(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
08 February 2018 (08.02.2018)

(10) International Publication Number

WO 2018/027026 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 9/50 (2006.01) HO041 29/08 (2006.01)

(21) International Application Number:
PCT/US2017/045283

(22) International Filing Date:
03 August 2017 (03.08.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
15/227,897 03 August 2016 (03.08.2016) Us

(71) Applicant: ORACLE INTERNATIONAL CORPO-
RATION [US/US]; 500 Oracle Parkway, M/S 5Sop7, Red-
wood Shores, California 94065 (US).

(72) Inventors: DE LAVARENE, Jean; 16 rue du Mal de Lat-
tre de Tassigny, 78000 Versailles (FR). VERMA, Saurabh;

74

62y

c¢/o0 Oracle India Pvt Ltd., Lexington Tower, Prestige Street,
St. John's Woods, No. 18, 2nd Cross Road, Chikka Audugo-
di, Bangalore 560 029 (IN). HEGDE, Vidya; c¢/o Oracle
India Pvt Ltd., Lexington Tower, Prestige Street, St. John's
Woods, No. 18, 2nd Cross Road, Chikka Audugodi, Banga-
lore 560 029 (IN). MAHIDHARA, Chandra Sekhar Kr-
ishna; c/o Oracle India Pvt Ltd., Lexington Tower, Prestige
Street, St. John's Woods, No. 18, 2nd Cross Road, Chikka
Audugodi, Bangalore 560 029 (IN). NAMACHIVAYAM,
Aramvalarthanathan; c¢/o Oracle India Pvt Ltd., Lexing-
ton Tower, Prestige Street, St. John's Woods, No. 18, 2nd
Cross Road, Chikka Audugodi, Bangalore 560 029 (IN).

Agent: MEYER, Sheldon, R.etal.; TUCKER ELLISLLP,
One Market Plaza, Steuart Tower, Suite 700, San Francisco,
California 94105 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(54) Title: SYSTEM AND METHOD FOR PROVIDING DYNAMIC RELOCATION OF TENANTS IN A MULTI-TENANT DATA-

BASE ENVIRONMENT

Application Server / Database Environment 100

Connection Pool Logic 104

Mult-Tenant Application
(Multi-Tenant) 185
Client Application
186

Connection Pool 106

Connection Request
{e.g., getConnection(}}
132

(After PDB Relocation):

FIGURE 9

Multi-Tenant Database Environment 180

Pluggable
Database
“PDB-2 183

Listener
212

Pluggable
Database
“PDB-3” 184

New Client
Sessions
228

Pluggable
Database
“PDB-1" 210

wo 2018/027026 A1 | 0K 0000 O OO

(57) Abstract: Described herein are systems and methods for providing access to a database in a multi-tenant environment, including
the use of a connection pool, and support for dynamic relocation of tenants. In accordance with an embodiment, a software application
can obtain a connection from the connection pool, on behalf of a tenant, which enables the software application or tenant to access the
database. A relocation process enables a tenant which is associated with a multi-tenant or other client application, to be relocated within
the database environment, for example across a plurality of container databases, with near-zero downtime to the client application,
including managing the draining of existing connections, and the migrating of new connections, without requiring changes to the
underlying application.

[Continued on next page]

WO 2018/027026 A1 {10000 N

CA,CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KI, KN, KP,
KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

SYSTEM AND METHOD FOR PROVIDING DYNAMIC RELOCATION OF TENANTS
IN A MULTI-TENANT DATABASE ENVIRONMENT

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone
of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.

Claim of Priority:

[0001] This application claims the benefit of priority to U.S. Patent Application titled
“SYSTEM AND METHOD FOR PROVIDING DYNAMIC RELOCATION OF TENANTS IN A
MULTITENANT DATABASE ENVIRONMENT”, Application No. 15/227,897 filed August 3,

2016, which application is herein incorporated by reference.

Field of Invention:

[0002] Embodiments of the invention are generally related to software application
servers and databases, and are particularly related to systems and methods for providing
access to a database in a multi-tenant environment, including the use of a connection pool,

and support for dynamic relocation of tenants.

Background:
[0003] Generally described, in a database environment, a connection pool operates as

a cache of connection objects, each of which represents a connection that can be used by a
software application to connect to a database. At runtime, an application can request a
connection from the connection pool. If the connection pool includes a connection that can
satisfy the particular request, it can return that connection to the application for its use. In
some instances, if no suitable connection is found, then a new connection can be created and
returned to the application. The application can borrow the connection to access the database
and perform some work, and then return the connection to the pool, where it can then be made

available for subsequent connection requests from the same, or from other, applications.

Summary:
[0004] Described herein are systems and methods for providing access to a database

in a multi-tenant environment, including the use of a connection pool, and support for dynamic

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

relocation of tenants. In accordance with an embodiment, a software application can obtain a
connection from the connection pool, on behalf of a tenant, which enables the software
application or tenant to access the database. A relocation process enables a tenant which is
associated with a multi-tenant or other client application, to be relocated within the database
environment, for example across a plurality of container databases, with near-zero downtime
to the client application, including managing the draining of existing connections, and the

migrating of new connections, without requiring changes to the underlying application.

Brief Description of the Figures:

[0005] Figure 1 illustrates a system that includes a connection pool, in accordance
with an embodiment.

[0006] Figure 2 further illustrates a system that includes a connection pool, including
support for use of a sharded database, in accordance with an embodiment.

[0007] Figure 3 further illustrates a system that includes a connection pool, including
support for use in a multi-tenant environment, in accordance with an embodiment.

[0008] Figure 4 illustrates support for dynamic relocation of a tenant, in a connection
pool environment, in accordance with an embodiment.

[0009] Figure 5 further illustrates support for dynamic relocation of a tenant, in a
connection pool environment, in accordance with an embodiment.

[0010] Figure 6 further illustrates support for dynamic relocation of a tenant, in a
connection pool environment, in accordance with an embodiment.

[0011] Figure 7 further illustrates support for dynamic relocation of a tenant, in a
connection pool environment, in accordance with an embodiment.

[0012] Figure 8 further illustrates support for dynamic relocation of a tenant, in a
connection pool environment, in accordance with an embodiment.

[0013] Figure 9 further illustrates support for dynamic relocation of a tenant, in a
connection pool environment, in accordance with an embodiment.

[0014] Figure 10 illustrates a method of providing support for dynamic relocation of a

tenant, in a connection pool environment, in accordance with an embodiment.

Detailed Description:

[0015] As described above, a connection pool operates as a cache of connection
objects, each of which represents a connection that can be used by a software application to
connect to a database. At runtime, an application can request a connection from the
connection pool. If the connection pool includes a connection that can satisfy the particular
request, it can return that connection to the application for its use. In some instances, if no

suitable connection is found, then a new connection can be created and returned to the

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

application. The application can borrow the connection to access the database and perform
some work, and then return the connection to the pool, where it can then be made available
for subsequent connection requests from the same, or from other, applications.

[0016] Creating connection objects can be costly in terms of time and resources. For
example, tasks such as network communication, authentication, transaction enlistment, and
memory allocation, all contribute to the amount of time and resources it takes to create a
particular connection object. Since connection pools allow the reuse of such connection
objects, they help reduce the number of times that the various objects must be created.
[0017] One example of a connection pool is Oracle Universal Connection Pool (UCP),
which provides a connection pool for caching Java Database Connectivity (JDBC)
connections. For example, the connection pool can operate with a JDBC driver to create
connections to a database, which are then maintained by the pool; and can be configured with
properties that are used to further optimize pool behavior, based on the performance and

availability requirements of a requesting software application.

Connection Labeling

[0018] Figure 1 illustrates a system that includes a connection pool, in accordance
with an embodiment.

[0019] As illustrated in Figure 1, in accordance with an embodiment, an application
server or database environment 100, which includes physical computer resources 101 (e.g., a
processor/CPU, memory, and network components), for example an Oracle WebLogic Server,
Oracle Fusion Middleware, or other application server or database environment, can include
or provide access to a database 102, for example an Oracle database, or other type of
database.

[0020] As further illustrated in Figure 1, in accordance with an embodiment, the system
also includes a connection pool logic 104 or program code, which when executed by a
computer controls 105 the creation and use of connection objects in a connection pool 106,
including, for example, connections that are currently in use 108 by a software application, and
connections that are idle 110, or are not currently being used.

[0021] Software applications can initialize connections retrieved from a connection
pool, before using the connection to access, or perform work at the database. Examples of
initialization can include simple state re-initializations that require method calls within the
application code, or more complex initializations including database operations that require
round trips over a network. The computational cost of these latter types of initialization may
be significant.

[0022] Some connection pools (for example, UCP) allow their connection pools to be

configured using connection pool properties, that have get and set methods, and that are

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

available through a pool-enabled data source instance. These get and set methods provide a
convenient way to programmatically configure a pool. If no pool properties are set, then a
connection pool uses default property values.

[0023] In accordance with an embodiment, labeling connections allows a client
software application to attach arbitrary name/value pairs to a connection. The application can
then request a connection with a desired label from the connection pool. By associating
particular labels with particular connection states, an application can potentially retrieve an
already-initialized connection from the pool, and avoid the time and cost of re-initialization.
Connection labeling does not impose any meaning on user-defined keys or values; the
meaning of any user-defined keys and values is defined solely by the application.

[0024] For example, as illustrated in Figure 1, in accordance with an embodiment, the
connection pool can include a plurality of connections that are currently in use by software
applications, here indicated as connections A 112 and B 114. Each of the connections can be
labeled, for example connection A is labeled (Blue) and connection B is labeled (Green).
These labels/colors are provided for purposes of illustration, and as described above can be
arbitrary name/value pairs attached to a connection by a client application. In accordance with
various embodiments, different types of labels can be used, to distinguish between different
connection types; and different applications can attach different labels/colors to a particular
connection type.

[0025] As further illustrated in Figure 1, in accordance with an embodiment, the
connection pool can also include a plurality of connections that are idle, or are not currently
being used by software applications, here indicated as connections C 116, D 118, E 120, F
122, G 124 and N 126. Each of the idle connections can be similarly labeled, in this illustration
as (Blue) or (Green), and again these labels/colors are provided for purposes of illustration.
[0026] As further illustrated in Figure 1, in accordance with an embodiment, if a
software application 130 wishes to make a request on the database, using a particular type of
connection, for example a (Red) connection, then the application can make a
“getConnection(Red)” request 132. In response, the connection pool logic will either create a
new (Red) connection, here indicated as X 134 (Red); or repurpose an existing idle connection
from (Blue or Green) to (Red), here indicated as E 135 (Red).

Sharded Databases

[0027] In accordance with an embodiment, sharding is a database-scaling technique
which uses a horizontal partitioning of data across multiple independent physical databases.
The part of the data which is stored in each physical database is referred to as a shard. From
the perspective of a software client application, the collection of all of the physical databases

appears as a single logical database.

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

[0028] In accordance with an embodiment, the system can include support for use of
a connection pool with sharded databases. A shard director or listener provides access by
software client applications to database shards. A connection pool (e.g., UCP) and database
driver (e.g., a JDBC driver) can be configured to allow a client application to provide a shard
key, either during connection checkout or at a later time; recognize shard keys specified by the
client application; and enable connection by the client application to a particular shard or chunk.
The approach enables efficient re-use of connection resources, and faster access to
appropriate shards.

[0029] Figure 2 further illustrates a system that includes a connection pool, including
support for use of a sharded database, in accordance with an embodiment.

[0030] In accordance with an embodiment, a database table can be partitioned using
a shard key (SHARD_KEY), for example as one or more columns that determine, within a
particular shard, where each row is stored. A shard key can be provided in a connect string
or description as an attribute of connect data (CONNECT_DATA). Examples of shard keys
can include a VARCHARZ2, CHAR, DATE, NUMBER, or TIMESTAMP in the database. In
accordance with an embodiment, a sharded database can also accept connections without a
shard key or shard group key.

[0031] In accordance with an embodiment, to reduce the impact of resharding on
system performance and data availability, each shard can be subdivided into smaller pieces
or chunks. Each chunk acts as a unit of resharding that can be moved from one shard to
another. Chunks also simplify routing, by adding a level of indirection to the shard key
mapping.

[0032] For example, each chunk can be automatically associated with a range of shard
key values. A user-provided shard key can be mapped to a particular chunk, and that chunk
mapped to a particular shard. If a database operation attempts to operate on a chunk that is
not existent on a particular shard, then an error will be raised. When shard groups are used,
each shard group is a collection of those chunks that have a specific value of shard group
identifier.

[0033] A shard-aware client application can work with sharded database
configurations, including the ability to connect to one or multiple database shards in which the
data is partitioned based on one or more sharding methods. Each time a database operation
is required, the client application can determine the shard to which it needs to connect.
[0034] In accordance with an embodiment, a sharding method can be used to map
shard key values to individual shards. Different sharding methods can be supported, for
example: hash-based sharding, in which a range of hash values is assigned to each chunk, so
that upon establishing a database connection the system applies a hash function to a given

value of the sharding key, and calculates a corresponding hash value which is then mapped

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

to a chunk based on the range to which that value belongs; range-based sharding, in which a
range of shard key values is assigned directly to individual shards; and list-based sharding, in
which each shard is associated with a list of shard key values.

[0035] As illustrated in Figure 2, in accordance with an embodiment a sharded
database 140 can comprise a first database region A (here indicated as “DB East’, DBE) 141,
including sharded database instances “DBE-1” 142, with a shard A stored as chunks A1, A2,
... An; and “DBE-2" 143, with a shard B stored as chunks B1, B2, ... Bn.

[0036] As further illustrated in Figure 2, in accordance with an embodiment, a second
database region B (here indicated as "DB West’, DBW) 144, includes sharded database
instances “DBW-1" 145, with a shard C stored as chunks C1, C2, ... Cn; and “DBW-2" 1486,
with a shard D stored as chunks D1, D2, ... Dn.

[0037] In accordance with an embodiment, each database region or group of sharded
database instances can be associated with a shard director or listener (e.g., an Oracle Global
Service Managers (GSM) listener, or another type of listener). For example, as illustrated in
Figure 2, a shard director or listener 147 can be associated with the first database region A;
and another shard director or listener 148 can be associated with the second database region
B. The system can include a database driver (e.g., a JOBC driver) 152 that maintains a shard
topology layer 154, which over a period of time learns and caches shard key ranges to the
location of each shard in a sharded database.

[0038] In accordance with an embodiment, a client application can provide one or more
shard keys to the connection pool during a connection request 162; and, based on the one or
more shard keys, and information provided by the shard topology layer, the connection pool
can route the connection request to a correct or appropriate shard.

[0039] In accordance with an embodiment, the connection pool can also identify a
connection to a particular shard or chunk by its shard keys, and allow re-use of a connection
when a request for a same shard key is received from a particular client application.

[0040] For example, as illustrated in Figure 2, in accordance with an embodiment, a
connection to a particular chunk (e.g., chunk A1) can be used to connect 174, to that chunk.
If there are no available connections in the pool to the particular shard or chunk, the system
can attempt to repurpose an existing available connection to another shard or chunk, and re-
use that connection. The data distribution across the shards and chunks in the database can
be made transparent to the client application, which also minimizes the impact of re-sharding
of chunks on the client.

[0041] When a shard-aware client application provides one or more shard keys to the
connection pool, in association with a connection request; then, if the connection pool or
database driver already has a mapping for the shard keys, the connection request can be

directly forwarded to the appropriate shard and chunk, in this example, to chunk C2.

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

[0042] When a shard-aware client application does not provide a shard key in
association with the connection request; or if the connection pool or database driver does not
have a mapping for a provided shard key; then the connection request can be forwarded to an

appropriate shard director or listener.

Multi-Tenant Environments

[0043] In accordance with an embodiment, the system can include support for cloud-
based or multi-tenant environments using connection labeling. For example, a multi-tenant
cloud environment can include an application server or database environment that includes or
provides access to a database for use by multiple tenants or tenant applications, in a cloud-
based environment.

[0044] Figure 3 further illustrates a system that includes a connection pool, including
support for use in a multi-tenant environment, in accordance with an embodiment.

[0045] Software applications, which can be accessed by tenants via a cloud or other
network, may, similarly to the environments described above, initialize connections retrieved
from a connection pool before using the connection.

[0046] As described above, examples of initialization can include simple state re-
initializations that require method calls within the application code, or more complex
initializations including database operations that require round trips over a network.

[0047] As also described above, labeling connections allows an application to attach
arbitrary name/value pairs to a connection, so that the application can then request a
connection with a desired label from the connection pool, including the ability to retrieve an
already-initialized connection from the pool and avoid the time and cost of re-initialization.
[0048] As illustrated in Figure 3, in accordance with an embodiment, a multi-tenant
database environment 180 can include, for example, a container database (CDB) 181, and
one or more pluggable database (PDB), here illustrated as “PDB-1" 182, “PDB-2” 183, and
“PDB-3” 184.

[0049] In accordance with an embodiment, each PDB can be associated with a tenant,
here illustrated as “Tenant-17, “Tenant-2”, and “Tenant-3”, of a multi-tenant application that is
either hosted by the application server or database environment 185, or provided as an
external client application 186, and which provides access to the database environment
through the use of one or more Oracle Real Application Cluster (RAC) instances 186, 188,
including in this example “RAC-Instance-1”, and “RAC-Instance-2”; one or more services,
including in this example Service-1”, “Service-2”, and “Service-3”, and a mapping of tenants to
services 190.

[0050] In the example illustrated in Figure 3, an application being used by a tenant to

access the database environment, can make connection requests associated with that tenant’s

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

data source 192, 194, 196, and the system can switch services 198 if necessary, to utilize

connections to existing RAC instances or PDBs.

Server-Side Connection Pools

[0051] In accordance with an embodiment, the system can utilize a server-side
connection pool tagging feature, such as that provided, for example, by Oracle Database
Resident Connection Pool (DRCP). A server-side connection pool tagging feature allows user
applications or clients to selectively obtain a connection to a database environment, based on
use of a single tag that is understood by that database environment.

[0052] In accordance with an embodiment, only one tag is associated per connection.
The database server does not communicate the tag value to the user applications or clients,

but rather communicates a tag-match (for example, as a Boolean value).

Dynamic Relocation of a Tenant in the Pool

[0053] In accordance with an embodiment, the system can include support for dynamic
relocation of tenants. A software application can obtain a connection from the connection pool,
on behalf of a tenant, which enables the software application or tenant to access the database.
A relocation process enables a tenant which is associated with a multi-tenant or other client
application, to be relocated within the database environment, for example across a plurality of
container databases, with near-zero downtime to the client application, including managing the
draining of existing connections, and the migrating of new connections, without requiring
changes to the underlying application.

[0054] Figures 4-9 illustrate support for dynamic relocation of a tenant, in a connection
pool environment, in accordance with an embodiment.

[0055] As illustrated in Figure 4, in accordance with an embodiment, a database, for
example a container database (e.g., “CDB-1" 202), or another type of database, supports the
use of a plurality of connections 204.

[0056] A tenant, which is associated with a multi-tenant or other client application
hosted either by the application server or database environment, or provided as an external
client application, can use the connection pool to access the database, including where
appropriate accessing a pluggable database of a container database, via a database service.
[0057] For example, in accordance with an embodiment, each particular tenant can be
associated with its own particular pluggable database at the container database, and can use
connections provided by the connection pool, to access (e.g., 205) the particular pluggable
database associated with that tenant, via a database service associated with the particular
pluggable database.

[0058] In accordance with an embodiment, if the database environment changes, for

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

example a second container database (e.g., “CDB-2” 203) is added to the system, or in
response to an application server that is hosting the connection pool receiving a service-down
event 206 from the database environment, the system can provide new connections 207 to a
new database location, for use by a particular tenant.

[0059] For example, in accordance with an embodiment, the system can initiate a
migration of a pluggable database, for use by a tenant, including draining connections that are
associated with an original pluggable database location and its associated database service
(for example, those connections associated with “PDB-1” 182, in “CDB-1” 202); and migrating
or otherwise relocating the availability of those connections 208 to a new pluggable database
location and associated database service (for example, here illustrated as “PDB-1" 210, in
“CDB-2” 203).

[0060] This enables the connection pool to support near-zero-downtime tenant
relocation, by draining the existing connections associated with a tenant’s original location,
and creating new connections that point to the tenant's new location, in a manner that is
transparent to the client or tenant application.

[0061] For example, in a multi-tenant environment, the system supports moving a
pluggable database associated with a particular tenant, from a first Oracle Real Application
Cluster (RAC) database, to a second RAC database; or from a first container database, to a
second container database.

[0062] However, these pluggable databases generally operate as different/separate
databases, which can result in connections being lost.

[0063] To address this, in accordance with an embodiment, in the case of an
application that is currently using a connection string which points to a listener 212 of an
original container database (e.g., “CDB-1”), the listener can be configured to redirect
connection requests to a new location or container database (e.g., “CDB-2"). This allows the
listener to send a redirect to the database driver at the application server, which in turn causes
the database driver to send the new connection requests to the new container database.
[0064] Additionally, existing connection requests must be drawn away from the original
container database. However, the pool may not yet know about the existence of the new
container database, since it is considered a different database.

[0065] To address this, in accordance with an embodiment, a system event notification
(e.g., an Oracle Notification Service event) can be used to inform the connection pool that the
pluggable database is shutting down, and to close its associated connections and prepare for
migration to a new database service associated with a new location.

[0066] Generally, there is a small period of time during which the new database
location will not be immediately available to support new connections. During this time, existing

connections will be closed, and the connection pool will not create a new connection until it

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

receives a new request. This can result in a slight system downtime, for example, due to the
need to update redo logs, including stopping the redo logs to switch over the source of truth to
the new location.

[0067] For example, in the example illustrated in Figure 4, in which it is desired to
migrate a pluggable database (e.g., “PDB-1”), from a first container database (e.g., “CDB-1"),
to a second container database (e.g., “CDB-2"); then, in accordance with an embodiment, the
process involved in relocation of the pluggable database includes:

[0068] 1. Initiating relocation of the pluggable database. For example, as illustrated
in Figure 5, the server can initiate relocation of a pluggable database by running an “alter
pluggable database relocate” command, which will affect those sessions 220 running on the
original pluggable database.

[0069] 2. Open the pluggable database at the new location, and then terminate all of
the client sessions on the original instance container database. For example, as illustrated in
Figure 6, the system can respond to the “alter pluggable database relocate” command by
opening the pluggable database “PDB-1” in container database instance “CDB-2”, and then
terminating all of the client sessions on the original container database instance “CDB-1". After
that, it will close the pluggable database “PDB-1" on “CDB-1”, and flush its buffer cache.
[0070] 3. Enable clients to reconnect to the new database location. For example, as
illustrated in Figure 7, clients will then need to reconnect to the (now migrated) service 226
themselves. The connection pool enables this in a transparent manner to the application,
including, for example, as illustrated in Figure 8, by draining existing connections upon
receiving a service down event from the server, and re-creating new connections to the
migrated pluggable database.

[0071] 4. Forward connection requests to the new location. For example, as illustrated
in Figure 9, on the server side, the listener will forward the new connection requests 228 from
the connection pool to the new target container database (e.g., “CDB-2”) once the migration is
complete. Applications do not need to change their connect string, which makes the relocation

process transparent to the application.

Dynamic Relocation Process

[0072] Figure 10 illustrates a method of providing support for the dynamic relocation
of a tenant, in a connection pool environment, in accordance with an embodiment.

[0073] As illustrated in Figure 10, in accordance with an embodiment, at step 231, at
an application server or database environment, a connection pool logic or program code is
provided that controls the creation and use of connection objects in a connection pool, wherein
software applications can request a connection from the connection pool, and use a provided

connection to access a database.

10

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

[0074] As illustrated in Figure 10, in accordance with an embodiment, at step 233, an
instruction is received to migrate a pluggable database associated with a tenant, from a first

container database instance, to a new location at a second container database instance.

[0075] At step 235, the server initiates relocation of the pluggable database, which
affects those sessions running on the pluggable database.

[0076] At step 237, the system responds by opening the pluggable database at the
new location, and then terminating all of the client sessions on the first container database
instance.

[0077] At step 239, clients are enabled to reconnect to the (migrated) service

associated with the new location.

[0078] At step 241, on the server side, a listener forwards new connection requests
from the connection pool to the (new) container database location once the migration is
complete.

[0079] Embodiments of the present invention may be conveniently implemented using
one or more conventional general purpose or specialized digital computer, computing device,
machine, or microprocessor, including one or more processors, memory and/or computer
readable storage media programmed according to the teachings of the present disclosure.
Appropriate software coding can readily be prepared by skilled programmers based on the
teachings of the present disclosure, as will be apparent to those skilled in the software art.
[0080] In some embodiments, the present invention includes a computer program
product which is a non-transitory storage medium or computer readable medium (media)
having instructions stored thereon/in which can be used to program a computer to perform any
of the processes of the present invention. Examples of the storage medium can include, but
is not limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs,
microdrive, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs,
flash memory devices, magnetic or optical cards, nanosystems (including molecular memory
ICs), or any type of media or device suitable for storing instructions and/or data.

[0081] The foregoing description of embodiments of the present invention has been
provided for the purposes of illustration and description. It is not intended to be exhaustive or
to limit the invention to the precise forms disclosed. Many modifications and variations will be
apparent to the practitioner skilled in the art. The modifications and variations include any
relevant combination of the disclosed features. The embodiments were chosen and described
in order to best explain the principles of the invention and its practical application, thereby
enabling others skilled in the art to understand the invention for various embodiments and with

various modifications that are suited to the particular use contemplated.

11

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

Claims:

What is claimed is:

1. A system for providing access to a database in a multi-tenant environment, including
the use of a connection pool, and support for dynamic relocation of tenants, comprising:

a computer including a processor, and at least one of an application server or database
environment executing thereon;

a connection pool that enables software applications to request a connection from the
connection pool, and use a provided connection to access a database; and

wherein the connection pool enables a tenant associated with a client application, to
be relocated across a plurality of database locations, including

controlling draining of connections to a database location originally associated
with the tenant, and

migrating connections to a new database location associated with the tenant.

2. The system of Claim 1, wherein during draining of existing connections, and migrating
of new connections from a first pluggable database at a first container database, to a new
location at a second container database,

a second pluggable database is opened at the second container database, and

client sessions are terminated on the first pluggable database, and are enabled to

reconnect to a migrated service associated with the new location.

3. The system according to Claim 1 or 2, wherein a system event is used to inform the
connection pool that the database location originally associated with the tenant is shutting

down, and to close associated connections and prepare for migration.

4. The system according to any preceding Claim, further comprising a listener configured
to send a redirect to a database driver at the at least one of an application server or database
environment, to cause the database driver to send new connection requests to the new

database location.

5. The system according to any preceding Claim, wherein the system enables software

applications to associate particular labels with particular connection states.

6. The system according to any preceding Claim, wherein the connection pool supports a

plurality of tenants, including a different database location associated with each tenant.

12

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

7. A method for providing access to a database in a multi-tenant environment, including
the use of a connection pool, and support for dynamic relocation of tenants, comprising:

providing, at a computer including a processor, at least one of an application server or
database environment executing thereon, a connection pool that includes connection objects
and that enables software applications to request a connection from the connection pool, and
use a provided connection to access a database; and

relocating, by the connection pool, a tenant associated with a client application, across
a plurality of database locations, including

controlling draining of connections to a database location originally associated
with the tenant, and

migrating connections to a new database location associated with the tenant.

8. The method of Claim 7, wherein during draining of existing connections, and migrating
of new connections from a first pluggable database at a first container database, to a new
location at a second container database,

a second pluggable database is opened at the second container database, and

client sessions are terminated on the first pluggable database, and are enabled to

reconnect to a migrated service associated with the new location.

9. The method according to Claim 7 or 8, wherein a system event is used to inform the
connection pool that the database location originally associated with the tenant is shutting

down, and to close associated connections and prepare for migration.

10. The method according to any of Claims 7 to 9, further comprising providing a listener
configured to send a redirect to a database driver at the at least one of an application server
or database environment, to cause the database driver to send new connection requests to

the new database location.

1. The method according to any of Claims 7 to 10, wherein software applications are

enabled to associate particular labels with particular connection states.

12. The method according to any of Claims 7 to 11, wherein the connection pool supports

a plurality of tenants, including a different database location associated with each tenant.

13. A non-transitory computer readable storage medium, including instructions stored

thereon which when read and executed by one or more computers cause the one or more

13

10

15

20

25

30

35

WO 2018/027026 PCT/US2017/045283

computers to perform the method comprising:

providing, at a computer including a processor, at least one of an application server or
database environment executing thereon, a connection pool that includes connection objects
and that enables software applications to request a connection from the connection pool, and
use a provided connection to access a database; and

relocating, by the connection pool, a tenant associated with a client application, across
a plurality of database locations, including

controlling draining of connections to a database location originally associated
with the tenant, and

migrating connections to a new database location associated with the tenant.

14. The non-transitory computer readable storage medium of Claim 13, wherein during
draining of existing connections, and migrating of new connections from a first pluggable
database at a first container database, to a new location at a second container database,

a second pluggable database is opened at the second container database, and

client sessions are terminated on the first pluggable database, and are enabled to

reconnect to a migrated service associated with the new location.

15. The non-transitory computer readable storage medium according to Claim 13 or 14,
wherein a system event is used to inform the connection pool that the database location
originally associated with the tenant is shutting down, and to close associated connections and

prepare for migration.

16. The non-transitory computer readable storage medium according to any of Claims 13
to 15, further comprising providing a listener configured to send a redirect to a database driver
at the at least one of an application server or database environment, to cause the database

driver to send new connection requests to the new database location.

17. The non-transitory computer readable storage medium according to any of Claims 13
to 16, wherein software applications are enabled to associate particular labels with particular

connection states.

18. The non-transitory computer readable storage medium according to any of Claims 13
to 17, wherein the connection pool supports a plurality of tenants, including a different database

location associated with each tenant.

19. A computer program comprising program instructions in machine-readable format that

14

10

WO 2018/027026 PCT/US2017/045283

when executed by a computer system cause the computer system to perform the method of

any of Claims 7 to 12.

20. A computer program product comprising the computer program of Claim 19 stored in a

non-transitory machine readable data storage medium.

21. An apparatus comprising means for performing the method of any of Claims 7 to 12.

15

PCT/US2017/045283

WO 2018/027026

1/10

A~ TN

¢0l
aseqele

N
"~

F 34N9OI4

(qiomyaN ‘Alows|y [eaISAud ‘NdD “h9)
10| S821n0saYy Jayndwo) [eashyd

anig) 9z N

&

{usaI0) gL|

L M T S

(paY) ¥E1 X

90} 100d UORIBULOD

01 21607 1004 uonssuUU0)

00| JuswuonAug aseqele(/ Janiag uonearddy

—

cel
((Juonosuuoeb “6-8)
1sanbay uonosuuo)

0¢l

uonesiddy yusi)

PCT/US2017/045283

WO 2018/027026

2/10

¢ 34N9I4

Ly (Jse3 gq, “6'8) v uolbay aseqeleq

N N
ug yunyo ug yunyo 8yl
: : Jougjsi
2 N%_cs_of//
10 unyd 19 Yuny) \
a pieys 9 pIeys
ol .2-Mad. Gt) .L-Mad.
N N
(\ (\
| (s ga, “6-9) g uoibay aseqejeq
N N
ug yunyo uy yunyo
290Uy AR UL
18Uy AR L] 5 S .---V_S;%\ rgm
el .2-340, 2l .1-340,
N Y
2 | m
JOUdISIT

0v| °seqejeq papleys

(MiomeN

‘Aowa|y eaishyd ‘Ndo “6°9)
10| S824n0say Jandwo) [edishyd

G| Jakeq ABojodo] pleys

¢S] 1oAlIQ sseqgeled

J

(v qunyg “69) v

801 9sn-ul-suonosuuo)

90} 100d UORIBULOD

0] 21607 |004 UORIBUUO)

00| Juswuoiaug aseqele(/ Janag uoneolddy

—

a9l

Aoyl pieyg yum
1sanbay uonosuuo)

0¢l
uoneaddy sy

PCT/US2017/045283

WO 2018/027026

3/10

¥81 .£-8dd,
aseqeleq
9|qebbn|g

€8l «£-9dd.
aseqeleqg
a|qebbn|g

18l
(gaD) sseqeleq
Jauiguo)

8l «1-8dd.
aseqeleq
a|qebbn|g

(¢-9Qd)
Rm ®0_>|_®m=

881
_.2-20UBISUI-OVY,)

(1-9ad)
«C 90INIBS,

(1-9ad)
<} 90INIBS,

981
(a —‘lmucmﬁmc_lo{\m:\

08} JusWUOIIAUT BSeqRIeq JUeUS | -ninjy

861
MOUMS
90IMI8S,

€ 34n9I4

J

v
801 9sN-UI-suoRIBUUOY

90} 100d UORIBUUOY

~N /7

961 ¥61 6l
¢-weus] | [zueusy | | |yueus)
aonog | | @amog || sainog
Bleq Beleq Eleq

06 S®211BS 0} Sjueua | Jo Buiddepy

8l
uoneol|ddy jueua | -BIN

eel
(()uonosuuony)ab “ba)
1sanbay uonIBUUOY

981
uoealddy uaiD

(Jueus] -Binp)

£JUeUS |,

01 91607 [004 uOnRIBUUOY

00| Juswuoliaug aseqele(/ 1anes uoneolddy

r :NL—CN u ®|_L.

ﬁ JJueus,

PCT/US2017/045283

WO 2018/027026

4/10

¥ 34N9I4

-||-|||||| yv-::

0L¢ «L-8dd,

aseqeleq

ojedbng Y.

P "0z

y8) £-80d, Aunaeieny

aseqele(Qmoo_mw._
3|qebbn|d
\\J

€02
RNImDOG :

A cle
jBuais

€81 .c-9dd.

aseqeje(

3|qebbn|d
\\lj

1114
aseqejeq

8l «1-9dd, 9|qebbnid

aseqeleQ A\ $S800Y

a|qebbn|g
<

90¢

c0¢ L ey —»
R—\ImDO:

08} JusWUOIIAUT BSeqRIeq JUeUS | -ninjy

LAUMo(J 90InIsS,

A\

10 9seqeleq 9|qebbn|d
19618 | 0} SUORIBUUOY MEN

g

]
ot d
| 10z 9seqeled a|qedbnid
umosomemco_smccoou_o"

901 100d UORIBULOY

.

‘\

edee

2]
o |

-
|
|
|
|
|
|
|
|
|
|
|
|

68l
uoneal|ddy Jueus [-BIN

0] 21607 |004 UORIBUUO)

00| Juswuoiaug aseqele(/ Janag uoneolddy

—

cel
((uonosuuonyeb “69)
1sanbay uonosuuo)

981
uonealddy jusiio

(ueus1-ninjy)

PCT/US2017/045283

WO 2018/027026

5/10

¥81 .£-9dd,
aseqele(

a|qebbn|g

€0¢c
RNImDo:

—

€8l .¢-9dd.
aseqeleq
a|qebbn|g

N

8l .1-9dd,
aseqeleq
a|qebbn|g

<

¢0¢
“© Flmoouu

0¢¢
suoIssag

— e

08} JusWUOIIAUT BSeqRIeq JUeUS | -ninjy

S 34N9OI4

A4
1oUB)SIT

90¢g
JusAg
umo(90Inesg,

—>

g

L :

¥70g 9seqeleq s|qedbnid
93In0S 0] SUOnRaI[UUOYD PIO

(uoneaojy gad elojeq)

A\

901 100d UORIBULOY

68l
uoneal|ddy Jueus [-BIN

0] 21607 |004 UORIBUUO)

00| Juswuoiaug aseqele(/ Janag uoneolddy

A/v
cel
((uonosuuonyeb “69)
1sanbay uonosuuo)

981
uonealddy jusiio

(ueus1-ninjy)

PCT/US2017/045283

WO 2018/027026

6/10

0l¢ .1-8dd.
aseqeleq
a|qebbn|g

¥8l .£-9dd.
aseqeleq
a|qebbn|g

N

€0¢c
(:NlmDO:

€8l .¢-9dd.
aseqeleq
a|qebbn|g

Y

8l .1-9dd,
aseqeleq
a|qebbn|g

<

(/N

802
Aligejieay
9)e20|9y

.
Y
.
LY
[}
[}
.
[}
L]
[}
[}
[}
[
[}
[}
[}
[}
[}
[)

1oUB)SIT

0¢¢
suoIssag

— e

¢0¢

(«© —‘lmDO:

08} JusWUOIIAUT BSeqRIeq JUeUS | -ninjy

9 34N9OI4

g

v
0z @seqeleq 8jqebbnid

A\

(uoneaojy gad elojeq)

901 100d UORIBULOY

68l
uoneal|ddy Jueus [-BIN

0] 21607 |004 UORIBUUO)

00| Juswuoiaug aseqele(/ Janag uoneolddy

—

cel
((uonosuuonyeb “69)
1sanbay uonosuuo)

981
uonealddy jusiio
(ueua 1-pin)

PCT/US2017/045283

WO 2018/027026

7/10

A

0l¢ .1-8dd.
aseqeleq
a|qebbn|g

e
.

L 34N9I4

SUONI8UU0Y)
ajelbipy

10 8seqejeq e|qebbnid

Y

80¢
8} £-9ad. Rnqejeay
aseqele(Qmoo_mw._
9|qebbn|d
\\J
€0¢
909, !
) A¥s
Jauajsi
€81} .¢-9dd.
aseqele(
ajqehbnid
L T
0¢¢
8} «1-90dds suoisseg
aseqeleq A\ ET))
a|qebbnid
\\Ij

¢0¢
“© Flmoouu

08} JusWUOIIAUT BSeqRIeq JUeUS | -ninjy

.
.
.
.
.

0z @seqeleq 8jqebbnid

(uoneoolay gad buunq)

901 100d UORIBULOY

68l
uoneal|ddy Jueus [-BIN

0] 21607 |004 UORIBUUO)

00| Juswuoiaug aseqele(/ Janag uoneolddy

A/v
cel
((uonosuuonyeb “69)
1sanbay uonosuuo)

981
uonealddy jusiio
(ueua 1-pin)

PCT/US2017/045283

WO 2018/027026

8/10

A

0l¢ .1-8dd.
aseqeleq
a|qebbn|g

Y

¥8l .£-9dd.
aseqeleq
a|qebbn|g

N

€0¢c
RNImDo:

—

€8l .¢-9dd.
aseqeleq
a|qebbn|g

¢8l «1-9dd.
aseqeleq
a|qebbn|g

A4
1oUB)SIT

,%..

. -’

¢0¢
“© Flmoouu

08} JusWUOIIAUT BSeqRIeq JUeUS | -ninjy

8 34N9Id

ANANAN

0z 9seqeleq 9|qebbn|d
19618 | 0} SUORIBUUOY MEN

(uoneoojay gad buunq)

Y

¥70g 9seqeleq s|qedbnid
93In0S 0] SUOnRaI[UUOYD PIO

(uoneoolay gad buunq)

901 100d UORIBULOY

681

uonediddy jueus | -Binjy

0] 21607 |004 UORIBUUO)

00| Juswuoiaug aseqele(/ Janag uoneolddy

—

cEl

((uonosuuonyeb “69)

1sanbay uonosuuo)

981
uonealddy jusiio

(ueus1-ninjy)

PCT/US2017/045283

WO 2018/027026

9/10

\.

A

0l¢ .1-8dd.
aseqeleq
a|qebbn|g

Y

—

¥8l .£-9dd.
aseqeleq
a|qebbn|g

N

€0¢c
RNImDo:

\

\.

€81 .¢-9dd.
aseqeje(

a|qebbn|g

c0¢
« —‘lmDO: &

144
SU0ISSag

JuSIID MON

08} JusWUOIIAUT BSeqRIeq JUeUS | -ninjy

A4
1oUB)SIT

6 34N9OId

7

ANANAN

] .<
]
\.\BN aseqeleq 9)qebbnid

19618 0} suoRIBUUOD MBN
:(uoneooidy gad Jeuy)

901 100d UORIBULOY

68l
uonediddy jueus | -Binjy

0] 21607 |004 UORIBUUO)

00| Juswuoiaug aseqele(/ Janag uoneolddy

A/v
cel
((uonosuuonyeb “69)
1sanbay uonosuuo)

981
uonealddy jusiio

(ueus1-ninjy)

PCT/US2017/045283

WO 2018/027026

10/10

0} 34N9OI4

212]dwo9 sI uoneiBi Syl SoU0 UONEIO| SSEgEep JaulRII0D (Mau) ay) 0} |0od
UOI308UU0 B} W4 sjsenbal UoIIaUUOD MBU SPIBMIO) JBUS)SI| B ‘9pIS JaAISS 3y} UD

UORED0| MBU 8} UM PaJRIoosse a01AI9s (pajelBiw) sy} 0} Josuu09a) 0} SjusIo 3jqeu]

90UB)SUI SSBGRIRP JUIBIU0D }SI1} SU) UO SUOISSOS
JUBI19 8Y} JO ||B SlBUILLIS) UBY) PUB ‘UOIIED0| MBU By} Je aseqelep aiqebbn|d ayy uadp

Geg

aseqejep s|qebbn|d ayy
uo BuluunJ suoISSas 950U S1984e Yolym ‘eseqelep ajqebbn|d syi jo uonesojal sienu|

£eg

9OUR]SUI 9SegR)ep JOUIRJUOD PUOISS B Je UOIIRI0| MU B 0} ‘99URlSUl 9Seqe)ep JoulRjuod
1541} B WO} JUBUD) B YUM paleInosse aseqelep 9jqebbnid e a1ebiw 0} UoINJISUl SAIRI9Y

Lg¢ M

aseqelep e 558998 0} UORIBUUOD papIAcId e 8sn pue
‘lood u0YAULOI BY) WO UORIBULOI B Jsanbal ueo suonealdde alemyos uBisym ‘jood
UORO3UUOI B Ul $}93((0 UORIBUU0I JO 3SN PUB UOREBII By} S|I0AUOI ey} apoo welboud
10 2160] |00d UOI}O3UUOD B ‘JUBLIUOIIAUS SSEgRIeP 10 JaAIaS uoneljdde ue je ‘apinoid

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/045283
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F9/50 HO4L29/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F HOA4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X Nicolas Michael ET AL: "Downtime-Free Live 1-21
Migration in a Multitenant Database"
In: "Network and Parallel Computing",
1 January 2015 (2015-01-01), Springer
International Publishing, Cham 032548,
XP055417846,
ISSN: 0302-9743
ISBN: 978-3-642-27168-7
vol. 8904, pages 130-155, DOI:
10.1007/978-3-319-15350-6 9,
page 6 - page 7
A US 6 199 110 B1 (RIZVI HASAN [US] ET AL) 1-21
6 March 2001 (2001-03-06)
the whole document
A US 2013/066955 Al (NEEL KEVIN S [US] ET 1-21
AL) 14 March 2013 (2013-03-14)
the whole document

See patent family annex.

D Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

25 October 2017

Date of mailing of the international search report

07/11/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Alecu, Mihail

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/045283
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6199110 Bl 06-03-2001 NONE
US 2013066955 Al 14-03-2013 CN 103782573 A 07-05-2014
EP 2754283 Al 16-07-2014
EP 2903239 Al 05-08-2015
US 2013066955 Al 14-03-2013
US 2014229531 Al 14-08-2014
US 2015326673 Al 12-11-2015
WO 2013036882 Al 14-03-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report

