(54) Titre : SYSTEME DE DISTINCTION DE DOCUMENTS ET METHODE CONNEXE
(54) Title: DOCUMENTS DISCRIMINATION SYSTEM AND METHOD THEREOF

(57) Abrégé/Abstract:
A computer-readable medium including computer-executable instructions for performing a method of discriminating documents is provided, the method comprising displaying a first array of documents, receiving instructions from the selection of an attribute associated with at least one document, displaying a second array of documents grouping documents having the selected attribute, and displaying documents associated with the selected attribute with a graphical discriminating feature. A method, a system and an graphical user interface providing same is also provided.
ABSTRACT

A computer-readable medium including computer-executable instructions for performing a method of discriminating documents is provided, the method comprising displaying a first array of documents, receiving instructions from the selection of an attribute associated with at least one document, displaying a second array of documents grouping documents having the selected attribute, and displaying documents associated with the selected attribute with a graphical discriminating feature. A method, a system and an graphical user interface providing same is also provided.
DOCUMENTS DISCRIMINATION SYSTEM AND METHOD THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

FIELD OF THE INVENTION

[02] This invention relates generally to a computer system and more specifically to a user interface providing methods that facilitate information management and organization. More precisely, the present invention relates to document discriminating features used during management and organization of documents.

BACKGROUND OF THE INVENTION

[04] For instance, one of the deficiencies becomes apparent when a first array of documents presents a group of documents having various attributes (or tags, categories...) associated therewith. When selecting an attribute, either
by selecting the attribute, or a document to select an attribute associated
therewith, a second array of documents is enabled and displayed. The second
array of documents, being either displayed non-parallel or parallel with the first
array of documents, groups documents from the first array of documents
having the selected attribute in common. Some documents from the first array
of documents associated with the selected attribute will therefore appear a
second time on the second array of documents. Displaying many times the
same documents on different arrays of documents might be confusing for a
user.

[05] Another deficiency becomes apparent when a user wants to infer the
attribute(s), value or the status of a document just by seeing a document. A
document can be associated with a color associated therewith, however, the
information transmitted by a color is not enough to properly translate more
complex status or value of a document.

[06] The meaning of a color or a pattern associated with a document is
arbitrary. It might be desirable to use a color and a pattern that are already
known in a complete non-analogous field and use the color and the pattern
with documents to reduce the effort required to understand the meaning
inferred by colors and patterns associated with documents.

[07] Another deficiency becomes apparent when attributes, or tags, are
used to categorize documents according to subjects, topics, categories or other
means for linking to documents additional related information or documents.
Attributes are associated with documents to categorize the documents and
create a link among documents sharing the same attribute. This could be
called a first-degree relationship. Thus, attributes are used to retrieve
documents associated therewith. So, by selecting an attribute it is possible to
retrieve the documents having the selected attribute associated therewith.

[08] In certain circumstances it could be useful to draw a link between
two documents, inter alia, that don’t share a common attribute. It is therefore
desirable to have a way to connect one document to another document despite
they are not sharing any common attributes.
Another deficiency becomes apparent when multiple attributes are associated with documents. It can easily become time consuming to individually associate a plurality of attributes with documents.

One other deficiency becomes apparent when multiple attributes having substantially similar meaning are used. A query based on a specific attribute is unlikely to retrieve documents associated with another attribute despite the other attribute has a substantially similar meaning.

The prior art computer systems or computer interfaces have not provided solutions to deal with the aforementioned deficiencies and each of these deficiencies in the prior art yield a demand for an improved information managing system and method using an intuitive and natural way to visually present information as well as improved ways to manage associations between the documents.

SUMMARY OF THE INVENTION

The following presents a simplified summary of the disclosure in order to provide a basic understanding to the reader. This summary is not an exhaustive or limiting overview of the disclosure. The summary is not provided to identify key and, or critical elements of the invention, delineate the scope of the invention, or limit the scope of the invention in any way. Its sole purpose is to present some of the objects and aspects disclosed in a simplified form, as an introduction to the more detailed description that is presented later.

The word "document" is used throughout the present specification to facilitate its readability. It is nonetheless not intended to restrict or limit the scope of the present specification to documents. The present specification is mainly directed to computer systems and provides improvements that are useable for managing documents, electronic documents, menu items, application windows and other user-selectable elements displayed on a user graphical interface. The applicant therefore reserves the rights to define claimed subject matters to, *inter alia*, the above identified elements that could be represented on a user-graphical interface.
The present specification refers to “arrays of documents” although arrays of documents can have various forms. In an embodiment the array of documents can have a substantially linear shape disposing documents along a timeline. In another possible embodiment the array can be a curved line along which documents are displayed. Alternatively, the array can dispose documents on a matrix having a plurality of columns and rows.

Methods of managing information and graphical user interfaces are carried on by computer-readable instructions that are enabled on a computer. Nowadays computers are used everywhere; they come in various shapes and devices. Computers are so popular, *inter alia*, because they transform into a variety of dedicated purpose computers depending on the instructions they use. *De facto*, a general purpose computer is of little help until it has dedicated useful instructions defining its functioning. Once it uses dedicated instructions defining its functions, the dedicated purpose computer is adapted to manage data, to transform graphical rendering of information, to exchange data, in other words the computer using dedicated instructions is material in the transformation of data, the management of the process of transformation and the graphical representation of the process of transformation and the result of the process of transformation for a user to appreciate and, possibly, act upon.

It is therefore one object of the present specification to improve at least one of the aforementioned deficiencies.

One object of the present specification provides an improved method for managing information on a computer system.

Another object of the present specification provides an improved user graphical user interface for managing information.

One other object of the present specification provides an improved computer system adapted to manage information.

An object of the present specification provides an improved graphical representation of documents that appears on more than one array of documents.
Another object of the present specification provides an improved graphical document representation capable of providing additional meaning associated therewith.

One other object of the present specification provides a method for drawing links between documents that don’t commonly share an attribute.

It is one aspect of the specification to provide a discriminative visual feature to documents from a first array of documents that will also be displayed on the second array of documents when displaying the second array of documents.

An aspect of the present specification provides a discriminative visual feature for identifying which documents from a first array of documents will be copied on a second array of documents so that it becomes apparent for a user that the same document is displayed simultaneously more than one time to prevent confusion.

An aspect of the present specification provides a discriminative visual feature adapted to identify documents displayed on a first array of documents that will also be displayed on a second array of documents. The discriminative visual feature being enabled either 1) before the second array of documents is displayed, 2) at the same time the second array of documents is displayed or 3) after the second array of documents is displayed.

One aspect of the present specification provides a discriminative visual feature that is, individually or in combination, a document color, a document texture, a document frame, a document animation or a transition animation applied to the documents present on both the first array of document and the second array of documents.

Another aspect of the present specification provides an animation adapted to illustrate copying of documents into document copies to be displayed on other arrays of documents. The copying being preferably shown simultaneously when the additional arrays of documents are displayed.
It is one object of the present specification provides a plurality of pattern codes adapted to be associated with documents. Each of the pattern code has a meaning associated therewith allowing a viewer to infer the meaning associated with the pattern that is combined with a document.

An additional object of the specification provides a method to associate attributes with color codes and/or pattern codes adapted to be applied to documents.

One additional object of the present invention provides color codes and/or pattern codes that are adapted to be associated with attributes, an association of a specific arrangement of color codes and/or pattern codes being associated to more than a single attribute.

One aspect of the present specification provides a graphical pattern code providing attribute-related meaning to a document to which it is associated so that a viewer can infers the attribute associated therewith without reading the attributes when seeing the document.

Another aspect of the present specification provides color codes and pattern codes that are analogous to colors and patterns distinguishing values of poker chips (or token).

An aspect of the present specification provides document quantification associated with a color code and/or a pattern code that is analogous to poker chips values.

Another aspect of the present specification provides a set of color codes and/or a set of pattern codes associated with incremental values; each of the color codes and each of the pattern codes being adapted to be associated, individually or collectively, with documents to graphically illustrate the value of each document.

One aspect of the present specification provides an icon size, a thumbnail size and a document size representing one document over various strength of zoom; each of the icon size, the thumbnail size and the document
1 size being adapted to illustrate a color code and/or a pattern code adapted to
2 its respective size.
3 [36] Another aspect of the present specification provides a color code
4 and/or a pattern code associated with an attribute, the color code and/or the
5 pattern code being adapted to be graphically associated with documents
6 associated with the attribute in a way that an observer can infer which
7 attribute is associated with a document without reading.
8 [37] One other aspect of the present specification provides a color code
9 and/or a pattern code adapted to use, *inter alia*, a main color, a secondary
10 color, a main shape and a secondary shape in association with attributes that
11 can be associated with documents.
12 [38] An additional aspect of the specification provides a value associated
13 with color codes and/or pattern codes applied to documents. Variations in
14 colors or in patterns meaning variation in value.
15 [39] One object of the invention is to group at least two attributes/values,
16 used to categorize documents together, when the at least two
17 attributes/values are considered to be analogous, to use the group of
18 attributes/values in a search despite the at least two attributes/values are not
19 selected by a user to perform the search.
20 [40] An aspect of the present specification provides the ability to group a
21 plurality of attributes/values having analogous meaning and to use one
22 attribute/value from the group of attributes/values to generate a search that
23 will also automatically consider the other attributes/values from the group of
24 attributes/values in the search.
25 [41] One aspect of the specification provides a method to associate a
26 plurality of attributes/values together such that a single-attribute/value based
27 search performed by a user also provides search results also having the
28 remaining attributes/values of the plurality of attributes/values.
29 [42] Another aspect of the specification provides a visual distinctive
30 feature adapted to be associated with attributes/values that are in a group of
associated attributes/values so that they are discriminated in a list of
attributes/values.

[43] One other aspect of the present invention provides sharing of group
of attributes among users.

[44] One object of the specification provides a group of attributes/values
adapted to be offered to a user when a document in inserted in a database;
the attributes/values can be deleted, modified and other attributes/values can
be added to the document when the group of attributes/values is offered.

[45] Another object of the specification is to reduce the time required to
properly associate attributes/values to documents by providing a group of
attributes/values instead of selecting each relevant attributes/value
independently.

[46] One other object of the specification provides at least one master
attribute/value a group of attributes/values; the group of attributes/values
being offered to the user when one of the at least one master attribute/value is
selected to be associated with the a document.

[47] An aspect of the specification provides a dialogue on a user graphical
interface adapted to display a group of attributes/values potentially relevant to
a document when the document is categorized.

[48] Another aspect of the specification provides a mechanism in a
computer system adapted to propose to a user groups of potentially relevant
attributes/values to be associated with documents; the selected group of
potentially relevant attributes/values proposed to a user being based on the
selection of a master attribute.

[49] One another aspect of the specification provides a plurality of master
attributes in a same group of attributes/values, a selection of each of the
master attributes enabling the display of a dialogue containing the group of
attributes/values.

[50] Another aspect of the specification provides access and/or sharing
rights of each group of attributes.
One object of the specification provides a means for associating documents having no common attributes.

An aspect of the present specification provides attributes and bridge attributes (indirect attribute) associable with a document.

Another aspect of the specification provides an interface capable of displaying a document associated with attributes (direct attributes) and/or associated with bridge attributes (indirect attributes). The direct attributes categorizing the document, and the bridge attributes, not categorizing the document but categorizing another document, provides a bridge to the other document(s) from the document.

An aspect of the present specification provides a graphical association between a bridge attribute and a document.

One other aspect of the present specification provides a bridge between a document and a related document not sharing the same attributes.

Another aspect of the present specification provides instructions to a computer system to associate an attribute and a bridge attribute to a document.

Another aspect of the present specification provides instructions to a computer system to access a first document from a second document by selecting a bridge attribute associated with the first document and not categorizing the second document, the bridge attribute being an attribute categorizing the first document.

These and other advantages and features of the present invention will become apparent from the following description and the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of an exemplary computer network;

FIG. 2 illustrates a block diagram of an exemplary computer network;

FIG. 3 illustrates a block diagram of an exemplary computer system;
FIG. 4 illustrates a schematic exemplary embodiment of non-parallel arrays of documents with emphasis added on repeating documents thereon;
FIG. 5 illustrates a schematic exemplary embodiment of substantially parallel arrays of documents with emphasis added on repeating documents thereon;
FIG. 6 illustrates an exemplary poker token;
FIG. 7 illustrates an exemplary icon representing a document with color-coding thereon;
FIG. 8 illustrates an exemplary thumbnail representing a document with color-coding thereon;
FIG. 9 illustrates an exemplary document with color-coding thereon;
FIG. 10 illustrates an exemplary block diagram of documents with attributes associated therewith;
FIG. 11 illustrates an exemplary of associated attributes;
FIG. 12 illustrates an exemplary query using associated attributes, despite a single attribute has been selected, to build the query and provide results;
FIG. 13 illustrates an exemplary block diagram of a module-based system adapted to manage and use grouped attributes;
FIG. 14 illustrates an exemplary flow chart of steps performed during the creation of a group of attributes;
FIG. 15 illustrates an exemplary flow chart of steps performed during the association of attributes from a group of attributes with a document(s);
FIG. 16 illustrates an exemplary block diagram of a master attribute adapted to associated its related group of attributes with a document;
FIG. 17 illustrates an exemplary block diagram of a plurality of attributes from a group of attributes associated with a document;
FIG. 18 illustrates an exemplary dialogue adapted to allow the management of a group of attributes;
FIG. 19 illustrates an exemplary dialogue adapted to allow the management of access rights related to groups of attributes;
FIG. 20 illustrates an exemplary block diagram of a module-based system adapted to manage and use bridge attributes;
FIG. 21 illustrates an exemplary flow chart of steps performed to associate
direct and bridge attributes to document(s);
FIG. 22 illustrates an exemplary flow chart of steps performed to retrieve
documents based, at least in part, on direct and bridge attributes to
document(s);
FIG. 23 illustrates a list of attributes;
FIG. 24 illustrates two documents with one respective attribute associated
therewith;
FIG. 25 illustrates two documents of FIG. 23 with bridge attribute E associated
with document (1);
FIG. 26 illustrates a plurality of documents with respective attributes
associated therewith;
FIG. 27 illustrates the plurality of documents of FIG. 25 with bridge attributes
E and F associated with document (1); and
FIG. 28 illustrates the plurality of documents of FIG. 26 with additional bridge
attributes associated with documents (1), (2) and (3).

DESCRIPTION OF EMBODIMENT(S) OF THE INVENTION

[59] The present invention is now described with reference to the figures.
In the following description, for purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the
present invention by way of embodiment(s). It may be evident, however, that
the present invention may be practiced without these specific details. In other
instances, well-known structures and devices are shown in block diagram form
in order to facilitate describing the present invention.

[60] The features provided in this specification mainly, but might not
exclusively, relate to principles of computer software and machine-readable
code/instructions adapted to instruct a computer, many computers or other
machines adapted to use the instructions to provide material effects on a
display, or other means enabling human-computer interactions to manage
documents, menus, user-selectable elements and other computer files. These
code/instructions are preferably stored on a machine-readable medium to be
read and acted upon to with a computer or a machine having the appropriate
code/instructions reading capability.

[61] Exemplary Network

[62] Fig. 1 illustrates an exemplary network 10 in which a system and a
method, consistent with the present invention, may be implemented. The
network 10 may include multiple client devices 12 connected to multiple
servers 14, 16, 18 via a network 20. The network 20 may include a local area
network (LAN), a wide area network (WAN), a phone network, such as the
Public Switched Phone Network (PSTN), an intranet, the Internet, Wi-Fi,
WiMAX or a combination of networks. Two client devices 12 and three servers
14, 16, 18 have been illustrated as connected to network 20 for simplicity. In
practice, there may be more or less client devices and servers 14, 16, 18. Also,
in some instances, a client 12 device may perform the functions of a server 14,
16, 18 and a server 14, 16, 18 may perform the functions of a client 12 device.

[63] The client devices 12 may include devices, such as mainframes,
minicomputers, personal computers, laptops, personal digital assistants,
phones, or the like, capable of connecting to the network 20. The client devices
12 may transmit data over the network 20 or receive data from the network 20
via a wired, wireless, or optical connection.

[64] The servers 14, 16, 18 may include one or more types of computer
system, such as a mainframe, minicomputer, or personal computer, capable of
connecting to the network 20 to enable servers 14, 16, 18 to communicate
with the client devices 12. In alternative implementations, the servers 14, 16,
18 may include mechanisms for directly connecting to one or more client
devices 12. The servers 14, 16, 18 may transmit data over the network 20 or
receive data from the network 20 via a wired, wireless, or optical connection.
[65] In an implementation consistent with the present invention illustratively embodied herein, the server 14 may include a search engine 22 usable by the client devices 12. The servers 14, 16, 18 may store documents, such as web pages, accessible by the client devices 12.

[66] With reference to Fig. 2, a network 20 includes the content cloud 30, a content database 32, content devices 34-38, and other devices 40-48. The network mediator 28 enables network devices 32-48 to communicate with each other without pre-configuring each device. The content cloud 30 represent a content source such as the Internet, where content exists at various locations across the globe that could be reached through a wired connection and/or with a wireless connection. The content includes multimedia content such as audio and video. The mediator 28 allows the content cloud to provide content to devices 34-48. The content database 32 is a storage device that maintains content. The content database 32 may be a stand-alone device on an external communication network. The mediator 28 communicates with the content database 32 to access and retrieve content. The content devices 34-48 include intelligent devices, such as, for example, personal computers, laptops, cell phones and personal digital assistants. The content devices 34-48 are capable of storing content data. The devices 34-48 are intelligent devices that receive content from other content devices 30-48. However, the devices 30-48 can also operate as servers to distribute content to other client devices.

[67] Exemplary Client Architecture

[68] The following discussion provides a brief, general description of an exemplary computer apparatus in which at least some aspects of the present invention may be implemented. The present invention will be described in the general context of computer-executable instructions, such as program modules, being executed by a computerized device. However, the methods of the present invention may be affected by other apparatus. Program modules may include routines, programs, objects, components, data structures,
applets, WEB 2.0 type of evolved networked centered applications, etc. that perform a task(s) or implement particular abstract data types. Moreover, those skilled in the art will appreciate that at least some aspects of the present invention may be practiced with other configurations, including hand-held devices, multiprocessor system, microprocessor-based or programmable consumer electronics, network computers, minicomputers, set top boxes, mainframe computers, gaming console and the like. At least some aspects of the present invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices linked through a communications network as exemplified in Fig. 2. In a distributed computing environment, program modules may be located in local and/or remote memory storage devices.

[69] With reference to Fig. 3, an exemplary apparatus 100 for implementing at least some aspects of the present invention includes a general purpose computing device in the form of a computer 120 or in the form of a computerized portable apparatus. The computer 120 may include a processing unit 121, a system memory 122, and a system bus 123 that couples various system components, including the system memory 122, to the processing unit 121. The system bus 123 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The system memory may include read only memory (ROM) 124 and/or random access memory (RAM) 125. A basic input/output system 126 (BIOS), containing basic routines that help to transfer data between elements within the computer 120, such as during start-up, may be stored in ROM 124. The computer 120 may also include a hard disk drive 127 for reading from and writing to a hard disk, (not shown), a magnetic disk drive 128 for reading from or writing to a (e.g., removable) magnetic disk 129, and an optical disk drive 130 for reading from or writing to a removable (magneto) optical disk 131 such as a compact disk or other (magneto) optical media. The hard disk drive 127, magnetic disk drive
128, and (magneto) optical disk drive 130 may be coupled with the system bus
123 by a hard disk drive interface 132, a magnetic disk drive interface 133,
and a (magneto) optical drive interface 134, respectively. The drives and their
associated storage media provide nonvolatile (or persistent) storage of
machine readable instructions, data structures, program modules and other
data for the computer 120. Although the exemplary environment described
herein employs a hard disk, a removable magnetic disk 129 and a removable
optical disk 131, these skilled in the art will appreciate that other types of
storage media, such as magnetic cassettes, flash memory cards, digital video
disks, Bernoulli cartridges, random access memories (RAMs), read only
memories (ROM), remote cloud storage and the like, may be used instead of,
or in addition to, the storage devices introduced above.

A number of program modules may be stored on the hard disk 127,
magnetic disk 129, (magneto) optical disk 131, ROM 124 or RAM 125, such as
an operating system 135 (for example, Windows® NT. RTM. 4.0, sold by
Microsoft® Corporation of Redmond, Wash.), one or more application
programs 136, other program modules 137 (such as "Alice", which is a
research system developed by the User Interface Group at Carnegie Mellon
University available at www.Alice.org, OpenGL from Silicon Graphics Inc. of
Mountain View Calif., or Direct 3D from Microsoft Corp. of Bellevue Wash.),
and/or program data 138 for example.

A user may enter commands and data into the computer 120 through
input devices, such as a keyboard 140, a camera 141 and pointing device 142
for example. Other input devices (not shown) such as a microphone, joystick,
game pad, satellite dish, scanner, a touch sensitive screen, accelerometers
adapted to sense movements of the user or movements of a device, or the like
may also be included. These and other input devices are often connected to
the processing unit 121 through a serial port interface 146 coupled to the
system bus. However, input devices may be connected by other interfaces,
such as a parallel port, a game port, blue tooth connection or a universal serial
bus (USB). For example, since the bandwidth of the camera 141 may be too
great for the serial port, the video camera 141 may be coupled with the
system bus 123 via a video capture card (not shown). The video monitor 147
or other type of display device may also be connected to the system bus 123
via an interface, such as a video adapter 148 for example. The video adapter
148 may include a graphics accelerator. One or more speaker 162 may be
connected to the system bus 123 via a sound card 161 (e.g., a wave table
synthesizer such as product number AWE64 Gold Card from Creative® Labs of
Milpitas, Calif.). In addition to the monitor 147 and speaker(s) 162, the
computer 120 may include other peripheral output devices (not shown), such
as a printer, a hi-definition television and a scanner for example. As an
alternative or an addition to the video monitor 147, a stereo video output
device, such as a head mounted display or LCD shutter glasses for example,
could be used.

[72] The computer 120 may operate in a networked environment which
defines logical connections to one or more remote computers, such as a
remote computer 149. The remote computer 149 may be another computer, a
server, a router, a network PC, a peer device or other common network node,
and may include many or all of the elements described above relative to the
computer 120. The logical connections depicted in Fig. 3 include a local area
network (LAN) 151 and a wide area network (WAN) 152, an intranet and the
Internet.

[73] When used in a LAN, the computer 120 may be connected to the LAN
151 through a network interface adapter (or "NIC") 153. When used in a WAN,
such as the Internet, the computer 120 may include a modem 154 or other
means for establishing communications over the wide area network 152 (e.g.
Wi-Fi, WinMax). The modem 154, which may be internal or external, may be
connected to the system bus 123 via the serial port interface 146 or another
type of port interface. In a networked environment, at least some of the
program modules depicted relative to the computer 120 may be stored in the
remote memory storage device. The network connections shown are
exemplary and other means of establishing a communications link between the
computers may be used.

[74] Visual Document Attribute Discrimination
[75] Referring to Figure 4, is illustrated a first array of documents 200
comprising a group of documents 202, 204, 206, 208, 210, 212, 214, 216,
218, 220, 222 disposed along a chronological order 230 on a graphical user
interface adapted to manage documents.
[76] Each document is associated with related attributes or tags, or
keywords. In the present embodiment, each attribute is illustratively
represented with a capital letter A, B, C, D or E. An attribute is selected, most
likely by a user, from all the attributes associated with at least one of the
documents present on the first array of documents 200. For instance, attribute
E is selected. Documents 206, 212, 216, 220, 222 are illustratively associated
with the selected attribute (i.e. attribute E). The document from which
attribute E is selected acts as intersecting document. Alternatively, another
document could be used as intersecting document although it makes sense to
use the document from which the attribute has been selected.
[77] Thus, attribute E is selected and document 212 is the intersecting
document intervening between both arrays of documents 200, 300. The
intersecting document 212 is located at the intersection of both arrays of
documents 200, 300 to graphically put emphasis on the relationship between
both arrays of documents 200, 300. A bold frame 240 or other visually
discriminating element, optionally, illustrates that the selected attribute has
been selected from this particular document 212.
[78] The second array of documents 300 is created, simultaneously or
consecutively with the display of the first array of documents 200, showing the
documents from the first array of documents 200 that have the selected
attribute E associated therewith. In other words, documents 206, 212, 216,
220 and 222 are search results obtained with the query "attribute E" disposed
on the second document array 300 along the chronological order 232. As it can be appreciated, documents 206, 212, 216, 220 and 222 are copied on both arrays of documents 200, 300 where document 206 is copied and shown as document 302, document 212 is copied as document 304 (the same document used as intersecting document 212 therefore used a single time by both arrays of documents 200, 300), document 216 is document 306, document 220 is document 308 and document 222 is document 310.

[79] Since documents 206, 216, 220, 222 are copied on both arrays of documents 200, 300 it could be confusing for a user to see the same documents 206, 216, 220 and 222 displayed at two different places, e.g. displayed on both array of documents 200 and array of documents 300. Or, it could be useful to a user to see where is copied a document of interest.

[80] In order to identify and discriminate the documents on the first document array 200 that will be found on the second array of documents 300, a discrimination visual feature 250 is applied to the documents 206, 212, 216, 220, 222 and similarly applied to the documents 302, 304, 306, 308, 310 displayed on the second array of documents 300. In the present situation the illustrative discriminative visual feature darkens 250 the relevant documents as shown on Figure 4. The discriminative visual feature 250 assists an observer, or a user of the system, to infer which documents from the first array of documents 200 will also appear on the second array of documents 300 and where it will appear so that a quick relation can be established between the duplicated documents 206, 216, 220 and 222. Document 212 is a special case and is darken 250 for a reason of consistency despite it is not duplicated for obvious reasons.

[81] It might be desirable that the discriminating visual feature 250 be applied (or enabled) to the documents having the attribute E associated therewith on the first array of documents 200, then, display the second array of documents 300 with the duplicated documents 206, 216, 220 and 222. Then, enable the discriminating visual feature to be displayed with documents 302, 304, 306, 308, 310 on the second array of documents 300.
[82] The discriminating visual feature 250 can appear for a limited lapse of time at the moment the second array of documents 300 is displayed so that an observer, or a user, could see which documents from the first array of documents 200 will also appear on the second array of documents 300. The discriminating visual feature 250 will disappear after a pre-selected delay is expired. Conversely, discriminating visual features 250, such as a document color, a document frame and a document texture applied to the documents to be duplicated, can remain associated with the subject documents as long as the second array of documents 300 is displayed. Conversely, the discriminating visual features 250 can remain visible for a predetermined amount of time and then disappear.

[83] The discriminating visual feature 250 could be a color applied to the documents, a border around the documents, animations, an alteration of a portion of the documents, an animation showing a movement 260 of each documents having the E attribute from the first array of documents 200 to their respective position on the second array of documents 300. The display of the discriminating visual feature 250 can be made with an animation 260 literally moving, or copying, documents 206, 216, 220, 222 from the first array of documents 200 to their respective locations on the second array of documents 300.

[84] Any visual means capable of discriminating the documents from a user point of view so that the user can see which documents from the first array of documents 200 will be, or is, duplicated on the second array of documents 300 is encompassed by the present specification. Also, more than two arrays of documents can be involved into the use of the discriminating visual features.

[85] Referring now to Figure 5 where are provided three parallel arrays of documents 330, 340, 350. The first array of documents 330 displays a group of documents 332 having a respective selection of attributes A, B, C, D, E and F associated therewith. Attribute E, in relation with all attributes associated with the first array of documents 330 or in relation with a particular document
from the first array of documents 330 or from a list of attributes is selected
and leads to the creation of array of documents 340 displaying only documents
having the attribute E. The discriminating visual feature 250 is applied so that
an observer, or a user, would see which documents from the first array of
documents 330 are associated with the attribute E and are to be duplicated on
the second array of documents 340 when the attribute E is selected and the
second array of documents 340, displaying only the documents 334, 336, 338
associated with the attribute E, is created and displayed. As explained above,
but this time in respect to substantially parallel arrays of documents, this
application of discriminating visual feature 250 helps preventing any confusion
occurring with the duplication of a number of documents. The second array of
documents 340, thus, displays a group of documents 342 having the attribute
E in common.

[86] The same principle is applied to the third array of documents 350
that displays a group of documents 352, 354, 356 having the attribute F in
common. A logic similar to the logic described in respect with attribute E
applies here where a discriminating visual feature 252 put a X on the
documents having the attribute F that will be duplicated on the third array of
documents 350 grouping the documents having the attribute F in common.
Similarly discriminating visual feature 252 marks the documents having the
attribute F that are displayed on the third array of documents 350 grouping the
documents having the attribute F in common.

[87] Here again, the application of the discriminating visual feature 352
can be made with an animation 260 clearly moving, or copying, documents
352, 354, 356 from the first array of documents 330 to their respective
locations on the third array of documents 352.

[88] The illustrative embodiments presented herein are presenting three
arrays of documents 330, 340, 350. However, the present specification does
not intend to limit the number of arrays displayed consecutively or
simultaneously.
[89] Document Color Coding

As mentioned above, discriminative visual features 250, 252 are useful to distinguish documents from other documents that do not share some specific attribute, or tag, or key word.

[91] Documents can be reduced and magnified in size according to the number of documents desired to be seen at one time on a display. When the document is too small to appreciate its details it is convenient to use colors, shapes and patterns associated to different meanings, attributes and/or tags so that a viewer can infer the associated meaning without having to magnify the document. More than one attribute can be represented by an arrangement of shape and colors. Various colors, shapes and patterns could be used and the scope of the present application does not intend to limit their possible variations.

[92] It is desirable be inspired by color and pattern coding associated with something already well known in a non-analogous field to represent one attribute of a combination of attributes. One possible option is to see what is done in the field of poker where colors and patterns are used to distinguish the chips used in the game as opposed to real money. The colors and patterns are intended to be easily recognizable a chip's value when the chip is seen from its face and from its side without reading the actual writing on it.

[93] Typically colors found in home sets of poker chips include red, white, blue and sometimes black; however, more recently a wide assortment of colors has become readily available.

[94] $2.50 chips are almost exclusively used for blackjack tables, since a "natural" (a 21 on the first two cards dealt to a player) typically pays 3:2 and most wagers are in increments of $5. However, the Tropicana Casino in Atlantic City, New Jersey has used pink chips in $7.50-$15 and $10-$20 poker games. Low-denomination yellow chips can vary in value: $20 by statute in Atlantic City and Illinois (which also uses "mustard yellow" $0.50 chips); $5 at most Southern California poker rooms; $2 at Foxwoods' poker room in Ledyard, Connecticut and at Casino del Sol in Tucson, Arizona; and $0.50 at
Potawatomi Casino in Milwaukee, Wisconsin. Blue chips are occasionally used for $10, most notably by statute in Atlantic City. In Las Vegas and California, most casinos use blue or white for $1 chips, though many Vegas tables now use $1 metal tokens in lieu of chips. Many casinos have coinless slot machines, and this practice reduces costs by limiting $1 chips to the craps tables, where such chips are necessary.

Chips are commonly available in $1000 denominations, depending on the wagering limits of the casino in question. Such chips are often yellow or orange and of a large size. Las Vegas, Atlantic City, and other areas, which permit high wagers typically, have chips available in $5,000, $10,000, $25,000, and higher denominations; the colors for these vary widely.

European casinos use a similar scheme, though certain venues (such as Aviation Club de France) use pink for €2 and blue for €10. European casinos also use plaques rather than chips for high denominations (usually in the €1000 and higher range).

In many places, gaming boards regulate the color and size of casino chips for consistency. All states require that casino chips have a unique combination of edge (e.g. side) spots for identification, the name and location of the casino and the chip's value, if any, impressed, printed, or molded onto the obverse and reverse of the token. Notably, Nevada has no regulations on color; this is why Nevada casinos may use white, blue, or gray as $1, though $5 and higher are almost always consistently colored.

Referring to Figure 6, The color and shape used on poker chips 400 are distinguishable when the chip is seen from its face 402 and from its side 404.

A possible standard, for example, could use the following color-coding scheme illustrated in Table 1.
Poker chips 400 colors 406, 408 and shape 412 values

<table>
<thead>
<tr>
<th>Denomination</th>
<th>Main color 406</th>
<th>Secondary color 408 and secondary shape 412</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.50</td>
<td>Dark yellow</td>
<td>None</td>
</tr>
<tr>
<td>$1</td>
<td>White</td>
<td>None</td>
</tr>
<tr>
<td>$2.50</td>
<td>Pink</td>
<td>Round black</td>
</tr>
<tr>
<td>$5</td>
<td>Red</td>
<td>Square yellow</td>
</tr>
<tr>
<td>$10</td>
<td>Blue</td>
<td>Round white</td>
</tr>
<tr>
<td>$20</td>
<td>Bright yellow</td>
<td>Square black</td>
</tr>
<tr>
<td>$25</td>
<td>Green</td>
<td>Round yellow</td>
</tr>
<tr>
<td>$100</td>
<td>Black</td>
<td>Square white</td>
</tr>
<tr>
<td>$500</td>
<td>Purple</td>
<td>Rectangle white</td>
</tr>
<tr>
<td>$1000</td>
<td>Fire orange</td>
<td>Lozenge black</td>
</tr>
<tr>
<td>$5000</td>
<td>Gray</td>
<td>Triangle red</td>
</tr>
</tbody>
</table>

Table 1

[100] The denomination is the actual value of the chip 400. The main color 406 is used on a portion of the circumference of the chip 400 so that is can be consistently appreciated when seen from the face 402 and from the edge/side 404. Figure 6 is depicting a possible main color 406 and main shape 410 but other shapes/patterns are considered within the scope of the present specification. The secondary color 408 appears in a secondary shape 412 consistently visible from the face view 402 and from the side view 404 in a contrasting color portion 414 (in the present example it is black). In the present example the secondary shape is a circle but it could be any other recognizable shape, e.g. square, triangle, oval, hexagon, diamond, spade, heart, skull, flag, clubs or a letter/number.

[101] The application of a color and pattern code on documents could be defined as follow in Table 2 for illustrative purpose.
<table>
<thead>
<tr>
<th>Main color</th>
<th>Importance</th>
<th>Secondary color</th>
<th>Delay</th>
<th>Secondary shape</th>
<th>Document type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Low</td>
<td>Green</td>
<td>Prospective</td>
<td>Square</td>
<td>Email</td>
</tr>
<tr>
<td>Orange</td>
<td>Medium</td>
<td>Orange</td>
<td>In time</td>
<td>Circle</td>
<td>Text</td>
</tr>
<tr>
<td>Red</td>
<td>High</td>
<td>Red</td>
<td>Urgent</td>
<td>Rectangle</td>
<td>Webpage</td>
</tr>
</tbody>
</table>

				Heart	Picture
				Lozenge	Not assigned
				Triangle	Not assigned

Table 2

4 [102] Referring to Figure 7 is shown an icon 422 representing a document 420. The icon 422 is a small representation of a document 420 used when the document would be shown too small for perceiving the details of the actual document 420. For this reason the color and pattern coding take illustratively all the area on the icon 422. The main color 424 is illustratively disposed on the periphery of the icon 422 while the secondary color 426 is displayed in cooperation with the secondary shape 430. Again, the secondary color 426 and secondary shape 430 are disposed in a contrasting portion 432.

4 [103] Still on Figure 7, for example, if the main color 424 is illustratively orange, the secondary color 426 is illustratively orange and the secondary shape 430 is illustratively round. According to Table 2, the attributes associated with the main color 424, the secondary color 426 and the secondary shape 430 of document 420 infer that it is a "text document" that is of "medium importance" and dealt with "in time". This way, with a simple look

24
over documents, it is possible to retrieve the "urgent documents" 420 by
finding the documents having a secondary color 426 that is "red".

[104] Figure 8 illustrates the same document in a thumbnail size 438
where it is possible to see the text document in much smaller size than the
actual real life document size 440. The colors 424, 426 and the shape 430 are
illustratively identified on the bottom of the thumbnail document 438 to limit
the interference with the visible portion of the document 420.

[105] Figure 9 illustrates the actual document 420 in a real life size 440,
on or magnified size, so that it is possible to read the text of the document. In
this case the colors 424, 426 and the shape 430 are applied on the
circumference of the document 420 not to hide the document 420 itself.

[106] Shapes and colors can be shared among users. The actual layout
of the main color 420, the secondary color 426 and the secondary shape 430
on the document 420 are for illustrative purpose and could be changed while
keeping the same spirit and without departing from the present specification.

[107] Associated Attributes

[108] As identified above, attributes, tags or key words are used to
categorize and discriminate documents. The use of several attributes is
desirable to properly classify documents with as many different attributes as
necessary. This is probably workable without too much difficulty if there is a
single user classifying its own documents with its own set of attributes,
although it might not. When documents are exchanged among a plurality of
users it becomes more difficult to keep a clear list of attributes since a user has
to consider the attributes created by other users.

[109] One possible issue arises when doing a search among documents.
For instance, two (or more) attributes from different users (or perhaps a single
user) can substantially share the same meaning. If only one attribute is
selected to build the search query only the documents associated with this
particular attribute will be presented as results. In other words all relevant
documents associated to like attributes in meaning (but literally different attributes) will not be retrieved despite they could be relevant.

A way to fix this would be to change attributes on documents provided or shared by others. One can imagine that this process would be painful and time consuming. Realistically it would not be possible to do such an up-date to documents. Even if this was possible it would risk to created such a mess with shared documents that would then appear to have different attributes for each user.

An embodiment of the present specification provides associated attributes. An associated attribute is, like it says, associated with another attribute so that when an attribute is selected the associated attribute is considered as well.

Two documents (1), (2), 450, 452 are illustrated on Figure 10 with respective associated attributes 454, 456. For example, if attribute A is selected to retrieved documents associated therewith, only document 1 would be retrieved as a result. There is no similar attribute with document 2 that is shared by another user because the document (2) 452 is categorized with the other user’s attributes. The search would fail to provide all relevant results if attribute A of our user is equivalent in sense to attribute G of the other user’s attribute. Therefore, the present embodiment provides a way to associate attribute A with attribute G as illustrated in Figure 11.

Figure 12 shows what happens with an attribute based search query if attribute A is associated with attribute G: both document 1 and document 2 are retrieved and presented in the results.

In the latter illustrative example, the logical operator used between attribute A and attribute G is logical operator (AND). Other logical operators could be used between associated attributes. One example could be to associate attribute A with attribute G with the logical operator (NOT) to exclude documents having both attribute A and G from the search results by keeping only documents associated with attribute A in combination with other attributes but attribute G.
To achieve this a correspondence table (not shown) could be used where a user indicates which attribute is associated with which other attribute(s). The attributes could be attributes of a single user or be attributes shared by other users. The attributes shared by other users could be shared by sharing the actual attribute(s) or by sharing documents having the attribute(s) associated therewith. In the latter situation the attribute(s) might not be usable by the user if the other user has granted no such access right.

Associated attributes can evolve over time. At first, two attributes can be associated together and later a third attribute can be associated thereto. The evolution of each “package” of associated attribute can be illustrated over a timeline showing when each additional attribute has been added to the “package” and when attributes have been removed from the “package” of attributes. It is desirable to keep track of the time of entry and the time of extraction of each attribute in a “package” of attributes to properly define a query targeting a specific time period.

Grouped Attributes

It can rapidly become time consuming to individually associate many attributes with a document (or a plurality of documents at the same time). In order to facilitate the process of associating attributes to documents it is provided herein to group attributes that are likely to be used together when associating attributes to document(s). In turn, many different groups of attributes can be created and retrieved when desired.

Figure 13 illustrates a block diagram of a system capable of providing such mechanism. A display module 470 is provided to display documents and attributes; an organization module 472 adapted to organize documents with related attributes; a selection module 474 is adapted to select attributes and documents by a user; a group sharing module 476 adapted to share groups of attributes among users; a grouped attributes module 478 adapted to manage groups of attributes and a user interface module 480 adapted to provide user interaction based, at least in part, on a graphical
display of user-selectable elements adapted to offer choices to a user in order to establish a dialogue with the user.

Turning now to Figure 14 illustrating an exemplary flow chart of a possible sequence of actions leading to the use of groups of attributes. The sequence starts 490 with defining a name of a subject group of attributes 492 (to be created) and inserting an attribute 494 in the group of attributes with a predetermined selected default value associated with the attribute 496 (an alternative would provide an attribute with no value although the present embodiment uses a more refined attribute/value system thus requiring to select a default value to the attribute). It is determined if the attribute is a "master attribute" or not a master attribute 498. A master attribute is an attribute that, when selected in the course of associating attributes with document(s), will call the other attributes of the group of attributes to the dialogue presented to the user. The user can decide which attribute(s) from the group of attributes, and desired value associated therewith, when applicable, will be associated with the document(s). Each attribute in a group of attributes can be designed as a "master attribute". This way, the selection of any of the "master attributes" of a group of attributes will call the other attributes from the group of attributes in the dialogue allowing association of attributes with document(s). Steps 494, 496 and 498 are repeated for each attribute in the group of attributes. Several choices are offered to the user managing the group of attributes. Still in Figure 14, undesired attributes can simply be removed (or deleted) 500 from the group of attributes, other attributes that are not already part of the group of attributes can alternatively be added as previously discussed. The default value of each attribute can be changed 502. Finally, the group of attributes can either be enabled 504 or disabled 506 depending of the pertinence of the group before the illustrative process ends 508.

Turning now to Figure 18 illustrating an exemplary process for associating attribute(s) to document(s). The process begins 520 with the selection of an attribute 522 intended to be associated with the document(s).
If the selected attribute is a “master attribute” a dialog opens 526 to offer the
other attributes from the group of attributes that includes the selected “master
attribute”. It is possible to modify the attributes forming the group of attributes
by adding, removing or altering the attributes/values of the group of attributes
528. The attributes are associated to the document(s) 530 when the
adjustment(s), if needed, on the proposed group of attributes are done.
Alternatively, if the selected attribute 522 is not a master attribute 524 then,
the selected attribute can be associated with the document(s) 532 without
offering a group of attributes before the process ends 534.

[122] Other attributes forming another group of attributes are added in
the dialog when another master attribute is selected. Redundant attributes will
be automatically removed from the dialog. Many attributes, master attribute(s)
or not, can be added in the dialog to properly categorize the subject
document(s).

[123] Turning to Figure 16 illustrating a master attribute 540
accompanied by a master attribute identifier 542 adapted to be associated with
document (1) 544. When the master attribute 540 is selected it calls the other
attributes 546 from the group of attributes the master attribute 540 relates to.
Figure 17 illustrates the association of all attributes from the group of
attributes with document (1).

[124] An exemplary group attributes management dialog 550 is
illustrated in Figure 18. The dialog 550 displays the name 552 of the group of
attributes. Each attribute in the group is disposed on a row. Each row presents
editable choices related to each attribute. In the present situation, column 554
identifies if the attribute is a master attribute, column 556 identifies the name
of the attribute, column 558 identifies the value of the attribute and column
560 offers the choice of deleting the attribute from the group of attributes.
Other attributes can be added 562 if desired.

[125] Access rights can be managed with another dialog as embodied in
Figure 19. Each group of attributes is illustrated on a row. Similarly with the
dialog of Figure 18, each column offers editable information. Namely, to enable
or disable 570 the group of attributes, to which user or group of user 572 the
group of attribute is accessible to and, *inter alia*, as understood, the name of
each group of attributes 574. It is also possible to add 576 or delete 578 a
group of attributes from the group of attribute access right management dialog
580.

[126] Grouped attributes can evolve over time. At first, two attributes
can be grouped together and later a third attribute can be added in the group.
The evolution of each group of attributes can be illustrated over a timeline
showing when each additional attribute has been added to the group of
attribute and when attributes have been removed from the group of attributes.
It is desirable to keep track of the time of entry and the time of extraction of
each attribute in a group of attributes to have the possibility to retroactively
modify attributes that have been associated with a document based on the use
of the group of attributes.

[127] Indirect/Bridge Attributes
[128] It is sometimes desirable to associate attributes to a document
that do not categorize the document. This non-categorizing attribute is called a
bridge attribute (or indirect attribute). It bridges the document to which it is
associated [without further categorizing it] with other documents categorized
by this bridge attribute [the bridge attribute is a direct attribute to them]. The
bridge attribute, as opposed to a direct attribute, is associated with a
document, or documents, because it builds a bridge, a link, leading to other
relevant related documents. The same attribute thus can be a direct attribute
for some documents and a bridge attribute for other documents. It is desirable
that each direct attribute has its corresponding bridge attribute but it is not
mandatory.

[129] Figure 20 illustrates a block diagram of a system capable of
providing such mechanism. A display module 600 is provided to display
documents and attributes; an organization module 602 adapted to organize
documents with related attributes; a selection module 604 is adapted to select
attributes and documents by a user; a direct attribute module 606 adapted to
manage direct attributes; a bridge attributes module 608 adapted to manage
bridge attributes and a user interface module 610 adapted to provide user
interaction based, at least in part, on a graphical display of user-selectable
elements adapted to offer choices to a user in order to establish a dialogue
with the user.

[130] Turning now to Figure 21 illustrating an exemplary flow chart of a
possible sequence of actions leading to the use of direct and bridge attributes.
The sequence starts 620 with the insertion of a new document 622, or the
insertion of many documents or the modification of attributes already
associated with document(s) already entered in the system and the sequence
ends 628. In contrast, in FIG. 22, an illustrative sequence of actions related to
the use of direct and bridge attributes is shown. The sequence starts 650 by
having the choice of either selecting one or more direct attributes 652 or
selecting one or more bridge attributes 656. If a direct attribute has been
selected 652 a query is launched to retrieve other documents directly
associated with the direct attribute 654. In contrast, if a bridge attribute has
been selected 656 a query is launched to retrieve other documents associated
with the selected bridge attribute 658 before the process ends 660. The
selection of either direct or bridge attributes is not exclusive and a mix of
direct and bridge attributes can be made to build a query to retrieve relevant
documents.

[131] FIG. 23 illustrates a plurality of attributes that can be either
directly associated with documents or bridge documents to other documents by
being associated with documents as bridge attributes. FIG. 24 illustrates two
documents, document (1) and document (2), associated with respective direct
attributes A and E. FIG. 25 illustrates the same two documents of FIG. 24 with
bridge attribute E [in dotted line] being associated with document (1). In so
doing, bridge attribute E associated with document (1) builds a link, or a
bridge to use the same wording, with document (2) because document (2) is
directly associated with attribute E; the bridge being illustrated with the dotted line 670.

[132] Lets use an example that patent people will understand to illustrate the current embodiment in relation with FIGs. 24, 25 and 26.

Document (1) 800 is a USPTO form PTO/SB/07 used to file prior art related to a patent application with the USPTO in an Information Disclosure Statement (IDS). Document (1) 800 can be associated with attributes that could be 1) "document sent to USPTO" [because this document is sent by the applicant to the United States Patent and Trademark Office], 2) "PTO/SB/07" [the USPTO form identification], 3) "IDS" [that is the purpose of the document] and/or 4) "attorney's file number xxx" [that indicates to which matter number this document relates to]. These attributes work fine with document (1) 800 but it would be useful to have direct access to the actual patent document [illustratively document (2) 810] cited in document (1) 800 (USPTO form PTO/SB/07). Document (1) 800 (USPTO form PTO/SB/07) is not a patent document and therefore is not associated with the attribute E 806 "patent document". A bridge attribute E B806 "patent document" is therefore associated with document (1) 800 (USPTO form PTO/SB/07) despite the bridge attribute E B806 "patent document" is not categorizing document (1) 800 (USPTO form PTO/SB/07) [because document (1) 800 is not a patent document]. The bridge attribute E B806 "patent document" would lead to documents associated directly with attribute E 806, in the present situation the actual patent document (2) 810 cited in document (1) 800 (USPTO form PTO/SB/07) [here we assume there is only one patent publication to be cited in the IDS]. And, in turn, patent document (2) is directly associated with the [direct] attribute E 806 "patent document" that is actually correctly categorizing the patent document (2) 810. As one has understood from the figures, direct attributes are illustrated in solid lines and bridge attributes are illustrated in dotted lines.

[133] Now referring more precisely to FIGs. 26, 27 and 28, document (1) 800 (USPTO form PTO/SB/07) is directly associated with attribute A 802
that is the "document sent to USPTO" attribute. The bridge attribute E B806
"patent document" is also associated with document (1) 800. The actual patent
documents cited in the "IDS" of document (1) 800 are document (2) 810 and
document (3) 812, both associated with attribute E 806.

[134] Still referring to the exemplary embodiment of FIGs. 26, 27 and
28, the selection of attribute A 802 is adapted to launch a search to gather all
documents having the attribute A 802 in common. Similarly, as mentioned
above, it is desirable to allow an association with related documents not
directly categorized by attribute A 802 but meaningful to document (1) 800
with a bridge attribute. The bridge attribute E 806 is a direct attribute
associated with document (2) 810 and is a bridge attribute to document (1)
800. Thus, attribute E is an attribute to document (2) 810 and document (3)
812 and is a bridge attribute to document (1) 800.

[135] FIG. 27 illustrates the graphical association between direct
attributes A, B, C, D, E, F, G, H, I, J, K and their respective documents (1),
(2), (3) 800, 810, 812 using boxes of solid lines. The bridge attribute E B806 is
also graphically associated, illustratively using a dotted lined box to distinguish
the bridge attribute E B806 from direct attributes illustrated in solid lines, with
document (1) 800. The selection of direct attribute A from document (1) leads,
when the attribute is selected in the context of a query, to other documents
having the attribute A associated thereto. The selection of bridge attribute E
B806 on document (1) 800 leads to document (2) 810 and document (3) 812,
which neither share a direct common attribute with document (1) 800. The
bridge attribute E B806 bridges document (1) with document (2) and (3)
because they are relevant to document (1). In addition, other documents also
associated with attribute E 806 will be provided if the bridge attribute E B806
was selected in the context of the building of a query.

[136] FIG. 28 illustrates the documents of FIG. 27 with additional bridge
attributes associated therebetween. One can appreciate that document (2) is
associated with direct attribute E, F, G, H and bridge attribute A. Bridge
attribute A draw a connection with document (1) despite document (2) has no
common direct attribute with document (1). Similarly, one can also appreciate that document (3) is associated with direct attribute E, I, J, K and bridge attribute C. Bridge attribute C draw a connection with document (1) despite document (3) has no common direct attribute with document (1). As it is shown, bridge attributes can be used in both directions.

[137] The description and the drawings that are presented above are meant to be illustrative of the present invention. They are not meant to be limiting of the scope of the present invention. Modifications to the embodiments described may be made without departing from the present invention, the scope of which is defined by the following claims:
1. A non-transitory computer-readable storage medium for tangibly storing computer-readable code thereon suitable for execution by a computing apparatus, the computer-readable code, when executed, being adapted to implement a method for visually indicating on a display those documents that have been copied from one axis of documents to another axis of documents based on a matching value of a user-selected attribute of a user-selected document, the method comprising:

(a) providing a first group of documents, at least some of which are associated with one or more attributes;
(b) displaying documents of the first group of documents along a first axis;
(c) receiving user input representing a user-selected attribute of one of the first group of documents that is associated with one or more attributes;
(d) copying to a second axis each document of the first group of documents that has a value matching the value of the user-selected attribute, one or more documents copied to the second axis being displayed along the second axis during a period of time in which one or more documents of the first group of documents is displayed along the first axis; and
(e) displaying for a predetermined time period a visual distinctive feature for each displayed document that is copied from the first group of documents to the second axis;

whereby a user is able to visualize which documents displayed along the first axis have been copied to the second axis for having a value matching the value of the user-selected attribute.

2. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of claim 1, wherein the first axis is displayed adjacent and parallel to the second axis.

3. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of claim 1, wherein the second axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the user-selected attribute.
4. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 1 to 3, wherein the first axis of documents includes the documents located thereon in a chronological order thereof.

5. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claim 1 or claim 2, wherein the documents simultaneously displayed in both axes are adapted to be axially aligned on their respective axes to provide a graphical transversal alignment thereof.

6. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 1 to 5, wherein the visual distinctive feature is adapted to be selectively displayed.

7. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 1 to 6, wherein the visual distinctive feature is a border.

8. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 1 to 7, wherein the visual distinctive feature is a graphical pattern.

9. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 1 to 8, wherein the visual distinctive feature is a color.

10. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 1 to 9, wherein the visual distinctive feature is progressively applied to the documents.
11. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 1 to 10, the method further comprising
 associating a further visual distinctive feature with a further attribute; associating documents with the further attribute;
 applying the further visual distinctive feature to the documents having the further attribute; and
 displaying the further visual distinctive feature with the documents displayed on at least one of the axes documents that have the further attribute.

12. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of claim 11, wherein the further visual distinctive feature is adapted to be selectable by a user.

13. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 1 to 12, wherein the visual distinctive feature for each document copied from the first axis is displayed along the second axis.

14. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 1 to 13, wherein the visual distinctive feature is displayed exclusively in connection with document along the first axis that are copied to the second axis.

15. A method for visually indicating on a display those documents that have been copied from one axis of documents to another axis of documents based on a matching value of a user-selected attribute, the method comprising:
 (a) displaying a first group of documents in a first display area of a display such that the group of documents defines at least a portion of a first axis of documents;
(b) receiving user input representing a user-selected attribute associated with at least one of the document of the first group; and

(c) copying to a second display area of the displayed documents of the first group of documents that have a value matching the value of the user-selected attribute, said copying resulting in the copied documents defining a second axis of documents, the first axis and second axis being concurrently displayed;

(d) wherein the method further comprises:

 displaying for a limited period of time a visual distinctive feature with the copied documents on the first axis that are displayed, and not displaying the visual distinctive feature with displayed documents on the first axis that are not copied to the second axis;

whereby a user is able to visualize which displayed documents along the first axis have been copied to the second axis for having a value matching the value of the user-selected attribute.

16. The method of claim 15, wherein the first axis is displayed adjacent and parallel to the second axis.

17. The method of claim 15, wherein the second axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the user-selected attribute.

18. The method of any one of claims 15 to 17, wherein the first axis of documents includes the documents located thereon in a chronological order thereof.

19. The method of any one of claim 15 or claim 16, wherein the documents simultaneously displayed in both axes are adapted to be axially aligned on their respective axes to provide a graphical transversal alignment thereof.
20. The method of any one of claims 15 to 19, wherein the visual distinctive feature is adapted to be selectively displayed.

21. The method of claim 20, wherein the visual distinctive feature is a border.

22. The method of claim 20, wherein the visual distinctive feature is graphical pattern.

23. The method of claim 20, wherein the visual distinctive feature is a color.

24. The method of any one of claims 15 to 23, wherein the visual distinctive feature is progressively applied to the documents.

25. The method of any one of claims 15 to 24, the method further comprising associating a further visual distinctive feature with a further attribute; associating documents with the further attribute; applying the further visual distinctive feature to the documents having the further attribute; and displaying the further visual distinctive feature with the documents displayed on at least one of the axes documents that have the further attribute.

26. The method of claim 25, wherein the further visual distinctive feature is adapted to be selectable by a user.

27. The method of any one of claims 15 to 26, wherein the visual distinctive feature for each document copied from the first axis is displayed along the second axis.

28. The method of any one of claims 15 to 27, wherein the visual distinctive feature is displayed exclusively in connection with document along the first axis that are copied to the second axis.
29. An apparatus for implementing a user interface adapted to visually indicate on a display those documents that have been copied from one axis of documents to another axis of documents based on a matching value of a user-selected attribute, the apparatus comprising:

 a memory module adapted to store thereon a plurality of documents; and
 a processing unit in communication with the memory module, the processing unit
 being operative for executing computer readable program code stored on a non-
 transient computer readable medium for implementing a method comprising
 (a) displaying documents of the plurality of documents on a first axis of
documents;
 (b) receiving user input representing a user-selected attribute of at least one
 of the plurality of documents;
 (c) copying to a second axis of documents each document of the plurality of
documents that has a value matching the value of the user-selected
 attribute, the second axis being displayed at least during a period of time
 in which the first axis is displayed; and
 (d) displaying for a predetermined period of time a visual distinctive feature
 associated with each displayed document on the first axis that is copied to
 the second axis, and not displaying the visual distinctive feature with any
 displayed document on the first axis that is not copied to the second axis;
 and

whereby a user is able to visualize which documents along the first axis have been
 copied to the second axis for having a value matching the value of the user-selected
 attribute.

30. The apparatus of claim 29, wherein the first axis is displayed adjacent and
 parallel to the second axis.

31. The apparatus of claim 29, wherein the second axis is displayed at an angle in
 respect to the first axis and intersects the first axis at a displayed document on the first
 axis having the user-selected attribute.
32. The apparatus of any one of claims 29 to 31, wherein the first axis of documents includes the documents located thereon in a chronological order thereof.

33. The apparatus of any one of claim 29 or claim 30, wherein the documents simultaneously displayed in both axes are adapted to be axially aligned on their respective axes to provide a graphical transversal alignment thereof.

34. The apparatus of any one of claims 29 to 33, wherein the visual distinctive feature is adapted to be selectively displayed.

35. The apparatus of claim 34, wherein the visual distinctive feature is a border.

36. The apparatus of claim 34, wherein the visual distinctive feature is a graphical pattern.

37. The apparatus of claim 34, wherein the visual distinctive feature is a color.

38. The apparatus of any one of claims 29 to 37, wherein the visual distinctive feature is progressively applied to the documents.

39. The apparatus of any one of claim 29 to 38, the method further comprising associating a further visual distinctive feature with a further attribute; associating documents with the further attribute;

applying the further visual distinctive feature to the documents having the further attribute; and

displaying the further visual distinctive feature with the documents displayed on at least one of the axes documents that have the further attribute.

40. The apparatus of claim 39, wherein the further visual distinctive feature is adapted to be selectable by a user.
41. The apparatus of any one of claims 29 to 40, wherein the visual distinctive feature for each document copied from the first axis is displayed along the second axis.

42. The apparatus of any one of claims 29 to 41, wherein the visual distinctive feature is displayed exclusively in connection with document along the first axis that are copied to the second axis.

43. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method according to any one of claims 15 to 28, the method further comprising:

 (e) receiving user input representing a second user-selected attribute of one of the documents of the first group of documents;

 (f) copying to a third axis each document of the first group of documents that has a value matching the value of the second user-selected attribute, one or more documents copied to the third axis being displayed along the first axis; and

 (g) displaying for a predetermined time period along the first axis a second visual distinctive feature for each displayed document on the first axis that is copied to the third axis;

whereby a user is able to visualize which displayed documents along the first axis have been copied to the third axis for having a value matching the value of the second user-selected attribute.

44. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of claim 43, wherein the first axis is displayed parallel to the third axis.

45. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any of claims 43 and 18, wherein the third axis is displayed at an angle in respect to the first axis and
intersects the first axis at a displayed document on the first axis having the second user-selected attribute.

46. The method of claim 43, further comprising:

(h) receiving user input representing a second user-selected attribute of one of the documents of the first group of documents;

(i) copying to a third axis each document of the first group of documents that has a value matching the value of the second user-selected attribute, one or more documents copied to the third axis being displayed along the third axis during a period of time in which one or more documents of the first group of documents is displayed along the first axis; and

(j) displaying for a predetermined period of time along the first axis a second visual distinctive feature for each displayed document along the first axis that is copied to the third axis;

whereby a user is able to visualize which documents along the first axis have been copied to the third axis for having a value matching the value of the second user-selected attribute.

47. The apparatus of claim 29, further comprising:

(e) receiving user input representing a second user-selected attribute of one of the documents of the first group of documents;

(f) copying to a third axis each document of the first group of documents that has a value matching the value of the second user-selected attribute, one or more documents copied to the third axis being displayed along the third axis during a period of time in which one or more documents of the first group of documents is displayed along the first axis; and

(g) displaying for a predetermined time period along the first axis a second visual distinctive feature for each displayed document along the first axis that is copied to the third axis;
whereby a user is able to visualize which displayed documents along the first axis have been copied to the third axis for having a value matching the value of the second user-selected attribute.

48. The apparatus of claim 47, wherein the first axis is displayed adjacent and parallel to the second axis.

49. The apparatus of claim 47, wherein the second axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the user-selected attribute.

50. The apparatus of any one of claims 47 to 49, wherein the first axis of documents includes the documents located thereon in a chronological order thereof.

51. The apparatus of any one of claim 47 or claim 48, wherein the documents simultaneously displayed in both axes are adapted to be axially aligned on their respective axes to provide a graphical transversal alignment thereof.

52. The apparatus of any one of claims 47 to 51, wherein the visual distinctive feature is adapted to be selectively displayed.

53. The apparatus of claim 52, wherein the visual distinctive feature is a border.

54. The apparatus of claim 52, wherein the visual distinctive feature is a graphical pattern.

55. The apparatus of claim 52, wherein the visual distinctive feature is a color.

56. The apparatus of any one of claims 47 to 55, wherein the visual distinctive feature is progressively applied to the documents.
57. The apparatus of any one of claims 47 to 56, the method further comprising associating a further visual distinctive feature with a further attribute; associating documents with the further attribute; applying the further visual distinctive feature to the documents having the further attribute; and displaying the further visual distinctive feature with the documents displayed on at least one of the axes documents that have the further attribute.

58. The apparatus of claim 57, wherein the further visual distinctive feature is adapted to be selectable by a user.

59. The apparatus of any one of claims 47 to 58, wherein the visual distinctive feature for each document copied from the first axis is displayed along the second axis.

60. The apparatus of any one of claims 47 to 59, wherein the visual distinctive feature is displayed exclusively in connection with document along the first axis that are copied to the second axis.

61. A non-transitory computer-readable storage medium for tangibly storing computer-readable code thereon suitable for execution by a computing apparatus, the computer-readable code, when executed, being adapted to implement a method for visually indicating on a display those documents that have been displayed on a plurality of axes of documents based on a matching value of a user-selected attribute of a document, the method comprising:

(a) providing a first group of documents at least some of which associated with one or more attributes;

(b) displaying documents of the first group of documents along a first axis;

(c) receiving an input representing an attribute of one of the first group of documents that is associated with one or more attributes;

(d) displaying to a second axis each document of the first group of documents that has a value matching the value of the user-selected attribute; and
(e) displaying a visual distinctive feature for each displayed document from the first group of documents that is displayed to the second axis; whereby a user is able to visualize which documents displayed along the first axis are also displayed to the second axis for having a value matching the value of the user-selected attribute.

62. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of claim 61, wherein the first axis is displayed adjacent and parallel to the second axis.

63. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method according to any one of claims 61 and 25, wherein the second axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the user-selected attribute.

64. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method according to any one of claims 61 to 63, wherein the first axis of documents includes the documents located thereon in a chronological order thereof.

65. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method according to any one of claims 61 or claim 63, wherein the documents simultaneously displayed in both axes are adapted to be axially aligned on their respective axes to provide a graphical transversal alignment thereof.

66. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method according to any one of claims 61 to 65, wherein the visual distinctive feature is adapted to be selectively displayed.
67. The non-transitory computer-readable storage medium tangibly storing
computer-readable code thereon for implementing the method of claim 66, wherein the
visual distinctive feature is a border.

68. The non-transitory computer-readable storage medium tangibly storing
computer-readable code thereon for implementing the method of claim 66, wherein the
visual distinctive feature is a graphical pattern.

69. The non-transitory computer-readable storage medium tangibly storing
computer-readable code thereon for implementing the method of claim 66, wherein the
visual distinctive feature is a color.

70. The non-transitory computer-readable storage medium tangibly storing
computer-readable code thereon for implementing the method of any one of claims 61
to 69, wherein the visual distinctive feature is progressively applied to the documents.

71. The non-transitory computer-readable storage medium tangibly storing
computer-readable code thereon for implementing the method of any one of claims 61
to 70, the method further comprising associating a further visual distinctive feature with
a further attribute; associating documents with the further attribute; applying the further
visual distinctive feature to the documents having the further attribute; and displaying
the further visual distinctive feature with the documents displayed on at least one of the
axes documents that have the further attribute.

72. The non-transitory computer-readable storage medium tangibly storing
computer-readable code thereon for implementing the method of claim 71, wherein the
further visual distinctive feature is adapted to be selectable by a user.

73. The non-transitory computer-readable storage medium tangibly storing
computer-readable code thereon for implementing the method of any one of claims 61
to 72, wherein the visual distinctive feature for each document copied from the first axis is displayed along the second axis.

74. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 61 to 73, wherein the visual distinctive feature is displayed exclusively in connection with document along the first axis that are copied to the second axis.

75. A method for visually indicating on a display those documents that have been copied from one axis of documents to another axis of documents based on a matching value of a user-selected attribute, the method comprising:

(a) displaying a first group of documents in a first display area of a display such that the group of documents defines at least a portion of a first axis of documents substantially rectilinearly displaying the documents;

(b) receiving user input representing a user-selected attribute associated with at least one of the documents of the first group; and

(c) displaying to a second display area of the display documents of the first group of documents that have a value matching the value of the user-selected attribute, said displaying to a second display area resulting in the displayed documents defining a second axis of documents substantially rectilinearly displaying the documents;

(d) wherein the method further comprises:

 displaying a visual distinctive feature with the displayed documents on the first axis that are displayed on the second axis, and not displaying the visual distinctive feature with displayed documents on the first axis that are not displayed on the second axis;

whereby a user is able to visualize which displayed documents along the first axis have been copied to the second axis for having a value matching the value of the user-selected attribute.

40.8
76. The method of claim 75, wherein the first axis is displayed adjacent and parallel to the second axis.

77. The method of claim 75, wherein the second axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the user-selected attribute.

78. The method of any one of claims 75 to 77, wherein the first axis of documents includes the documents located thereon in a chronological order thereof.

79. The method according to any one of claims 75 or claim 76, wherein the documents simultaneously displayed in both axes are adapted to be axially aligned on their respective axes to provide a graphical transversal alignment thereof.

80. The method of any one of claims 75 to 79, wherein the visual distinctive feature is adapted to be selectively displayed.

81. The method of claim 80, wherein the visual distinctive feature is a border.

82. The method of claim 80, wherein the visual distinctive feature is a graphical pattern.

83. The method of claim 80, wherein the visual distinctive feature is a color.

84. The method of any one of claims 75 to 83, wherein the visual distinctive feature is progressively applied to the documents.

85. The method of any one of claims 75 to 84, the method further comprising associating a further visual distinctive feature with a further attribute; associating documents with the further attribute;
applying the further visual distinctive feature to the documents having the further attribute; and

displaying the further visual distinctive feature with the documents displayed on at least one of the axes documents that have the further attribute.

86. The method of claim 85, wherein the further visual distinctive feature is adapted to be selectable by a user.

87. The method of any one of claims 75 to 86, wherein the visual distinctive feature for each document copied from the first axis is displayed along the second axis.

88. The method of any one of claims 75 to 87, wherein the visual distinctive feature is displayed exclusively in connection with document along the first axis that are copied to the second axis.

89. An apparatus for implementing a user interface adapted to visually indicating on a display those documents that have been displayed on a plurality of axes of documents based on a matching value of a user-selected attribute, the apparatus comprising:
a memory module adapted to store thereon a plurality of documents; and
a processing unit in communication with the memory module, the processing unit being operative for executing computer readable program code stored on a non-transient computer readable medium for implementing a method comprising
(a) displaying documents of the plurality of documents on a first axis of documents;
(b) receiving an input representing a user-selected attribute of at least one of the plurality of documents;
(c) displaying to a second axis of documents each document of the plurality of documents that has a value matching the value of the user-selected attribute; and
(d) displaying a visual distinctive feature associated with each displayed document on the first axis that is displayed on the second axis, and not
displaying the visual distinctive feature with displayed document on the first axis that is not displayed to the second axis, whereby a user is able to visualize which documents along the first axis have been displayed on the second axis for having a value matching the value of the user-selected attribute.

90. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon of any one of claims 61 to 74, the implemented method further comprising:
 (e) receiving an input representing a second user-selected attribute of one of the documents of the first group of documents;
 (f) displaying to a third axis each document of the first group of documents that has a value matching the value of the second user-selected attribute, one or more documents displayed on the third axis being displayed along the first axis; and
 (g) displaying along the first axis a second visual distinctive feature for each displayed document on the first axis that is displayed to the third axis; whereby a user is able to visualize which displayed documents along the first axis have been displayed on the third axis for having a value matching the value of the second user-selected attribute.

91. The apparatus of claim 90, wherein the first axis is displayed parallel to the third axis.

92. The apparatus of any one of claim 90 or claim 91, wherein the third axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the second user-selected attribute.

93. The method of claim 75, further comprising:
 (e) receiving an input representing a second user-selected attribute of one of the documents of the first group of documents;
(f) displaying to a third axis each document of the first group of documents that has a value matching the value of the second user-selected attribute, one or more documents displayed on the third axis being displayed along the third axis; and

(g) displaying along the first axis a second visual distinctive feature for each displayed document along the first axis that is displayed to the third axis; whereby a user is able to visualize which documents along the first axis are displayed to the third axis for having a value matching the value of the second user-selected attribute.

94. The apparatus of claim 89, further comprising:

(e) receiving an input representing a second user-selected attribute of one of the documents of the first group of documents;

(f) displaying to a third axis each document of the first group of documents that has a value matching the value of the second user-selected attribute; and

(g) displaying along the first axis a second visual distinctive feature for each displayed document along the first axis that is displayed to the third axis, whereby a user is able to visualize which displayed documents along the first axis are displayed to the third axis for having a value matching the value of the second user-selected attribute.

95. A non-transitory computer-readable storage medium for tangibly storing computer-readable code thereon suitable for execution by a computing apparatus, the computer-readable code, when executed, being adapted to implement a method for visually indicating on a display those documents that have been copied from one axis of documents to another axis of documents based on a user-selected attribute, the method comprising:

a) providing a first group of documents at least some of which are associated with one or more attributes;

b) displaying documents of the first group of documents along a first axis;
c) with respect to a first user-selected attribute of one of the first group of documents that is associated with one or more attributes,
 i) receiving user input representing the first user-selected attribute
 ii) copying to a second axis each document of the first group of documents that has the first user-selected attribute, one or more documents copied to the second axis being displayed along the second axis during a period of time in which one or more documents of the first group of documents is displayed along the first axis; and
 iii) displaying for a predetermined time period a visual distinctive feature for each displayed documents that is copied from the first group of documents to the second axis;

 whereby a user is able to visualize which documents along the first axis have been copied to the second axis; and

 d) with respect to a second user-selected attribute of one of the first group of documents that is associated with one or more attributes,
 i) receiving user input representing the second user-selected attribute;
 ii) copying to a third axis each document of the first group of documents that has the second user-selected attribute, one or more documents copied to the third axis being displayed along the third axis during a period of time in which one or more documents of the first group of documents is displayed along the first axis; and
 iii) displaying for a predetermined time period along the first axis a visual distinctive feature for each displayed document on the first axis that is copied to the third axis,

 whereby a user is able to visualize which documents along the first axis have been copied to the third axis

96. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of claim 95, wherein the first axis is displayed adjacent and parallel to the second axis; and wherein the first axis is displayed adjacent and parallel to the third axis.
97. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claim 95 or claim 96, wherein the second axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the first user-selected attribute; and wherein the third axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the second user-selected attribute.

98. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 95 to 97, wherein the first axis of documents includes the documents located thereon in a chronological order thereof.

99. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 95 to 98, wherein the documents simultaneously displayed in the first and second axes are adapted to be axially aligned on their respective axes to provide a graphical transversal alignment thereof; and wherein the documents simultaneously displayed in the first and third axes are adapted to be axially aligned on their respective axes to provide a graphical transversal alignment thereof.

100. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 95 to 99, wherein, with respect to each user-selected attribute, the visual distinctive feature is adapted to be selectively displayed.

101. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 95 to 100, wherein with respect to each user-selected attribute, the visual distinctive feature is user-selected from a group consisting of a pattern, a border and a color.
102. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 95 to 101, wherein, with respect to each user-selected attribute, the visual distinctive feature is progressively applied to the documents.

103. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 95 to 102, wherein, with respect to the first user-selected attribute, the visual distinctive feature for each document copied from the first axis is displayed along the second axis; and wherein, with respect to the second user-selected attribute, the visual distinctive feature for each document copied from the first axis is displayed along the third axis.

104. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 95 to 103, wherein, with respect to the first user-selected attribute, the visual distinctive feature is displayed exclusively in connection with documents along the first axis that are copied to the second axis; and wherein, with respect to the second user-selected attribute, the visual distinctive feature is displayed exclusively in connection with documents along the first axis that are copied to the third axis.

105. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 95 to 104, wherein the implemented method further comprises displaying an animation showing a movement of one or more of documents that are copied from the first axis.

106. The non-transitory computer-readable storage medium tangibly storing computer-readable code thereon for implementing the method of any one of claims 95 to 105, wherein each of the first and second-user-selected attributes comprises a value.
107. A method for visually indicating on a display those documents that have been copied from one axis of documents to another axis of documents based on a user-selected attribute, the method comprising:

a) displaying a first group of documents in a first display area of a display such that the group of documents defines at least a portion of a first axis of documents at least some of the first group of documents being associated with one or more attributes;

b) with respect to a first user-selected attribute of one of the first group of documents that is associated with one or more attributes,

i) receiving user input representing the first user-selected attribute;

ii) copying to a second display area of the display documents of the first group of documents that have the first user-selected attribute, said copying resulting in the copied documents defining at least a portion of a second axis of documents, at least portions of the first axis and second axis being concurrently displayed; and

iii) displaying for a predetermined period of time a visual distinctive feature with documents of the first group that are copied to the second axis;

whereby a user is able to visualize which documents along the first axis have been copied to the second axis; and

c) with respect to a second user-selected attribute of one of the first group of documents that is associated with one or more attributes,

i) receiving user input representing the second user-selected attribute,

ii) copying documents of the first group of documents that have the second user-selected attribute, said copying resulting in the copied documents defining at least a portion of third axis of documents defining at least a portion of a third axis of documents, at least portions of the first axis and third axis being concurrently displayed; and

iii) displaying for a predetermined period of time a visual distinctive feature with documents of the first group that are copied to the third axis;
whereby a user is able to visualize which documents along the first axis have been copied to the third axis.

108. The method of claim 107, wherein the first axis is displayed adjacent and parallel to the second axis; and wherein the first axis is displayed adjacent and parallel to the third axis.

109. The method of any one of claim 107 or claim 108, wherein the second axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the first user-selected attribute; and wherein the third axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the second user-selected attribute.

110. The method of any one of claims 107 to 109, further comprising displaying an animation showing a movement of one or more of documents that are copied from the first axis.

111. An apparatus for implementing a user interface adapted to visually indicating on a display those documents that have been copied from one axis of documents to another axis of documents based on a user-selected attribute, the apparatus comprising: a memory module adapted to store thereon a plurality of documents, and, a processing unit in communication with the memory module, the processing unit being operative for executing computer readable program code stored on a non-transient computer readable medium for implementing a method comprising:

 a) displaying documents of the plurality of documents on a first axis of documents;

 b) with respect to a first user-selected attribute of one of the first group of documents that is associated with one or more attributes,

 i) receiving user input representing the first user-selected attribute;

 ii) copying to a second axis of documents each document of the plurality of documents that has the first user-selected attribute, at least a portion of
the second axis being displayed at least during a period of time in which at least a portion of the first axis is displayed; and

iii) displaying for a predetermined period of time a visual distinctive feature associated with each displayed document on the first axis that is copied to the second axis;

whereby a user is able to visualize which documents along the first axis have been copied to the second axis; and

c) with respect to a second user-selected attribute of one of the first group of documents that is associated with one or more attributes;

i) receiving user input representing the second user-selected attribute;

ii) copying to a third axis of documents each document of the plurality of documents that has the second user-selected attribute, at least a portion of the third axis being displayed at least during a period of time in which at least a portion of the first axis is displayed; and

iii) displaying for a predetermined period of time a visual distinctive feature associated with each displayed document on the first axis that is copied to the third axis;

whereby a user is able to visualize which documents along the first axis have been copied to the third axis.

112. The apparatus of claim 111, wherein the first axis is displayed adjacent and parallel to the second axis; and wherein the first axis is displayed adjacent and parallel to the third axis.

113. The apparatus of any one of claim 111 or claim 112, wherein the second axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the first user-selected attribute; and wherein the third axis is displayed at an angle in respect to the first axis and intersects the first axis at a displayed document on the first axis having the second user-selected attribute.
114. The apparatus of any one of claims 111 to 113, wherein the method implemented further comprises displaying an animation showing a movement of one or more documents that are copied from the first axis.
Fig. 13
Start

Define a name of a group of attribute

Insert an attribute in the group of attributes

Select a default value of the attribute

Determine if the attribute is a master attribute

Delete an attribute from the group of attribute

Enable the group of attribute

Change the default value of an attribute

Debeble the group of attribute

End

Fig. 14
Start

Select an attribute to be associated to a document

Is the selected attribute a master attribute?

Y

Open a dialog offering other attributes in the group of attributes

Adding and/or removing and/or altering the attributes and their related values from the offered group of attributes

Associating the group of attributes to the document

N

Associating the selected attribute to the document

End

Fig. 15
Fig. 16

Fig. 17

Fig. 18
Fig. 19

<table>
<thead>
<tr>
<th>Enabled</th>
<th>Group of Attributes</th>
<th>Access</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Vehicle</td>
<td>Engineering [Group]</td>
<td>✗</td>
</tr>
<tr>
<td>No</td>
<td>Personal</td>
<td>None</td>
<td>✗</td>
</tr>
<tr>
<td>Yes</td>
<td>Recipes</td>
<td>Cooking [Group]</td>
<td>✗</td>
</tr>
<tr>
<td>Yes</td>
<td>Business</td>
<td>Emma</td>
<td>✗</td>
</tr>
<tr>
<td>No</td>
<td>Travel</td>
<td>Family [Group]</td>
<td>✗</td>
</tr>
<tr>
<td>No 570</td>
<td>Default</td>
<td>Jade, Leo, Diane</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>ADD NEW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

574 576 572 578

Fig. 20

Display Module 600

Organisation Module 602

Selection Module 604

Direct Attribute Module 606

Bridge Attribute Module 608

User Interface Module 610
Fig. 21

Start

Inserting a document

Associating a direct attribute to the document

Associating a bridge attribute to the document

End

Fig. 22

Start

Selecting the direct attribute

Selecting the bridge attribute

Retrieving other documents associated with the direct attribute

Retrieving other documents associated with the bridge attribute

End