03/105010 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 December 2003 (18.12.2003)

PCT

(10) International Publication Number

WO 03/105010 A1l

(51) International Patent Classification”: GO6F 15/16

(21) International Application Number: PCT/US03/17934

(22) International Filing Date: 5 June 2003 (05.06.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/387,146 6 June 2002 (06.06.2002) US

(71) Applicant (for all designated States except US): NEO-
TERIS, INC. [US/US]; 161 East Evelyn Avenue, Moun-
tain View, CA 94041 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TOCK, Theron
[US/US]; 620 Palo Alto Avenue, Mountain View, CA
94041 (US). XIA, Zeqing [CN/US]; 1399 Chelsea Drive,
Los Altos, CA 94024 (US).

(74) Agent: THOMAS, C., Douglass; BEYER WEAVER &
THOMAS, LLP, 2030 Addison Street, 7th Floor, P.O. Box
778, Berkeley, CA 94704 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, 7ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Titlee METHOD AND SYSTEM FOR PROVIDING SECURE ACCESS TO PRIVATE NETWORKS

100
\ DESTINATION
SERVER
WEB 114
CLIENT I~ 102 SERVER
116
BROWSER i~ 108 SERVER
JAVA |
APPLET' ?
) [~ 118 106
110
INTERMEDIATE 108
SERVER
JAVA 112
MODIFIER

(57) Abstract: Improved approaches for providing secure remote access to resources maintained on private networks are disclosed.
According to one aspect, predetermined elements, such as applets, can be modified to redirect all communications to and from
an application server through an intermediate server. The intermediate server in turn communicates with the application servers.
According to another aspect, a communication framework can be provided to funnel communication between an applet and a server
through a communication layer so as to provide managed and/or secured communications there between.

WO 03/105010 PCT/US03/17934

METHOD AND SYSTEM FOR PROVIDING
SECURE ACCESS TO PRIVATE NETWORKS

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to client-server computing and, more
particularly, to client-server computing for securely accessing resources over a
network.

Description of the Related Art

[0002] Network browsers (browser applications), such as Netscape Navigator or
Microsoft Explorer, allow users of client machines to request and retrieve resources
from remotely located server machines via the Internet. These network browsers
can display or render HyperText Markup Language (HTML) documents provided by
the remotely located server machines. Additionally, browsers are able to execute
script programs embedded in the HTML documents to provide some local
functionality.

[0003] Further, applets (e.g., Java'™ applets) can also be embedded in the HTML
documents. In such case, the browser will fetch the bytecode for the applet from a
web server by issuing HTTPS requests to get the appropriate class and/or archive
files for the applet. The received bytecode is then loaded into a virtual machine
(e.g., Java Virtual Machine). During runtime, the applet typically communicates with
an application server over a secure connection, such as HTTPS or socket
connections. Further, in the case of Java, the Java Sandbox operates to restrict the
applet from communicating with a network domain (host) other than the network
domain from which the applet was obtained.

[0004] Conventionally, network browsers are used to access public networks,
such as the Internet. Private networks are normally protected by firewalls so that
network browsers residing on computing machines outside the private network are
not able to gain access to any resources on the private network.

[0005] While firewalls are effective at protecting against external access to private
networks, there is often the need for external persons or businesses to gain at least
limited access to the private networks of other persons or businesses. For example,

a supplier of parts to a business customer may be able to better serve their

WO 03/105010 PCT/US03/17934

business customer by having access to information (e.g., inventory levels or orders)
maintained on the private network of the business customer. One conventional
approach is to allow the supplier's machine to access the private network through
the firewall via a public network. This provides a “hole” in the firewall that seriously
compromises the security of the private network. Hence, this conventional approach
is normally not permitted if security is an important concern. Another conventional
approach is to establish a Virtual Private Network (VPN) with the supplier's machine.
Here, the supplier's machine is also able to access the private network through the
public network and the firewall, but all data transmissions are encrypted. Some
firewalls support VPNs and protocols providing encrypted communications, such as
Point-to-Point Tunneling Protocol (PPTP). While VPNs offer remote secure access,
they are difficult to arrange, configure and manage. Each VPN must also be
provided for each external person or business given access to the private network.
Still further, VPNs are costly and each VPN provides some security exposure to the
entire private network.

[0006] Thus, there is a need for improved approaches to providing secure remote

access to resources maintained on private networks.

SUMMARY OF THE INVENTION

[0007] Broadly speaking, the invention pertains to improved approaches for

providing secure remote access to resources maintained on private networks.
[0008] According to one aspect of the invention, predetermined elements, such
as applets, can be modified to redirect all communications to and from an application
server through an intermediate server. The intermediate server in turn
communicates with the application servers. Often the applications are secured by a
firewall, but the intermediate server is trusted enough to gain access to the
application servers, thereby indirectly allowing the applets to communicate with the
application servers via the intermediate server.

[0009] According to another aspect of the invention, a communication framework
can be provided to funnel communication between an applet and a server through a
communication layer so as to provide managed and/or secured communications

there between.

WO 03/105010 PCT/US03/17934

[0010] The invention can be implemented in numerous ways, including as a system,
method, device, and a computer readable medium. Several embodiments of the
invention are discussed below.

[0011] As a method for modifying a markup language page to redirect resource
requests to an intermediate server, one embodiment of the invention includes at least
the acts of: identifying, within the markup language page, a predetermined element that
includes at least a first network address; and modifying the first network address within
the predetermined element of the markup language page to a second network address
that pertains to the intermediate server.

[0012] As a method for processing resource requests provided to an intermediate
server from a client via a computer network, one embodiment of the invention includes
at least the acts of: receiving a resource request for a particular resource, the resource
request being provided to the intermediate server from the client via the computer
network; extracting a destination server from the resource request; requesting the
particular resource from the destination server; receiving the particular resource from
the destination server; modifying the particular resource to redirect internal resource
requests to the intermediate server; sending the modified particular resource to the
client; receiving an applet code request for an applet identified within the modified
particular resource; requesting applet code for the applet from a remote server via the
computer network; receiving the applet code from the remote server in response to the
requesting of the applet code; modifying the applet code to redirect its external
communications through the intermediate server; and sending the modified applet code
to the client.

[0013] As a system for communicating between a client and a server, one
embodiment of the invention includes at least: a communication layer at a client, the
communication layer transforming one or more socket connections into a pair of
unidirectional secure URL connections; an applet operating at the client to perform
operations and to create at least one socket connection with the communication layer;
and a server operatively connected with the pair of unidirectional secure URL
connections, the server communicating with the applet via the pair of unidirectional
secure URL connections provided by the communication layer.

.[0014] As a system for communicating between a client and a server, one
embodiment of the invention includes at least: a plurality of browser applications, at

least a plurality of the browser applications utilizing at least one operating applet and a |

3

WO 03/105010 PCT/US03/17934

communication layer, the applet operating to perform operations and to create at least
one socket connection with the communication layer, and the communication layer for
each of the browsers operates to transform the socket connections into a pair of
unidirectional URL connections; and a server operatively connected with the pair of
unidirectional URL connections associated with the communication layer associated
with each of the plurality of browser applications, the server communicating with the at
least one operating applet of the plurality of browser applications via the pair of
unidirectional URL connections provided by the communication layer corresponding
thereto.

[0015] Other aspects and advantages of the invention will become apparent from
the following detailed description taken in conjunction with the accompanying

drawings which illustrate, by way of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS
[0016] The invention will be readily understood by the following detailed

description in conjunction with the accompanying drawings, wherein like reference
numerals designate like structural elements, and in which:

FIG. 1 is a block diagram of a computing environment according to one
embodiment of the invention.

FIG. 2 is a flow diagram of web resource request processing according to one
embodiment of the invention.

FIG. 3 is a flow diagram of applet request processing according to one
embodiment of the invention.

FIG. 4 is a flow diagram of response modification processing according to one
embodiment of the invention.

FIG. 5 is a flow diagram of bytecode modification processing according to one
embodiment of the invention.

FIG. 6 is a block diagram of a communication framework according to one
embodiment of the invention.

FIG. 7 is a block diagram of a communication framework according to another

embodiment of the invention.

WO 03/105010 PCT/US03/17934

DETAILED DESCRIPTION OF THE INVENTION

[0017] According to one aspect of the invention, applets are modified to redirect

all communications to and from an application server through an intermediate server.
The intermediate server in turn communicates with the application servers. Often
the applications are secured by a firewall, but the intermediate server is trusted
enough to gain access to the application servers, thereby indirectly allowing the
applets to communicate with the application servers via the intermediate server.
[0018] FIG. 1 is a block diagram of a computing environment 100 according to
one embodiment of the invention. The computing environment 100 includes a client
102, an intermediate server 104, and a destination server 106. The client 102
pertains to a computing device, such as a personal computer, desktop computer or
Personal Digital Assistant (PDA) for example. A browser 108 is a program that
operates on the client 102 to send, receive and display resources residing on remote
servers. A Java applet 110 is another application that is operated within the browser
108.

[0019] The intermediate server 104 includes a Java modifier 112 that operates to
modify a Java applet before supplying the Java applet to the client 102. The
modified Java applet, once provided to the client 102, becomes the Java applet 110.
The destination server 106 includes a web server 114 and an application server 116.
The intermediate server 104 couples to the client 102 through a first network (not
shown), and the intermediate server 104 couples to the destination server 106
through the first network or a second network (not shown). The first and second
networks can include wired and wireless components, and can comprise the
Internet, Local Area Networks, Wide Area Networks, etc. Typically, although not
necessarily, the coupling of the intermediate server 104 to the destination server 106
is achieved through a firewall 118. The firewall 118 serves to restrict the ability for
external computing devices to gain access to the destination server 106.

[0020] The general operation of the computing environment 100 can be as
follows. Typically, a user would interact with the browser 108 operating at the client
102. Such interaction would cause the browser 108 to request a web resource (e.g.,
HTML page) from the destination server 106. However, the web resource request
would be intercepted by the intermediate server 104. The intermediate server 104
would then produce a reformatted web resource request from the web resource

request received from the browser 108. Thereafter, the reformatted web resource

5

WO 03/105010 PCT/US03/17934

request would be sent (e.g., over the second network) to the destination server 106
(e.g., the web server 114). The destination server 106 would then retrieve the
requested web resource and return it to the intermediate server 104. At this point,
the intermediate server 104 can operate to modify the web resource to facilitate
redirection of subsequent resource requests internal to the web resource to the
intermediate server 104. In other words, the web resource is modified such that any
subsequent requests from the requested web resource are directed initially to the
intermediate server 104 (as opposed to an appropriate destination server). In
particular, a Java modifier 112 at the intermediate server 104 can modify links or
attribute values within the web resource. Among other things, the attributes or
values being modified within the web resource can include those attributes or values
found within Java elements contained within the web resource. The modified web
resource is then sent from the intermediate server 104 to the browser 108 via the
client 102. Then, when the modified web resource is evaluated (e.g., displayed) by
the browser 108, the modified web resource includes the Java applet 110. At this
point, the browser 108 will send to the intermediate server 104 a request for the code
(i.e., bytecode) for the Java applet 110 to the intermediate server 104. Upon
receiving the request for the code for the Java applet, the intermediate server 104
reformats the request. The reformatted request is then sent to the appropriate
destination server 106. At the destination server 1086, the request code is retrieved
and sent to the intermediate server 104. The retrieved code is then modified by the
Java modifier 112. Here, the retrieved code (for the Java applet 110) is modified
such that communications between the client 102 and the destination server 106 are
redirected to the intermediate server 104 in a secure fashion. Despite the
redirection, the code for the Java applet 110 is able to communicate with the
destination server 106 through the intermediate server 104, even though the code for
the Java applet 110 was originally designed to directly communicate with the
destination server 106.

[0021] Although FIG. 1 illustrates only a single destination server and a single
client, it should be understood that an intermediate server can support many clients
and can facilitate access to many destination servers.

[0022] FIG. 2 is a flow diagram of web resource request processing 200
according to one embodiment of the invention. The web resource request

WO 03/105010 PCT/US03/17934

processing 200 is, for example, performed at an intermediate server, such as the
intermediate server 104 illustrated in FIG. 1, for example.

[0023] The web resource request processing 200 begins with a decision 202 that
determines whether a web resource request has been received. Here, the web
resource request processing 200 awaits the receipt of a web resource request from
the client. Hence, when the decision 202 determines that a web resource request
has not been received, then the web resource request processing 200 awaits such a
request. Once the decision 202 determines that a web resource request has been
received, a destination server is extracted'204 from the web resource request. Here,
the web resource request is originally destined for the intermediate server because
such a redirection has been imposed. However, the actual destination server for the
web resource request is contained within the web resource request. Hence, the
actual destination server can be obtained (extracted 204) from the web resource
request being received at the intermediate server from the client.

[0024] After the destination server has been extracted 204 from the web resource
request, a replacement request for the web resource can be sent 206 to the
destination server. Here, the intermediate server can reformat the original web
resource request or otherwise generate the replacement request.

[0025] Next, a decision 208 determines whether a response to the replacement
request has been received from the destination server. When the decision 208
determines that a response has not yet been received, then the web resource
request processing 200 awaits such a response. Once the decision 208 determines
that a response has been received from the destination server, the response is
modified 210 to facilitate redirection to the intermediate server. According to one
embodiment, the modification to the response involves altering complete or partial
Universal Resource Locators (URLs) within the response, altering attribute values, or
inserting additional elements. After the response has been modified 210, the
modified response is returned 212 to the requestor. In one embodiment, the
requestor is a browser operating on the client. In another embodiment, the requestor
is the client or the user of the browser or client. Following the operation 212, the
web resource request processing 200 is complete and ends.

[0026] Once the modified response is received at the client, the browser at the
client typically displays the modified response. In addition, when the modified

response includes internal resource requests, such as for images and applets, the

7

WO 03/105010 PCT/US03/17934

browser makes subsequent requests for such additional resources. The processing
of a subsequent request for an applet is described below with respect to FIG. 3.
[0027] FIG. 3 is a flow diagram of applet request processing 300 according to one
embodiment of the invention. The applet request processing 300 is, for example,
performed at an intermediate server, such as the intermediate server 104 illustrated
in FIG. 1, for example.

[0028] The applet request processing 300 begins with a decision 302 that
determines whether an applet request has been received. When the decision 302
determines that an applet request has not yet been received, the applet request
processing 300 awaits such a request. Once the decision 302 determines that an
applet request has been received, then bytecode for the applet is requested 304.
Typically, the bytecode for the applet will reside on the same destination server from
which the web resource (including the java applet) was obtained. Hence, the
bytecode for the applet will be requested 304 from the destination server.

[0029] Next, a decision 306 determines whether the bytecode has been received
from the destination server. When the decision 306 determines that the bytecode
has not yet been received at the intermediate server, then the applet request
processing 300 awaits its arrival. Once the decision 306 determines that the
bytecode has been received, then the bytecode is modified 308. The modifications
made to the bytecode facilitate redirection of communications between the client and
the destination server through the intermediate server. After the bytecode has been
modified 308, the modified bytecode is sent to the requestor. In one embodiment,
the requestor is a browser operating on the client. In another embodiment, the
requestor is the client or the user of the browser or client. Following the operation
310, the applet request processing 300 is complete and ends.

[0030] FIG. 4 is a flow diagram of response modification processing 400
according to one embodiment of the invention. The response modification
processing 400 is, for example, processing performed by the operation 210
illustrated in FIG. 2. In FIG. 4, the response being modified is assumed to be an
HTML page. However, it should be understood that the response being modified
could be some other sort of web resource, including any markup language
document.

[0031] The response modification processing 400 initially scans 402 an HTML

page for <applet> or <object> elements. Here, the <object> being scanned for is

8

WO 03/105010 PCT/US03/17934

typically a Java object. The <applet> or <object> elements specify embedded Java
applets within the HTML page. A decision 404 then determines whether an <applet>
or <object> element has been found. When the decision 404 determines that such
objects have not been found during the scanning 402 of the HTML page, then a
decision 406 determines whether scanning has been completed. When the decision
406 determines that scanning has not been completed, then the modify response
processing 400 returns to repeat the operation 402 and subsequent operations.
Alternatively, when the decision 406 determines that scanning has been completed,
the response modification processing 400 is complete and ends.

[0032] On the other hand, when the decision 404 determines that either <applet>
or <object> elements have been found, then a decision 408 determines whether the
element includes a "codebase" attribute. When the decision 408 determines that the
element does not include a "codebase" attribute, then a default "codebase" attribute
is inserted 410 into the element. Alternatively, when the element does include a
"codebase" attribute, the operation 410 is bypassed.

[0033] Subsequently, URLs associated with certain attributes of the element are
modified 412. Here, the URLs being modified 412 can include complete or partial
URLs. For example, the attributes of the element being modified can include a
"codebase" attribute as well as various parameters. Further, additional parameters
can also be inserted 414 into the element. In particular, additional parameters can
be inserted into the element to store original URLs of the document and the
codebase. Following the operation 414, the response modification processing 400 is
complete and ends with the response having been modified.

[0034] According to one implementation, the operations 412 and 414 of the applet
request processing 400 are as follows. Assume that the network address (e.g.,
URL) for the intermediate server is “http://www.danastreet.com.” One of the URLs
being modified is a codebase attribute that identified the location of the bytecode for
the applet. The codebase attribute is either an absolute (complete) URL or a relative
(partial) URL. In one implementation, if the codebase specifies an absolute URL, it
is translated to a URL pointing to the intermediate server, with the original host and
path information embedded.

[0035] For example, an original URL of “http://xyz.com:123/abc” could be
translated to https://www.danastreet.com/abc/Danalnfo=xyz.com,Port=123,CT=java”
where “Danalnfo” identifies the original host, “Port” identifies the original port, and

9

WO 03/105010 PCT/US03/17934

“CT” indicates the content type (e.g., Java applet). Alternatively, if the codebase
specifies only a relative URL (which uses the base of the HTML page), e.g.,
"abc/xyz", the intermediate server will first construct the absolute URL by using the
URL of the HTML page (or specified in a <base> tag) and then will transform the
resulting URL using the above approach. Note that when the default “codebase”
attribute is to be inserted 410, the “Danalnfo” is able to be preserved, and thus not
lost when files from the same directory are fetched. Another of the URLs within
<applet>...</applet> tags being modified are the parameters for “codebase value”
and “cabbase value.” More particularly, the value specified for <param
name=codebase value=...> will be transformed using the above approach. The
value specified for <param name=cabbase value=...> will be transformed using the
above approach if it is an absolute URL. In addition, two new applet parameters
"neoteris-doc-base" and "neoteris-code-base" are injected before </applet> to store
the values of the original document URL and the original codebase URL as they
were prior to the above transformations.

[0036] A representative example of this implementation of the operations 412 and
414 of the applet request processing 400 are as follows. Assume that an HTML

page at URL “http://www.acmegizmo.com/myapplet.html” contains an applet:

<applet codebase="myapplet/classes” archive="applet.jar”>
<param name=cabbase value="applet.cab”>

</applet>

According to the representative example, the applet will be rewritten (transformed)

to:

<applet
codebase="myapplet/classes,DanaInfo=www.acmegizmo.com,CT=ja
va+" archive="applet.jar”>

<param name=cabbase value="applet.cab”>

<param name=neoteris-code-base
value=http://www.acmegizmo.com/myapplet/classes>

<param name=neoteris-doc-base
value=http://www.acmegizmo/myapplet.html>

</applet>

[0037] FIG. 5is a flow diagram of bytecode modification processing 500

according to one embodiment of the invention. The bytecode modification

10

WO 03/105010 PCT/US03/17934

processing 500 is, for example, performed by a java modifier, such as the java
modifier 112 illustrated in FIG. 1. In addition, the bytecode modification processing
500 is, for example, suitable for use as the processing performed by the operation
308 illustrated in FIG. 3.

[0038] By modification of the bytecode, the behavior of an applet is modified such
that all HTTP and socket based network communications are redirected to an
intermediate server over HTTPS connections. The intermediate server manages
connection end points with actual application servers and forwards network traffic
between Java applets and application servers.

[0039] The bytecode modification processing 500 initially scans 502 bytecode of
the Java applet for a class descriptor. Once a class descriptor has been identified in
the bytecode, a decision 504 determines whether the class is a final class. When
the decision 504 determines that the class is not a final class, then each identified
class descriptor is replaced 506 with a corresponding modified class that is a
subclass of the identified class.

[0040] Alternatively, when the decision 504 determines that the class is a final
class, then a decision 508 determines whether the class has public constructors.
When the decision 508 determines that the class does have public constructors, then
a decision 510 determines whether object method invocations are present. When
the decision 510 determines that object method invocations are present, then each
object method invocation is replaced 512 with a corresponding static method call.
Following the operation 512, as well as directly following the decision 510 when no
object method invocations are present, a decision 514 determines whether object
creations are present. When the decision 514 determines that object creations are
present, then each object creation is replaced 516 with a corresponding static
method. On the other hand, when the decision 508 determines that the class does
not have public constructors, then predetermined class strings in the class are
replaced 518 with corresponding wrapper classes.

[0041] Following the operations 506, 516 and 518, as well as directly following
the decision 514 when object creations are not present, a decision 520 determines
whether scanning of the HTML page has been completed. When the decision 520
determines that scanning has not been completed, then the bytecode modification
processing 500 returns to repeat the operation 502 and subsequent operations.

11

WO 03/105010 PCT/US03/17934

Alternatively, when the decision 520 determines that scanning has been completed,
the bytecode modification processing 500 is complete and ends.

[0042] Bytecode files for a Java applet are normally stored at an application
server within a destination server. The bytecode files are either stored individually
(e.g., .class files), or bundled into archive files. The archive files can be in the format
of .zip files, .jar files, or .cab files, each using a different compression method and
specification. Upon fetching the bytecode files, and uncompressing the archive files
if necessary, an intermediate server applies one or more of the following four
techniques in modifying each individual bytecode class file. These techniques and
examples provided below are described at the Java language level, however, these
modification are preferably performed at the bytecode level.

[0043] According to one implementation of a first technique, the operation 506 of
the bytecode modification processing 500 is as follows. According to the first
technique, when an original class is not final, a new subclass is created and then all
objects of the original class are replaced with the new class. For example, whenever
a "java.applet.Applet" class is encountered, it is replaced with a
"com.neoteris.NeoterisApplet" class, which is a subclass of "java.applet.Applet”.
Since all applets contain subclasses of "java.applet.Applet”, this essentially makes
them all subclasses of "com.neoteris.NeoterisApplet".

[0044] A representative Java language level example of this' implementation of

the first technique is as follows. An initial applet, MyApplet, initially includes

import java.applet.*;

public MyApplet extends Applet {

and is effectively modified as shown below to become a subclass of NeoterisApplet.

12

WO 03/105010 PCT/US03/17934

import com.neoteris.NeoterisApplet;

public MyApplet extends NeoterisApplet {

NeoterisApplet modifies the methods of the applet to reverse the effect of rewriting of
codebase so that the inquiring of applet information (e.g., codebase) from within the
applet's application logic will yield the same result as if there had been no
modification to the bytecode.

[0045] The implementation of the first technique further modifies socket interfaces
in the bytecode so that socket connections are transformed into HTTPS connections.
For example, whenever a "java.net.Socket" class is encountered, it is replaced with
"com.neoteris.NeoterisSocket" or subclasses of it. A representative Java language
level example of this implementation of the first technique for socket connections is

as follows. Assume that the applet originally contained,

import java.net.Socket;

import java.io.*;

Socket sock = new Socket (“myserver.com”, 1234);

InputStream is = sock.getInputStream();

and then is effectively modified as shown below to alter the nature of the socket

connections.

import com.neoteris.NeoterisSocket;

import java.io.*;

Socket sock = new NeoterisSocket (“myserver.com”, 1234);

// will return a NeoterisInputStream object

InputStream is = sock.getInputStream();

[0046] The implementation of the first technique still further modifies socket
interfaces in the bytecode so that datagram sockets are similarly modified. For

13

WO 03/105010 PCT/US03/17934

example, whenever a "java.net.DatagramSocket” class is encountered, it is replaced
with "com.neoteris.NeoterisDatagramSocket" or subclasses of it.

[0047] According to one implementation of a second technique, the operation 512
of the bytecode modification processing 500 is as follows. According to the second
technique, object method invocations with the original class are changed to static
methods (calls to static methods) so that communications with the intermediate
server operate properly. For example, whenever the following method invocations
on "java.net.URL" are encountered, they are replaced with the corresponding static
methods of class “com.neoteris.NeoterisStatic” (with the same name). These
methods are, for example: getHost, getPort, getFile, getProtocol, openStream and
openConnection. Further, other methods, namely, java.net.Socket: getinetAddress
and java.net.DatagramSocket: getAddress and setAddress, are also transformed to
static methods in NeoterisStatic (with the same name), the return values being
NeoterisinetAddress.

[0048] Accordi'ng to one implementation of a third technique, the operation 516 of
the bytecode modification processing 500 is as follows. According to the third
technique, creation of an object class is replaced with a static method. Because of
the inability to subclass a Java class that is declared final, it is necessary to replace
the bytecode instruction that creates an object with static methods in order to inject
additional code to process parameters. For example, the creation of an object of
class java.net.URL is replaced with the static method translateURL of class
com.neoteris.NeoterisStatic. As another example, the creation of an object of class
java.net.DatagramPacket is replaced with the static method
translateDatagramPacket of class com.neoteris.NeoterisStatic.

[0049] A representative Java language level example of this implementation of
the second and third techniques for inserting static methods is as follows. Assume

that the applet originally contained,

URL url = new URL(“http”, “myserver.com”, 80,
“cgi/dothis?task=1");

String host = url.getHost();

14

WO 03/105010 PCT/US03/17934

and then is effectively modified as shown below to inject the static methods.

// Will become

// “http://www.danastreet.com/cgi/dothis?task=1,DanalInfo=
// myserver.com,Port=80,CT=txt”

URL url = NeoterisStatic.translateURL(“http”,

“myserver.com”, 80, “myapplet/dothis?task=1");

// Will reverse the effect of URL translation and return
// host string “myserver.com”

String host = NeoterisStatic.getHost(url);

[0050] According to one implementation of a fourth technique, the operation 518
of the bytecode modification processing 500 is as follows. According to the fourth
technique, class strings are replaced with a specialized string. In cases where a
standard Java class is a final class and has no public constructors, such as
java.net.InetAddress, all occurrences of the class string, (in both class name and in
method descriptors) are replaced with a specialized class that implements
communications through an intermediate server. For example, for all occurrences of
java.net.InetAddress, they are replaced with com.neoteris.NeoterisinetAddress.
More particularly, this would include strings in the constant (const) pool of the
bytecode that represent the class, i.e., "java/net/InetAddress”, and any appearance
of "java/net/InetAddress" in a descriptor, such as "(Ljava/net/InetAddress;String)V”.
[0051] A representative Java language level example of this implementation of
the second and fourth techniques for performing string replacements is as follows.

Assume that the applet originally contained,

public class MyClass {
public String getInfo(InetAddress addr, int type);

MyClass cl = new MyClass();

Socket sock = new Socket(..);

cl.getInfo(sock.getInetAddress, 2);

and then is effectively modified to the following.

15

WO 03/105010 PCT/US03/17934

public class MyClass {
public String getInfo (NeoterisInetAddress addr, int
type) ;

}

MyClass ¢l = new MyClass();
Socket sock = new NeoterisSocket (..);

cl.getInfo(NeoterisStatic.getInetAddress(sock), 2);

[0052] According to one implementation of a fifth technique, although not shown
in FIG. 5, somewhere in the scanning operation of the bytecode modification
processing 500, static class methods of a Java class are replaced with static class
methods of a specialized class (e.g., NeoterisStatic). A representative Java
language level example of this implementation of the fifth technique for static class

methods is as follows. Assume that the applet originally contained,

JSObject object = JSObject.getWindow(this_ applet) ;

and then is effectively modified as shown below

JSObject object = NeoterisStatic.getJSWindow(this_applet);

[0053] According to another aspect of the invention, a communication framework
is provided to funnel communication between an applet and a server through a
communication layer so as to provide managed and/or secured communications
there between. In one embodiment, socket connections from one or more applets
are funneled into HTTPS connections, namely, a pair of unidirectional HTTPS
connections.

[0054] FIG. 6 is a block diagram of a communication framework 600 according to
one embodiment of the invention. The communication framework 600 provides for
communications between applets operating at a client with destination servers (or
remote content servers). The communication framework 600 shown in FIG. 6

includes an applet 602, an applet communication layer 604 and an intermediate

16

WO 03/105010 PCT/US03/17934

server 606. The general communications scheme is that the applet 602 sends
outgoing communications through the applet communication layer 604 and then onto
the intermediate server 606 before being delivered to an appropriate destination
server. Typically, the communications would be delivered to an application server
within the appropriate destination server. Also, communications incoming to the
applet 602 are initially received at the intermediary server 606 (from the destination
server or an application server thereof). The incoming communications are then
directed by the intermediate server to the applet communication layer 604. The
applet communication layer 604 then directs the incoming communications to the
applet 602.

[0055] The applet 602 includes a plurality of communication sockets (socket
connections), namely, socket A 608, socket B 610 and socket C 612. Each socket
effectively provides a communication link, channel or connection to an eventual
destination server. The sockets 608-612 provide communications in both incoming
and outgoing directions. Normally, the communication is achieved through
transmission of packets of data. The outgoing packets from the sockets 608-612 are
supplied to an outgoing queue 614 of the applet communication layer 604. In other
words, the outgoing queue 614 queues the packets being sent from the applet 602 to
the applet communication layer 604. A sender thread 616 interacts with the outgoing
queue 614 to send those packets residing in the outgoing queue 614 to the
intermediate server 606. The communications between the sender thread 616 of the
applet communication layer 604 and the intermediate server 606 are preferably
achieved over a secure connection. One such secure connection is a HTTPS
connection. Once the packets arrive at the intermediate server 606, dispatching
logic 618 determines which of a plurality of intermediate sockets the packets should
be directed to. As depicted in FIG. 6, the intermediate server 606 is shown including
intermediate socket A 620, intermediate socket B 622 and intermediate socket C
624. Each of the intermediate sockets 620-624 couples to and provides a socket
connection with a destination server (or application server therein), normally a
different destination server for each of the intermediate sockets 620-624.

[0056] Incoming communications are directed from one of the destination servers
to one of the intermediate sockets 620-624 of the intermediate server 606. Normally,
the communication is achieved through transmission of packets of data. The

communication of these packets from the intermediate server 606 to a reader thread

17

WO 03/105010 PCT/US03/17934

626 of the applet communication layer 604 is achieved over a secure connection,
namely, a HTTPS connection. The reader thread 626 then determines which of a
plurality of buffers the incoming packets should be directed to. Namely, the applet
communication layer 604 includes buffers 628-632. Each of the buffers 628-632
corresponds to one of the sockets 608-612 within the applet 602. Hence, packets
destined for the socket A 608 of the applet 602 are directed to the buffer 628 by the
reader thread 626. Similarly, packets directed to the socket B 610 are directed to the
buffer 630 by the reader thread 626, and packets destined for the socket C 612 are
directed to the buffer 632 by the reader thread 626. When the sockets of the applet
602 read from the socket’s input stream, it retrieves any packets for the socket that
are in the corresponding buffer. Once a socket of the applet 602 is destroyed, the
corresponding input and output stream objects, along with underlying data structures
(e.g., buffers), are destroyed.

[0057] The connections between the applet communication layer 604 and the
intermediary server 606 are provided by HTTPS. Namely, one HTTPS connection
for outgoing packets, and another HTTPS connection for incoming packets. Each of
these HTTPS connections is half-duplexed, meaning that it supports
communications in one direction. Additionally, the outgoing HTTPS connection from
the applet communication layer 604 is a transient connection. The transient
connection is such that the sender thread 616 establishes the connection while
packets are stored in the outgoing queue 614 and ready to be delivered. Once the
sender thread 616 has sent all the available packets from the outgoing queue 614,
the outgoing HTTPS connection is closed. On the other hand, the incoming HTTPS
connection to the applet communication layer 604 (namely, the reader thread 626) is
maintained as a persistent connection (at least until a time-out occurs). In other
words, to timely deliver incoming packets to the appropriate sockets within the applet
602, the reader thread 626 constantly monitors the incoming HTTPS connection to
discover incoming data packets.

[0058] By using the HTTPS connections between the applet communication layer
604 and the intermediate server 606, the communications there between are
secured. Also, the applet communication layer 604 allows the pair of HTTPS
connections to support numerous sockets (socket connections) within the applet

602. Therefore, the limitation of Java applets that only a maximum of two (2) URL

18

WO 03/105010 PCT/US03/17934

connections be permitted is able to be satisfied, yet the applet or applets are able to
have many more active sockets than two.

[0059] FIG. 7 is a block diagram of a communication framework 700 according to
another embodiment of the invention. The communication framework 700 illustrates
use of a plurality of browsers sharing an intermediate server and then coupling to
various different destination servers through the shared intermediate server. Applets
operating on these browsers are able to communicate over secure connections to
the intermediate server which directs communications to and from the appropriate
destination server (or application server therein).

[0060] The communication framework 700 illustrated in FIG. 7 includes a browser
A 702 and a browser B 704. The browser A 702 includes an applet A 706. The
applet A 706 has socket connections 708 and 710. These socket connections 708
and 710 communicate through an applet communication layer 712 with an
intermediate server 714. In one embodiment, the applet communication layer 712 is
designed as shown in FIG. 6. Typically, the applet communication layer 712
communicates with the intermediate server 714 over a pair of HTTPS connections.
Each of the HTTPS connections provides secure communications in a single
direction (i.e., unidirectional).

[0061] The browser B 704 includes an applet B1 716 and an applet B2 718. The
applet B1 716 includes socket connections 720 and 722, and the applet B2 718
includes socket connection 724. The socket connections 720-724 communicate with
the intermediate server 714 through an applet communication layer 726. Here, the
applet communication layer 726 is able to support socket connections from one or
more applets operating on the browser B 704. The applet communication layer 726
couples to the intermediate server 714 through a pair of HTTPS connections. Each
of the HTTPS connections provide secure communications in a single direction (i.e.,
unidirectional).

[0062] The intermediate server 714 includes a plurality of intermediate socket
connections. Namely, the intermediate server 714 includes intermediate socket
connection-1 728, intermediate socket connection-2 730, intermediate socket
connection-3 732, intermediate socket connection-4 734, and intermediate socket
connection-5 736. The intermediate socket connection-1 728 provides a connection
with a destination server-1 738. The intermediate socket connection-2 730 provides

a connection with a destination server-2 740. The intermediate socket connection-3

19

WO 03/105010 PCT/US03/17934

732 provides a connection to a destination server-3 742. The intermediate socket
connection-4 734 provides a connection to a destination server-4 744. The
intermediate socket connection-5 736 provides a connection to a destination

server- 5 746.

[0063] Additionally, the socket connections 708, 710 and 720-724 in the applets
716 and 718 are associated with the intermediate socket connections 728-736 in the
intermediate server 714. Namely, the applet A 706 forms the socket connection 708
to communicate with the destination server-1 738. However, the delivery of packets
for communications between the socket connection 708 and the destinations server-
1 738 is achieved through the applet communication layer 712 and the intermediate
server 714. In particular, the socket connection 708 sends packets to the applet
communication layer 712 that forwards the packets over the HTTPS connection to
the intermediate server 714. The intermediate server 714 recognizes that the
incoming packets originated from the socket connection 708 of the applet A 706 and
thus directs the packets to the intermediate socket connection-1 728. The
intermediate server 714 then delivers the packets from the intermediate socket
connection-1 728 to the destination server-1 738. Similarly, packets being sent from
the socket connection 710 of the applet A 706 are directed through the applet
communication layer 712 to the intermediate socket connection-2 730 of the
intermediate server 714 and then onto the destination server-2 740. Likewise,
packets being sent by the socket connections 720, 722, and 724 from the applets
716 and 718 are directed by the applet communication layer 726 to the intermediate
socket connections 732, 734 and 736, respectively, within the intermediate server
714. The intermediate socket connections 732, 734 and 736 then respectively
deliver the packets to the corresponding destination servers 742, 744 and 746.
[0064] In one embodiment, the packets being transmitted include a header that
identifies the socket connection and the browser hosting the socket connection.
Using such information from the header, the intermediate server can determine the
appropriate intermediate socket connection within the intermediate server 714 that is
to handle the packets.

[0065] Optionally, the intermediate server can impose security on which
destination servers the sockets for the applets are able to communicate with.
Hence, the sockets of an applet can also be assigned a security identifier. The

security identifier can be utilized to restrict the network locations that the socket is

20

WO 03/105010 PCT/US03/17934

able to communicate with. For example, if the HTML page including an applet
originated from xyz.com, when subsequent packets from the socket connection are
sent to the intermediate server, the intermediate server can check the security
identifier to determine which destination server the applet is permitted to
communicate with. Hence, in one embodiment, the intermediate server can maintain
a table of security identifiers and permitted network domains. For example, if the
security identifier was associated with xyz.com, then packets to be sent to a domain
jkl.com could be refused by the intermediate server. The security identifier can thus
be used to enforce the network security described in the Java security specifications.
In one implementation, the security can be implemented by bytecode modification
discussed above, wherein the security identifier for each applet can be inserted into
the bytecode.

[0066] The communication frameworks 600, 700 discussed above in FIGs. 6 and
7 make use of a pair of HTTPS connections between an applet communication layer
(client) and an intermediate server (server). As a result, the data packets (or
messages) from various browsers can be multiplexed and sent over one of the
HTTPS connections, and the data packets (or messages) destined for various
browsers can be commonly sent over another of the HTTPS connections and then
delivered to the appropriate browser.

[0067] To assist the exchange of data packets (messages) flow control messages
can also be sent between the applet communication layer and the intermediate
server for flow control. If the intermediate server is sending too much data, the
applet communication layer can inform the intermediate server to stop sending the
data. This prevents the applet communication layer from being forced to buffer more
than a limited amount of data. After at least a significant portion of the data being
buffered in the buffers 628-632 of the applet communication layer 604 has been
consumed by the corresponding applet(s), the applet communication layer can
instruct the intermediate server to resume sending more data. This flow control can
be useful because the sockets are being multiplexed across a single HTTPS
connection in each direction.

[0068] Additionally, acknowledgement messages can also go back and forth
between the applet communication layer and the intermediate server so that the
intermediate server knows what data has actually been received by the applet

communication layer. The use of acknowledgement messages can be beneficial as

21

WO 03/105010 PCT/US03/17934

sometimes the long-lived HTTPS connection (the connection that the applet
communication layer uses to read data from the intermediate server) can be dropped
by an intermediate proxy if the connection is idle or open for an extended duration.
To recover from this situation the intermediate server is capable of retransmitting any
data that the applet communication layer did not receive because the intermediate
server knows from the acknowledgements what data the applet communication layer
did or did not receive.

[0069] It should be recognized that the amount of overhead involved in the dual-
channel implementation (provided by the pair of HTTPS connections) can be
significant. For example, the overhead can include acknowledgements, flow control
messages, and the HTTP overhead for each transient HTTP request (sending data
from client to server). Note that the browser can also perform HTTP keep-alives, so
the underlying TCP connection from browser (namely, the applet communication
layer) to intermediate server is kept open. The transient HTTP requests from client
to server are thus able to avoid the expensive TCP handshake on every request.
[0070] The dual-channel implementation works in situations where the applet
must talk through a proxy to reach the intermediate server. However in situations
where the applet can connect directly to the intermediate server, the HTTP and
acknowledgement/flow-control overhead can be avoided if the applet communication
layer opens an SSL connection directly to the intermediate server. By opening a
new TCP connection for each client socket connection (e.g., NeoterisSocket) there is
no longer any multiplexing of connections. Thus if the applet stops reading from a
particular client socket connection, the data on the corresponding TCP connection
will be unread and, due to the flow control built into TCP, the intermediate server will
be unable to send any more data. Once the applet reads from data from the client
socket connection, a read from the TCP connection can be performed, which permits
the intermediate server to send more data. Here, there is no proxy in the middle that
could drop connections, so the acknowledgements are not necessary.

[0071] Moreover, because opening a new SSL connection is expensive, it is
desirable to keep an SSL connection open for as long as possible. If the applet
opens a connection sends a small amount of data and then closes the connection, it
is desirable to keep the underlying TCP and SSL connection open. This can be
achieved by embedding special control messages in the data stream that indicate
when the connection is being closed by the application. The TCP and SSL

22

WO 03/105010 PCT/US03/17934

connections are kept around for a period of time (e.g., 1-5 minutes), so that if a new
connection is needed the previous one can be reused. Here, the logic of the applet
then is to first try a direct connection to the intermediate server. If that fails, or times
out, the applet falls back to the "proxy friendly" method of communication that uses
the pair of HTTPS connections.

[0072] Although the above-described embodiments refer to the use of a single
intermediary server within an information retrieval system, it should be recognized
that the information retrieval system can also include a plurality of intermediary
servers. The various intermediary servers can individually receive requests from
client machines and forward them to the appropriate servers and return responses
back through the intermediary server to the client machine. By having multiple
servers, not only can additional processing power be obtained, but load balancing,
fault tolerance and localization issues can also be addressed.

[0073] The various aspects, features, embodiments or implementations of the
invention described above can be used alone or in various combinations.

[0074] The invention is preferably implemented in software, but can be
implemented in hardware or a combination of hardware and software. The invention
can also be embodied as computer readable code on a computer readable medium.
The computer readable medium is any data storage device that can store data which
can thereafter be read by a computer system. Examples of the computer readable
medium include read-only memory, random-access memory, CD-ROMs, DVDs,
magnetic tape, optical data storage devices, and carrier waves. The computer
readable medium can also be distributed over network-coupled computer systems so
that the computer readable code is stored and executed in a distributed fashion.
[0075] The many features and advantages of the present invention are apparent
from the written description and, thus, it is intended by the appended claims to cover
all such features and advantages of the invention. Further, since numerous
modifications and changes will readily occur to those skilled in the art, it is not
desired to limit the invention to the exact construction and operation as illustrated
and described. Hence, all suitable modifications and equivalents may be resorted to
as falling within the scope of the invention.

What is claimed is:

23

10

15

20

25

30

WO 03/105010 PCT/US03/17934

CLAIMS

1. A method for modifying a markup language page to redirect resource
requests to an intermediate server, said method comprising the acts of:
identifying, within the markup language page, a predetermined element
that includes at least a first network address; and
modifying the first network address within the predetermined element
of the markup language page to a second network address that pertains to
the intermediate server.
2. A method as recited in claim 1, wherein said identifying identifies the
predetermined element through use of predetermined tags.
3. A method as recited in claim 2, wherein the markup language page is
an HTML page, and wherein the predetermined tags are HTML tags.
4. A method as recited in claim 1, wherein the second network address
has a hostname pertaining to the intermediate server.
5. A method as recited in claim 4, wherein the second network address
further has a suffix that includes at least a hostname of the first network
address.
6. A method as recited in claim 4, wherein the second network address
further has a suffix that includes at least the first network address.
7. A method as recited in any of claims 1-6, wherein the predetermined

element is an applet.

8. A method as recited in claim 1, wherein the predetermined element is a
Java applet.
9. A method as recited in claim 1, wherein the predetermined element is a

Java object.
10. A method for processing resource requests provided to an intermediate
server from a client via a computer network, said method comprising the acts
of:

receiving a resource request for a particular resource, the resource
request being provided to the intermediate server from the client via the
computer network;

extracting a destination server from the resource request;

requesting the particular resource from the destination server,

24

10

15

20

25

30

WO 03/105010 PCT/US03/17934

receiving the particular resource from the destination server;

modifying the particular resource to redirect internal resource requests
to the intermediate server;

sending the modified particular resource to the client;

receiving an applet code request for an applet identified within the
modified particular resource;

requesting applet code for the applet from a remote server via the
computer network;

receiving the applet code from the remote server in response to said
requesting of the applet code;

modifying the applet code to redirect its external communications
through the intermediate server; and

sending the modified applet code to the client.
11. A method as recited in claim 10, wherein the applet code is bytecode
for the applet.
12. A method as recited in claim 10, wherein said modifying of the
particular resource modifies at least one source file address within the
particular resource, the at least one source file address pertaining to the
applet.
13. A method as recited in claim 12, wherein the particular resource is a
markup language document.
14. A method as recited in claim 13, wherein the markup language
document is a HTML page.
15. A method as recited in claim 10, wherein the computer network
includes at least a portion of the Internet.
16. A method as recited in claim 10, wherein the remote server is the
destination server.
17. A method as recited in any of claims 10-16, wherein said modifying of
the particular resource comprises the acts of:

identifying, within the particular resource, a predetermined element that
includes at least a first network address; and

modifying the first network address within the predetermined element
of the particular resource to a second network address that pertains to the

intermediate server.

25

10

15

20

25

30

WO 03/105010 PCT/US03/17934

18. A method as recited in claim 17, wherein said identifying identifies the
predetermined element through use of predetermined tags.
19. A method as recited in claim 17, wherein the particular resource
request is a markup language document.
20. A method as recited in claim 18, wherein the markup language
document is a HTML page.
21. A method as recited in claim 20, wherein the predetermined tags are
HTML tags.
22. A method as recited in claim 16, wherein the second network address
includes at least a hostname pertaining to the intermediate server.
23. A method as recited in claim 22, wherein the second network address
further has a suffix that includes at least the first network address.
24. A method as recited in any of claims 16-23, wherein the predetermined
element pertains to an applet.
25. A method as recited in claim 24, wherein the predetermined element is
a predetermined attribute of the applet.
26. A method for communicating between a client and a server, the client
including an applet, said method comprising:

determining whether a socket connection between the applet at the
client and server is available;

establishing a socket connection between the applet at the client and
the server when said determining determines that a socket connection is
available;

establishing a pair of unidirectional secure connections provided by
said communication layer when said determining determines that a socket
connection is not available; and

thereafter communicating data between the applet at the client and the
server using whichever of the socket connection and the pair of unidirectional
secure connections has been established.
27. A method as recited in claim 26, wherein the pair of unidirectional
secure connections are URL connections.
28. A system for communicating between a client and a server, said

system comprising:

26

10

15

20

25

30

WO 03/105010 PCT/US03/17934

a communication layer at a client, said communication layer
transforming one or more socket connections into a pair of unidirectional
secure URL connections;

an applet operating at the client to perform operations and to create at
least one socket connection with said communication layer; and

a server operatively connected with the pair of unidirectional secure
URL connections, said server communicating with said applet via the pair of
unidirectional secure URL connections provided by said communication layer.
29. A system as recited in claim 28, wherein communications between said
server and said applet are performed using packets of data.

30. A system as recited in claim 29, wherein the packets include a header
and data, and wherein the header includes at least a browser identifier and a
socket identifier.

31. A system as recited in claim 28, wherein said server includes one or
more server socket connections with remote content servers, and wherein
said server receives packets from said applet via one of the unidirectional
secure URL connections provided by said communication layer, and wherein
said server directs the packets received to an appropriate one of the server
socket connections based on at least the browser identifier and the socket
identifier.

32. A system as recited in claim 28,

wherein communications between said server and said applet are
performed using packets of data,

wherein the packets include a header and data, and the header
includes at least a socket identifier,

wherein said server includes one or more server socket connections
with remote content servers, and

wherein said server receives packets from said applet via one of the
unidirectional secure URL connections provided by said communication layer,
and directs the packets received to an appropriate one of the server socket
connections based on at least the socket identifier.

33. A system as recited in claim 28, wherein said communication layer

comprises:

27

10

15

20

25

30

WO 03/105010 PCT/US03/17934

an outgoing queue for buffering outgoing packets of data received from
the at least one socket connection with said applet; and

a sender thread that sends the packets of data stored in said outgoing
queue to said server.
34. A system as recited in claim 33, wherein said communication layer
further comprises:

a reader thread that receives packets of data being sent from said
server to said applet via said communication layer; and

at least one incoming queue for buffering incoming packets of data
received from said server.
35. A system as recited in claim 34, wherein said at least one incoming
queue operatively connects with the at least one socket connection of said
applet.
36. A system as recited in claim 34, wherein flow control messages are
sent between said communication layer and said server.
37. A system as recited in claim 34, wherein acknowledgement messages
are sent between said communication layer and said server.
38. A system as recited in claim 28, wherein one of the pair of the
unidirectional secure URL connections is an outgoing unidirectional secure
URL connection, and the other of the pair of the unidirectional secure URL
connections is an incoming unidirectional secure URL connection.
39. A system as recited in claim 38, wherein the outgoing unidirectional
secure URL connection is a transient connection.
40. A system as recited in claim 39, wherein the incoming unidirectional
secure URL connection is a persistent connection.
41. A system as recited in claim 28, wherein said communication layer is
an applet communication layer.
42. A system for communicating between a client and a server, said
system comprising:

a plurality of browser applications, at least a plurality of said browser
applications utilizing at least one operating applet and a communication layer,
said applet operating to perform operations and to create at least one socket

connection with said communication layer, and said communication layer for

28

10

15

20

25

30

WO 03/105010 PCT/US03/17934

each of said browsers operates to transform said socket connections into a
pair of unidirectional URL connections; and

a server operatively connected with the pair of unidirectional URL
connections associated with said communication layer associated with each
of said plurality of browser applications, said server communicating with said
at least one operating applet of said plurality of browser applications via the
pair of unidirectional URL connections provided by said communication layer
corresponding thereto.

43. A system as recited in claim 42, wherein the pair of unidirectional URL
connections are secure connections.

44. A system as recited in claim 42, wherein the pair of unidirectional URL
connections are HTTPS connections.

45. A system as recited in claim 42, wherein said server is an intermediate
server that is provided as an intermediary between said browser application
and remote content servers.

46. A system as recited in claim 42, wherein one of the pair of
unidirectional URL connections is a transient connection, and the other of the
pair of unidirectional URL connections is a persistent connection.

47. A system for communicating between a client and a server, said
system comprising:

a plurality of browser applications, at least a plurality of said browser
applications utilizing at least one operating applet and a communication layer,
said applet operating to perform operations and to create at least one socket
connection with said communication layer, and said communication layer for
each of said browsers operates to form an intermediate socket connection or
to transform said socket connections into a pair of unidirectional URL
connections; and

a server operatively connected with the intermediate socket connection
or the pair of unidirectional URL connections associated with said
communication layer associated with each of said plurality of browser
applications, said server communicating with said at least one operating
applet of said plurality of browser applications via the intermediate socket
connection or the pair of unidirectional URL connections provided by said

communication layer corresponding thereto.

29

WO 03/105010 PCT/US03/17934

48. A system as recited in claim 47, wherein said server communicates
with said at least one operating applet of said plurality of browser applications
via the intermediate socket connection if such connection can be established,

otherwise via the pair of unidirectional URL connections.

30

WO 03/105010 PCT/US03/17934
1/7

100
DESTINATION
SERVER
WEB 114
CLIENT ~< 102 /‘ SERVER |~
o | 116
BROWSER APPLN.
SERVER —
JAVA
APPLET 2
) [~ 118 106
110
INTERMEDIATE
SERVER (T~ 104
JAVA 112
MODIFIER [|

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 03/105010 PCT/US03/17934
2/7

200,

WEB
RESOURCE
REQUEST

EXTRACT DESTINATION SERVER

FROM THE WEB RESOURCE REQUEST | 204

SEND REQUEST FOR THE WEB RESOURCE
TO THE DESTINATION SERVER

RESPONSE

RECEIVED
?

NO

MODIFY THE RESPONSE TO FACILITATE -
REDIRECTION TO INTERMEDIATE SERVER 210

RETURN THE MODIFIED RESPONSE .
TO REQUESTOR 212

END FIG. 2

RECTIFIED SHEET (RULE 91)

WO 03/105010 PCT/US03/17934
3/7

302

APPLET
REQUEST
RECEIVED

YES

REQUEST BYTECODE FOR THE
APPLET (™~ 304

306

BYTECODE

RECEIVED
?

NO

MODIFY THE BYTECODE [™~_ 1ps

SEND THE MODIFIED BYTECODE
TO REQUESTOR (™~ 310

END

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 03/105010 PCT/US03/17934
4/7

400

L2

SCAN HTML PAGE FOR <applet>
OR <object> ELEMENT

402

404

<applet?
OR <object>
ELEMENT FOUND
?

SCANNING

COMPLETE No
?

1408 DOES

ELEMENT
INCLUDE A
YES “codebase"

ATTRIBUTE
?

INSERT DEFAULT "codebase"

410 "> ATTRIBUTE INTO THE ELEMENT

—

MODIFY URLs ASSOCIATED
412 ~_f WITH CERTAIN ATTRIBUTES
OF THE ELEMENT

INSERT ADDITIONAL PARAMETERS
414 7Y INTO THE ELEMENT TO STORE
CERTAIN ORIGINAL URLs

-

END FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 03/105010

511

PCT/US03/17934

&>

SCAN BYTECODE FOR A CLASS

DESCRIPTOR

/ 500

508

OBJECT
METHOD

INVOCATION(S)
?

512

/

REPLACE EACH OBJECT
METHOD INVOCATION
WITH A CORRESPONDING
STATIC METHOD CALL

514

OBJECT

DOES
CLASS

HAVE PUBLIC
YES N\ CONSTRUCTORS

?

2502

506

NO y

/

REPLACE EACH IDENTIFIED
CLASS DESCRIPTOR WITH A
CORRESPONDING
MODIFIED
CLASS THAT IS A
SUBCLASS
OF THE IDENTIFIED CLASS

518

|

REPLACE PREDETERMINED
CLASS STRINGS IN THE
CLASS WITH CORRESPONDING
WRAPPER CLASS(S)

CREATION(S)
?

NO

516

REPLACE EACH OBJECT
. CREATION WITH A
CORRESPONDING STATIC
METHOD

520

I

?

SCANNING
COMPLETE

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 03/105010

6/7

PCT/US03/17934

SUBSTITUTE SHEET (RULE 26)

APPLET / 600
SOCKET A SOCKET B SOCKET C
™ 608 ™ 610 612 |~_, 602
NN N . &
, 6320
™\ 614
628 { 604
632 [~
READER
SENDER | APPLET THREAD
THREAD COMM.
LAYER
% { 626
616
HTTPS HTTPS
INT.
DISPATCHING LOGIC SERVER
606
Z 618 ™~
ISA U620 | ISB P22 | ISC NUg24
A)
FIG. 6

WO 03/105010

717

PCT/US03/17934

/ 700

704
E OWSE
BROWSER A - 702 BROWSER B
APPLET 718
1 B1 |
APPLET A 716 APPLET
720 | | 7122 B2
708 | | 710 724
ACL 745 | |706
ACL 706
INTERMEDIATE SERVER
IS 1 1S 2 1S3 IS 4 IS5 714
/ Z728 / Z730 ? Z732 \?734 \436
738
DS DS
1 748y 5
™\ 740
DS DS
2 DS 4 ™o 744
3 R
™\ 742
FIG. 7

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/17934

A. CLASSIFICATION OF SUBJECT MATTER
1IPC(7) GO6F 15/16
UsCL 713/176

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 713/176; 709/203; 707/201,523; 705/71

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to ctaim No.

X US 2002/0007393 A1 (HAMEL) 17 January 2002, abstract, Fig. 1, elements 115, 150 and 1,10,26,28,42 and 47
160, col. page 30, paragraph30-3¢6
Y 2-6, 8-9, 11-16, 22-23,
27, 29-40, 43-46 and
48
Y US 6,298,356 B1 (JAWAHAR et al) 02 October 2001, the entire document. 2-6, 8-9, 11-16, 22-23,
27, 29-41, 43-45 and
48
A US 6,029,182 A (NEHAB et al) 22 February 2000, the entire document. 1, 10, 26, 28, 42 and

47

Further documents are listed in the continuation of Box C.

[]

See patent family annex.

priority date claimed

. Special categories of cited documents: “T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A" document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“X" document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step
when the docunent is taken alone
“L™ document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as “Y" document of particular relevance; the clainxd invention cannot be
specified) considered to involve an inventive step when the docunkent is
combined with one or more other such documents, such combination
“O" document referring to an oral disclosure, use, exhibition or other nxans being obvious to a person skilled in the art
“P" document published prior to the international filing date but later than the “&” document member of the same patent family

Date of the actual completion of the international search

22 October 2003 (22.10.2003)

Date of mailing of the international search report

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US
Commissioner for Patents

P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703)305-3230

Telephtne No. 703-305-9648
yd
/

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US03/17934

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claim Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claim Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. & Claim Nos.: 7,17-21,24 and 25
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box Il Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

As all required additional search fees were timely paid by the applicant, this international search report covers all
searchable claims.

As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite
payment of any additional fee.

OO O

As only some of the required additional search fees were timely paid by the applicant, this international search report
covers only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest [:l The additional search fees were accompanied by the applicant’s protest.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

PCT/US03/17934
INTERNATIONAL SEARCH REPORT

Continuation of B. FIELDS SEARCHED Item 3:
User West, Dialog and Proquest NPL search. Search Terms; secure adj remote access same private adj network and applet or HTML
"in browser"

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

