a9 United States

S 20010040584A

a2 Patent Application Publication o) Pub. No.: US 2001/0040584 A1

DELEEUW (43) Pub. Date: Nov. 15, 2001
(54) METHOD OF ENABLING DISPLAY (52) U.S. Cle oot 345/629
TRANSPARENCY FOR APPLICATION
PROGRAMS WITHOUT NATIVE
TRANSPARENCY SUPPORT 57 ABSTRACT

(76) TInventor: WILLIAM C. DELEEUW,
HILLSBORO, OR (US)

Correspondence Address:

STEVEN P SKABRAT

BLAKELY SOKOLOFF TAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD

7TH FLOOR

LOS ANGELES, CA 90025

(*) Notice: This is a publication of a continued pros-
ecution application (CPA) filed under 37
CFR 1.53(d).

(21) Appl. No.: 09/251,580

(22) Filed: Feb. 16, 1999

Publication Classification

Atransparent layer of display data may be provided over the
top of another layer of display data on a display so that the
user may see both layers clearly and simultaneously. This
capability may be provided without employing modifica-
tions to the application program generating the data to be
displayed transparently. That is, transparency effects may be
provided for the display output data of application programs
that do not have native transparency support. Embodiments
of the present invention provide a generalized interface for
accessing transparent display features by an application
program. Creating transparent graphics for an application
program lacking native transparency support includes
selecting a virtual display to receive display data output
from the application program, displaying non-transparent
display data on a primary display, drawing the display data
on the virtual display, and representing the display data from
the virtual display transparently on the primary display

(51) Int. CL7 oo GO6T 11/40 along with the non-transparent display data.
24 o6
COLOR I
MIXING {__ INTERLEAVING)
12
THIS IS SOME /14 THIS IS SOME {|CLOCK
TEXTINA —| TEXTINA
WINDOW | s 18 o WINDOW | 11571
ANOTHER | TEXT IN ANOTHER | JEXTI
wiNDOW | SECOND 22 WINDOW
WINDOW / WINDOW
/16 ... STOCK TICKER STOCK TICKERT.. |
OPERATING SYSTEM TRANSPARENT VISIBLE
OUTPUT FRAME BUFFER DISPLAY
GRAPHICS il
/ FRAME BUFFER /
10 / 28

18

US 2001/0040584 A1

Patent Application Publication Nov. 15,2001 Sheet 1 of 13

82
/

d344ng
AVdSId
J14ISIA

E

8l
/

H344N9g ANV

SOIHdVYHO

LINIHVYdSNVHL

TTEIMOIL MO0LS T

MOANIM
AaNOOQ4S
NI LX31

MOONIM
H3HLIONV

SI SIHL

WO01D JNOS SI SIHL

MOANIM
V NI LX3L

TTHIMOILMOO0LS ¢

0¢

/
(4

0l
/
¥344N9 IAYYA LNH1NO
WILSAS ONILYHIO
/
9l
MOANIM 1\ sanim
ANOO3S |y 31 oNY
NI IX3L
SISHL 1 moanim
v v NI 1X3L
vl 3JNOS SI SIHL
)

m ONIAVI

ONIXIN

N
THLNI D

/
9z

| ¥0700 |

¥e

Patent Application Publication Nov. 15,2001 Sheet 2 of 13

102
/

MICROPROCESSOR

US 2001/0040584 A1

104
/
CACHE
PROCESSOR
BUS MEMORY
105
HosT |,106
BRIDGE
108 FIRST I/O BUS
116
110 112 114 /
/ / /
/O BUS MAIN VIDEO VIDEO
BRIDGE MEMORY MEMORY DISPLAY
118 SECOND I/0 BUS
120 122
/ /
MASS KEYBOARD AND
STORAGE POINTING DEVICES

FIG. 2

Patent Application Publication Nov. 15,2001 Sheet 3 of 13 US 2001/0040584 A1

212 200
/ /
APPLICATION PROGRAMS
OTHER USING TRANSPARENCY
APPLICATION
PROGRAMS
202
TRANSPARENCY SUPPORT
/] GRAPHICS API
204
206
VIDEO CONTROL API %
/ DISPLAY DRIVER
208
210
VIDEO CARD
114
VIDEO MEMORY

FIG. 3

US 2001/0040584 A1

Patent Application Publication Nov. 15,2001 Sheet 4 of 13

oL

c0e

00e

d344n4d
JAVYd 1Nd1nNO
W3LSAS ONILVYHIdO

Y344nd INvEL
ONMHOM ANODHS

d344N9 JNVEA
ONDHOM 1LSdId

AHONIN
O3dIA

/
1’

¥ "Old

N
/
00
¥344N9 TNV
SOIHAVHO
INIHVASNYHL
\ \ A
8l 08
AHOWIW
NIVIN
/

43

Patent Application Publication Nov. 15,2001 Sheet 5 of 13
T+0S T+0S T+0S
mx | 95 | mix | ©% | mx | ©F
T+0S T+0S T+0S
05 | 'mix | ©5 | mix | 9% | mix
T+0S T+ 0S T+0S
MIX 0S MiX 0S MIX 0S
T+ 0S T+ 0S8 T+0S8S
05 | "mix | 9% | mix | ©° | mix

FIG. 5

US 2001/0040584 A1

Patent Application Publication Nov. 15,2001 Sheet 6 of 13 US 2001/0040584 A1

400
/

DETERMINE OPERATING SYSTEM

DISPLAY OUTPUT INFORMATION

l 402
/

ALLOCATE TWO WORKING FRAME
BUFFERS IN VIDEO MEMORY

l 404
/

COPY DATA FROM VISIBLE OPERATING
SYSTEM OUTPUT FRAME BUFFER TO
ONE OF THE ALLOCATED WORKING
FRAME BUFFERS

L

MAKE OPERATING SYSTEM
OUTPUT FRAME BUFFER
NON-VISIBLE

-

MAKE SELECTED WORKING
FRAME BUFFER VISIBLE

FIG. 6

Patent Application Publication Nov. 15,2001 Sheet 7 of 13 US 2001/0040584 A1

410

(START)

COPY OPERATING SYSTEM OUTPUT
FRAME BUFFER TO NON-VISIBLE
FIRST WORKING FRAME BUFFER

412
/

\

PERFORM MIXING OPERATION ONTO
FIRST WORKING FRAME BUFFER WITH FIRST
WORKING FRAME BUFFER AND TRANSPARENT
GRAPHICS FRAME BUFFER

| ik

MAKE FIRST WORKING FRAME BUFFER
VISIBLE AND SECOND WORKING
FRAME BUFFER NON-VISIBLE

\

COPY OPERATING SYSTEM OUTPUT
FRAME BUFFER TO NON-VISIBLE SECOND
WORKING FRAME BUFFER

| i

PERFORM MIXING OPERATION ONTO
SECOND WORKING FRAME BUFFER WITH SECOND
WORKING FRAME BUFFER AND TRANSPARENT
GRAPHICS FRAME BUFFER

422
\ /

MAKE SECOND WORKING FRAME BUFFER
VISIBLE AND FIRST WORKING
FRAME BUFFER NON-VISIBLE

FIG. 7

Patent Application Publication Nov. 15,2001 Sheet 8 of 13 US 2001/0040584 A1

426
/

DETERMINE MEMORY LOCATION IN
WORKING FRAME BUFFER FOR PLACEMENT
OF POINT M OF TRANSPARENT
GRAPHICS FRAME BUFFER

d

READ PIXEL FROM WORKING FRAME BUFFER
AND DETERMINE CORRESPONDING PIXEL FROM
TRANSPARENT GRAPHICS FRAME BUFFER

430
Y /

PERFORM WEIGHTED AVERAGE OF WORKING
FRAME BUFFER PIXEL AND TRANSPARENT
GRAPHICS FRAME BUFFER PIXEL

432
\ /

PLACE RESULT IN WORKING FRAME
BUFFER AT SAME LOCATION

434
/

DETERMINE NEXT WORKING
FRAME BUFFER LOCATION, TAKING INTO
ACCOUNT INTERLEAVING PATTERN

436

MORE

PIXELS
?

YES

FIG. 8

Patent Application Publication Nov. 15,2001 Sheet 9 of 13 US 2001/0040584 A1

VIRTUAL
SCREEN
o
-
| ©,0)
/ MONITOR 3
MONITOR 2
MONITOR 1
| (PRIMARY |
MONITOR
L A]

Figure 9

Patent Application Publication Nov. 15,2001 Sheet 10 of 13 US 2001/0040584 A1
514
/] APPLICATION PROGRAM APPLICATION PROGRAM
500
GRAPHICS API
/]
502 504
TRANSPARENCY [/
VIRTUAL DISPLAY
DRIVER
506
VIDEO CONTROL API
A PRIMARY
508 DISPLAY DRIVER
510
VIDEO CARD
512

VIDEO MEMORY

FIG. 10

Patent Application Publication Nov. 15,2001 Sheet 11 of 13 US 2001/0040584 A1
514
/| APPLICATION PROGRAM APPLICATION PROGRAM
500
y GRAPHICS API
502
/] TRANSPARENCY VIRTUAL
504 DISPLAY DRIVER
506
VIDEO CONTROL API
/ PRIMARY
508 DISPLAY DRIVER
510
VIDEO CARD
512
VIDEO MEMORY

FIG. 11

Patent Application Publication Nov. 15,2001 Sheet 12 of 13 US 2001/0040584 A1

612 614
/ /
APPLICATION APPLICATION
PROGRAM PROGRAM
600
/
OPERATING ’
SYSTEM 620
GRAPHICS API AND
VIDEO CONTROL AP
616
606
TRANSPARENCY
VIRTUAL DISPLAY 624 PR'M’B';TV%EPLAY
DRIVER /
626
/ 608
TRANSPARENCY 4
SUPPORT VIDEO CARD
, 610
| |/
| 604
DISPLAY
EEEE—
| VIRTUAL |
I DISPLAY {
L _

Figure 12

Patent Application Publication Nov. 15,2001 Sheet 13 of 13 US 2001/0040584 A1

612 614
/ /
APPLICATION APPLICATION
PROGRAM PROGRAM
600
/
OPERATING ,
SYSTEM 620
GRAPHICS APl AND
VIDEO CONTROL API
602
/
626
TRANSPARENCY J
VIRTUAL DISPLAY TRANSPARENCY
DRIVER SUPPORT
606
PRIMARY DISPLAY %
DRIVER
I ! 608
: 604 VIDEO CARD
I—————'————/——I ! 610
VIRTUAL
DISPLAY | DISPLAY
L _

Figure 13

US 2001/0040584 Al

METHOD OF ENABLING DISPLAY
TRANSPARENCY FOR APPLICATION PROGRAMS
WITHOUT NATIVE TRANSPARENCY SUPPORT

BACKGROUND
[0001] 1. Field

[0002] The present invention relates generally to graphical
user interfaces and, more specifically, to generating trans-
parent graphics displays.

[0003] 2. Description

[0004] Inthe days of “dumb” terminals and early personal
computers (PCs), a user could typically view only one set of
information at a time on a computer display. With the advent
of windowing features of graphical user interfaces in some
operating system software, a user may view multiple sets of
information in multiple windows shown on the display. In
some cases, the windows are overlapping, and in other cases
the windows are non-overlapping (or tiled). While the
windowing capability has proven advantageous for increas-
ing the amount of information displayed to the user on a
single display, it still is limited in that when two or more
windows are overlapping, the window in the foreground
obscures or blocks the user’s view of the overlapped portion
of the window in the background. The foreground window
also blocks input access to the overlapped portion of the
background window. The user typically must perform some
action, such as a cursor movement, keyboard input strike or
mouse input event, to cause the background window to be
changed to the foreground window, thereby allowing the
user to fully view its contents or provide input signals to the
system.

[0005] One approach to overcoming this drawback of
windowing systems is to provide the capability for simul-
taneous viewing of the entire contents of multiple overlap-
ping windows through the use of transparency. Transparent
windows contain display data wherein objects or images
beyond the transparent window (e.g., in a background win-
dow or underlying display surface) may still be perceived by
the user. Transparent effects are used in some computer
software games to enable features such as “heads-up” dis-
play functions.

[0006] Current implementations of transparency have at
least several disadvantages. The transparent effect is typi-
cally achieved by interleaving pixels from two display
buffers without the ability to adjust the level of transparency.
The use of transparency results in windows with inferior
viewing quality because the pixel interleaving method pro-
duces “checkerboard” artifacts in the display. Furthermore,
the transparent effects are limited to pre-defined, self-con-
tained components of specialized application programs.
That is, if a user desires that at least a portion of an
application program’s output data be displayed in a trans-
parent manner, the application program’s code may need to
be re-written to explicitly implement the transparency. As a
result, it may be difficult to provide transparency for appli-
cation programs that do not already provide transparency
capabilities themselves. When the application programs are
commercial “off-the-shelf” shrink-wrapped software, pro-
viding transparency capabilities may not be feasible.

[0007] Therefore, a need exists for the capability to rep-
resent display objects of an application program transpar-

Nov. 15, 2001

ently over the top of other display windows and background
surfaces on a display without employing modifications to the
application program.

SUMMARY

[0008] An embodiment of the present invention is a
method of creating transparent graphics for an application
program lacking native transparency support. The method
includes selecting a virtual display to receive display data
output from the application program, displaying non-trans-
parent display data on a primary display, drawing the display
data on the virtual display, and representing the display data
from the virtual display transparently on the primary display
along with the non-transparent display data.

[0009] Another embodiment of the present invention is a
system for creating transparent graphics for an application
program lacking native transparency support. The system
includes a virtual display driver to receive display data from
the application program to be displayed transparently, a
primary display to display non-transparent data and the
display data, and a primary display driver to control the
transparent display of the display data received from the
virtual display driver and the display of the non-transparent
data on the primary display.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The features and advantages of the present inven-
tion will become apparent from the following detailed
description of the present invention in which:

[0011] FIG. 1 is a diagram illustrating an example of
transparent graphics displayed with operating system output
graphics according to an embodiment of the present inven-
tion;

[0012] FIG. 2 is a diagram illustrating a sample system
capable of being operated with a transparency method in
accordance with an embodiment of the present invention;

[0013] FIG. 3 is a diagram of a software and hardware
stack for implementing transparent graphics according to an
embodiment of the present invention;

[0014] FIG. 4 is a diagram illustrating multiple frame
buffers used for providing transparent graphics according to
embodiments of the present invention;

[0015] FIG. 5is a diagram illustrating an alternating pixel
technique mixing between the transparent graphics frame
buffer and the operating system output frame buffer accord-
ing to one embodiment of the present invention;

[0016] FIG. 6 is a flow diagram for initializing a system
to provide transparent graphics according to one embodi-
ment of the present invention;

[0017] FIG. 7 is a flow diagram showing double buffering
control processing according to one embodiment of the
present invention;

[0018] FIG. 8 is a flow diagram of color mixing and
interleaving processing according to one embodiment of the
present invention;

[0019] FIG. 9 is a diagram of multiple display monitors
according to an embodiment of the present invention;

US 2001/0040584 Al

[0020] FIG. 10 is a diagram of an alternate software and
hardware stack for implementing transparent graphics for an
application without native transparency support according to
another embodiment of the present invention;

[0021] FIG. 11 is a diagram of yet another software and
hardware stack for transparent graphics for an application
without native transparency support according to another
embodiment of the present invention;

[0022] FIG. 12 is a diagram of a system architecture for
implementing transparent graphics for an application with-
out native transparency support according to another
embodiment of the present invention;

[0023] FIG. 13 is a diagram of a system architecture for
implementing transparent graphics for an application with-
out native transparency support according to yet another
embodiment of the present invention.

DETAILED DESCRIPTION

[0024] An embodiment of the present invention comprises
a method and system for providing a transparent layer of
display data over the top of another layer of display data on
a display so that the user may see both layers clearly and
simultaneously. Embodiments of the present invention pro-
vide this capability without employing modifications to the
application program generating the data to be displayed
transparently. That is, transparency effects may be provided
for the display output data of application programs that do
not have native transparency support. Embodiments of the
present invention provide a generalized interface for access-
ing transparent display features by an application program
such that drawing operations by the application program to
the display may become transparent without modifying the
application program.

«

[0025] Reference herein to “one embodiment” or “an
embodiment” means that a particular feature, structure or
characteristic described in connection with the embodiment
is included in at least one embodiment of the present
invention. Thus, the appearances of the phrase “in one
embodiment” in various places throughout the specification
are not necessarily all referring to the same embodiment.

[0026] The transparency capability doubles, in essence,
the maximum screen area available on a display for use by
application programs. One embodiment comprises a method
for producing transparent computer graphics layers by inter-
leaving (or alternating in a pattern) the pixels from one video
frame buffer with the pixels from another video frame buffer.
In this embodiment, the pixels from a first frame buffer are
mixed by color averaging with corresponding pixels from a
second frame buffer to reduce the “checkerboard” effect
created by the use of spatial multiplexing alone. Addition-
ally, because the degree of interleaving is adjustable and the
color averaging may be weighted, the degree of transparency
of the displayed images may be controlled.

[0027] An embodiment of the present invention operates
by combining two frame buffers of computer graphics
output data or video data in the form of electrical signals.
The pixels of the output, or visible, frame buffer are created
by spatially interleaving the contents of two input frame
buffers. The interleaving in this embodiment is accom-
plished by alternating pixels of one frame buffer with those
of the other frame buffer. This results in the visual illusion

Nov. 15, 2001

of two displays of images layered one on another. As the
pixels are being interleaved, the pixels of the first frame
buffer are color averaged with the pixels of the second frame
buffer that they are about to replace. Color averaging is
performed on the pixels of one frame buffer by averaging
them with the corresponding pixels of the other frame buffer
prior to, or during, interleaving them into the output frame
buffer. The result comprises multiple overlapping images
being substantially simultaneously visible on a display, such
as a computer monitor, for example.

[0028] FIG. 1 is a diagram illustrating an example of
transparent graphics displayed with operating system output
graphics according to an embodiment of the present inven-
tion. Operating system output frame buffer 10 is an area of
memory used to store the current display data of the com-
puter system (not shown). The operating system output
frame buffer may be allocated in any memory available to
the operating system. A frame buffer is a set of storage
locations to store a two-dimensional array of pixel data. The
operating system output frame buffer may be associated with
operating system software of the computer system, which
controls the generation and display of the data signals on a
computer monitor (not shown in FIG. 1). In one embodi-
ment, the operating system software comprises the Windows
95®, Windows 98®, or Windows NT® operating system
software available from Microsoft Corporation, although
other operating system software supporting graphical user
interfaces may also be employed. In this example, the
operating system output frame buffer 10 contains application
program display data signals for three overlapping windows
shown pictorially in FIG. 1 and labeled 12, 14, and 16,
respectively.

[0029] Transparent graphics frame buffer 18 is an area of
memory used to store the display data of transparent graph-
ics for substantially simultaneous display with the display
data signals of the operating system output frame buffer.
This area of memory may be allocated in any memory
available in the system. In this example, display components
such as a clock 20 and stock ticker 22 are shown as sample
application program display features which illustrate the use
of transparency, although generally any display components
or objects may be made transparent through the use of
embodiments of the present invention.

[0030] The display components of the operating system
output frame buffer and the transparent graphics frame
buffer may be combined by color mixing 24 the correspond-
ing pixels of each buffer while interleaving the resulting
pixels of the color mixing operation with the operating
system output frame buffer’s pixels to form the display
components of visible display buffer 28. The visible display
buffer shows in pictorial form the three overlapping win-
dows 12, 14, and 16 with the clock 20 and stock ticker 22
displays appearing as transparent display components over-
laying portions of the windows. In this example, the trans-
parent display components are partially overlaying the other
display components. However, it should be understood that
the transparent display components may be entirely within
the boundaries of one or more non-transparent windows or
display components on the display. Of course, in certain
application programs and with certain display components,
the display of data from two display components with one
substantially or even completely on top of the other may
present image quality problems for the user. Nonetheless, in

US 2001/0040584 Al

other application programs the ability to overlay transparent
display components in a well designed manner is advanta-
geous and desirable.

[0031] In addition, embodiments of the present invention
allow transparent display components overlaying back-
ground windows to have little or no effect on input opera-
tions to a selected background window. For example, a user
may interact with an input window of an application pro-
gram being displayed in a background window while a
transparent display component is partially or completely
overlaying the background window. The operating system
software may accept the user input events or key strikes to
the input window (such as a mouse entry or text entry)
without substantial interference with the display of the
transparent display components.

[0032] In accordance with embodiments of the present
invention, a method for producing transparency effects
employs minimal mixing of display contents. Instead, it
relies on the human eye’s inability to distinguish between
the color of adjacent pixels on a computer monitor (in
essence, the human eye averages each pixel with its neigh-
bor). Some mixing is employed, because large computer
monitors and low display resolutions may result in a “check-
erboard” effect when pixels are interleaved in this manner. In
one embodiment, one half of the pixels from a first frame
buffer (such as the operating system output frame buffer) are
averaged with one half of the pixels from a second frame
buffer (such as the transparent graphics frame buffer) as the
pixels of the two frame buffers are interleaved into a display
buffer whose data is currently being rendered visible on a
display. By averaging a fraction of the pixels, there may be
a decrease in the processing power used when providing the
transparency effect. In alternate embodiments, different per-
centages of pixels may be averaged (e.g., one fourth of the
pixels, one eighth of the pixels, one sixteenth of the pixels,
one thirty-second of the pixels, or any one Nth of the pixels
where N is a positive integer), and the percentages may be
changed dynamically.

[0033] FIG. 2 is a diagram illustrating a sample system
capable of being operated with a method for producing
transparency displays in accordance with the present inven-
tion. Sample system 100 may be used, for example, to
execute the processing for the methods described herein.
Sample system 100 is representative of computer systems
based on the PENTIUM®, PENTIUM® Pro, and PEN-
TIUM® II microprocessors available from Intel Corpora-
tion, although other systems (including personal computers
(PCs) having other microprocessors, engineering worksta-
tions, set-top boxes and the like) may also be used. Sample
system 100 includes microprocessor 102 and cache memory
104 coupled to each other through processor bus 10S.
Sample system 100 also includes first I/O bus 108 and
second I/O bus 118. Processor bus 105 and first I/O bus 108
may be bridged by host bridge 106, whereas first I/O bus 108
and second I/O bus 118 may be bridged by I/O bus bridge
110. Coupled to first /O bus 108 may be main memory 112
and video memory 114. Coupled to video memory 114 may
be video display 116. Coupled to second I/O bus 118 may be
mass storage 120, and keyboard and pointing devices 122.

[0034] These elements perform their conventional func-
tions well known in the art. In particular, mass storage 120
may be used to provide long-term storage for the executable

Nov. 15, 2001

instructions for a method for providing transparent displays
in accordance with embodiments of the present invention,
whereas main memory 112 may be used to store on a shorter
term basis the executable instructions of a method for
providing transparent displays in accordance with embodi-
ments of the present invention during execution by micro-
processor 102. In addition, the instructions may be stored on
other machine readable mediums accessible by the system,
such as compact disk read only memories (CD-ROMs),
digital versatile disks (DVDs), and floppy disks, for
example.

[0035] FIG. 3 is a diagram of a software and hardware
stack for implementing transparent graphics according to
one embodiment of the present invention. Application pro-
grams 200 specifically designed to use transparent display
objects call functions provided by transparency support
software 202 to define and update the transparent display
objects. That is, certain calls to such functions may be
programmed into application programs in order to use
transparency display features. In response, transparency
support 202 calls the operating system graphics rendering
application programming interface (graphics API) 204 in
this embodiment. In the Windows 95® and Windows 98®
operating systems, for example, this may be the Graphics
Device Interface (GDI). The transparency support software
202 also calls the operating system’s video hardware control
abstraction application programming interface (video con-
trol API) 206 in this embodiment. In the Windows95® and
Windows 98® operating systems, this may be the Direct-
Draw API, available from Microsoft Corporation. In some
operating systems, the graphics API 202 and video control
API 206 may not be distinguishable from each other as they
may exist within the same application programming inter-
face. The graphics API 204 may be used to render requested
graphics to the transparent graphics frame buffer 18 shown
in FIG. 1. The video control API 206 may be used to control
frame buffer visibility and to access the contents of all frame
buffers. In this embodiment, the graphics API 204 and video
control API 206 interact with display driver software 208 to
communicate with video card 210. The video card 210
controls the video display in the system of FIG. 2. Video
card accesses video memory 114 to obtain display data.
Other application programs 212 which do not employ trans-
parency interact with the graphics API 204 to create and
update display objects.

[0036] Generally, images may be displayed on a display
such as a computer monitor, for example, by creating a
frame buffer of pixel data in video memory 114. This frame
buffer may be designated as a visible portion of video
memory by video control API 206. If there is a sufficient
amount of video memory available, multiple frame buffers
may be defined, only one of which may be used at a time (by
the video card 210) to obtain the data signals for building the
current visible display. In a well known double buffering
technique, a first frame buffer is considered to be the
“visible” buffer and the video card 210 reads data signals
from it to obtain the current display data signals, while a
second frame buffer (or “non-visible” buffer) is written to
with new display data. In this embodiment, the video control
API is then called upon to “flip” the frame buffers by
designating the second frame buffer to be the visible buffer
and designating the first frame buffer to be the non-visible
buffer. Use of this technique provides for the smooth update
of display data, resulting in aesthetically pleasing displays

US 2001/0040584 Al

for the user. Embodiments of the present invention may
extend this concept to employ extra frame buffers to provide
the transparent display data signals in conjunction with
normal display data.

[0037] FIG. 4 is a diagram illustrating an embodiment of
multiple frame buffers used for providing transparent graph-
ics. One designated portion of the video memory may be
assigned to be displayed as visible on the computer monitor
at a time. This is called the “visible display”. That is, the
visible display comprises the display data from an area of
video memory that is currently displayed on the computer
monitor for viewing by a user. Generally, in this embodi-
ment the graphics API 204 of the operating system software
writes data signals into the operating system output frame
buffer 10 using display driver 208 and/or video control API
206. In most current systems, the operating system output
frame buffer, resident in video memory 114, is used for the
visible display. However, in embodiments of the present
invention, other frame buffers may be used as the visible
display. A first working frame buffer 300 and a second
working frame buffer 302, both resident in video memory
114 or other accessible memory, store display data according
to embodiments of the present invention. In this embodi-
ment, each frame buffer stores an array of pixel data signals.
The size of the array in this embodiment is dependent on the
current display characteristics of the system. Frame buffer
array sizes may, for example, be 640 pixels by 480 pixels,
800 pixels by 600 pixels, or 1280 pixels by 1024 pixels, or
other appropriate sizes dependent on the computer monitor
and operating system software settings. Each pixel includes
red (R), green (G), blue (B), and optionally, opacity (A)
components. Alternatively, other color coding schemes such
as YUV or YUVA may also be used. Transparent graphics
frame buffer 18, resident in main memory 112, in this
embodiment stores transparent display data created by trans-
parency support software 202, video control API 206, and
graphics API 204.

[0038] In one embodiment, data signals from the trans-
parent graphics frame buffer 18 may be color mixed and
interleaved with data signals from operating system output
frame buffer 10, and then stored in one of the working frame
buffers. This mixed and interleaved data may be stored into
a working frame buffer when the working frame buffer is in
a “non-visible” state (that is, in this embodiment the data
stored in the frame buffer is not currently displayed on the
computer monitor). While one of the working frame buffers
is being written to in a non-visible state, the other working
frame buffer may be in a “visible” state and used as the
source of current display data. When the color mixing and
interleaving operations are complete for a working frame
buffer, the non-visible working frame buffer may be desig-
nated the visible working frame buffer and vice versa. This
double buffering process may be repeated at a rate of at least
8-15 times per second in this embodiment to provide a
visually appealing display to a user.

[0039] Inembodiments of the present invention, interleav-
ing of the pixels of the transparent graphics frame buffer and
the operating system output frame buffer may be accom-
plished as follows. In one embodiment, alternating pixels in
the selected working frame buffer may be written by a mix
of a transparent graphics frame buffer pixel value and a
spatially corresponding operating system output frame
buffer pixel value. The other pixels in the selected working

Nov. 15, 2001

frame buffer may be written with pixels from the operating
system output frame buffer. In another embodiment, pixels
from the operating system output frame buffer may be block
transferred to the selected working frame buffer and pixels
from the transparent graphics frame buffer may be subse-
quently spatially multiplexed and color averaged with the
pixels of the selected working frame buffer.

[0040] FIG. 5 is a diagram illustrating an embodiment of
one method of alternating pixel mixing between the trans-
parent graphics frame buffer and the operating system output
frame buffer. A “T+OS Mix” pixel in the selected working
frame buffer comprises a color averaged mix of a pixel from
the transparent graphics frame buffer (the T value) and a
pixel from the operating system output frame buffer (the OS
value). An “OS” pixel in the selected working frame buffer
contains a spatially corresponding pixel copied from the
operating system output frame buffer. In this embodiment,
color averaging may be performed through a weighted
averaging scheme on each color component of each pixel
from corresponding positions within the two frame buffers,
although in other embodiments, different color mixing tech-
niques may also be employed. In one embodiment, weighted
averaging may be accomplished by multiplying a compo-
nent value of a first pixel by a weight value and multiplying
the same component value of a second pixel by a different
weight value. The two weighted color components may then
be added together and the resulting sum may be divided by
the sum of the two weight values. This method is also known
as alpha blending. By using this alternating pattern, the
computer processing employed to create the transparent
effect may be cut in half in comparison to a mixing of all
pixels of the frame buffers. The pixel data movement within
the video memory may be performed by a block transfer
operation provided by the drawing API in this embodiment.

[0041] FIG. 6 is a flow diagram illustrating an embodi-
ment for initializing a system to provide transparent graph-
ics. At block 400, the operating system display output
control information may be determined. This control infor-
mation comprises the size of the display, color resolution,
and other data. Next, at block 402, two working frame
buffers may be allocated in video memory in this embodi-
ment. These operations may be performed by calls to the
video control API in this embodiment. At block 404, a block
transfer operation may be performed to copy data from the
normally visible operating system output frame buffer to a
selected one of the two working frame buffers. Assume for
this example that the second working frame buffer is
selected first, although the first working frame buffer may
also be used as the initial working frame buffer. The block
transfer may be performed by a call to the video control API
in this embodiment. At block 406, the operating system
output frame buffer may be set to a “non-visible” state by a
call to the video control API. At block 408, the selected
working frame buffer (for example, the second working
frame buffer) may be made visible by a call to the video
control API in this embodiment. In some embodiments,
block 406 and block 408 may be accomplished by a single
call to the video control API. At this point, the video card’s
current display output data is obtained from the selected
working frame buffer, not the operating system output frame
buffer. In alternate embodiments, other APIs may also be
used to effect the same results.

US 2001/0040584 Al

[0042] FIG. 7 is a flow diagram showing an embodiment
of double buffering control processing. After starting block
410, a block transfer operation may be performed at block
412 to copy the operating system output frame buffer to the
non-visible first working frame buffer by a call to the video
control API in this embodiment. At block 414, an operation
may be performed to write the mixed and interleaved
contents of the first working frame buffer and the transparent
graphics frame buffer to the first working frame buffer. At
block 416, the first working frame buffer is made visible and
the second working frame buffer is made non-visible, in
effect, flipping the two frame buffers as the current display
output data source. At block 418, a block transfer operation
may be performed to copy the operating system output
frame buffer to the non-visible second working frame buffer
by a call to the video control API in this embodiment. At
block 420, an operation may be performed to write the color
mixed and interleaved contents of the second working frame
buffer and the transparent graphics frame buffer to the
second working frame buffer. At block 422, the second
working frame buffer is made visible and the first working
frame buffer is made non-visible, in effect, flipping the two
frame buffers as the current display output data source. This
process may be repeated by returning to block 412. During
each of the previous blocks, the operating system software
may be concurrently writing additional display data into the
operating system output frame buffer.

[0043] The color mixing and interleaving operation of
blocks 414 and 420 is further described with reference to
FIG. 8. At block 426, a memory location in the currently
non-visible (either the first or the second) working frame
buffer may be determined for a reference point (e.g., point M
304) of the transparent graphics frame buffer. At block 428,
a data signal value for a pixel from the currently non-visible
working frame buffer may be read and the spatially corre-
sponding pixel(s) from the transparent graphics frame buffer
may be determined. This correspondence is not necessarily
a 1:1 ratio since the transparent graphics frame buffer image
may be stretched or reduced to fit a portion of the working
frame buffer. This pixel correspondence determination is
well known in the art and is commonly used in stretch block
transfers in operating system software (e.g., the StretchBlt
function in the Windows95® operation system). Next, at
block 430, in this embodiment the weighted average of the
pixel from the working frame buffer and the pixel from the
transparent graphics frame buffer may be computed. The
weighted averages of the individual pixel components may
be determined on a color component by color component
basis. That is, red components may be averaged, blue
components may be averaged, and green components may
be averaged. The weight that is given to each of the
components determines the resulting transparency of the
pixel, however the same weight value may be used for all
components of a given pixel. It is the weight associated with
a pixel that affects, at least in part, the level of transparency.
These weights may be manipulated by the application pro-
gram employing transparency to achieve various mixing
ratios. Furthermore, the application program employing
transparency may provide user interface elements that allow
the user to control the mixing ratios directly or indirectly.

[0044] The result of the weighted averaging computation
may be placed into the same location in the working frame
buffer at block 432 as the current pixel being processed. At
block 434, the next location in the working frame buffer to

Nov. 15, 2001

be processed may be determined, taking into account the
current interleaving pattern (e. g., using every second pixel,
every fourth pixel, horizontally or vertically alternating
lines, etc.). At block 436, if more pixels of the working
frame buffer and the transparent graphics frame buffer are to
be processed, processing continues with block 428 with the
next pixel. Otherwise, color mixing and interleaving pro-
cessing ends at block 438.

[0045] Some operating systems, such as Microsoft Cor-
poration’s Windows 98® and Windows 2000™, for
example, support the concurrent use of multiple display
monitors by a single computer system. In these operating
systems, an unlimited number of display monitors may be
supported per computer system. The monitors may be
arranged in a way that creates a contiguous region. The size
and color depth of each monitor may be set independently.
The bounding rectangle of all monitors makes up a virtual
screen. In such systems, the desktop window of the graphi-
cal user interface covers the virtual screen, rather than the
screen of a single physical monitor. Because existing appli-
cation programs expect one monitor with an origin of (0, 0),
the virtual screen contains one monitor with the origin (0, 0).
This monitor is known as the primary monitor. FIG. 9 is a
diagram illustrating multiple display monitors and a virtual
screen. Each physical display device may be represented by
a monitor handle. A display monitor has the same monitor
handle value through out its life. Selected operating system
functions that return a display device context (DC) may
return a DC for a monitor. A DC comprises an area of
memory used as a non-visible drawing surface or frame
buffer.

[0046] The capability for multiple display monitors in a
system may be useful for implementing transparent graphics
for the output data of an application program without
employing modifications to the application program.
According to an embodiment of the present invention, a
primary monitor or display may be used for normal, non-
transparent display data and a second monitor or display
may be used for transparent display data. The primary
display may be accessed by a primary display driver and the
second display may be accessed by a transparency virtual
display driver. However, the second display is virtual only;
it does not exist as hardware in the system. In other
embodiments, more than two monitors and associated dis-
play drivers may be employed. In one embodiment, the
“continuous desktop” described above may be used to
support automatic selection of a display monitor for trans-
parent display operations. Selection of a monitor may be
made by determining a drawing location within the virtual
screen. In this way, an application program may not have to
be aware of the multiple display monitors.

[0047] FIG. 10 is a diagram of an alternate software and
hardware stack for implementing transparent graphics for an
application without native transparency support according to
an embodiment of the present invention. In this embodi-
ment, an application program or user may direct selected
output data from the application program to be represented
on a display in a transparent manner without employing
modifications to the application program code. A “contigu-
ous desktop” or separate desktops may be used to support
selection of the transparency function. A user may position
a window of an application program through the use of a
mouse or other pointing device, which may result in a call

US 2001/0040584 Al

to the operating system. An application program 500, which
is not specifically designed and coded to create, use and
destroy transparent display objects itself, may call functions
provided by operating system graphics rendering application
programming interface (graphics API) 502 in one embodi-
ment in order to select transparent display of the output data
of the application program. In some embodiments, selection
of the multiple display monitors may be presented to a user
through well-known selectable tabs in a display properties
window of a control panel window. This allows a user to
control monitor layout. In some operating systems, each
application program may have a system control menu with
an entry to allow output data from an application program to
be sent to a specific display monitor. A particular one of the
multiple display monitors may be a virtual monitor associ-
ated with transparent display output. In the Windows 95®
and Windows 98® operating systems, the graphics API may
be the Graphics Device Interface (GDI), available from
Microsoft Corporation.

[0048] Graphics API 502 may initialize transparency vir-
tual display driver 504 in response to the user selection of
transparency to make available a virtual display to be written
to by all application programs. Transparency virtual display
device driver 504 calls video hardware control abstraction
application programming interface (video control API) 506
in this embodiment. In the Windows95® and Windows 98®
operating systems, this may be the DirectDraw API, avail-
able from Microsoft Corporation. In some operating sys-
tems, graphics API 502 and video control API 506 may not
be distinguishable from each other as they may exist within
the same application programming interface. In this embodi-
ment, graphics API 502 is aware that support for multiple
display monitors is provided by the operating system. Trans-
parency virtual display driver 504 may be used to render
requested graphics to the transparent graphics frame buffer
18 shown in FIG. 1 indirectly by calling video control API
functions to create display surfaces on the primary display.
The video control API 506 may be used to control frame
buffer visibility and to access the contents of all frame
buffers. All frame buffers may be created by primary display
driver 508. In this embodiment, graphics API 504 and video
control API 506 interact with primary display driver soft-
ware 508 to communicate with video card 510. Transpar-
ency virtual display driver 504 may also call primary display
driver 508 to communicate with the video card. Video card
510 controls the video display in the system of FIG. 2. Video
card accesses video memory 512 to obtain display data.
Another application program 514 may also call graphics API
functions in the well-known manner to display data.

[0049] FIG. 11 is a diagram of another alternate software
and hardware stack for implementing transparent graphics
for an application without native transparency support
according to an embodiment of the present invention. In this
case, the operating system does not provide support for
multiple display monitors, such as in the Windows 95®
operating system. Therefore, the primary display driver may
be hidden from graphics API 502. Graphics API 502 may
communicate with transparency virtual display driver 504
for all display driver function calls. FIG. 12 is a diagram of
a system architecture for implementing transparent graphics
for an application without native transparency support
according to an embodiment of the present invention. In this
embodiment, an application program or a user may direct
selected output data to be represented on a display in a

Nov. 15, 2001

transparent manner without employing modifications to the
application program code. A software component called a
transparency virtual display driver 602 may be installed and
be recognizable by the operating system. The operating
system recognizes the transparency virtual display driver as
a display driver component and may not be aware that
transparency may be provided. In this embodiment, the
transparency virtual display driver may be associated with a
non-existent video card and virtual display 604. While the
transparency virtual display driver is “visible” to application
programs and operating system software components, no
actual hardware is associated with it. As discussed above,
some operating systems, such as Microsoft Corporation’s
Windows 98® and Windows 2000™, for example, support
the concurrent use of multiple displays by a single computer
system. When using such operating systems, a transparency
virtual display driver 602 referencing a “virtual” video card
may co-exist according to the operating system with a
primary display driver 606 for an existing video card 608
and associated primary display 610.

[0050] However, rather than implementing transparency
display requests by writing display data to an operating
system output frame buffer, primary display driver 606
implements the requests by writing display data to a trans-
parent graphics frame buffer. The frame buffers may be
managed as disclosed above. In this embodiment, however,
the interface between the application programs and the
display drivers has been generalized so that an application
program may direct display output data to be shown trans-
parently by determining a location for drawing on the
contiguous desktop or by user selection of a specific moni-
tor. Thus, transparent display output may be provided with-
out modifying the application program code to specifically
support transparency.

[0051] For example, in FIG. 12, a user may interact with
operating system 600 to select which application program(s)
may be associated with each display device (or display
monitor). For instance, application program 612 may be
selected to produce transparent display output data for
virtual display 604 and application program 614 may be
selected to produce normal, non-transparent display output
data for primary display 610. When a transparent virtual
display is selected as the display monitor for an application
program, graphics API and video control API components
620 within operating system 600 route display requests from
application program 612 to transparency virtual display
driver 602. Transparency virtual display driver calls primary
display driver 606 over line 622to create a memory-based
display device context (DC). The DC is a non-visible
drawing surface existing in video or system memory. The
DC may be a transparent graphics frame buffer as shown in
FIG. 1. The display monitor or “screen” of the transparent
virtual display driver exists only as the memory-based DC
(e.g., transparent graphics frame buffer). Transparency vir-
tual display driver 602 routes all requests received on line
616 to draw to its virtual display to the memory-based DC
controlled by primary display driver 606 via line 624. In this
embodiment, all transparency support exists in a transpar-
ency support component 626 within the transparency virtual
display driver, not in the application program. The transpar-
ent frame buffer may exist in non-displayed memory on
video card 608 or in system memory.

US 2001/0040584 Al

[0052] In some embodiments of the present invention,
multiple transparent virtual displays and associated trans-
parent virtual display drivers may be provided, with each
virtual display supporting a predetermined level of display
transparency so that a user may select a desired level of
transparency for a given application program or set of
application programs. In another embodiment, multiple
transparency virtual display drivers may be installed for a
given virtual display, with each of the multiple transparency
virtual display drivers using a different level of transparency
(e.g., different degrees of alpha blending).

[0053] When a transparency virtual display driver
(TVDD) is used in a system supporting multiple monitors,
such as those employing operating systems such as Win-
dows 98® and Windows 2000™, for example, installation,
loading, execution, and mouse cursor control operations
may be implemented as follows in accordance with one
embodiment of the present invention.

[0054] Installation of the transparency capability proceeds
with the user initiating the execution of an install program on
the system. The install program copies TVDD files to the
system’s mass storage. The install program identifies a first
existing primary display driver (PDD) in a monitor list in a
system registry of the operating system. The install program
adds a new TVDD to a monitor list in the registry with
substantially the same settings as the first existing PDD. The
install program repeats these steps as necessary for addi-
tional existing display drivers. The install program may then
reboot the system.

[0055] The loading of transparency functionality proceeds
with the operating system (OS) beginning its boot sequence.
The OS loads the first PDD, requests the capabilities of this
driver, and initializes the driver to gain access to the driver’s
frame buffer. The OS then loads the first TVDD and requests
the capabilities of the TVDD. The first TVDD requests
capabilities from the first PDD and returns them to the OS
as the first TVDD’s capabilities. The OS initializes the first
TVDD. The first TVDD requests a transparent graphics
frame buffer in system memory from the first PDD with
properties substantially the same as the PDD’s frame buffer
(via the first PDD’s access to the video control API). The
first TVDD initializes its internal transparency support com-
ponent 626 to provide transparency for the TVDD’s trans-
parent graphics frame buffer via line 624. The first TVDD
returns to the OS a representation of its transparent graphics
frame buffer. The OS then continues loading other display
drivers as necessary.

[0056] Execution processing proceeds with a procedure
call to the graphics API by the application program to draw
to the screen of the system. The graphics API translates the
drawing request into one or more display driver primitive
operations. The OS decides, for each primitive, to which
display driver they belong. The OS then makes a procedure
call to the appropriate display driver to implement each
primitive. If a selected display driver for the primitive is the
PDD, the PDD performs normal display processing as is
well-known in the art. If a selected display driver is a TVDD,
the TVDD fields the primitive and implements the primitive
by drawing to the TVDD’s transparent graphics frame buffer
by calling an associated PDD to process the requested
primitive. For example, if the TVDD is asked by the OS to
draw a line from X to Y, the TVDD requests its associated

Nov. 15, 2001

PDD to draw a line from X to Y on the TVDD’s transparent
graphics frame buffer under the control of the PDD. The
TVDD alerts its transparency support module that the trans-
parent graphics frame buffer has been updated.

[0057] When a predetermined amount of time has passed
or a predetermined amount of the TVDD’s transparent
graphics frame buffer has changed via graphics API draw
primitives, the transparency support component mixes the
contents of the transparent graphics frame buffer with those
of the associated PDD’s operating system output frame
buffer. Mixed results may be placed on the PDD’s visible
display buffer (or onto a second buffer and subsequently
flipped to the visible frame buffer).

[0058] When a contiguous desktop is provided, mouse
cursor control processing proceeds with the user moving a
mouse cursor for the system. The OS fields the interrupt
generated by the movement of the mouse and determines
which monitor the cursor is on. The OS then delivers a “new
cursor position” call to the appropriate display driver. If the
“new cursor position” call is delivered to the PDD, normal
cursor processing may be performed and the PDD handles
drawing the cursor on its own visible frame buffer. If the
“new cursor position” call is delivered to a TVDD, the
TVDD queries its associated PDD to draw the cursor at the
requested position. This allows users to move the mouse
cursor to a TVDD virtual display and interact with trans-
parent applications belonging to it. Control may then be
returned to the OS.

[0059] Inone embodiment, when a TVDD’s transparency
support component mixes the contents of the frame buffers,
the transparency support component may determine where
the mouse cursor is on the display. If, and only if, the mouse
cursor is over the TVDD’s virtual display, the transparency
support component may mix the frame buffers differently
such that the contents of that TVDD’s transparent graphics
frame buffer appear to be a “solid” or non-transparent layer
and the associated PDD’s operating system output frame
buffer appears to be the transparent layer. This allows the
user to know that he or she is interacting with application
programs on the TVDD virtual display rather than with
application programs on the PDD’s primary display.

[0060] When a transparency virtual display driver is used
in a system that does not support multiple monitors, such as
those employing the Windows 95® operating system, for
example, installation, loading, execution, and mouse cursor
control operations may be implemented as follows in accor-
dance with one embodiment of the present invention. FIG.
13 is a diagram of a system architecture for implementing
transparent graphics for an application without native trans-
parency support according to yet another embodiment of the
present invention. In this embodiment, all calls from graph-
ics API and video control API 620 may be implemented by
transparency virtual display driver 602, which in turn calls
primary display driver 606.

[0061] Installation of the transparency capability proceeds
with the user initiating the execution of an install program on
the system. The install program copies TVDD files to the
system’s mass storage. The install program identifies the
existing primary display driver (PDD) in the system registry.
The install program stores the name and location of the
existing PDD in a private storage area and places its own
name in the existing PDD’s place. The install program then

US 2001/0040584 Al

changes attributes of the PDD in the registry by keeping its
existing settings, but by doubling, for example, the screen
width of the primary display. In other embodiments, other
multiples of a screen width may be used. The install program
may then reboot the system.

[0062] The loading of transparency functionality proceeds
with the operating system (OS) beginning its boot sequence.
The OS first loads the TVDD. The TVDD accesses the area
of private storage and locates the PDD. The TVDD then
loads the PDD. The OS next requests the capabilities of the
TVDD. The TVDD requests the capabilities from the PDD
and returns them to the OS, but doubles, for example, the
screen width information. The OS initializes the TVDD. The
TVDD initializes the PDD. The TDD requests a double
width frame buffer in system memory from the PDD and
passes it back to the OS as the combination operating system
output frame buffer and transparent graphics frame buffer
existing side by side. The TVDD initializes its internal
transparency support component to provide transparency for
applications in a certain portion of the double width virtual
screen by using the double width frame buffer as both the
transparent graphics frame buffer and the operating system
output frame buffer.

[0063] Execution processing proceeds with a procedure
call to the graphics API by the application program to draw
to the screen of the system. The graphics API translates the
drawing request into one or more display driver primitive
operations. The graphics API then makes a procedure call to
TVDD for each primitive. The TVDD requests the PDD to
apply the primitive to the double width frame buffer. The
TVDD alerts its transparency support module that the
double width frame buffer has been updated. The TVDD
then passes an appropriate return code to the OS. The values
of the return code may depend on the primitive type and
capabilities of the PDD.

[0064] When a predetermined amount of time has passed
or a predetermined amount of the double width frame buffer
has changed via graphics API draw primitives, the transpar-
ency support component mixes a first section (e.g., the left
section) of the double width frame buffer (with a given alpha
value) with a second section (e.g., the right section with
non-transparent content). Mixed results may be placed on
the PDD’s visible display buffer (or onto a second buffer and
subsequently flipped to the visible frame buffer). The use of
first and second sections may be transposed depending on
the position of the mouse cursor as discussed further below.
In other embodiments, multiple sections may be used to
support multiple levels of transparency (e.g., different
degrees of alpha blending).

[0065] Mouse cursor control processor proceeds with the
user moving a mouse cursor for the system. The OS fields
the interrupt generated by the movement of the mouse and
delivers a “new cursor position” call to the TVDD with the
cursor position on the double wide virtual screen. If the
cursor is on a first section (e.g., the right section) of the
virtual screen, the first section of the screen may be treated
as the “solid” or non-transparent section of the screen and
the second section (e.g., the left section) as the transparent
section of the screen. If the cursor is on the second section
of the screen, the second section may be treated as the
“solid” or non-transparent section and the first section as the
transparent section. This arrangement allows application

Nov. 15, 2001

programs to receive input from either section of the screen
and allows the user to know to which “layer” data is being
inputted. The PDD may then be called to draw the cursor at
a position equal to the cursor position over the non-trans-
parent section of the double width virtual screen. For
example, if the primary display width is X, then the virtual
screen width is 2X. If the cursor is at position X+1, the right
section of the screen may be the non-transparent section and
the cursor would be drawn at position 1 (because it is one
unit to the right of the threshold of the non-transparent
section). Control may then be returned to the OS.

[0066] While this invention has been described with ref-
erence to illustrative embodiments, this description is not
intended to be construed in a limiting sense. Various modi-
fications of the illustrative embodiments, as well as other
embodiments of the invention, which are apparent to per-
sons skilled in the art to which the inventions pertains are
deemed to lie within the spirit and scope of the invention.

What is claimed is:

1. A method of creating transparent graphics for an
application program lacking native transparency support
comprising:

selecting a virtual display to receive display data output
from the application program;

displaying other display data non-transparently on a pri-
mary display;

drawing the display data on the virtual display; and

representing the display data from the virtual display
transparently on the primary display along with the
other display data.

2. The method of claim 1, further comprising receiving
the display data by a virtual display driver controlling the
virtual display and forwarding the display data to a primary
display driver controlling the primary display.

3. The method of claim 2, further comprising routing
requests to display the display data from the application
program by an operating system to the virtual display driver.

4. The method of claim 1, wherein drawing display data
on the virtual display comprises storing the display data in
a transparent graphics frame buffer.

5. The method of claim 4, further comprising storing the
other data in an output frame buffer.

6. The method of claim 5, further comprising color mixing
and interleaving pixel data of the transparent graphics frame
buffer with pixel data from the output frame buffer to
produce resulting pixel data, and displaying the resulting
pixel data on the primary display.

7. The method of claim 4, wherein the transparent graph-
ics frame buffer comprises a memory-based display device
context.

8. The method of claim 1, further comprising providing a
plurality of virtual displays, each virtual display supporting
a different predetermined level of transparency.

9. The method of claim &, wherein selecting comprises
selecting one of the virtual displays to display data from the
application program according to a desired level of trans-
parency.

10. The method of claim 1, further comprising determin-
ing a location of a cursor and displaying the display data

US 2001/0040584 Al

non-transparently on the primary display when the cursor
location is on the virtual display and displaying the other
display data transparently.

11. A system for creating transparent graphics for an
application program lacking native transparency support
comprising:

a virtual display driver to receive display data from the
application program to be displayed transparently;

a primary display to display the display data transparently
and to display other display data non-transparently; and

a primary display driver to control the transparent display
of the display data received from the virtual display
driver and the display of the other display data on the
primary display.

12. The system of claim 11, further comprising a trans-
parent graphics frame buffer to store display data to be
displayed transparently.

13. The system of claim 12, wherein the transparent
graphics frame buffer comprises a memory-based display
device context.

14. The system of claim 11, further comprising an output
frame buffer to store the other display data.

15. The system of claim 11, further comprising a plurality
of virtual display drivers, each virtual display driver sup-
porting a different predetermined level of transparency.

16. The system of claim 11, further comprising a graphics
application programming interface to interconnect the vir-
tual display driver and the primary display driver.

17. An article comprising a machine readable medium
having stored therein a plurality of machine readable
instructions executable by a processor, the machine readable
instructions comprising instructions to select a virtual dis-
play to receive display data output from an application
program, to display other display data non-transparently on
a primary display, to draw the display data on the virtual

Nov. 15, 2001

display, and to represent the display data from the virtual
display transparently on the primary display along with the
other display data.

18. The article of claim 17, further comprising instruc-
tions to receive the display data by a virtual display driver
controlling the virtual display and to forward the display
data to a primary display driver controlling the primary
display.

19. The article of claim 17, further comprising instruc-
tions to route requests to display the display data from the
application program to the virtual display driver.

20. The article of claim 17, wherein instructions to draw
display data on the virtual display comprise instructions to
store the display data in a transparent graphics frame buffer.

21. The article of claim 20, further comprising instruc-
tions to store the other display data in an output frame buffer.

22. The article of claim 21, further comprising instruc-
tions to color mix and interleave pixel data of the transparent
graphics frame buffer with pixel data from the output frame
buffer to produce resulting pixel data, and instructions to
display the resulting pixel data on the primary display.

23. The article of claim 17, further comprising instruc-
tions to provide a plurality of virtual displays, each virtual
display supporting a different predetermined level of trans-
parency.

24. The article of claim 23, wherein instructions to select
a virtual display comprise instructions to select one of the
virtual displays to display data from the application program
according to a desired level of transparency.

25. The article of claim 17, further comprising instruc-
tions to determine a location of a cursor and to display the
display data non-transparently on the primary display when
the cursor location is on the virtual display and displaying
the other display data transparently.

#* #* #* #* #*

