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SYSTEM AND METHOD FOR PROVIDING DYNAMIC RELOCATION OF TENANTS
IN A MULTI-TENANT DATABASE ENVIRONMENT

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone
of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.

Claim of Priority:

[0001] This application claims the benefit of priority to U.S. Patent Application titled
“SYSTEM AND METHOD FOR PROVIDING DYNAMIC RELOCATION OF TENANTS IN A
MULTITENANT DATABASE ENVIRONMENT”, Application No. 15/227,897 filed August 3,

2016, which application is herein incorporated by reference.

Field of Invention:

[0002] Embodiments of the invention are generally related to software application
servers and databases, and are particularly related to systems and methods for providing
access to a database in a multi-tenant environment, including the use of a connection pool,

and support for dynamic relocation of tenants.

Background:
[0003] Generally described, in a database environment, a connection pool operates as

a cache of connection objects, each of which represents a connection that can be used by a
software application to connect to a database. At runtime, an application can request a
connection from the connection pool. If the connection pool includes a connection that can
satisfy the particular request, it can return that connection to the application for its use. In
some instances, if no suitable connection is found, then a new connection can be created and
returned to the application. The application can borrow the connection to access the database
and perform some work, and then return the connection to the pool, where it can then be made

available for subsequent connection requests from the same, or from other, applications.

Summary:
[0004] Described herein are systems and methods for providing access to a database

in a multi-tenant environment, including the use of a connection pool, and support for dynamic
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relocation of tenants. In accordance with an embodiment, a software application can obtain a
connection from the connection pool, on behalf of a tenant, which enables the software
application or tenant to access the database. A relocation process enables a tenant which is
associated with a multi-tenant or other client application, to be relocated within the database
environment, for example across a plurality of container databases, with near-zero downtime
to the client application, including managing the draining of existing connections, and the

migrating of new connections, without requiring changes to the underlying application.

Brief Description of the Figures:

[0005] Figure 1 illustrates a system that includes a connection pool, in accordance
with an embodiment.

[0006] Figure 2 further illustrates a system that includes a connection pool, including
support for use of a sharded database, in accordance with an embodiment.

[0007] Figure 3 further illustrates a system that includes a connection pool, including
support for use in a multi-tenant environment, in accordance with an embodiment.

[0008] Figure 4 illustrates support for dynamic relocation of a tenant, in a connection
pool environment, in accordance with an embodiment.

[0009] Figure 5 further illustrates support for dynamic relocation of a tenant, in a
connection pool environment, in accordance with an embodiment.

[0010] Figure 6 further illustrates support for dynamic relocation of a tenant, in a
connection pool environment, in accordance with an embodiment.

[0011] Figure 7 further illustrates support for dynamic relocation of a tenant, in a
connection pool environment, in accordance with an embodiment.

[0012] Figure 8 further illustrates support for dynamic relocation of a tenant, in a
connection pool environment, in accordance with an embodiment.

[0013] Figure 9 further illustrates support for dynamic relocation of a tenant, in a
connection pool environment, in accordance with an embodiment.

[0014] Figure 10 illustrates a method of providing support for dynamic relocation of a

tenant, in a connection pool environment, in accordance with an embodiment.

Detailed Description:

[0015] As described above, a connection pool operates as a cache of connection
objects, each of which represents a connection that can be used by a software application to
connect to a database. At runtime, an application can request a connection from the
connection pool. If the connection pool includes a connection that can satisfy the particular
request, it can return that connection to the application for its use. In some instances, if no

suitable connection is found, then a new connection can be created and returned to the
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application. The application can borrow the connection to access the database and perform
some work, and then return the connection to the pool, where it can then be made available
for subsequent connection requests from the same, or from other, applications.

[0016] Creating connection objects can be costly in terms of time and resources. For
example, tasks such as network communication, authentication, transaction enlistment, and
memory allocation, all contribute to the amount of time and resources it takes to create a
particular connection object. Since connection pools allow the reuse of such connection
objects, they help reduce the number of times that the various objects must be created.
[0017] One example of a connection pool is Oracle Universal Connection Pool (UCP),
which provides a connection pool for caching Java Database Connectivity (JDBC)
connections. For example, the connection pool can operate with a JDBC driver to create
connections to a database, which are then maintained by the pool; and can be configured with
properties that are used to further optimize pool behavior, based on the performance and

availability requirements of a requesting software application.

Connection Labeling

[0018] Figure 1 illustrates a system that includes a connection pool, in accordance
with an embodiment.

[0019] As illustrated in Figure 1, in accordance with an embodiment, an application
server or database environment 100, which includes physical computer resources 101 (e.g., a
processor/CPU, memory, and network components), for example an Oracle WebLogic Server,
Oracle Fusion Middleware, or other application server or database environment, can include
or provide access to a database 102, for example an Oracle database, or other type of
database.

[0020] As further illustrated in Figure 1, in accordance with an embodiment, the system
also includes a connection pool logic 104 or program code, which when executed by a
computer controls 105 the creation and use of connection objects in a connection pool 106,
including, for example, connections that are currently in use 108 by a software application, and
connections that are idle 110, or are not currently being used.

[0021] Software applications can initialize connections retrieved from a connection
pool, before using the connection to access, or perform work at the database. Examples of
initialization can include simple state re-initializations that require method calls within the
application code, or more complex initializations including database operations that require
round trips over a network. The computational cost of these latter types of initialization may
be significant.

[0022] Some connection pools (for example, UCP) allow their connection pools to be

configured using connection pool properties, that have get and set methods, and that are
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available through a pool-enabled data source instance. These get and set methods provide a
convenient way to programmatically configure a pool. If no pool properties are set, then a
connection pool uses default property values.

[0023] In accordance with an embodiment, labeling connections allows a client
software application to attach arbitrary name/value pairs to a connection. The application can
then request a connection with a desired label from the connection pool. By associating
particular labels with particular connection states, an application can potentially retrieve an
already-initialized connection from the pool, and avoid the time and cost of re-initialization.
Connection labeling does not impose any meaning on user-defined keys or values; the
meaning of any user-defined keys and values is defined solely by the application.

[0024] For example, as illustrated in Figure 1, in accordance with an embodiment, the
connection pool can include a plurality of connections that are currently in use by software
applications, here indicated as connections A 112 and B 114. Each of the connections can be
labeled, for example connection A is labeled (Blue) and connection B is labeled (Green).
These labels/colors are provided for purposes of illustration, and as described above can be
arbitrary name/value pairs attached to a connection by a client application. In accordance with
various embodiments, different types of labels can be used, to distinguish between different
connection types; and different applications can attach different labels/colors to a particular
connection type.

[0025] As further illustrated in Figure 1, in accordance with an embodiment, the
connection pool can also include a plurality of connections that are idle, or are not currently
being used by software applications, here indicated as connections C 116, D 118, E 120, F
122, G 124 and N 126. Each of the idle connections can be similarly labeled, in this illustration
as (Blue) or (Green), and again these labels/colors are provided for purposes of illustration.
[0026] As further illustrated in Figure 1, in accordance with an embodiment, if a
software application 130 wishes to make a request on the database, using a particular type of
connection, for example a (Red) connection, then the application can make a
“getConnection(Red)” request 132. In response, the connection pool logic will either create a
new (Red) connection, here indicated as X 134 (Red); or repurpose an existing idle connection
from (Blue or Green) to (Red), here indicated as E 135 (Red).

Sharded Databases

[0027] In accordance with an embodiment, sharding is a database-scaling technique
which uses a horizontal partitioning of data across multiple independent physical databases.
The part of the data which is stored in each physical database is referred to as a shard. From
the perspective of a software client application, the collection of all of the physical databases

appears as a single logical database.



10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

[0028] In accordance with an embodiment, the system can include support for use of
a connection pool with sharded databases. A shard director or listener provides access by
software client applications to database shards. A connection pool (e.g., UCP) and database
driver (e.g., a JDBC driver) can be configured to allow a client application to provide a shard
key, either during connection checkout or at a later time; recognize shard keys specified by the
client application; and enable connection by the client application to a particular shard or chunk.
The approach enables efficient re-use of connection resources, and faster access to
appropriate shards.

[0029] Figure 2 further illustrates a system that includes a connection pool, including
support for use of a sharded database, in accordance with an embodiment.

[0030] In accordance with an embodiment, a database table can be partitioned using
a shard key (SHARD_KEY), for example as one or more columns that determine, within a
particular shard, where each row is stored. A shard key can be provided in a connect string
or description as an attribute of connect data (CONNECT_DATA). Examples of shard keys
can include a VARCHARZ2, CHAR, DATE, NUMBER, or TIMESTAMP in the database. In
accordance with an embodiment, a sharded database can also accept connections without a
shard key or shard group key.

[0031] In accordance with an embodiment, to reduce the impact of resharding on
system performance and data availability, each shard can be subdivided into smaller pieces
or chunks. Each chunk acts as a unit of resharding that can be moved from one shard to
another. Chunks also simplify routing, by adding a level of indirection to the shard key
mapping.

[0032] For example, each chunk can be automatically associated with a range of shard
key values. A user-provided shard key can be mapped to a particular chunk, and that chunk
mapped to a particular shard. If a database operation attempts to operate on a chunk that is
not existent on a particular shard, then an error will be raised. When shard groups are used,
each shard group is a collection of those chunks that have a specific value of shard group
identifier.

[0033] A shard-aware client application can work with sharded database
configurations, including the ability to connect to one or multiple database shards in which the
data is partitioned based on one or more sharding methods. Each time a database operation
is required, the client application can determine the shard to which it needs to connect.
[0034] In accordance with an embodiment, a sharding method can be used to map
shard key values to individual shards. Different sharding methods can be supported, for
example: hash-based sharding, in which a range of hash values is assigned to each chunk, so
that upon establishing a database connection the system applies a hash function to a given

value of the sharding key, and calculates a corresponding hash value which is then mapped
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to a chunk based on the range to which that value belongs; range-based sharding, in which a
range of shard key values is assigned directly to individual shards; and list-based sharding, in
which each shard is associated with a list of shard key values.

[0035] As illustrated in Figure 2, in accordance with an embodiment a sharded
database 140 can comprise a first database region A (here indicated as “DB East’, DBE) 141,
including sharded database instances “DBE-1” 142, with a shard A stored as chunks A1, A2,
... An; and “DBE-2" 143, with a shard B stored as chunks B1, B2, ... Bn.

[0036] As further illustrated in Figure 2, in accordance with an embodiment, a second
database region B (here indicated as "DB West’, DBW) 144, includes sharded database
instances “DBW-1" 145, with a shard C stored as chunks C1, C2, ... Cn; and “DBW-2" 1486,
with a shard D stored as chunks D1, D2, ... Dn.

[0037] In accordance with an embodiment, each database region or group of sharded
database instances can be associated with a shard director or listener (e.g., an Oracle Global
Service Managers (GSM) listener, or another type of listener). For example, as illustrated in
Figure 2, a shard director or listener 147 can be associated with the first database region A;
and another shard director or listener 148 can be associated with the second database region
B. The system can include a database driver (e.g., a JOBC driver) 152 that maintains a shard
topology layer 154, which over a period of time learns and caches shard key ranges to the
location of each shard in a sharded database.

[0038] In accordance with an embodiment, a client application can provide one or more
shard keys to the connection pool during a connection request 162; and, based on the one or
more shard keys, and information provided by the shard topology layer, the connection pool
can route the connection request to a correct or appropriate shard.

[0039] In accordance with an embodiment, the connection pool can also identify a
connection to a particular shard or chunk by its shard keys, and allow re-use of a connection
when a request for a same shard key is received from a particular client application.

[0040] For example, as illustrated in Figure 2, in accordance with an embodiment, a
connection to a particular chunk (e.g., chunk A1) can be used to connect 174, to that chunk.
If there are no available connections in the pool to the particular shard or chunk, the system
can attempt to repurpose an existing available connection to another shard or chunk, and re-
use that connection. The data distribution across the shards and chunks in the database can
be made transparent to the client application, which also minimizes the impact of re-sharding
of chunks on the client.

[0041] When a shard-aware client application provides one or more shard keys to the
connection pool, in association with a connection request; then, if the connection pool or
database driver already has a mapping for the shard keys, the connection request can be

directly forwarded to the appropriate shard and chunk, in this example, to chunk C2.
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[0042] When a shard-aware client application does not provide a shard key in
association with the connection request; or if the connection pool or database driver does not
have a mapping for a provided shard key; then the connection request can be forwarded to an

appropriate shard director or listener.

Multi-Tenant Environments

[0043] In accordance with an embodiment, the system can include support for cloud-
based or multi-tenant environments using connection labeling. For example, a multi-tenant
cloud environment can include an application server or database environment that includes or
provides access to a database for use by multiple tenants or tenant applications, in a cloud-
based environment.

[0044] Figure 3 further illustrates a system that includes a connection pool, including
support for use in a multi-tenant environment, in accordance with an embodiment.

[0045] Software applications, which can be accessed by tenants via a cloud or other
network, may, similarly to the environments described above, initialize connections retrieved
from a connection pool before using the connection.

[0046] As described above, examples of initialization can include simple state re-
initializations that require method calls within the application code, or more complex
initializations including database operations that require round trips over a network.

[0047] As also described above, labeling connections allows an application to attach
arbitrary name/value pairs to a connection, so that the application can then request a
connection with a desired label from the connection pool, including the ability to retrieve an
already-initialized connection from the pool and avoid the time and cost of re-initialization.
[0048] As illustrated in Figure 3, in accordance with an embodiment, a multi-tenant
database environment 180 can include, for example, a container database (CDB) 181, and
one or more pluggable database (PDB), here illustrated as “PDB-1" 182, “PDB-2” 183, and
“PDB-3” 184.

[0049] In accordance with an embodiment, each PDB can be associated with a tenant,
here illustrated as “Tenant-17, “Tenant-2”, and “Tenant-3”, of a multi-tenant application that is
either hosted by the application server or database environment 185, or provided as an
external client application 186, and which provides access to the database environment
through the use of one or more Oracle Real Application Cluster (RAC) instances 186, 188,
including in this example “RAC-Instance-1”, and “RAC-Instance-2”; one or more services,
including in this example Service-1”, “Service-2”, and “Service-3”, and a mapping of tenants to
services 190.

[0050] In the example illustrated in Figure 3, an application being used by a tenant to

access the database environment, can make connection requests associated with that tenant’s
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data source 192, 194, 196, and the system can switch services 198 if necessary, to utilize

connections to existing RAC instances or PDBs.

Server-Side Connection Pools

[0051] In accordance with an embodiment, the system can utilize a server-side
connection pool tagging feature, such as that provided, for example, by Oracle Database
Resident Connection Pool (DRCP). A server-side connection pool tagging feature allows user
applications or clients to selectively obtain a connection to a database environment, based on
use of a single tag that is understood by that database environment.

[0052] In accordance with an embodiment, only one tag is associated per connection.
The database server does not communicate the tag value to the user applications or clients,

but rather communicates a tag-match (for example, as a Boolean value).

Dynamic Relocation of a Tenant in the Pool

[0053] In accordance with an embodiment, the system can include support for dynamic
relocation of tenants. A software application can obtain a connection from the connection pool,
on behalf of a tenant, which enables the software application or tenant to access the database.
A relocation process enables a tenant which is associated with a multi-tenant or other client
application, to be relocated within the database environment, for example across a plurality of
container databases, with near-zero downtime to the client application, including managing the
draining of existing connections, and the migrating of new connections, without requiring
changes to the underlying application.

[0054] Figures 4-9 illustrate support for dynamic relocation of a tenant, in a connection
pool environment, in accordance with an embodiment.

[0055] As illustrated in Figure 4, in accordance with an embodiment, a database, for
example a container database (e.g., “CDB-1" 202), or another type of database, supports the
use of a plurality of connections 204.

[0056] A tenant, which is associated with a multi-tenant or other client application
hosted either by the application server or database environment, or provided as an external
client application, can use the connection pool to access the database, including where
appropriate accessing a pluggable database of a container database, via a database service.
[0057] For example, in accordance with an embodiment, each particular tenant can be
associated with its own particular pluggable database at the container database, and can use
connections provided by the connection pool, to access (e.g., 205) the particular pluggable
database associated with that tenant, via a database service associated with the particular
pluggable database.

[0058] In accordance with an embodiment, if the database environment changes, for
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example a second container database (e.g., “CDB-2” 203) is added to the system, or in
response to an application server that is hosting the connection pool receiving a service-down
event 206 from the database environment, the system can provide new connections 207 to a
new database location, for use by a particular tenant.

[0059] For example, in accordance with an embodiment, the system can initiate a
migration of a pluggable database, for use by a tenant, including draining connections that are
associated with an original pluggable database location and its associated database service
(for example, those connections associated with “PDB-1” 182, in “CDB-1” 202); and migrating
or otherwise relocating the availability of those connections 208 to a new pluggable database
location and associated database service (for example, here illustrated as “PDB-1" 210, in
“CDB-2” 203).

[0060] This enables the connection pool to support near-zero-downtime tenant
relocation, by draining the existing connections associated with a tenant’s original location,
and creating new connections that point to the tenant's new location, in a manner that is
transparent to the client or tenant application.

[0061] For example, in a multi-tenant environment, the system supports moving a
pluggable database associated with a particular tenant, from a first Oracle Real Application
Cluster (RAC) database, to a second RAC database; or from a first container database, to a
second container database.

[0062] However, these pluggable databases generally operate as different/separate
databases, which can result in connections being lost.

[0063] To address this, in accordance with an embodiment, in the case of an
application that is currently using a connection string which points to a listener 212 of an
original container database (e.g., “CDB-1”), the listener can be configured to redirect
connection requests to a new location or container database (e.g., “CDB-2"). This allows the
listener to send a redirect to the database driver at the application server, which in turn causes
the database driver to send the new connection requests to the new container database.
[0064] Additionally, existing connection requests must be drawn away from the original
container database. However, the pool may not yet know about the existence of the new
container database, since it is considered a different database.

[0065] To address this, in accordance with an embodiment, a system event notification
(e.g., an Oracle Notification Service event) can be used to inform the connection pool that the
pluggable database is shutting down, and to close its associated connections and prepare for
migration to a new database service associated with a new location.

[0066] Generally, there is a small period of time during which the new database
location will not be immediately available to support new connections. During this time, existing

connections will be closed, and the connection pool will not create a new connection until it
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receives a new request. This can result in a slight system downtime, for example, due to the
need to update redo logs, including stopping the redo logs to switch over the source of truth to
the new location.

[0067] For example, in the example illustrated in Figure 4, in which it is desired to
migrate a pluggable database (e.g., “PDB-1”), from a first container database (e.g., “CDB-1"),
to a second container database (e.g., “CDB-2"); then, in accordance with an embodiment, the
process involved in relocation of the pluggable database includes:

[0068] 1. Initiating relocation of the pluggable database. For example, as illustrated
in Figure 5, the server can initiate relocation of a pluggable database by running an “alter
pluggable database relocate” command, which will affect those sessions 220 running on the
original pluggable database.

[0069] 2. Open the pluggable database at the new location, and then terminate all of
the client sessions on the original instance container database. For example, as illustrated in
Figure 6, the system can respond to the “alter pluggable database relocate” command by
opening the pluggable database “PDB-1” in container database instance “CDB-2”, and then
terminating all of the client sessions on the original container database instance “CDB-1". After
that, it will close the pluggable database “PDB-1" on “CDB-1”, and flush its buffer cache.
[0070] 3. Enable clients to reconnect to the new database location. For example, as
illustrated in Figure 7, clients will then need to reconnect to the (now migrated) service 226
themselves. The connection pool enables this in a transparent manner to the application,
including, for example, as illustrated in Figure 8, by draining existing connections upon
receiving a service down event from the server, and re-creating new connections to the
migrated pluggable database.

[0071] 4. Forward connection requests to the new location. For example, as illustrated
in Figure 9, on the server side, the listener will forward the new connection requests 228 from
the connection pool to the new target container database (e.g., “CDB-2”) once the migration is
complete. Applications do not need to change their connect string, which makes the relocation

process transparent to the application.

Dynamic Relocation Process

[0072] Figure 10 illustrates a method of providing support for the dynamic relocation
of a tenant, in a connection pool environment, in accordance with an embodiment.

[0073] As illustrated in Figure 10, in accordance with an embodiment, at step 231, at
an application server or database environment, a connection pool logic or program code is
provided that controls the creation and use of connection objects in a connection pool, wherein
software applications can request a connection from the connection pool, and use a provided

connection to access a database.
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[0074] As illustrated in Figure 10, in accordance with an embodiment, at step 233, an
instruction is received to migrate a pluggable database associated with a tenant, from a first

container database instance, to a new location at a second container database instance.

[0075] At step 235, the server initiates relocation of the pluggable database, which
affects those sessions running on the pluggable database.

[0076] At step 237, the system responds by opening the pluggable database at the
new location, and then terminating all of the client sessions on the first container database
instance.

[0077] At step 239, clients are enabled to reconnect to the (migrated) service

associated with the new location.

[0078] At step 241, on the server side, a listener forwards new connection requests
from the connection pool to the (new) container database location once the migration is
complete.

[0079] Embodiments of the present invention may be conveniently implemented using
one or more conventional general purpose or specialized digital computer, computing device,
machine, or microprocessor, including one or more processors, memory and/or computer
readable storage media programmed according to the teachings of the present disclosure.
Appropriate software coding can readily be prepared by skilled programmers based on the
teachings of the present disclosure, as will be apparent to those skilled in the software art.
[0080] In some embodiments, the present invention includes a computer program
product which is a non-transitory storage medium or computer readable medium (media)
having instructions stored thereon/in which can be used to program a computer to perform any
of the processes of the present invention. Examples of the storage medium can include, but
is not limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs,
microdrive, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs,
flash memory devices, magnetic or optical cards, nanosystems (including molecular memory
ICs), or any type of media or device suitable for storing instructions and/or data.

[0081] The foregoing description of embodiments of the present invention has been
provided for the purposes of illustration and description. It is not intended to be exhaustive or
to limit the invention to the precise forms disclosed. Many modifications and variations will be
apparent to the practitioner skilled in the art. The modifications and variations include any
relevant combination of the disclosed features. The embodiments were chosen and described
in order to best explain the principles of the invention and its practical application, thereby
enabling others skilled in the art to understand the invention for various embodiments and with

various modifications that are suited to the particular use contemplated.
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Claims:

What is claimed is:

1. A system for providing access to a database in a multi-tenant environment, including
the use of a connection pool, and support for dynamic relocation of tenants, comprising:

a computer including a processor, and at least one of an application server or database
environment executing thereon;

a connection pool that enables software applications to request a connection from the
connection pool, and use a provided connection to access a database; and

wherein the connection pool enables a tenant associated with a client application, to
be relocated across a plurality of database locations, including

controlling draining of connections to a database location originally associated
with the tenant, and

migrating connections to a new database location associated with the tenant.

2. The system of Claim 1, wherein during draining of existing connections, and migrating
of new connections from a first pluggable database at a first container database, to a new
location at a second container database,

a second pluggable database is opened at the second container database, and

client sessions are terminated on the first pluggable database, and are enabled to

reconnect to a migrated service associated with the new location.

3. The system according to Claim 1 or 2, wherein a system event is used to inform the
connection pool that the database location originally associated with the tenant is shutting

down, and to close associated connections and prepare for migration.

4. The system according to any preceding Claim, further comprising a listener configured
to send a redirect to a database driver at the at least one of an application server or database
environment, to cause the database driver to send new connection requests to the new

database location.

5. The system according to any preceding Claim, wherein the system enables software

applications to associate particular labels with particular connection states.

6. The system according to any preceding Claim, wherein the connection pool supports a

plurality of tenants, including a different database location associated with each tenant.
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7. A method for providing access to a database in a multi-tenant environment, including
the use of a connection pool, and support for dynamic relocation of tenants, comprising:

providing, at a computer including a processor, at least one of an application server or
database environment executing thereon, a connection pool that includes connection objects
and that enables software applications to request a connection from the connection pool, and
use a provided connection to access a database; and

relocating, by the connection pool, a tenant associated with a client application, across
a plurality of database locations, including

controlling draining of connections to a database location originally associated
with the tenant, and

migrating connections to a new database location associated with the tenant.

8. The method of Claim 7, wherein during draining of existing connections, and migrating
of new connections from a first pluggable database at a first container database, to a new
location at a second container database,

a second pluggable database is opened at the second container database, and

client sessions are terminated on the first pluggable database, and are enabled to

reconnect to a migrated service associated with the new location.

9. The method according to Claim 7 or 8, wherein a system event is used to inform the
connection pool that the database location originally associated with the tenant is shutting

down, and to close associated connections and prepare for migration.

10. The method according to any of Claims 7 to 9, further comprising providing a listener
configured to send a redirect to a database driver at the at least one of an application server
or database environment, to cause the database driver to send new connection requests to

the new database location.

1. The method according to any of Claims 7 to 10, wherein software applications are

enabled to associate particular labels with particular connection states.

12. The method according to any of Claims 7 to 11, wherein the connection pool supports

a plurality of tenants, including a different database location associated with each tenant.

13. A non-transitory computer readable storage medium, including instructions stored

thereon which when read and executed by one or more computers cause the one or more
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computers to perform the method comprising:

providing, at a computer including a processor, at least one of an application server or
database environment executing thereon, a connection pool that includes connection objects
and that enables software applications to request a connection from the connection pool, and
use a provided connection to access a database; and

relocating, by the connection pool, a tenant associated with a client application, across
a plurality of database locations, including

controlling draining of connections to a database location originally associated
with the tenant, and

migrating connections to a new database location associated with the tenant.

14. The non-transitory computer readable storage medium of Claim 13, wherein during
draining of existing connections, and migrating of new connections from a first pluggable
database at a first container database, to a new location at a second container database,

a second pluggable database is opened at the second container database, and

client sessions are terminated on the first pluggable database, and are enabled to

reconnect to a migrated service associated with the new location.

15. The non-transitory computer readable storage medium according to Claim 13 or 14,
wherein a system event is used to inform the connection pool that the database location
originally associated with the tenant is shutting down, and to close associated connections and

prepare for migration.

16. The non-transitory computer readable storage medium according to any of Claims 13
to 15, further comprising providing a listener configured to send a redirect to a database driver
at the at least one of an application server or database environment, to cause the database

driver to send new connection requests to the new database location.

17. The non-transitory computer readable storage medium according to any of Claims 13
to 16, wherein software applications are enabled to associate particular labels with particular

connection states.

18. The non-transitory computer readable storage medium according to any of Claims 13
to 17, wherein the connection pool supports a plurality of tenants, including a different database

location associated with each tenant.

19. A computer program comprising program instructions in machine-readable format that

14
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when executed by a computer system cause the computer system to perform the method of

any of Claims 7 to 12.

20. A computer program product comprising the computer program of Claim 19 stored in a

non-transitory machine readable data storage medium.

21. An apparatus comprising means for performing the method of any of Claims 7 to 12.
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