One increasingly popular use for computers involves manipulation of
extremely large video and audio files. Even though these video and audio are typically
transferred via very high bandwidth networks or high capacity storage media, data
compression is still necessary in order to handle the traffic. As a result, different
compression algorithms are becoming important parts of the representation or coding
scheme for many popular audio, image, and video formats. Video in accordance with one
of the Motion Picture Expert Group (MPEG) standards is one application that uses
compression. MPEG video is broken up into a hierarchy of layers to help with error

handling, random searching and editing, and synchronization.

43

10

15

20

25

WO 03/038601 PCT/US02/34404

[00124] For illustration purposes, these layers that constitute one MPEG video are
briefly described. At the top level is a video sequence layer including a self-contained bit
stream. The second layer down is a group of pictures composed of one or more groups of
intra and/or non-intra frames. The third layer down is the picture layer itself and the next
layer underneath that is a slice layer. Each slice is a contiguous sequence of raster ordered
macroblocks, most often on a row basis in typical video applications, but not limited as
such. Each slice consists of macroblocks, which are 16 x 16 arrays of luminance pixels, or
picture data elements, with two 8 x § arrays of associated chrominance pixels. The
macroblocks can be further divided into distinct 8 x 8 blocks for further processing, such
as transform coding. The macroblock is a fundamental unit for motion compensation and
motion estimation, and can have motion vectors associated with it. Depending on the
embodiment, macroblocks can be 16 rows by 16 columns or a variety of dimensions.
[00125] One temporal prediction technique used in MPEG video is based on motion
estimation. Motion es;imation is based on the premise that consecutive video frames will
generally be similar except for changes induced by objects moving within the frames. If
there is zero motion between frames, an encoder can easily and efficiently predict the
current frame as a duplicate of the previous or prediction frame. The previous frame may
also be called the reference frame. In another embodiment, the reference frame can be the
next frame or even some other frame in the sequence. Embodiments of the motion
estimation are not required to compare a current frame against a previous frame. Thus any
other frame used in the comparison. Then the information necessary to transmit to the
encoder becomes the syntactic overhead needed to reconstruct the picture from the
original reference frame. But when there is motion between the images, the situation is
more complex. The differences between a best matching macroblock and the current

macroblock would ideally be a lot of 0 values. When encoding a macroblock, the
44

10

15

20

25

WO 03/038601 PCT/US02/34404

differences between the best match and the current macroblock are transformed and
quantized. For one embodiment, the quantized values are communicated to a variable
length coding for compression. As 0°s can compress very well, a best match having many
0 differences values is desirable. Motion vectors can also be derived from the differences
values.

[00126] Figure 19A illustrates an first example of motion estimation. The left frame
1402 is an sample of a previous video frame including a stick figure and a signpost. The
right frame 1404 is an sample of a current video frame including a similar stick figure and
signpost. In the current frame 1404, panning has resulted in the signpost moving towards
the right and down from its original position in the previous frame 1402, The stick figure
with the now raised arms in the current frame has also shifted downwards to the right side
from the center of the previous frame 1402, Motion estimation algorithms can be used to
adequately represent the changes between the two video frames 1402, 1404,

[00127] For one embodiment, the motion estimation algorithm performs a
comprehensive two dimensional (2D) spatial search for each luminance macroblock.
Depending on the implementation, motion estimation may not be directly applied to the
chrominance in MPEG video as the color mbtion maybe adequately represented by the
same motion information as the luminance. Many different ways are possible for
implementing motion estimation and the particular scheme for conducting motion
estimation is somewhat dependent upon complexity versus quality issues for that specific
application. A full, exhaustive search over a wide 2D area can generally yield the best
matching results. However, this performance comes at an extreme computational cost, as
motion estimation is often the most computationally expensive portion of video encoding.
Attempts to lower the cost by limiting the pixel search range or type of search can cost

some video quality.
45

10

15

20

25

WO 03/038601 PCT/US02/34404

[00128] Figure 19B illustrates an example of a macroblock search. Frames 1410,
1420, each include various macroblocks. The target macroblock 1430 of a current frame
is the current macroblock to be matched with previous macroblocks from the previous
frames 1410, 1420. In the first frame 1410, a bad match macroblock 1412 contains a
portion of a signpost and is a bad match with the current macroblock. In the second frame
1420, a good match macroblock 1420 contains bits of a signpost and a head from the stick
figure, like in the current macroblock 1430 to be coded. The two macroblocks 1422,
1430, have some commonality and only a slight error is visible. Because a relatively good
match is found, the encoder assigns motion vectors to the macroblock. These vectors
indication how far the macroblock has to be moved horizontally and vertically so that a
match is made. |

[00129] Figure 20 illustrates an example application of motion estimation and a
resulting prediction in generating a second frame. The previous frame 1510 comes before
the current frame 1520 in time. For this example, the current frame 1520 is subtracted
from the previous frame 1510 to obtain a less complicated residual error picture 1530 that
can be encoded and transmitted. The previous frame of this example 1510 comprises of a
signpost 1511 and a stick figure 1513. The current frame 1520 comprises of a signpost
1521 and two stick figures 1522, 1523, on a board 1524. The more accurate the motion is
estimated and matched, the more likely that the residual error can approach zero and
resulting in higher coding efficiency. Macroblock prediction can help to reduce the search
window size.

[00130] Coding efficiency can be accomplished by taking advantage of the fact that
motion vectors tend to be highly correlated between macroblocks. Thus, the horizontal
component may be compared with the previously valid horizontal motion vector and the

difference coded. Similarly, a difference for the vertical component can be calculated
46

10

15

20

25

WO 03/038601 PCT/US02/34404

before coding. For this example, the subtraction of the current frame 1520 from the
previous frame 1510 yields a residual picture 1530 including the second stick figure 1532
with upraised arms and the board 1534. This residual picture 1530 is compressed and
transmitted. Ideally, this residual picture 1530 is less complex to code and takes less
memory than compressing and transmitting the entire current frame 1520. However, not
every macroblock search will result in an acceptable match. If the encoder determines that
no acceptable match exists, the particular macroblock can encoded.

[00131] Figures 21A-B illustrate example current 1601 and previous 1650 frames that
are processed during motion estimation. The previous frame 1650 precedes the current
frame 1601 in chronological order for the video frame series. Each frame is comprised of
a very large number of pixels that extend across the frame in horizontal and vertical
directions. The current frame 1601 comprises of a number of macroblocks 1610, 1621-
1627, that are arranged horizontally and vertically. For this embodiment, the current
frame 1601 is divided into equally sized, non-overlapping macroblocks 1610, 1621-1627.
Each of these square macroblocks are further subdivided into an equal number of rows and
columns. For the same macroblock 1610, a matrix of eight rows and eight columns are
visible. Each square of a macroblock 1610 corresponds to a single pixel. Thus this
sample macroblock 1610 includes 64 pixels. In other embodiments, macroblocks have
dimensions of sixteen rows by sixteen columns (16 x 16). For one embodiment, data for
each pixel comprises of eight data bits or a single word. In alternative embodiments, data
pixel can comprises of other sizes, including nibbles, words, double words, quad words,
etc. These current macroblocks of the current frame are attempted to be matched with
macroblocks in the previous frame 1650 for motion estimation.

[00132] For this embodiment, the previous frame 1650 includes a search window 1651

in which a portion of the frame is enclosed by the search window 1651. The search
47

10

15

20

25

WO 03/038601 PCT/US02/34404

window 1651 comprises the area in which a current macroblock from the current frame
1601 is attempted to be matched. Like the current frame, the search window is divided
into a number of equally sized macroblocks. An example macroblock 1660 having eight
rows and eight columns is illustrated here, but macroblocks can comprise of a various
other dimensions including having sixteen rows and sixteen columns. During the motion
estimation algorithm of one embodiment, each individual macroblocks from the search
window 1651 are compared in sequence with a current macroblock from the current frame
to find an acceptable match. For one embodiment, the upper left corner of the first
previous macroblock in the search window 1651 is lined up with the upper left corner of
the search window 1651. During one motion estimation algorithm, the direction of
macroblock processing proceeds from the left side of the search window towards the right
edge, pixel by pixel. Thus the leftmost edge of the second macroblock is one pixel over
from left edge of the search window, and so on. At the end of the first pixel row, the
algorithm returns to the left edge of the search window and proceeds from the first pixel of
the next line. This process repeats until macroblocks for each of the pixels in the search
window 1651 have been compared against the current macroblock.

{00133] Figure 22A-D illustrate the operations of motion estimation on frames in
accordance with one embodiment of the present invention. Embodiments of the present
invention as discussed herein involve full search motion estimation algorithms. With a
full search, macroblocks for all pixel positions in a search window of a previous (reference
frame) are attempted matches with a macroblock from the current frame. For one
embodiment, the fast full search motion estimation algorithm employs SIMD shift right
merge operations to quickly process packed data from frames. The SIMD shift right
merge operations of one embodiment can also improves processor performance by

reducing the number of data loads, especially unaligned memory loads, and other data
48

WO 03/038601 PCT/US02/34404

manipulation instructions. The Generally, the motion estimation procedure of one

embodiment can be described in pseudo code as:

for each current block in both x and y direction {
for all mod 1 position in the y axis of the search window {
5 for all mod 4 positions in the x axis of the search window {
load pixel data from memory o registers;
attempt block match for 4 adjacent previous macroblocks;
keep track of minimum value and index location for that previous macroblock;

m

10 wherein a block match operation entails:

for each line of 1 tom {
for each macroblock starting at column of 1 to 4 {
generate correct data for this previous [line] from data held in registers;
evaluate datafline] += sum of absolute differences (current [line], previous line]);
15 I3
[00134] Thus for this embodiment, previous macroblocks for each pixel location in the

search window are evaluated against a current macroblock. As indicated above, this
embodiment evaluates four adjacent previous macroblocks per loop. Pixel data is loaded
from memory with memory aligned loads into registers. Through the use of shift right

20 merge operations, this pixel data can be manipulated to form various combinations of
shifted data segments appropriate to adjacent macroblocks. For example, the first, second,
third, and fourth pixels on the first line of a first previous macroblock can start at memory
addresses 0, 1, 2, and 3, respectively. For the first pixel of the first line of a second
previous macroblock, that pixel begins at memory address 1. Thus a right shift merge

25 operation on the register data can produce that necessary pixel line data for the second
previous macroblock by reusing data already loaded from memory for the first previous
macroblock, resulting in time and resource savings. Similar shift merge operations can
generate the line data for other adjacent previous macroblocks like the third, fourth, and so
on.

49

10

15

20

25

WO 03/038601 PCT/US02/34404

[00135] Thus the block matching procedure for the motion estimation algorithm of one
embodiment can be described in pseudo code as:

block match for four adjacent previous macroblocks {
for each line of 1 tom {

load pixel data for one line of current macroblock;
aligned memory loads of two consecutive chunks of pixel data for one line of search
window from memory to registers;
generate proper pixel data lines for each of the four adjacent previous macroblocks
from loaded data through shift right merge operations;
calculate sum of absolute differences between a line from a previous macroblock and
corresponding line from current macroblock for each of four adjacent previous
macroblocks;
accumulate four individual sum of absolute differences values for each of four adjacent
previous macroblocks;

i3

This procedure is further described below. Although these examples are described in
terms of operating on four adjacent macroblocks of a search window, alternative
embodiments of the present invention are not limited as such. However, embodiments of
the present invention are not restricted to or limited to operating on adjacent macroblocks.
Nor does the multiple reference macroblocks being processed together necessary have to
vary by a single pixel distance. For one embodiment, any reference macroblocks having a
pixel located within a 16 by 16 window around a specific pixel location can be processed
together. Depending on the amount of hardware resources, such as available data registers
and execution units, other embodiments can perform block matching and sum of absolute
differences calculations on more or less number of macroblocks. For example, another
embodiment having at least 8 packed data registers to hold 4 different combinations of
pixel data generated from shift right merge operations on two 8 data segment wide data
chunks, could be able to operate on 4 adjacent previous macroblocks with simply two

aligned 8 data segment wide memory loads. Four of the 8 packed data registers are used

50

10

15

20

25

WO 03/038601 PCT/US02/34404

for computation overhead: holding the first 8 data segments from the previous frame, the
next 8 data segments of the previous frame, 8 data segments for the current frame, and §
data segments from shift right merge operations. The other four packed data registers are
used for accumulating totals for the sum of absolute differences (SAD) values for each of
the four macroblocks. More packed data registers may be added for the SAD calculations
and accumulations though to increase the number of reference macroblocks that are
processed together. Thus if four additional packed data registers are available, four
additional previous macroblocks can be processed also. The number of packed data
registers available to hold accumulated sum of absolute differences in one embodiment
can limit how many macroblocks can be processed at a time.

[00136] Furthermore, in some processor architectures, memory accesses have specific
granularities and are aligned with certain boundaries. For instance, one processor can
make memory accesses based on 16 or 32 byte blocks. In that case, accessing data not
aligned at a 16 or 32 byte boundary could require an unaligned memory access, which is
costly in execution time and resources. Even worse, a desired piece of data may cross a
boundary and overlap multiple memory blocks. Cache line splits that would require
unaligned loads in order to access data located on two separate cache lines, can be costly.
Data lines that cross a memory page boundary are even worse. For example, with a
process that operates with 8 byte memory blocks and a macroblock spanning 8 pixels
having a byte of data per pixel, one aligned memory load would suffice for that
macroblock line. But for the next adjacent macroblock, one pixel column over, the data
needed for that pixel line would span 7 data bytes of the memory block from the first
macroblock, but also across a memory boundary for 1 data byte of the next memory block.
Embodiments of the present invention employ shift right merge operations to efficiently

process the data. In one embodiment, two consecutive memory blocks are loaded at
51

10

15

20

25

WO 03/038601 PCT/US02/34404

aligned memory boundaries and held in registers for multiple uses. Shift right merge
operations can take these memory blocks and shift the data segments in them by the
necessary distances to obtain the correct data line. So with this example, a shift right
merge instruction can take the two already loaded memory blocks and shift one data byte
out of the second block and shift one data byte into the second block from the first to
generate the data for the first line of the second macroblock, without having to perform an
unaligned load. Embodiments of the motion estimation can also break dependency chains
based on how the algorithm is implemented. For instance, by modifying the order of the
computations, data/instruction dependencies can be removed or shifted such that certain
computations and instructions can be executed out of order as in the processor 1000 of
Fig. 15. Performance improvements can become even greater with newer generations of
processor architectures because of increased execution latencies and available computation
resources. By using an embodiment of the shift right merge instruction, certain
dependencies in the block matching sequence can be avoided. For instance, multiple sum
of absolute differences operations and/or accumulation operations can execute in parallel.
[00137] Figure 22A illustrates the progression of the current macroblocks across the
current frame 1701. For this embodiment, each current macroblock 1710 is divided into
16 rows and 16 columns, and thus comprising 256 individual pixels. For this embodiment,
the pixels in each macroblock 1710 are processed an individual row 1711 at a time. When
all sixteen rows of the current block have been processed against the desired macroblocks
in a search window, the next current macroblock is processed. The macroblocks of this
embodiment are processed in a horizontal direction 1720 from the left side to the right side
of the current frame 1701 at macroblock sized steps. In other words, the current
macroblocks do not overlap in this embodiment and the current macroblocks are arranged

such that each macroblock sits adjacent to the next. For example, the first macroblock can
52

10

15

20

25

WO 03/038601 PCT/US02/34404

extend from pixel column 1 to pixel column 16. The second macroblock would extend
from column 17 to column 32, and so on. At the end of the macroblock row, the process
returns 1722 to the left edge and drops down by one macroblock height, sixteen rows in
this example. The macroblocks one macroblock sized step down are then processed
horizontally 1724 from left to right until attempted matches for the entire frame 1701 are
completed.

[00138] Figure 22B illustrates the progression of the macroblocks across the search
window 1751 of a previous (reference) frame. Depending on the particular
implementation, the search window 1751 can be focused on a certain area and thus be
smaller than the entire previous frame. In another embodiment, the search window can
overlap the previous frame completely. Like the current block, each previous macroblock
1760, 1765, 1770, 1775, is divided into 16 rows and 16 columns, for a total of 256 pixels
in each macroblock. For this embodiment of the present invention, four previous
macroblocks 1760, 1765, 1770, 1775, of the search window 1751 are processed in parallel
against a single current block in search of a match. Unlike the current macroblocks of a
current frame, the previous macroblocks 1760, 1765, 1770, 1775, in a search window
1751 can and do overlap as in this example. Here, each previous macroblock is shifted by
one pixel column. Thus leftmost pixel on the first row of BLK 1 is pixel 1761, for BLK 2
it is pixel 1766, for BLK 3 it is pixel 1771, and pixel 1776 for BLK 4. During a motion
estimation algorithm, each row of a previous macroblock 1760, 1765, 1770, 1775, is
compared against a corresponding row of a current block. For example, row 1 of BLK 1
1760, BLK 2 1765, BLK 3 1770, and BLK 4 1775, is each processed with a current block
row 1.

[00139] The row by row comparison for the four overlapping, adjacent macroblocks

continues until all 16 rows of the macroblocks are done. The algorithm of this
53

10

15

20

WO 03/038601 PCT/US02/34404

embodiment shifts over by four pixel columns to operate on the next four macroblocks.
Thus for this example, the leftmost first pixel column for the next four macroblocks would
be pixel 1796, pixel 1797, pixel 1798, and pixel 1799, respectively. For this embodiment,
the previous macroblock processing continues rightward 1780 across the search window
1751, wrapping around 1782 to restart down one pixel row at the leftmost pixel of the
search window 1751, until the search window is completed. Whereas the current
macroblocks of a current frame of this embodiment do not overlap and next individual
macroblocks are a macroblock height or width, the previous macroblocks of a previous or
reference frame do overlap and next macroblocks are incremented by a single pixel row or
column. Although the four reference macroblock 1760, 1765, 1770, 1775, of this example
areladjacent and differ by a single pixel column over, any macroblock in the search
window 1751 that overlaps a specified region around a chosen pixel location can be
‘processed together with the macroblock at that pixel location. For instance, the
macroblock 1760 at pixel 1796 is being processed. Any macroblock withina 16 x 16
window around pixel 1796 can be handled together with macroblock 1760. The 16 x 16
window of this example is due to the dimensions of a macroblock and the line width of a
row. In this case, one row or data line has 16 data elements. Because this block matching
function for this embodiment of a motion estimation algorithm can load two data lines of
16 data elements and perform shift right merges to generate various data lines having
shifted/merged versions of the two data lines, other macroblocks that overlap the 16 x 16
window for which data will be loaded for this macroblock will be able to at least partially
reuse that loaded data. Thus any macroblock overlapping the macroblock 1760, such as
macroblocks 1765, 1765, 1770, 1775, or a macroblock starting at the bottom right pixel

position of macroblock 1760, can be processed together with macroblock 1760. The

54

10

15

20

25

WO 03/038601 PCT/US02/34404

difference in the amount of overlap influences the amount of data that can be reused from
previous data loads.

[00140] With embodiments of motion estimation in accordance to the present invention,
the macroblock analysis comprises a comparison between a previous (reference)
macroblock and a current macroblock on a row by row basis to obtain a sum of absolute
differences value between two macroblocks. The sum of absolute differences value can
indicate how different the macroblocks are and how close of a match exists. Each
previous macroblock for one embodiment can be represented by a value obtained by
accumulating the sum of absolute differences for all sixteen rows in the macroblock. For
the current macroblock that is being analyzed, a notation of the closest matching
macroblock is maintained. For instance, the minimum accumulated sum of absolute
differences value and the location index for that corresponding previous macroblock is
tracked. As the motion estimation progresses across the search window, the accumulated
sum of each previous macroblock is compared against the minimum value. If the more
recent previous macroblock has a smaller accumulated differences value than that of the
tracked minimum value, thus indicating a closer match than the existing closest match,
then the accumulated differences value and the index information for that recent previous
macroblock becomes the new minimum differences value and index. When available
macroblocks for all the pixels in a search window have been processed in one
embodiment, the indexed macroblock with the minimum differences value can be used in
helping to obtaining a residual picture for compression of that current frame.

[00141] Figure 22C illustrates the parallel processing of four reference macroblocks
1810, 1815, 1820, 1825 for a given search window with a current block 1840 for one
embodiment of the present invention. For this example, the data for the pixels in the

search window are ordered as “A, B,C,D,E,F, G, H, L J, K, L, M, N, O, P” 1860,
55

10

15

20

25

WO 03/038601 PCT/US02/34404

wherein “A” is at the lowest address position (0) in the data set and “P” is at the highest
address position (15). This set of pixels 1860 comprises of two sections 1681, 1682,
having eight () data segments each. The use of a right shift merge operations, as
described up above, allows embodiments of the present invention to manipulate operands
with the two data sections 1618, 1682, and to generate properly aligned row data 1830 for
the different previous macroblocks 1810, 1815, 1820, 1825. Each macroblock, previous
1810, 1815, 1820, 1825, and current 1840, has a size of m rows by m columns. For
discussion purposes and to keep things simple, m is equal to eight in this example.
Alternative embodiments can have different sized macroblocks wherein m is equal to 4,
16, 32, 64, 128, 256, etc., for example.

[00142] In this example, the motion estimation algorithm is applied to the first row of
these four previous blocks 1810, 1815, 1820, 1825, with that of the current block 1840.
For one embodiment, the pixel data including the two data sections 1861, 1862, for two
macroblocks width (2m) is loaded from memory with two aligned memory load operations
and held in temporary registers. Shift right merge operations on these two data sections
1861, 1862, allows for the generation of nine possible combinations of row data 1830
without numerous memory accesses. Furthermore, unaligned memory loads, which are
costly in execution time and resources, can be avoided. In this example, the two data
sections 1861, 1862, are aligned with byte boundaries. Memory loads that do not start
with an address on a byte boundary such as from data segment B, D, or D, would typically
require an unaligned memory load operation. The row data 1830 for each of the blocks is
as follows, wherein the leftmost data segment is the lowest address. In BLOCK 1 1810,
ROW 1 1811 comprises of “A, B, C, D, E, F, G, H”. As the datain ROW 1 1811 is the
same as the first data section 1861, shifting is not needed. But ROW 1 1816 of BLOCK 2

1815 comprises of “B, C, D, E, F, G, H, I”. Because previous BLOCK 1 1810 and
56

10

15

20

25

WO 03/038601 PCT/US02/34404

BLOCK 2 1815 are separated by one pixel horizontally, BLOCK 2 1815 begins with pixel
data B whereas BLOCK 1 1810 begins with pixel data A and the second pixel data is B.
Thus a shift right merge of the two data sections 1861, 1862, with a shift count of one
would yield the BLOCK 2 ROW 1 data.

[00143] Similarly, BLOCK 3 1820 is one more pixel over to the right and ROW 1 1821
of BLOCK 3 1820 begins with pixel data C and comprises of “C, D, E, F, G, H, 1, I”. A
shift right merge operation on operands of the two data sections 1861, 1862, with a shift
count of two produces the BLOCK 3 ROW 1 data. ROW 1 1826 of BLOCK 4 1825 is
comprised of “D, E, F, G, H, 1, J, K”. This data can be produced with a shift right merge
operation of four count én the same data operands. Thus the use of shift right merge
operations on temporarily saved, previously loaded data sections 1861, 1862, allows for
the reuse of the data in generating row data for other adjacent macroblocks and the saving
of time/resources by reducing the number of memory loads, especially unaligned memory
loads. Note that the pixel data for the current block is the same for all the sum of absolute
differences comparisons against the reference macroblocks of the previous frame. A
single aligned memory load may be possible for the row data 1842 of the current block
1840, as the current block 1840 may be aligned with memory boundaries.

[00144] Proceeding with this example of one embodiment of motion estimation, each
row of a previous macroblock 1810, 1815, 1820, 1825, is compared with the
corresponding row of the current block 1840 to obtain a sum of absolute differences value.
Thus ROW 1 1811 of BLOCK 1 1810 is compared with ROW 1 1841 of the current block
1840 in a sum of absolute differences (SAD) operation 1850. The same occurs with the
other three blocks that are being operated on here. Aithough it appears that the four
macroblocks 1810, 1815, 1820, 1825, are being operated on concurrently or in parallel,

other embodiments of the present invention are not limited as such. Thus operations on
57

10

15

20

WO 03/038601 PCT/US02/34404

these four macroblocks can occur in series in time, but as a sequence of four. For
example, row 1 of each reference block_ undergoes a SAD operation 1850 with that of the
current block 1840 in the order of BLOCK 1 1810, BLOCK 2 1815, BLOCK 3 1820, and
BLOCK 4 1825. Then row 2 of each reference block undergoes a SAD operation 1850,
and so on. After each SAD operation 1850, a running total for the sum of absolute
differences is accumulated in a temporary register. Thus, in this example embodiment,
four registers accumulates the sum of absolute differences until all m rows of that
macroblock are done. The accumulated value for each block is compared with the existing
minimum differences value as part of a best macroblock match search. Although this
example describes the processing of four adjacent, overlapping previous macroblocks,
other macroblocks that overlap the first block BLK 1810 in the search window can also be
processed together with the data loads for BLK 1810 if the data lines are relevant. Thus a
macroblock within a 16 x 16 window around the present macroblock being processed can
be processed too.

[00145] Figure 22D illustrates the sum of absolute differences (SAD) operations 1940
and summation of those SAD values. Here, each of the rows from ROW A to ROW P for
the reference macroblock BLOCK 1 1900 and its counterpart for the current macroblock
1920 undergo a SAD operation 1940. The SAD operation 1940 compares the data
representing the pixels in each row and calculates a value representing the absolute
differences between the two rows, one from the previous macroblock 1900 and one from
the current macroblock 1920. The values from these SAD operations 1940 for all the
rows, A through P, are summed together as a block sum 1942. This block sum 1942
provides an accumulated value of the sum of absolute differences for the entire previous

macroblock 1900 and the current macroblock 1920. Based on this block sum 1942, the

58

10

15

20

25

WO 03/038601 PCT/US02/34404

motion estimation algorithm can determine how similar or close of a match the previous
macroblock 1900 is with respect to this current macroblock 1920.

[00146] Although this embodiment operates on four reference macroblocks at a time,
alternative embodiments can work on a different number of macroblocks depending on the
amount of pixel data loaded and the number of available registers. Furthermore, a variety
of registers can be used during a motion estimation process. For example, extended
registers, such as mm registers of MMX technology or XMM registers of SSE2
technology can be used to hold packed data like the pixel data. In one embodiment, a 64
bits wide MMX register can hold eight bytes, or eight individual pixels if each pixel has
eight bits of data. In another embodiment, a 128 bits wide XMM register can hold sixteen
bytes, or sixteen individual pixels if each pixel has eight bits of data. Similarly, registers
of other sizes, such as 32/128/256/512 bits wide, that can hold packed data can also be
used with embodiments of the present invention. On the other hand, calculations that do
not require a packed data register, such as regular integer operations, can use integer
registers and integer hardware.

[00147] Figure 23A is a flow chart illustrating one embodiment of a method to predict
and estimation motion. At block 2002, the tracked minimum (min) value and index
location for that minimum value is initialized. For this embodiment, the tracked min value
and index indicate which of the processed previous (reference) macroblocks from the
search window is the closest match to current macroblock. A check is made at block 2004
as to whether all the desired macroblocks in the current frame have been completed. If so,
this portion of the motion estimation algorithm is done. If not all the desired current
macroblocks have been processed, an unprocessed current macroblock is selected for the
current frame at block 2006. The block matching proceeds from the first pixel position in

the search window of the previous (reference) frame at block 2008. At block 2010, a
59

10

15

20

25

WO 03/038601 PCT/US02/34404

check of whether the search window has been completed is made. With the first pass,
none of the search window has been processed. But with a subsequent pass, if the entire
search window has been processed, the flow returns to block 2004 to determine if other
current macroblocks are available.

[00148] If the entire search window has not been analyzed, a check at block 2012 is
made to determine if all the pixels along this X axis row has been processed. If this row
has been done, the row count increments to the next row and the flow returns to block
2010 to see if more macroblocks on this new row are available in the search window. But
if not all available macroblocks for pixels on the row have been processed, a check is
made at block 2014 as to whether the macroblock at this pixel column and row has been
processed. If the macroblock has been processed, the column count is incremented and
the flow returns to block 2012 to see if the macroblock for the pixel at this new column
has been processed. But if the macroblock for the pixel at this column and row has not
been processed, block matching is performed between this reference macroblock and the
current macroblock.

[00149] The flow in this example is described with the incrementing of rows and
column locations for pixels along the X and Y axis, one pixel at a time for simplicity.
However, for one embodiment of the present invention, four previous macroblocks are
processed per pass. Thus the column count along the Y axis would be incremented by
four columns per pass. Other embodiments can also process 8, 16, 32, etc. macroblocks at
a time, and thus the column count is corresponding incremented by 8, 16, 32, etc. columns
to point at the correct pixel position for the subsequent pass of the algorithm. Although
the block matching process of this embodiment employs a search along the X and Y axes
in a ordered fashion, the block matching of another embodiment can use another algorithm

like a diamond search, which uses a different pattern, or a log search.
60

10

15

20

25

WO 03/038601 PCT/US02/34404

[00150] Figure 23B is a flow chart further describing the block matching of Fig. 23A.
At block 2222, the data for the reference macroblock and the current macroblock are
loaded. For one embodiment, the reference macroblock data is loaded as two packed data
chunks includes data for a number of consecutive pixels. In one embodiment, each packed
data chunk comprises of eight data elements. At block 2224, shift right merge operations
are performed as needed on the data chunks to obtain correct data chunk. For the above
embodiment where four previous macroblocks are processed together, shift right merge
operations can generate for data chunks corresponding to the lines located in each
macroblock. The data chunk for each adjacent macroblock one pixel position over is also
shifted one over, wherein the macroblocks appear to slide across a search window one
pixel at a time for each pixel row in the search window. The operations at blocks 2226,
2228, 2230, and 2232, are applied to each of the four previous macroblocks being
processed together. For one embodiment, all four macroblocks undergo the same
operation before the next operation occurs. For anther embodiment, a single previous
macroblock may complete all the operations before the next previous macroblock with a
data chunk including the appropriately shifted data segments is processed.

[00151] The sum of absolute differences between the corresponding lines of the
previous macroblock and the current macroblock is calculated for each row of these
macroblocks at block 2226. At block 2228, the sum of absolute differences for all the
lines in the previous macroblock are accumulated together. At block 2230, the
accumulated differences value for the previous macroblock is compared against the
present minimum value. If the differences value for this previous macroblock is less than
the present min value at block 2232, the min value is updated with this new differences
value. The index is also updated to reflect the location of this previous macroblock to

indicate that this previous macroblock is the closest match so far. But if the new
61

10

15

20

25

WO 03/038601 PCT/US02/34404

differences value is greater than the present min value at block 2232, then this previous
block is not a closer match than what has been matched so far.

[00152] Embodiments of motion estimation algorithms in accordance with the present
invention can also improve processor and system performance with present hardware
resources. But as technology continues to improve, embodiments of the present invention
when combined with greater amounts of hardware resources and faster, more efficient
logic circuits, can have an even more profound impact on improving performance. Thus,
one efficient embodiment of the motion estimation can have different and greater impact
across processor generations. Simply adding more resources in modern processor
architectures alone does not guarantee better performance improvement. By also
maintaining the efficiency of applications like one embodiment of the motion estimation
and the shift right merge instruction (PSRMRG), larger performance improvements can be
possible.

[00153] Although the examples above are generally described in the context of 64 bits
wide hardware/registers/operands to simplify the discussion, other embodiments employ
128 bits wide hardware/registers/operands to perform register merge operations, shift right
merge operations, and motion estimation calculations. Furthermore, embodiments of the
present invention are not limited to specific hardware or technology types such as
MMX/SSE/SSE2 technologies, and can be used with other SIMD implementations and
other graphical data manipulating technologies. Although the motion estimation and
block matching embodiments as described above for Figs. 20-23B are described in the
context of eight pixels wide or eight data elements wide lines/rows and eight rows by eight
columns sized macroblocks, other embodiments include other dimensions. For instance,
lines/rows can be sixteen pixels wide or sixteen data elements wide and macroblocks be

sixteen rows by sixteen columns.
62

WO 03/038601 PCT/US02/34404

[00154] In the foregoing specification, the invention has been described with reference
to specific exemplary embodiments thereof. It will, however, be evident that various
modifications and changes may be made thereof without departing from the broader spirit
and scope of the invention as set forth in the appended claims. The specification and

drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

63

WO 03/038601 PCT/US02/34404

CLAIMS
What is claimed is:
1. A method comprising:
receiving a shift count of M;
5 shifting a first operand having a first set of L data elements left by ‘L — M’ data

elements;

shifting a second operand having a second set of L data elements right by M data
elements;

merging said shifted first set with said shifted second set to generate a resultant

10 having L data elements.

2. The method of claim 1 wherein said shifting of said first operand generates said

shifted first set comprising M data elements aligned with a left edge of said first operand.

3. The method of claim 2 wherein said left shifting removes said ‘L — M’ data
elements from said first operand and wherein zeroes are inserted at a right edge of said

15 first operand to replace space vacated by said ‘L. — M’ data elements that are shifted out.

4. The method of claim 3 wherein said shifting of said second operand generates said
shifted second set comprising of ‘L. — M’ data elements aligned with a right edge of said

second operand.

5. The method of claim 4 wherein said right shifting removes said M data elements
20 from said second operand and wherein zeroes are inserted at a left edge of said second

operand to replace space vacated by said shifted out M data elements.
64

10

10

15

WO 03/038601 PCT/US02/34404

6. The method of claim 5 wherein said merging comprises performing a logical OR

operation on said shifted first set and said shifted second set.

7. The method of claim 6 wherein said resultant is comprised of said M data elements
from said shifted first set and said ‘L — M’ data elements from said shifted second set, and
wherein said M data elements from shifted first set do not overlap with said ‘L. — M’ data

elements from said shifted second set.

8. The method of claim 7 wherein said first operand, said second operand, and said

resultant are packed data operands.

9. The method of claim 8 wherein each data element is a byte of data.

10. The method of claim 9 wherein L is equal to 8.

11. The method of claim 10 wherein M is a value ranging from 0 to 15.

12. The method of claim 9 wherein L is equal to 16.

13. The method of claim 12 wherein M is a number ranging from 0 to 31.

14. A method comprising:

receiving shift right merge instruction, a count, a first data operand including a first

set of data elements, and a second data operand including a second set of data
65

10

15

20

WO 03/038601 PCT/US02/34404

elements;

shifting said first set of data elements left until a number of data elements that
remain in said first data operand is equal to said count;

shifting said second set of data elements right to remove a number equal to said
count of data elements from said second data operand; and

merging together said shifted first set of data elements with said shifted second set
of data elements to obtain a resultant including data elements from both said first data

operand and said second data operand.

15. The method of claim 14 wherein said shifting left of said first set of data elements
comprises removing data elements from a left edge of said first data operand and inserting
zeroes at a right edge of said first data operand to fill locations vacated by said removed

data elements.

16. The method of claim 15 wherein said shifting right of said second set of data
elements comprises removing data elements from a right edge of said second data operand
and inserting zeroes at a left edge of said second operand to fill locations vacated by said

removed data elements.

17. The method of claim 16 wherein said merging comprises a logical OR-ing together

of said shifted first set of data elements and said shifted second set of data elements.

18. The method of claim 17 wherein said first operand and said second operand are
loaded with data from adjacent memory locations of a contiguous data block, and wherein

said first set of data elements and said second set of data elements are not overlapping.
66

WO 03/038601 PCT/US02/34404

mar g

19. A method comprising:
receiving a shift merge instruction and a shift count of M;
concatenating a first operand having a first set of L data elements with a second
operand having a second set of L data elements to form a 2L long block of data
5 elements;
shifting said block right by M positions, wherein rightmost M data elements are
dropped; and
outputting rightmost L data elements from said shifted block as resultant for said
shift merge instruction.
10
10 20. The method of claim 19 wherein said right shifting further comprises inserting

zeroes at a leftmost edge of said block to fill space vacated by said M data elements.

21. The method of claim 20 wherein said first operand and said second operand are

packed data operands.

22. The method of claim 21 wherein each data element comprises a byte of data.
15

15 23. The method of claim 22 wherein L is equal to 8.

24, The method of claim 23 wherein M is a value ranging from 0 to 15.

25. The method of claim 24 wherein said block is held in a temporary packed data

register having room available for 2L data elements.
67

WO 03/038601 PCT/US02/34404

26. An apparatus comprising:
a decoder to decode a shift right merge instruction;
a scheduler to dispatch said instruction for execution with a first operand
comprised of a first set of L data elements, a second operand comprised of a second set
3 of L data elements, and a shift count of M; and
an execution unit to execute said instruction, said instruction to cause said
execution unit to:
shift said first operand left by ‘L. — M’ data elements;
shift said second operand right by M data elements;
10 merge said shifted first operand with said shifted second operand to

generate a resultant having L data elements.

27. The apparatus of claim 26 wherein said shift right merge instruction is comprised

of one micro-instruction (uop).

28. The apparatus of claim 27 wherein said shift left of said first operand generates a
15 shifted first set of data comprised of M data elements aligned with a leftmost edge of said

first operand.

29. The apparatus of claim 28 wherein said shift left removes ‘L. — M’ data elements
from said first operand and wherein zeroes are inserted at a right edge of said first operand
to replace space vacated by said shifted out ‘L — M’ data elements.

20

20 30. The apparatus of claim 29 wherein said shift right of said second operand generates .
68

10

10

15

WO 03/038601 PCT/US02/34404

said shifted second set comprising of ‘L. — M’ data elements aligned with a right edge of

said second operand.
31. The apparatus of claim 30 wherein said shift right removes said M data elements
from said second operand and wherein zeroes are inserted at a left edge of said second

operand to replace space vacated by said shifted out M data elements.

32. The apparatus of claim 31 wherein said first operand, said second operand, and

said resultant are packed data registers.

33. The apparatus of claim 32 wherein each data element is a byte of data.

34. The apparatus of claim 33 wherein L is equal to 8.

35. The apparatus of claim 34 wherein M is a value ranging from 0 to 15.

36. The apparatus of claim 35 wherein said apparatus comprises a 64 bit architecture.

37. The apparatus of claim 33 wherein L is equal to 16, M is a value ranging from 0 to

31, and said apparatus comprises a 128 bit architecture.

38. A system comprising:
a memory to store data and instructions;
a processor coupled to said memory on a bus, said processor operable to perform a

shift right merge operation, said processor comprising:
69

WO 03/038601 PCT/US02/34404

a bus unit to receive an instruction from said memory;

a decoder to decode an instruction to perform a shift right merge of shift
count M on a first operand having a first set of K data elements and a second
operand having a second set of L data elements;

5 a scheduler to dispatch said decoded instruction for execution; and
an execution unit to execute said decoded instruction, said decoded
instruction to cause said execution unit to:
shift said first operand left by ‘K — M’ data elements;
shift said second operand right by M data elements;
10 merge said shifted first operand with said shifted second operand to

generate a resultant having K data elements.

39. The system of claim 38 wherein K is equal to L, and K and L are both 8.

40. The system of claim 38 wherein:
said shift left removes ‘K — M’ data elements from said first operand and wherein
15 zeroes are inserted at a right edge of said first operand to replace space vacated by said
shifted out ‘K — M’ data elements; and
said shift right removes said M data elements from said second operand and
wherein zeroes are inserted at a left edge of said second operand to replace space
vacated by said shifted out M data elements.
20
20 41. The system of claim 38 wherein each data element comprises a byte of data, and

said first operand and said second operands are packed data operands.

70

WO 03/038601 PCT/US02/34404

42.

A machine readable medium having embodied thereon a computer program, said

computer program being executable by a machine to perform a method comprising:

10

10 43.

15

44,

receiving a shift count of M;

shifting a first operand having a first set of L data elements left by ‘L — M’ data
elements;

shifting a second operand having a second set of L data elements right by M data
elements;

merging said shifted first set with said shifted second set to generate a resultant

having L data elements.

The machine readable medium of claim 42 wherein:

said left shifting removes said ‘L — M’ data elements from said first operand and
wherein zeroes are inserted at a right edge of said first operand to replace space
vacated by said ‘L — M’ data elements that are shifted out;

said right shifting removes said M data elements from said second operand and
wherein zeroes are inserted at a left edge of said second operand to replace space
vacated by said shifted out M data elements; and

said merging comprises performing a logical OR operation on said shifted first set

and said shifted second set.

The method of claim 43 wherein said first operand, said second operand, and said

20 resultant are packed data operands.

71

WO 03/038601 PCT/US02/34404

1/30

P T TTTTTTTrTT T 1

|
MAIN DATA STORAG |
DISPLAY i | MEMORY ROM oevice]|
DEVICE 121 ! 104 106 107 |
l
Y !
INPUT L BUS i
DEVICE 122 H 101 l
| !
| 43 |
CURSOR | !
CONTROL i !
123 ! CACHE |
, , 160 170 !
: L~/ |
NETWORK | :
CONNECTOR ! .
124 | DECODER !
! 165 I
}
! I
SOUND l ,
RERORDING i EXECUTION UNIT !
R - =
25 1 |

— PACKED INSTRUCTION SET 140

: A,% E REGISTER | !
I FILE I
o (\EI:TDIEIONG ||| MOVD OPERATION 143 200 !

|
SITIZIN 1| || PSHUFD OPERATION 145 S |
126 1 ||| PMADDUSBW OPERATION 147 ,
— | ||| PMADDUUBW OPERATION 149 | | INTERNAL .
| ||| PMADDSSBI OPERATION 151 0 }
PMADDWD OPERATION 153 | l

|
HARD COPY ! |1 PAADDNB OPERATION 155 I
121 t ||| PAADDNWD OPERATION 157 PROCESSOR 109] |
— ! | || PADDNDWD OPERATION 159 !
||| PAADDWD OPERATION 161 .
— 1 | 1| PAADDNWW OPERATION 163 !
CD-ROM , I
DEVICE |1 || PAADDNDD OPERATION 165 |
128 || |LREGISTER MERGE OP 167 :
! l
! I

PCT/US02/34404

2/30

t0¢ 50L

WO 03/038601

802 LINN ¥0SSI20¥d
SHALSIHFY SNIVIS NOILND3X3
Ite G0Z
A1SI93Y 0 —I—— 21} sng TYNYIINI
d3INIOd yz _‘NSN_ L
NOILONYLSNI oL
¥300921a
102 RIARAS
SUILSIOTY Nrmmm | -
NEREIL gzle gy o
eZLZ LYy
60¢
SHILSIOAY
00z
ENERETRREL]
¢ 9Ol oT
sng

WO 03/038601

3/30

PCT/US02/34404

127 120119 112111104 103 2423 1615 817 0
BYTE 15| BYTE 14| BYTE 13 ° oo BYTE2| BYTE1| BYTEO

PACKED BYTE 221

127 112111 1615 0
WORD 7 ¢ o0 WORD 0
PACKED WORD 222

127 96 95 3231 0
DOUBLE WORD B ® o0 DOUBLE WORD 0
PACKED DOUBLE WORD 223

FIG. 3

PCT/US02/34404

WO 03/038601

4/30

V¥ "Old

LLE NOILVINISI™dIY ¥31SI93d-NI 31A9 AINOVd AINDIS

4994 qqds |9qdqq qq9s [4qad qqas o o o qqqq gq9s |qqqq q4qds |qqqq qqds

0 L8 GLoL e ve €0LYOL LilZLL 6LLOCL LcL
OLE NOLLVIN3SIAdIY HILSIOFA-NI 3LAG AINIVYd AINDISNN

d44d qqq4 {9444 94999994 qqqq e o o 4999 99949 {aqqq qqdq [aqqg aqaq

0 L8 GLoL eeve €oL¥OL LLLZLL 6LLOCL LZL

PCT/US02/34404

WO 03/038601

5/350

I "Old

NOILVINISFddIY HILSIDFY-NI Q4OMITEN0A GANDIS

PPPP PPPP PPPP PPPP PPPP PPPP PPPp PppS| e « e 1pppp pPpp PPPP PPPP PPPP PPPP PPPP PPpS

0 LE Z€

G6 96 Lzt

NOILYIN3SIAdIA ¥ILSI9FH-NI QHOMITEN0A AINDISNN

PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPpp| * * e IpDPPP PPPP PPPP PPPP PPPP PPPP PPPP PPppP

0 . LE € G6 96 Lt
NOILYINISTAdI HF1SIDTI-NI GIOM AINIVd GIANDIS

AWM AW MWW MVNS . L ° MMM MWW MWW AVWS

0 G191 LLLeLt LeL

NOILYINISIHdTd M3 1SI93H-NI QHOM AINIVd AINDISNN

MMWIA MWW MV MM °

° MW MWV MWW AV

0 GLoL

LLLZLL Lel

PCT/US02/34404

WO 03/038601

9 "OId

~_| LaLv+zdev| casv+rary|sasv+ogov | /g/v+edey | egev+oLgoLy [LlgLLv+zidelv]elaciy+yLarLy]siasiy+oLaoty|
0S¥ _

~) 19| ea|eca|va|sd|oa|,a]|sa]eafolafilafzialeialviafsialolg
¥ MEsnaavind /\J
~J WWlev|ev|vw|sv]ov]iv]av]ev]ov]iiv]elv[ELy [rLv[SLv[oly oSt
25y
g
B G "Old

~J LV [ev|ev|pv]eviev|wv]svlev]pv]csv]ov]pv]cv]ov]iv]
A A A A =

90¥ \\T\\\

A LY |ev] eV _}._2\ ov | v |8V | 6Y oLv|Liv[eLY]ELv[rLy|SLY]oLy]

v0b
d4nHSd /\4

~_0X0[LX0[ex0[ex0Lx0ex0[ex0[rX0[ex0[ex0[rXolex0[eX0[rX0[eX0[o%X0] oy
20y

PCT/US02/34404

WO 03/038601

7/30

9. 'Old

018 fUlyredey| edey [Lagwizdey| e [Leveedy | edSv fLdvvredsy| edov |

mozmw {24 Jed | o |1d Jed |ed | o [ud Jed Jed | 0 [ud |ed [e4 | 0 |

MESNaaviNd
ooy _lev [ev jvv fev [ev {vv [ov [ev [vv {av {ov [vv [4v |9¥ [V |

g/ 'oOld

poo it [2d [€d [0 [1d fed &4 | 0 |14 [ed {&d [0 [1d [ed [&d [O |

04NHSd V. ‘Old
NoxmL:_N“__m__oao_o_o_oao_o_o_o:_e_o_o_

009

PCT/US02/34404

WO 03/038601

8/ 30

as 'oid

\(
8499

LLV+Z4Cv+ELEY LICY+CdEV+EdvY LIEVHZAPY+ELGY LAPV+Z4GY+ELOY
LAQY+ZAOV+ELLY LA[V+248V+EJ6Y Li6Y+ZJ0LY+EALLY LIELY+ZAVLYHELSLY
¢=N ‘aMNaavvd

o8 'Old

\(_o LIOLV+GLES LY+P gy LY+ELEE LY+ZLaZLY+LLELLY+0LE0LY+686Y+8d8Y+/ 8. V+989y+SaSY +Harv+Edey+eacv+LaLy _

94§

8=N :aMNAdvvd

d8 "Old

\(_w LA9Ly+G1aGLY+H LAY LY+ELELY+ZLEaZLY+L1aLLY+0LE0 r<+mm_m<_ 848Y+/9Ly+9dov+aasy+yayy+Eaey+cdiv+1aly _

¥9S

\(v LE9LV+GLES LY+ LAy LY+ELEELY _N LgZLy+LLdLLy+0Lg0LY+6d6Y _wmm<+mm_h<+mm®<+mm_m< _vm¢<+mm_m<+mm_m<+ LaLy _

At

=N ‘GMNJavvd

V8 "ol

¢=N ‘aMNAdvvd

¢

059G

PCT/US02/34404

WO 03/038601

9/30

OWW aNV LINN N3IMLEE ¥0d

g6 Old

29 vl sv| vv| sv] ov| Lv| 8v|ev
HLIM LINN aNYd
2~ oTololololololley ojojojojolojo|sse |
~ ZININ LAIHS
~_J] 0 |siv lpLy |e1v |zLv |LLv joLv | 6V
cl9 19 OWNIN LIIHS
09 | 2v| ev| vv| ov| ov| v| sv| 0
OWIN 40 AdOD ¥ NO NOILYH3dO ONIMALTIA 3HL 0d
OWIN ONV LN N33M139 dod
079 | LV [2V | eV | vV | G| ov| LV | 8Y
HLIM LI GNVd
00 ~+ 0lo]ojofo]o]ojey ojojojojojolo]ssz |
W\m:m 8 Ad LHOIM Ol L4IHS T¥2I901T
g09 A LV | ev| ev| vy | sv| ov| v] 0
¥19 ZIN NI LINN AJOD
219 ~AGLY [rLv |€Lv |zLy |Liv |oLy | 6v | 8V
'LININ NO NOILYH3d0 3LNNY3d
019 SV [rLv [€Lv |1y |LLv joLv | 6v | 8v
. ‘LN NI ST3XId 8 1S¥14 QY0
019] 8Y | 6Y [OLY |LLV [ZLY [ELV |¥LV [SLY
‘0N NI STaXId 8 1S¥I4 avOl
00 N OV | Lv|ev|ev| w|av|ov| v
wl avl ev] vv] sv| ov| v sv ANINNAY V6 Old
2LVIQINNT NV AG NIAID SI SHALSIOT
N NI 19373S 01 SALAg 40 ¥IFGNNN FHL
909 o
ov| v | avl ev| w| sv| ov| v gv | 6V |oLy |LLV |2l {ELV |¥LY [SLY
09 209
009

WO 03/038601

EXECUTE
DATA PROCESSING

DATA LOAD
INSTRUCTION?

LOAD INPUT DATA STREAM DATA
WITH A SOURCE DATA STORAGE DEVICE
AND A SECONDARY DATA STORAGE DEVICE

le

708

EXECUTE
DATA SHUFFLE
INSTRUCTION?

PCT/US02/34404

706
s

ORGANIZE A SELECTED PORTION OF DATA WITHIN
A DESTINATION DATA STORAGE ACCORDING TO THE

ARRANGEMENT OF THE CO-EFFICIENT DATA STORAGE DEVICE

\

PROCESS DATA ACCORDING THE DATA PROCESSING
OPERATION RESULTS

OPERATION TO GENERATE ONE MORE DATA PROCESSING

120

v

END

FIG. 10

WO 03/038601

1

PCT/US02/34404

1/30
122

124

EXECUTE
ULTIPLY-ACCUMULA
[INSTRUCTION?

NO

GENERATE A PLURALITY OF SUMMED 726
PRODUCT PAIRS OF DATAWITHINTHE |~
DESTINATION DATA STORAGE DEVICE AND
COEFFICIENTS WITHIN THE CO-EFFICIENT DATA
STORAGE DEVICE
736 798
ORGANIZE A SELECTED PORTION |~
OF DATA WITHIN A DESTINATION DATA EXECUTE
STORAGE DEVICE ACCORDING TO THE ADJACENT-ADD \
ARRANGEMENT OF THE CO-EFFICIENT INSTRUCTION?
DATA STORAGE DEVICE
i
ADD ADJACENT SUMMED-PRODUCT 730
PAIRS WITHIN THE DESTINATION DATA |~
STORAGE DEVICE TO FORM ONE OR MORE
DATA PROCESSING OPERATION RESULTS
732
ORGANIZE UNPROCESSED 734
COEFFICIENTS WITH ~J
A COEFFICIENT DATA STORAGE DEVICE UNPROCESSED
ACCORDING TO A DATA PROCESSING COEFFICIENTS?
OPERATION
738
STORE THE ONE OR MORE DATA L

PROCESSING OPERATION RESULTS

790

NO ROCESSING

OF INPUT DATA
COMPLETE?

FIG. 11

WO 03/038601 PCT/US02/34404

12/30

740
742 6
144
UNACCESSED SELECT A PORTION OF DATA |
DATA WITHIN SOURCE FROM THE SOURCE DATA
DATA STORAGE STORAGE DEVICE AS THE
DEVICE? SELECTED DATA

SELECT ONE OR MORE UNPROCESSED] 76
DATA ELEMENTS FROM THE SOURCE |,
DATA STORAGE DEVICE AND ONE OR
MORE DATA ELEMENTS SECONDARY

DATA STORAGE DEVICE
. 780

CONCATENATE THE UNPROCESSED DATA}. /
ELEMENTS AND THE DATA ELEMENTS
TO FORM THE SELECTED DATA

\d

MOVE DATA FROM SECONDARY DATA
STORAGE DEVICE
TO SOURCE DATA STORAGE DEVICE

782

\
184
[LOAD SECONDARY DATA STORAGE DEVICH~_/

WITH INPUT DATA STREAM DATA FROM
A MEMORY DEVICE

l&

ORGANIZE THE SELECTED PORTION
OF DATA WITHIN THE DESTINATION 786
DATA STORAGE DEVICE ACCORDING ™~/
TO THE ARRANGEMENT OF THE
COEFFICIENT DATA STORAGE
DEVICE

Y

G FIG. 12

WO 03/038601

SELECT A PORTION
OF DATA FROM
THE SECONDARY
STORAGE DEVICES
THE SELECTED DATA

PCT/US02/34404
13/30
748
770 /\7/50
P,

UNPROCESSED
DATA WITHIN SOURCE
DATA STORAGE
DEVICE?

752

SELECT ONE OR MORE UNPROCESSED }~/

DATA ELEMENTS FROM SOURCE DATA
STORAGE DEVICE

M 766
SELECT ADDITIONAL DATA Ny

ELEMENTS FROM SECONDARY
DATA STORAGE DEVICE ACCORDING
TO AN UNPROCESSED DATA ELEMENT
COUNT TO FORM THE SELECTED DATA

\4

(RETURN)

FIG. 13

WO 03/038601 PCT/US02/34404

14/30
754
~ (FROM
752 5
A 756
SELECT DATA ELEMENT FROM

THE SOURCE DATA STORAGE DEVICE

DATA
PROCESSING OPERATION
RESULT CALCULATED FOR
SELECTED DATA
ELEMENT?

YES

760
A%

STORE SELECTED
DATA ELEMENT

\4

INCREMENT UNPROCESSED
DATA ELEMENT COUNT

762
N\

Y

ADDITIONAL
DATA ELEMENTS
WITHIN SOURCE DATA
STORAGE
DEVICE?

YES

RETURN

FIG. 14

PCT/US02/34404

WO 03/038601

15/30

FHOVO L 13AT1 01

JHOVO L 13A3T OL

¥201 zz0l 0z01 810l 9101
IAOW dd o4 NV MOTS AV 1SV MV LSV4
» % + 110}
0l0L o001 . MO07d
MHOMLIN SRIOMISN SSVAAS / 314 ¥I1SIDTY ¥IADILN 3
SSVdAG / T4 ¥ILSIOTY dd
; 3 4 3
e (3
L 8 N .
900t 00} 2001 YFINAIHOS
WIING3HOS
MFINAIHOS d TVHINIOMOTIS HIINQIHOS LSVA AHOWIN
=5 3 L) X
ININD dON INIOD ONLLYOTH AITOILNI mowﬁwmwﬁz
YAWYNZY ¥ALSIOTY / HOLVIO TV
A
€00t
et INIONT H3AH0 40 N0
ININDJON [—————] FHOVD FOwAL
0£0k /! 4
now w30003a 000}
JA00HIIN
\ NOILONHLSNI ¥0SS300Yd
\ gz01 %
2¢0}
1001 HIHO1TH434d

anN3 INOYS \ NOILINULSNI .

o20} GlL 94

PCT/US02/34404

WO 03/038601

16/30

INVLINSTY

V9l Old alala]o[uli]r]x
| |
T\
v9 80L1
A
OLLL
LINN
vLLL NOILNDO3IX3
> OI19071 1LJIHS LHOIY
4975
HALSIDIH dNFL % J1D01 ALVYNILVYONOD
A A
A A
9011 ¥oLL coLl
g f 79 \\ \ 79 \\ \
1 | |
u \v/ o133 4d191H FIA[TIN|NJO| M
INNOD ¢ ANVYd3ddO v.ivd Il ANVH3dO v.ivd

PCT/US02/34404

WO 03/038601

17/30

INVLINS3H

g9 94 sloluli]re]x
i
T\
79 8011
0cllL &
LINN 9ctl
NOILLNDO3AX3
——»
1 ZAN ¢cll
] 21907 1LH9DIY 14IHS e N 21907 L4317 LAIHS
A
o0LlL oLl 0Ll
8 9 / \ ¥9 \
— | | [
u viaglolala o | H rixlalwinNn]o
INNOD ¢ ANVYH3IdO vivd I ANVY3ddO v.ivd

PCT/US02/34404

WO 03/038601

18/30

cvel

v.I Ol

/ xlis3a
_ _
ai3jdiof-dHit M
A
elor4) %A
\ /1.
«--U--- rANAY
XZldNEL \
I |
vigiogiatajdiolHIHIriMTIWIN]J]OLd
9021 021 z0zZL
/ XlzWin / IXILINN \
_ | F _ 1
vigiotaia|4|9o | MITIWIN]O
\ \ \ / \ \ \ / \ / \
gzzl ozeh ZAA) zzel 8Lzl 9121 vieh rARAN
YirAA) gzZL Y AA) Lzzl LLZL GLZl €1zl k4]

PCT/US02/34404

WO 03/038601

cvel

/ _ [Xl1s3a m& \\ mu\ n..\

aya|4]19H| LM @

19/30

89Z1 e 99z}
/ Xlzdw=at / Xlpdiw3l
” _

AERERERIEEEERE RN oloclolofjolti{riM
voTh ,.inv\d A/AIIN@S
U< €———————mmmmmmmm e (U-x)>> «-——-—-—————-
A A
o0ct 0CL r407A%
/ IXlznin / IXILNN
i | i |
vig|oia e H FIMITIIN Ol|d U

3 9 _ N
/// // // A\ /// // [Auau
gzzl \9zZL \¥ZZl \ 2Tl glzk \okzk \¥izk \z2iel

YRAAS T4 A4 Lecl FAYAS gLel elel 374

WO 03/038601

START

RECEIVE A FIRST LENGTH L DATA
OPERAND
1302

PCT/US02/34404

START

v

RECEIVE A FIRST LENGTH L DATA
OPERAND
1352

RECEIVE A SECOND LENGTH L DATA
OPERAND
1304

v

'

RECEIVE A SECOND LENGTH L DATA
OPERAND
1354

RECEIVE A SHIFT COUNT
1306

v

v

RECEIVE A SHIFT COUNT
1356

CONCATENATE FIRST OPERAND AND
SECOND OPERAND TOGETHER
1308

v

v

SHIFT FIRST DATA OPERAND LEFT
BASED ON SHIFT COUNT
1358

SHIFT RIGHT CONCATENATED DATA
BY SHIFT COUNT
1310

v

v

SHIFT SECOND DATA OPERAND
RIGHT BY SHIFT COUNT
1360

GENERATE LENGTH L RESULT FROM
RIGHT SIDE PORTION OF SHIFTED
DATA
1312

v

FIG. 18A

MERGE TOGETHER SHIFTED FIRST
AND SECOND DATA OPERANDS TO
GENERATE LENGTH L RESULT
1362

FIG. 18B

WO 03/038601

21/30

N\

PCT/US02/34404

1404

1402

FIG. 19A

PCT/US02/34404

WO 03/038601

22/30

g6 Ol

ocrl

(03944
a3daoo 34
OLXO01d

vl
HOLVIN
aooo

1545

clyl
HOLVIN
avd

PCT/US02/34404

WO 03/038601

23/30

0¢ Ol4

peal

[A%]7

ycsl

0csl
F4N10ld
vNAais3y

7

0csli
JNVH
INIHANO

LIGL

v
\

€LGlL

oLGl
JNVHS
SNOINTHd

WO 03/038601 PCT/US02/34404

24730

1621 1622 1623

[

o

® 1610

l \ 1601

00—)

1624 1625 1626 1627

FIG. 21A

TITT T le——— 1661

1660
1651

1650

FIG. 21B

PCT/US02/34404

WO 03/038601

25/30

vVce Old

L0}

Av Okl
[e) o7y g
\'
s
-
—
-
\\
-
\\
—
—
-
-
-—
—
—
—
—
.\\
--9¢ll
\v\\
——
-
‘\
-
—
—
—
\\
—
-
-
-
-
—
-
—
\v
-
—
-
—
—
——
\‘\\
o
-
—
-
-
—
-
—
——
'\\
B AAAL
_ oLZL
——
-
-
-
-
\\
——
—
-
-
-
-
-
-
-
o= f 1
UL

LLZL /»

PCT/US02/34404

WO 03/038601

26/30

dc¢c Old

1SLL
< < < <88+
P
e
JUSSSt o GLLL v 19— _
i 0L €18 —»)
< < T
6oL ZM1g —— _
09.L | Y18 ——»
.
sl
< < 687+
19/l
\\\
VAN R R K

86/1L 796411V LLLL
662 "7 51 9221

99./1

PCT/US02/34404

27/30

WO 03/038601

CEEEEEER — 9¢¢ Old
_ _/ 0981 Lo8l
A (9] MOGNIM HOYVIS NI STaXid 40 ¥3ad0 \
Zv8L ssavaav
1S3HOIH I 1
AT EEEEERER
| | \
/ ©
ssavaay
o8l 1SIMOT
i
L8l 0581
o8l e avs e e 4410 S8V 40 WNS
M00TE LNIHHND
0e8l
Purlifulolajalal [reli|ulofalafafo] [ifulofa]zla]o]=] ?ﬂoﬁ_m_o_o_m_i%%
| s N 1 _]
A A +_ LU
— W AMOY
[€4— L-WANOY
[]
L]
®
¥ MOY
£ MOy
e Z MO
e) R P 3 ZE N L MOY
A \
ozsl 1z8L o181 1181
5z81 0z8l 5181 0181

2007149 €004 ¢X007149 1 100714

WO 03/038601

28/30

ROW A - 1901

PCT/US02/34404

ROW B - 1902

ROW C - 1903

ROWD - 1904

ROW E - 1905

ROW F - 1906

ROW G -1907

| ROW H -1908

ROW | - 1909

ROW J - 1910

ROWK - 1911

ROW L - 1912

ROWM-1913 |

ROWN - 1914

ROW O - 1915

| ROWP - 1916

/ SUM OF ABS DIFF
BLOCK 1 1940

FIG. 22D BLOCK SUM

1942

CURRENT BLOCK
1920

\

;f\A

o 1)
ol)
r\-l_yw

1900 \—
—

e
mA
(D)

P

ROWA-1921 |

ROWB - 1922

ROW C - 1923

| ROWD - 1924

ROWE-1925 |

ROW F - 1926

ROW G - 1927

ROW H -1928

ROW I - 1929

ROW J -1930

ROWK - 1931

ROWL - 1932

ROW M - 1933 \

ROW N - 1934

ROW O - 1935

| ROW P - 1936

Vw

WO 03/038601 PCT/US02/34404

29/30

START

INITIALIZE MINIMUM VALUE AND
INDEX -
2002

FIG. 23A

MACROBLOCKS
IN CURRENT FRAME DONE?
2004

NO

v

SELECT CURRENT MACROBLOCK FOR
CURRENT FRAME DONE
2006

START AT FIRST PIXEL POSITION IN
SEARCH WINDOW
2008

DONE
WITH SEARCH WINDOW?
2010

NO

ITH MACROBLOCKS FOR
PIXELS ON X AXIS ROW?

NO

TH MACROBLOCKS FOR
PIXELS ON Y AXIS COL?

NO

v

PERFORM BLOCK MATCHING ON
MACROBLOCKS
2020

v

WO 03/038601

FIG. 23B

PCT/US02/34404

30/30

{ START)

2020

€——NO

A 4
LOAD DATA FOR REFERENCE
MACROBLOCK AND CURRENT
MACROBLOCK
2222

'

PERFORM SHIFT RIGHT MERGE AS
NEEDED ON DATA TO OBTAIN
CORRECT DATA CHUNKS
2224

v

CALCULATE SUM OF ABSOLUTE
DIFFERENCES BETWEEN
CORRESPONDING LINES OF A
MACROBLOCK FROM SEARCH
WINDOW AND A CURRENT
MACROBLOCK FOR ENTIRE
MACROBLOCK
2226

’

ACCUMULATE SUM OF ABSOLUTE
DIFFERENCES VALUE FOR A
REFERENCE MACROBLOCK

2228

v

COMPARE ACCUMULATED
DIFFERENCE VALUE FOR REFERENCE
MACROBLOCK WITH PRESENT
MINIMUM VALUE
2230

DIFFERENCES VALUE <
PRESENT MINIMUM VALUE?

YES
v

UPDATE MINIMUM VALUE AND INDEX
WITH DIFFERENCES VALUE AND
INDEX OF THIS REFERENCE
MACROBLOCK
2234

»

INTERNATIONAL SEARCH REPORT Inter Application No
PC1/us 02/34404

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7

G06F9/315 G06F9/308

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum

IPC 7

documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-I

nternal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y EP 0 130 380 A (IBM) 1-44
9 January 1985 (1985-01-09)
the whole document
Y EP 0 363 176 A (IBM) 1-18,
11 April 1990 (1990-04-11) 26-44
the whole document
Y US 5 933 650 A (HUFFMAN WILLIAM A ET AL) 19-25
3 August 1999 (1999-08-03)
the whole document
A US 5 909 572 A (WEBER FREDERICK D ET AL) 1-44
1 June 1999 (1999-06-01)
column 7, line 24 - line 29
column 23, 1ine 47 -column 24, 1ine 20
-
Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention

filing date cannot be considered novel or cannot be considered to
L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another *Y* document of particular relevance; the claimed invention

citation or other special reason (as specified)

cannot be considered to involve an inventive step when the

*0O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
14 March 2003 21/03/2003
Name and maliling address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016 Klocke, L

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT Inter 1l Application No
PCT/US 02/34404

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.
A PELEG A ET AL: "MMX TECHNOLOGY EXTENSION 1,14,19,
TO THE INTEL ARCHITECTURE" 26,38

TIEEE MICRO, IEEE INC. NEW YORK, US,

vol. 16, no. 4,

1 August 1996 (1996-08-01), pages 42-50,
XP000596512

ISSN: 0272-1732

page 44, right-hand column, line 15 —page
45, Teft-hand column, line 10

A LOH W L: "BEE:A SPECIAL-PURPOSE MACHINE 19,25
FOR HARDWARE DESCRIPTION LANGUAGES"
MICROPROCESSORS AND MICROSYSTEMS, IPC
BUSINESS PRESS LTD. LONDON, GB,

vol. 19, no. 5, 1 June 1995 (1995-06-01),
pages 269-276, XP000589478

ISSN: 0141-9331

page 274, left-hand column

A US 6 115 812 A (ABDALLAH MOHAMMAD ET AL) 1,14,26,
5 September 2000 (2000-09-05) 38
column 6, line 25 - line 42

A "BIT-MANIPULATION FACILITY FOR A PARALLEL 1,14,26,
ARCHITECTURE" 38

IBM TECHNICAL DISCLOSURE BULLETIN, IBM
CORP. NEW YORK, US,

vol. 34, no. 7A,

1 December 1991 (1991-12-01), pages
387-390, XP000255649

ISSN: 0018-8689

the whole document

Form PCT/ISA/210 {continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intern;‘ il Application No
mation on patent family members

PCT/u> 02/34404

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0130380 09-01-1985 US 4569016 A 04-02-1986
EP 0130380 A2 09-01-1985
JpP 1035366 B 25-07-1989
JP 1550985 C 23-03-1990
JP 60014336 A 24-01-1985
EP 0363176 11-04-1990 DE 68925666 D1 28-03-1996
© DE 68925666 T2 26-09-1996
EP 0363176 A2 11-04-1990
JP 2010601 C 02-02-1996
JpP 2148239 A 07-06-1990
JpP 7043667 B 15-05-1995
N 5222225 A 22-06-1993
US 5933650 03-08-1999 US 6266758 Bl 24-07-2001
US 5909572 01-06-1999 US 6298438 Bl 02-10-2001
US 6141673 A 31-10-2000
US 6115812 05-09-2000 NONE

Form PCT/ISA/210 (patent farnily annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

