2/21771 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 March 2002 (14.03.2002)

(10) International Publication Number

WO 02721771 Al

(51) International Patent Classification’: HO04L 12/00

(21) International Application Number: PCT/US01/27413

(22) International Filing Date:

4 September 2001 (04.09.2001)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/230,759 7 September 2000 (07.09.2000) US
09/931,344 16 August 2001 (16.08.2001) US
(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier applications:
Us 60/230,759 (CIP)
Filed on 7 September 2000 (07.09.2000)
UsS 09/931,344 (CIP)
Filed on 16 August 2001 (16.08.2001)
(71) Applicant (for all designated States except US): MAZU

NETWORKS, INC. [US/US]; 6th Floor, 125 Cambridge
Park Drive, Cambridge, MA 02140 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): POLETTO, Massi-
miliano, Antonio [IT/US]; 474 Broadway 6, Cambridge,
MA 02138 (US). KOHLER, Edward, W., Jr. [US/US];
805 57th Street, Oakland, CA 94608 (US).

(74) Agent: MALONEY, Dennis, G.; Fish & Richardson P.C.,

225 Franklin Street, Boston, MA 02110-2804 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
ZA, 7ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

[Continued on next page]

(54) Title: DEVICE TO PROTECT VICTIM SITES DURING DENIAL OF SERVICE ATTACKS

Filters, 35

7, computer

—
file

A4

[—»| < > < 14
D 1 0
ata center, 2! Gateway, 26 GSR. 38 Edge
[< > < router
D
=
Communication /1
process, 33
39, modem
Monitoring process, 33
'\30

v

(57) Abstract: A system architecture for thwarting denial of service attacks on a victim (12) data center (20a-20c) is described. The
system includes a first plurality of monitors that monitor network traffic flow through the network. The first plurality of monitors is
disposed at a second plurality of points in the network. The system includes a central controller that receives data from the plurality
of monitors, over a hardened, redundant network (30). The central controller analyzes network traffic statistics to identify malicious
network traffic. In some embodiments of the system, a gateway (26) device is disposed of pass network packets between the network
and the victim site. The gateway (26) is disposed to protect the victim site, and is coupled to the control center (24) by the redundant

hardened networkm (30).

w0 02/21771 A1 0D 00000 O

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

For two-letter codes and other abbreviations, refer to the "Guid-
TG). ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.
Published:

with international search report
before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments

10

15

20

25

30

WO 02/21771 PCT/US01/27413

DEVICE TO PROTECT VICTIM SITES DURING
DENIAL OF SERVICE ATTACKS

Background

This invention relates to techniques to thwart
network-related denial of service attacks.

In denial of service attacks, an attacker sends a
large volume of malicious traffic to a victim. In one
approach an attacker, via a computer system connected to
the Internet infiltrates one or a plurality of computers
at various data centers. Often the attacker will access
the Internet through an Internet Service Provider (ISP).
The attacker by use of a malicious software program places
the plurality of compu%ers at the data centers under its
control. When the attacker issues a command to the
computers at the data centers, the machines send data out
of the data centers at arbitrary times. These computers
can simultaneously send large volumes of data over various
times to the victim preventing the victim from responding

to legitimate traffic.

Summary

According to an aspect of the present invention, a
gateway device disposed between a data center and a
network for thwarting denial of service attacks on the
data center, the gateway device includes a computing
device. The computing device includes a monitoring
pfocess that monitors network traffic through the gateway
and a communication process that can communicate
statistics collected in the gateway from the monitoring
process with a control center and that can receive queries
or instructions from the control center. The computing

device also includes a filtering process to allow filters

10

15

20

25

30

WO 02/21771 PCT/US01/27413

to be inserted to filter out packets that the gateway
deems to be part of an attack.

According to an additional aspect of the present
invention, a method of protecting a victim site during a
denial of service attack, includes disposing a gateway
device between the victim site and a network and
monitoring network traffic through the gateway. The
method also includes measuring heuristics of the network
traffic and communicating statistics collected in the
gateway to a control center. The method also includes
filtering out packets that the gateway or control center
deems to be part of an attack.

According to an additional aspect of the present
invention, a computer program product residing on a
computer readable medium for protecting a victim site
during a denial of service attack, comprises instructions
for causing a computer device coupled at an entry to the
site to monitor network traffic sent to the victim site
and measuring heuristics of the network traffic. The
program also includes instructions to communicate
statistics collected in the computer device to a control
center and filter out packets that the device or control
center deems to be part of an attack.

One or more aspects of the invention may provide some
or all of the following advantages.

Aspects of the invention provide a distributed rather
than a point solution to thwarting denial of service
attacks. The technique can stop attacks near their
source, protecting the links between the wider Internet
and the attacked data center as well as devices within the
data center. The gateway device can tap a network line
without being deployed physically in line. Or the gateway

device can also forward network traffic by being disposed

10

15

20

25

30

WO 02/21771 PCT/US01/27413

in line. The gateway can filter malicious traffic if in-
line, or can dynamically install filters on nearby
routers. The gateway monitors traffic and can discard
packets that the gateway deems to be part of an attack, as

determined by heuristics.

Brief description of the drawings

FIG. 1 is a block diagram of networked computers
showing an architecture to thwart denial of service
attacks.

FIG. 2 is a block diagram depicting details of
placement of a gateway.

FIG. 3 is a block diagram depicting details of
placement of data collectors.

FIG. 4 is flow chart depicting a data collection
process.

FIG. 5 is a flow chart depicting details of a control
center.

FIG. 6 is a diagram depicting functional layers of a
monitoring process.

FIG. 7 is a diagram depicting one technique to gather
statistics for use in algorithms that determine sources of
an attack.

FIG. 8 is a diagram depicting an alternative
technique to gather statistics for use in algorithms that
determine sources of an attack.

FIG. 9 is flow chart depicting a process to determine
receipt of bad TCP traffic.

FIG. 10 is flow chart depicting a process to defend

against setup time connection attacks.

10

15

20

25

30

WO 02/21771 PCT/US01/27413

Detailed Description

Referring to FIG. 1, an arrangement 10 to thwart
denial of service attacks (DoS attacks) is shown. The
arrangement 10 is used to thwart an attack on a victim
data center 12, e.g., a web site or other network site
under attack. The victim 12 is coupled to the Internet 14
or other network. For example, the victim 12 has a web
server located at a data center (not shown).

An attacker via a computer system 16 that is
connected to the Internet e.g., via an Internet 14 Service
Provider (ISP) 18 or other approach, infiltrates one or a
plurality of computers at various other sites or data
centers 20a-20c. The attacker by use of a malicious
software program 21 that is generally surreptitiously
loaded on the computers of the data centers 20a-20c,
places the plurality of computers in the data centers 20a-
20c under its control. When the attacker issues a command
to the data centers 20a-20c, the data centers 20a-20c send
data out at arbitrary times. These data centers 20a-20c
can simultaneously send large volumes of data at various
times to the victim 12 to prevent the victim 12 from
responding to legitimate traffic.

The arrangement 10 to protect the victim includes a
control center 24 that communicates with and cohtrols
gateways 26 and data collectors 28 disposed in the network
14. The arrangement protects against DoS attacks via
intelligent traffic analysis and filtering that is
distributed throughout the network. The control center 24
is coupled to the gateways 26 and data collectors 28 by a
hardened, redundant network 30. Gateways 26 and data
collectors 28 are types of monitors that monitor and

collect statistics on network traffic. 1In preferred

10

15

20

25

30

WO 02/21771 PCT/US01/27413

embodiments,.the network is inaccessible to the attacker.
The gateway 26 devices are located at the edges of the
Internet 14, for instance, at the entry points of data
centers. The gateway devices constantly analyze traffic,
looking for congestion or traffic levels that indicate the
onset of a DoS attack. The data collectors 28 are located
inter alia at major peering points and network points of
presence (PoPs). The data collectors 28 sample packet
traffic, accumulate, and collect statistical information
about network flows.

All deployed devices e.g., gateways 26 and data
collectors 28 are linked to the central control center.
The control center aggregates traffic information and
coordinates measures to track down and block the sources
of an attack. The arrangement uses a distributed analysis
emphasizing the underlying characteristics of a DoS
attack, i.e., congestion and slow server response, to
produce a robust and comprehensive DoS solution. Thus,
this architecture 10 can stop new attacks rather than some
solutions that can only stop previously seen attacks.
Furthermore, the distributed architecture 10 will
frequently stop an attack near its source, before it uses
bandwidth on the wider Internet 14 or congests access
links to the targeted victim 12.

A wvirus 1s one way to get attacks started. When
surfing the web page a user may download something, which
contains a virus that puts the user’s computer under the
control of some hacker. In the future, that machine can
be one of the machines that launches the attack. The
attacker only needs a sufficient amount of bandwidth to
get a sufficient number of requests out to the victim 12

to be malicious.

10

15

20

25

30

WO 02/21771 PCT/US01/27413

Referring to FIG. 2, details of an exemplary
deployment of a gateway is shown. Other deployments are
possible and the details of such deployments would depend
on characteristics of the site, network, cost and other
considerations. The gateway 26 is a program executing on
a device, e.g., a computer 27 that is disposed at the edge
of the data center 20 behind an edge router at the edge of
the Internet 14. Additional details on the gateway 26 are
discussed below and in the APPENDIX A. In a preferred

embodiment, a plurality of gateway devices are deployed at

~a corresponding plurality of locations, e.g., data centers

or sites over the network, e.g., the Internet 14. There
can be one gateway or a plurality of gateways at each data
center, but that is not necessarily required.

The gateway 26 includes a monitoring process 32 (FIG.
6B) that monitors traffic that passes through the gateway
as well as a communication process 33 that can communicate
statistics collected in the gateway 26 with the data
center 24. The gateway uses a separate interface over a
private, redundant network, such as a modem 39 to
communicate with the control center 24 over the hardened
network 30. Other interface types besides a modem are
possible. In addition, the gateway 26 can include
processes 35 to allow an administrator to insert filters
to filter out, i.e., discard packets that the device deems
to be part of an attack, as determined by heuristics
described below.

An attack can be designed to either overload the
servers or overload some part of the network
infrastructure inside the victim site 12. Thus, the
victim site 12 can include routers, switches, load
balancers and other devices inside the data center that

can be targeted by the attack. A particularly troublesome

10

15

20

25

30

WO 02/21771 PCT/US01/27413

attack causes overload of upstream bandwidth. Upstream
bandwidth is the capacity between the victim 12 data
center 12a and one or a plurality of routers or switches
belonging to the victim 12 data center's network service
provider, which provides connectivity to the rest of the
network, e.g., the Internet.

For an exemplary configuration, the victim site 12
can include a plurality of high bandwidth lines feeding a
GSR (Gigabit Switch Router). At the output of the GSR are
exit ports to various parts of the data center. The GSR
is generally very high bandwidth and generally does not
crash. The gateway 26 is placed behind the GSR and across
some or all of the output ports of the GSR into the data
center. This configuration allows the gateway 26 to
monitor and control some or all of the traffic entering
the data center without the need to provide routing
functionality.

Alternatively, a gateway 26 can tap a network line
without being deployed physically in line, and it can
control network traffic, for example, by dynamically
installing filters on nearby routers. The gateway 26
would install these filters on the appropriate routers via
an out of band connection, i.e. a serial line or a
dedicated network connection. Other arrangements are of
course possible.

Referring to FIG. 3, data collectors 28 are shown
coupléd to the network to tap or sample traffic from data
centers 20a-20c. Although data collectors 28 can be
dispersed throughout the network 14 they can be
strategically disposed at peering points, i.e., points
where network traffic from two or more different backbone
providers meet. The data collectors 28 can also be

disposed at points of presence (PoPs). The data

10

15

20

25

30

WO 02/21771 PCT/US01/27413

collectors 28 monitor and collect information pertaining
to network traffic flow. The data collectors process
statistics based on monitored network traffic that enters
a peering point. Data collectors 28 include a monitoring
process 32 (FIG. 6) as well as a communication process
that communicates data to the control center over the
hardened network 30. One or more data collector devices
28 use the monitoring process to monitor one or more lines
that enter the peering point. Each data collector 28
would be able to monitor one or more lines depending on
the specifics of how the network is configured and
bandwidth requirements.

The gateway 26 and data collector 26 are typically
software programs that are executed on devices such as
computers, routers, or switches. 1In one arrangement,
packets pass through the gateway 26 disposed at the data
center 22a and are sampled by the data collector.

Referring to FIG. 4, the data collector 26 performs
40 a sampling and statistic collection process 40. The
data collector samples 42 one (1) packet in every (n)
packets and has counters to collect statistics about every
packet. The data collector 26 parses the information in
the sampled packet. Information collected includes source
information 44, which may be fake or.spoofed, e.g., not
correct information. It will also include destination
information 46, which generally is accurate information.
The data collector 28 collects that information but need
not log the sampled packets. The data collector 28
maintains a log over a period of time, e.g., in the last
hour. As an example, the log that the data collector 26
maintains is a log that specifies that the data collector
has seen a certain number of packets, e.g., 10,000 packets

of a particular kind, that apparently originated from a

10

15

20

25

30

WO 02/21771 PCT/US01/27413

particular source(s) that are going to a particular
destination.

Based on rules 48 within the data collector 26, the
data collector 26 analyzes 50 the collected statistics and
may i1f necessary compose 52 a message that raises an
alarm. Alternatively, the data collector can respond to
queries concerning characteristics of traffic on the
network. Typically, the queries can be for information
pertaining to statistics. It can be in the form of an
answer to a question e.g., how many packets of a type did
the data collector see or it can be a request to down load
via the hardened network, the entire contents of the log.
One rule is that when the data collector 26 starts
sampling, the data collector periodically logs data and
produces a log of a large plurality of different network
flows over a period of time.

Referring to FIG. 5, a deployment for the control
center 24 1s shown. The control center 24 receives
information from one or more gateways 26 and data
collectors 28 and performs appropriate analysis using an
analysis process 62. The control center is a hardened
site.

The control center 24 has multiple upstream
connections so that even during an attack it will have
other ways to couple to the network 30. Several
approaches can be used to harden the site. One approach
can use special software between the site and the Internet
14 to make it immune to attack. An approach is to have a
physically separate network 30 connected to all of the
devices, e.g., gateways 26 and data collectors 28. One
exemplary embodiment of that physically separate network
30, which is hardened, is the telephone system. Thus,

each one of the data collectors 26 and gateways 26

10

15

20

25

30

WO 02/21771 PCT/US01/27413

includes an interface to the separate network, e.g., a
modem. The data center 26 also includes a corresponding
interface to the separate network, e.g., a modem or a
modem bank 60.

With this approach, the redundant network 30 is not
accessible to the attacker. The redundant network 30 thus
is available to communicate between the data center 24 and
data collectors and gateways to coordinate response to an
attack. 1In essence, the network 30 used by the data
center to communicate with the data collectors 26 and
gateways 26 is not available to the attacker.
Alternatively, if less than complete assurance is
required, the control center could be resistant to attack
and still be connected to the Internet 14.

The analysis process 62 that is executed on the
control center 24 analyzes data from the gateways 26 and
data collectors 28. The analysis process 62 tries to
detect attacks on victim sites. The analysis process 62
views attacks as belonging to, e.g., one of three classes
of attack. Herein these classes of attack are denoted as
low-grade with spoofing, low-grade without spoofing and
high-grade whether spoofing or non-spoofing.

A low-grade attack is an attack that does not take
out upstream bandwidth. A low-grade attack does not
significantly overburden the links between the Internet 14
and the victim data center 12. The low-grade non-spoofing
attack is the simplest type of attack to defend against.
It simply requires identifying the source of the attack
and a mechanism to notify an administrator at the victim
site to install a filter or filters at appropriate points
to discard traffic containing the source address

assoclated with the attack.

-10 -

10

15

20

25

30

WO 02/21771 PCT/US01/27413

With a low-grade spoofing-type attack, an attacker
sends an IP-packet to a destination but fakes the source
address. There is no way to enforce use of an accurate
source address by a sender. During a spoofing attack,
each one of the attacking machines will send a packet with
a fake, e.g., randomly selected or generated source
address. Under this type of attack, the victim 12 alone
cannot thwart the attack. An administrator at the victim
12 can try to put a filter on a router to stop the
packets. However, there is no way for the administrator
to guess what the random address of the next packet will
be.

The control center 24 also includes a communication
process 63 to send data to/from the gateways 26 and data
collectors 28. The gateway 26 at the victim 12 contacts
the control center and notifies the control center 24 that
the victim 12 data center is under a spoofing attack. The
gateway 26 identifies itself by network address (e.g.,
static IP address if on the Internet 14), via a message to
the control center 24. The message sent over the hardened
network 30 indicates the type of attack, e.g., an attack
from addresses that the victim 12 cannot stop because it
is a spoofing type of attack. The control center queries
data collectors 28 and asks which data collectors 28 are
seeing suspicious traffic being sent to the victim 12.

The packets from the attacker will have faked source
addresses that will be changing with time. However, the
control center can issue a query for this kind of packet
by victim destination address. The data collectors 28
reply with the information collected. Based on that
collected information from the data collectors 28, the
control center can then determine what data centers are

performing the spoofing on the victim 12.

-11 -

10

15

20

25

30

WO 02/21771 PCT/US01/27413

In the present configuration, there are two possible
sources of attack traffic: either the attacker is behind a
gateway 26 or not. If the attacker is behind a gateway
26, the control center issues a request to the appropriate
gateway 26 to block the attacking traffic, e.g. by
allowing the appropriate gateway 26 to discard traffic,
e.g., packets that contain the victim 12 destination
address. The gateway 26 stops that traffic in a
transparent manner. If the attacker is not behind a
gateway 26, data collectors 28 are used to provide
information about possible locations of the attackers.

The availability of information from data collectors 28
increases the speed with which attackers are discovered.
The data collectors 28 are positioned at network switching
points that see a high volume of traffic, which minimizes
the required number of deployed data collectors.

The high-grade attacks are attacks that take out the
link between the victim 12 data center and the Internet
14. With a high-grade attack it does not matter whether
the victim 12 is spoofed or not. Under a high-grade
attack, the attack requires cooperation just like the low
grade spoofing attack. Thus, the same thwarting mechanism
is used for either spoofing or non-spoofing, e.g., using
information from the data collectors 28 to identify
attacking networks. This information is used to either
automatically shutdown traffic having the victim’s
destination address at the appropriate gateways 26 or is
used to identify networks or data centers from which the
attack is originating and to follow up with calls to the
appropriate administrators.

Referring to FIG. 6, a monitoring process 32 is
shown. The monitoring process 32 can be deployed on data

collectors 28 as well as gateways 26. The monitoring

-12 -

10

15

20

25

30

WO 02/21771 PCT/US01/27413

process 32 includes a process 32a to collect statistics of
packets that pass by the data collectors 28 or through the
gateways 26. The monitoring procéss 32 also includes
several processes 32b to identify, malicious traffic flows
based on the collected statistics as further described
below.

Referring to FIG. 7, the gateways 26 and data
collectors 28 are capable of looking at multiple levels of
granularity. The gateways 26 and data collectors have
monitoring process 32 used to measure some parameter of
traffic flow. One goal of the gateways 26 and data
collectors 28 is to measure some parameter of network
traffic. This information collected by the gateways 26
and data collectors is used to trace the source of an
attack.

One of the algorithms to measure parameters of
traffic flow divides the traffic flow into buckets. For
example, consider one simple parameter, the count of how
many packets a data collector or gateway examines. An
algorithm to track the count of this parameter starts with
a predefined number of buckets, e.g., “N” buckets. The
buckets are implemented as storage areas in the memory
space of the data collector or gateway device. The
algorithm will use some hash function “f(h)”, which takes
the packet and outputs an integer that corresponds to one
of the buckets “B; - By”. Statistics from the packets start
accumulating in the buckets “B; - By”. The buckets “B; . By”
are configured with threshold wvalues “Th.” As the
contents of the buckets B; - By reach the configured
thresholds values “Th”, (e.g., compare values of packet
count or packet rate to threshold), the monitoring process
32 deems that event to be of significance. The monitoring

process 32 takes that bucket, e.g., B; and divides that

-13-

10

15

20

25

30

WO 02/21771 PCT/US01/27413

bucket B; into some other number M of new buckets Bj; - Biu.
FEach of the new buckets Bjj; - Biy contains values
appropriately derived from the original bucket Bi. Also,
the hash function is extended to map to N+M-1 “hoN+M-1”7
values, rather than the original N values.

An attack designed to use the algorithm of FIG. 6
against a gateway 26 or a data collector 28 might send
packets in'such a fashion as to explode the number of
buckets. Since each bucket consumes memory space, the
attack can be designed to consume all available memory and
crash the device, e.g., computer on which the monitoring
process 32 executes. There are ways of preventing that
type of attack on the monitoring process 32. One way is
to make the hash function change periodically, e.g.,
randomly. Also the hash function is secret so that the
packets are reassigned to different buckets in ways
unknown to the attackers.

Referring to FIG. 8, a second method is that instead
of using just thresholds and values inside a given bucket,
the monitoring process 32 also sets thresholds on the
number of buckets. As the gateway 26 or data collector 28
approaches a bucket threshold “Th”, the gateway 26 or data
collector 28 have the ability to take several buckets B; -
B; and divide them in more buckets B; - By or combine them
into fewer bucket B; - Bs.

The function of the variable number of buckets is to
dynamically adjust the monitoring process to the amount of
traffic and number of flows, so that the monitoring device
(e.g., gateway 26 or data collector 28) is not vulnerable
to DoS attacks against its own resources. The variable
number of buckets also efficiently identifies the

source(s) of attack by breaking down traffic into

-14 -

10

15

20

25

30

WO 02/21771 PCT/US01/27413

different categories (buckets) and looking at the
appropriate parameters and thresholds in each bucket.

Thus, with multi-level analysis as discussed in FIGS.
6 and 7, traffic is monitored at multiple levels of
granularity, from aggregate to individual flows. Multi-
level analysis can be applied to all types of monitoring
(i.e. TCP packet ratios, repressor traffic, etc. discussed
below) except TCP SYN proxying (because the latter
requires per-connection monitoring of all half-open
connections as discussed below).

The monitoring process 32 has the gateway 26 or the
data collectors 28 keep track of a metric (such as packet
ratio) for each of n traffic buckets. (If n=1, the
monitoring process 32 tracks the metric for all traffic in
the aggregate.) The monitoring process 32 places packets
into buckets according to a hash function of the source or
destination address. If the metric in any bucket exceeds
a given "suspicious" threshold, that bucket is split into
several smaller buckets, and the metric is tracked
individually for each new bucket. In the limit, each
bucket can correspond to a single flow (source
address/port and destination address/port pair). The
resulting per-flow monitoring is resilient to denial-of-
service attacks. If the number of buckets exceeds a given
memory limit (for example, due to a many-flow spoofing
attack), several fine-grain buckets can be aggregated into
a single coarse-grain bucket. The hash function for
placing packets into traffic buckets is secret and changes
periodically, thwarting attacks based on carefully chosen
addresses.

In the worst case, an attacker actually spoofs
packets from all possible addresses. An IP address, for

example 1s 32 bits long. This address length allows for

<15 -

10

15

20

25

30

WO 02/21771 PCT/US01/27413

approximately 4 billion possible random addresses and
makes 1t impossible for the gateway at the victim site 12
to identify the attacker. In that worst case, the gateway
26 calls the control center, indicates the address of the
gateway 26, and conveys that the gateway 26 is receiving
unreasonably high levels of random traffic. The control
center 24 contacts the data collectors 28. The control
center 24 analyzes the statistics collected by the data
collectors 28 to try to determine the source of the
traffic.

Egress filtering is a recommended Internet 14 best
practice procedure that does not allow any packets out of
a network unless the source address belongs to that
network. Egress filtering prevents hosts on that network
from sending out packets with completely random source
addresses. Rather, the space of usable fake addresses is
limited by the size of the host's network address space,
and may range up to 24 bits rather than the full 32 bits.
If an attacker is attacking from a network that performs
egress filtering, then all the attack traffic reaching a
victim will fall into a smaller number of buckets, those
corresponding to the source network address. In this way,
the gateway 26 can identify the approximate source of the
attack without necessarily relying on the control center
or data collectors.

Several methods can be used separately or in
combination to identify, malicious traffic flows. For
example, the gateway 26 can detect DoS attacks and
identify malicious flows or source addresses using at
least one or more of the following methods including:
analyzing packet ratios of TCP-like traffic; analyzing
"repressor" traffic for particular types of normal

traffic; performing TCP handshake analysis; performing

-16 -

10

15

20

25

30

WO 02/21771 PCT/US01/27413

various types of packet analysis at packet layers 3-7; and

logging/historical analysis.

Packet ratios for TCP-like traffic.

The Transmission Control Protocol (TCP) is a protocol
in which a connection between two hosts, a client C, e.q.
a web browser, and a server S, e.g. a web server, involves
packets traveling in both directions, between C and S and
between S and C. When C sends data to S and S receives
it, S replies with an ACK ("acknowledgement™) packet. If
C does not receive the ACK, it will eventually try to
retransmit the data to S, to implement TCP's reliable
delivery property. In general, a server S will
acknowledge (send an ACK) for every packet or every second
packet.

Referring to FIG. 9, the monitoring process in the
gateway 26 can examine 82 a ratio of incoming to outgoing
TCP packets for a particular set of machines, e.g. web
servers. The monitoring process can compare 84 the ratio
to a threshold value. The monitoring process can store 86
this ratio, time stamp it, etc. and conduct an ongoing
analysis 88 to determine over time for example how much
and how often it exceeds that ratio. As the ratio grows
increasingly beyond 2:1, it is an increasing indication
that the machines are receiving bad TCP traffic, e.g.
packets that are not part of any established TCP
connection, or that they are too overloaded to acknowledge
the requests. This ratio is one of the parameters
measured using the multiple-bucket algorithm described
previously.

The gateway 26 divides traffic into multiple buckets,
e.g. by source network address, and tracks the ratio of

ingoing to outgoing traffic for each bucket. As the ratio

-17 -

10

15

20

25

30

WO 02/21771 PCT/US01/27413

for one bucket becomes skewed, the gateway 26 may
subdivide that bucket to obtain a more detailed view. The
gateway 26 raises 90 a warning or alarm to the data center

24 and/or to the administrators at the victim site 12.

Repressor traffic

The phrase "repressor traffic" as used herein refers
to any network traffic that is indicative of problems or a
potential attack in a main flow of traffic. A gateway 26
may use repressor traffic analysis to identify such
problems and stop or repress a corresponding attack.

One example of repressor traffic is ICMP port
unreachable messages. These messages are dgenerated by an
end host when it receives a packet on a port that is not
responding to requests. The message contains header
information from the packet in question. The gateway 26
can analyze the port unreachable messages and use them to
generate logs for forensic purposes or to selectively
block future messages similar to the ones that caused the

ICMP messages.

TCP handshake analysis

A TCP connection between two hosts on the network is
initiated via a three-way handshake. The client, e.g. C,
sends the server, e.g. S, a SYN ("synchronize") packet. S
the server replies with a SYN ACK ("synchronize
acknowledgment") packet. The client C replies to the SYN
ACK with an ACK ("acknowledgment") packet. At this point,
appropriate states to manage the connection are
established on both sides.

During a TCP SYN flood attack, a server is sent many
SYN packets but the attacking site never responds to the
corresponding SYN ACKs with ACK packets. The resulting

-18-

10

15

20

25

30

WO 02/21771 PCT/US01/27413

"half-open" connections take up state on the server and
can prevent the server from opening up legitimate
connections until the half-open connection expires, which
usually takes 2-3 minutes. By constantly sending more SYN
packets, an attacker can effectively prevent a server from
serving any legitimate connection requests.

Referring to FIG. 10, in an active configuration, a
gateway 26 can defend against SYN flood attacks. During
connection setup, the gateway forwards 102 a SYN packet
from a client to a server. The gateway forwards 104 a
resulting SYN ACK packet from a server to client and
immediately sends 106 ACK packet to the server, closing a
three-way handshake. The gateway maintains the resulting
connection for a timeout period 108. If the ACK packet
does not arrive from client to server 110, the gateway
sends 112 a RST ("reset") to the server to close the
connection. If the ACK arrives 114, gateway forwards 116
the ACK and forgets 118 about the connection, forwarding
subsequent packets for that connection. A variable
timeout 120 period can be used. The variable time out
period can be inversely proportional to number of
connections for which a first ACK packet from client has
not been received. If gateway 26 is placed inline in the
network, when number of non-ACK'ed connections reaches a
configurable threshold 122, the gateway will not forward
any new SYNs until it finishes sending RSTs for those
connections.

In a passive configuration, a gateway 26 can
similarly keep track of ratios of SYNs to SYN ACKs and SYN
ACKs to ACKs, and raise appropriate alarms when a SYN

flood attack situation occurs.

Layer 3-7 analysis.

-19-

10

15

20

25

30

WO 02/21771 PCT/US01/27413

With layer 3-7 analysis, the gateway 26 looks at
various traffic properties at network packet layers 3
through 7 to identify attacks and malicious flows. These
layers are often referred to as layers of the Open System
Interconnection (0OSI) reference model and are network,
transport, session, presentation and application layers
respectively. Some examples of characteristics that the
gateway may look for include:

1. Unusual amounts of IP fragmentation, or fragmented
IP packets with bad or overlapping fragment offsets.

2. IP packets with obviously bad source addresses, or
ICMP packets with broadcast destination addresses.

3. TCP or UDP packets to unused ports.

4, TCP segments advertizing unusually small window
sizes, which may indicate load on server, or TCP ACK
packets not belonging to a known connection.

5. Frequent reloads that are sustained at a rate
higher than plausible for a human user over a persistent

HTTP connection.

Logging and historical traffic analysis

The gateways 26 and data collectors 28 keep
statistical summary information of traffic over different
periods of time and at different levels of detail. For
example, a gateway 26 may keep mean and standard deviation
for a chosen set of parameters across a chosen set of
time-periods. The parameters may include source and
destination host or network addresses, protocols, types of
packets, number of open connections or of packets sent in
either direction, etc. Time periods for statistical
aggregation may range from minutes to weeks. The device

will have configurable thresholds and will raise warnings

-20 -

10

15

20

25

30

WO 02/21771 PCT/US01/27413

when one of the measured parameters exceeds the
corresponding threshold.

The gateway 26 can also log packets. 1In addition to
logging full packet streams, the gateway 26 has the
capability to log only specific packets identified as part
of an attack (e.g., fragmented UDP packets or TCP SYN
packets that are part of a SYN flood attack). This
feature of the gateway 26 enables administrators to

quickly identify the important properties of the attack.

Building a DoS-resistant network

The network of gateways 26, data collectors 28, and
control center 24 are made DoS resistant by combining and
applying several techniques. These techniques include the
use of SYN cookies and “hashcash” to make devices more
resistant to SYN floods and other attacks that occur at
connection setup time. Also, the data center can use
authentication and encryption for all connections.
Private/public key pairs are placed on machines before
deployment to avoid man-in-the-middle attacks. The
control center 24 can have multiple physical connections
from different upstream network service providers. The
network over which the data center communicates between
gateways and data collectors is a private redundant
network that is inaccessible to attackers.

Information exchange between gateways/data collectors
and the control center is efficient by transferring only
statistical data or minimal header information, and by
compressing all data.

This application includes an APPENDIX A attached
hereto and incorporated herein by reference. APPENDIX A

includes Click code for monitor software.

-21-

10

WO 02/21771 PCT/US01/27413

This application also includes an APPENDIX B attached
hereto and incorporated herein by reference. APPENDIX B
sets out additional modules for a Click Router that
pertains to thwarting DoS attacks. “Click” is a modular
software router system developed by The Massachusetts
Institute of Technology’s Parallel and Distributed
Operating Systems group. A Click router is an
interconnected collection of modules or elements used to
control a router’s behavior when implemented on a computer
system.

Other embodiments are within the scope of the

appended claims.

~22-

WO 02/21771 PCT/US01/27413

10

15

20

25

30

35

40

45

APPENDIX A

network monitor/defender

/]

// Has two operating modes: if MONITOR is defined, it monitors the network

// instead of defending against DDoS attacks.

1/

// ICMP_RATE specifies how many ICMP packets allowed per second. Default is
// 500. UDP_NF_RATE specifies how many non-fragmented UDP (and other non-
TCP

// non-ICMP) packets allowed per second. Default is 3000. UDP_F_RATE specifies
// how many fragmented UDP (and other non-TCP non-ICMP) packets allowed per
// second. Default is 1000. All the SNIFF rates specify how many bad packets

// sniffed per second.

/1

// For example, if MONITOR is not defiend, and all SNIFF rates are O, then the

// configuration defends against DDoS attacks, but does not report bad

/] packets.

/

// can read:

// - tcp_monitor: aggregate rates of different TCP packets

// - ntcp_monitor: aggregate rates of different non TCP packets

// -icmp_unreach_counter: rate of ICMP unreachable pkts

/- tcp_ratemon: incoming and outgoing TCP rates, grouped by non-local hosts

// - ntcp_ratemon: incoming UDP rates, grouped by non-local hosts

1/ '

// Note: handles full fast ethernet, around 134,500 64 byte packets, from

// attacker.

.

/

// TODO:

/I - fragmented packet monitor

#ifndef ICMP_RATE
#define ICMP_RATE 500
#endif '

#ifndef UDP_NF_RATE
#define UDP_NF RATE 2000
#endif

#ifndef UDP_F _RATE
#define UDP_F_RATE 1000

#endif

#ifndef SUSP_SNIFF

#define SUSP_SNIFF 100 // # of suspicious pkts sniffed per sec
Al -

23

WO 02/21771

10

15

20

25

30

35

40

45

#endif

#ifndef TCP_SNIFF

#define TCP_SNIFF 100 //# of TCP flood pkts sniffed per sec

"Hendif

#ifndef ICMP_SNIFF
#define ICMP_SNIFF 75
#endif

#ifndef UDP_NF_SNIFF
#define UDP_NF_SNIFF 75
#endif

#ifndef UDP_F_SNIFF
#define UDP_F_SNIFF 75
#endif

#include "if.click"
#include "sampler.click"

#include "sniffer.click"

ds_sniffer :: Sniffer(mazu_ds);
syn_sniffer :: Sniffer(mazu_syn);
tep_sniffer :: Sniffer(mazu_tcp);
ntcp_sniffer :: Sniffer(mazu_ntcp);

#include "synkill.click"
#ifdef MONITOR
tepsynkill :: SYNKill(true);
#else

tepsynkill :: SYNKill(false);
#endif

1
/] discards suspicious packets
/

#include "ds.click"
ds :: DetectSuspicious(01);

from_world -> ds;

ds [0] ->is_tcp_to_victim :: IPClassifier(tcp, -)

24

/I # of ICMP flood pkts sniffed per sec

/I # of non-frag UDP flood pkts sniffed per sec

/I # of frag UDP flood pkts sniffed per sec

2

PCT/US01/27413

WO 02/21771

10

15

20

25

30

35

40

45

#ifdef MONITOR

ds [1]->ds_split :: RatedSampler(SUSP_SNIFF);
#Helse

ds [1] -> ds_split :: RatedSplitter(SUSP_SNIFF);
#Hendif

ds_split [1] -> ds_sniffer;
ds_split [0]
#ifdef MONITOR
->is_top_to_victim;
#else
-> Discard;
#Hendif

/!
// monitor TCP ratio

/"

ffinclude "monitor.click"
tep_ratemon :: TCPTrafficMonitor;

is_tcp_to_victim [0] -> tcp_monitor :: TCPMonitor -> [0] tcp_ratemon;
from_victim ->is_tcp_to_world :: IPClassifier(tcp, -);
is_tcp_to_world [0] -> [1] tcp_ratemon;

/!
// enforce correct TCP ratio
/!

check_tcp_ratio :: RatioShaper(1,2,40,0.2);
tcp_ratemon [0] -> check_tcp_ratio;

#ifdef MONITOR

check tcp_ratio [1] -> tep_split :: RatedSampler(TCP_SNIFF);
#else

check_tcp_ratio [1] -> tep_split :: RatedSplitter(TCP_SNIFF);
#endif

tep_split [1] -> tep_sniffer;
tep_split [0]
#ifdef MONITOR
->[0] tepsynkill;
#else
-> Discard;
#endif

_A3 -

25

PCT/US01/27413

WO 02/21771

10

15

20

25

30

35

40

45

1
// prevent SYN bomb
/!

check_tcp_ratio [0] -> [0] tepsynkill;
tep_ratemon [1] -> [1] tepsynkill;

tepsynkill [0] -> to_victim_s1;
tepsynkill [1] > to_world;

tepsynkill [2]
#ifdef MONITOR

-> syn_sniffer;
Idle ->to_victim_prio;
Helse

-> tepsynkill_split :: Tee(2)
tepsynkill_split [0] -> to_victim_prio;
tepsynkill_split [1] -> syn_sniffer;
#endif

/f
// monitor all non TCP traffic
/!

ntcp_ratemon :: IPRateMonitor(PACKETS, 0, 1, 100, 4096, false);
is_tep to_victim [1] -> ntcp_monitor :: NonTCPMonitor -> ntcp_t

ntcp_t [0] -> [0] ntep_ratemon [0] -> Discard,;

ntcp_t[1]->[1] ntcp_ratemon;

/!
// rate limit ICMP traffic
/!

ntcp_ratemon [1] ->is_icmp :: IPClassifier(icmp, -);
is_icmp [0] -> icmp_split :: RatedSplitter {ICMP_RATE);

icmp_split [1] > to_victim_s2;

icmp_split [0] -> icmp_sample :: RatedSampler (ICMP_SNIFF);

icmp_sample [1] ->ntep_sniffer;
icmp_sample [0]
#ifdef MONITOR
->to_victim_s2;
#else
-> Discard;
#endif

-Ad -

26

PCT/US01/27413

i Tee(2);

WO 02/21771 PCT/US01/27413

10

15

20

25

30

35

40

45

i
// rate limit other non TCP traffic (mostly UDP)
1

is_icmp [1] ->is_frag :: Classifier(6/0000, -);
is_frag [0] -> udp_split :: RatedSplitter (UDP_NF_RATE);

udp_split [0] ->udp_sample :: RatedSampler (UDP_NF_SNIFF);
udp_sample [1] -> ntcp_sniffer;
udp_sample [0]
#ifdef MONITOR
->to_victim_s2;
Helse
-> Discard;
#endif

is_frag [1] ->udp_{ split :: RatedSplitter (UDP_F_RATE);

udp_f split [0] ->udp_f sample :: RatedSampler (UDP_F_SNIFF),
udp_f sample [1] -> nicp_sniffer;
udp f sample [0]
#ifdef MONITOR
->to_victim_s2;
#else
-> Discard;
#endif

/
// further shape non-TCP traffic with ICMP dest unreachable packets
1

is_tcp_to_world [1] ->is_icmp_unreach :: IPClassifier(icmp type 3, -);
is_icmp_unreach [1] -> to_world;
is_icmp_unreach [0]

->icmp_unreach counter :: Counter;

#ifndef MONITOR

icmp_unreach_counter -> icmperr_sample :: RatedSampler (UNREACH_SNIFF);
icmperr_sample [1] -> ntep_sniffer;

icmperr_catcher :: AdaptiveShaper(.1, 50);

udp_split [1] > [0] icmperr_catcher [0] -> to_victim_s2;

udp_f split [1] -> [0] icmperr_catcher;

icmperr_sample [0] ->[1] icmperr_catcher [1] -> to_world;

A5 -

27

WO 02/21771

10

15

20

25

30

35

40

45

Helse
udp_split [1] -> to_victim_s2;
udp f split [1] ->to_victim_s2;

icmp_unreach_counter [0] -> to_world;

#Hendif

== if.click

PCT/US01/27413

7

// input/output ethernet interface for router

1

// this configuration file leaves the following elements to be hooked up:
"

// from_victim: packets coming from victim

// from_world: packets coming from world

// to_world: packets going to world

// to_victim_prio: high priority packets going to victim

// to_victim_s1: best effort packets going to victim, tickets =4

/] to_victim_s2: best effort packets going to victim, tickets = 1

I

// see bridge.click for a simple example of how to use this configuration.

/] victim network is 1.0.0.0/8 (eth1, 00:C0:95:E2:A8:A0)
/I world network is 2.0.0.0/8 (eth2, 00:C0:95:E2:A8:Al) and
/! 3.0.0.0/8 (eth3, 00:C0:95:E1:B5:38)

// ethernet input/output, forwarding, and arp machinery

tol :: ToLinux;
t :: Tee(6);
t[5] -> tol;

arpql_prio :: ARPQuerier(1.0.0.1, 00:C0:95:E2:A8:A0);
arpql_sl :: ARPQuerier(1.0.0.1, 00:C0:95:E2:A8:A0),
arpql_s2 :: ARPQuerier(1.0.0.1, 00:C0:95:E2:A8:A0),
arl :: ARPResponder(1.0.0.1/32 00:C0:95:E2:A8:A0);
arpq2 :: ARPQuerier(2.0.0.1, 00:C0:95:E2:A8:Al);

ar2 :: ARPResponder(2.0.0.1/32 00:C0:95:E2:A8:Al);
arpq3 :: ARPQuerier(3.0.0.1; 00:C0:95:E1:B5:38),

ar3 :: ARPResponder(3.0.0.1/32 00:C0:95:E1:B5:38);

A6 -

28

WO 02/21771 PCT/US01/27413

10

15

20

25

30

35

40

45

psched :: PrioSched;
ssched :: StrideSched (4,1);

outl_sl :: Queue(256) ->[0] ssched;

outl_s2 :: Queue(256) ->[1] ssched;

outl prio :: Queue(256) -> [0] psched;

ssched -> [1] psched;

psched[0] ->to_victim_counter :: Counter -> todev1 :: ToDevice(ethl);

out2 :: Queue(1024) -> todev2 :: ToDevice(eth2);
out3 :: Queue(1024) -> todev3 :: ToDevice(eth3);

to_victim_prio :: Counter -> tvpc :: Classifier(16/01, -);

tvpe [0] ->[0]arpql_prio -> outl_prio;
tvpc [1] -> Discard;

to_victim_s1 :: Counter -> tvslc :: Classifier(16/01, -);
tvslc [0] -> [Olarpgl_sl ->outl_sl;
tvslc [1] -> Discard;

to_victim_s2 :: Counter -> tvs2c :: Classifier(16/01, -);
tvs2c [0] -> [0]arpql_s2 -> outl_s2;
tvs2c [1] -> Discard;

to_world :: Counter -> twe :: Classifier(16/02, 16/03, -);
twc [0] -> [0]arpg2 -> out2;

twe [1] -> [0]arpg3 -> out3;

twe [2] -> Discard;

from_victim :: GetIPAddress(16);
from world :: GetIPAddress(16);

indevl :: PollDevice(ethl);
cl :: Classifier (12/0806 20/0001,
12/0806 20/0002,

12/0800,

)
indevl -> from victim_counter :: Counter -> c1;
cl [0] ->arl -> outl_sl;
cl[1]->t;
cl [2] -> Strip(14) -> MarkIPHeader -> from_victim;
¢l [3] -> Discard;
t[0] -> [1] arpql_prio;
t[1] ->[1] arpql_sl;
t[2] > [1] arpq1_s2;

A7 -

29

WO 02/21771

10

15

20

25

30

35

40

45

indev2 :: PollDevice(eth2);
c2 :: Classifier (12/0806 20/0001,
12/0806 20/0002,
12/0800,
)
indev2 -> from_attackers_counter
c2 [0] -> ar2 -> out2;
c2 [1]->t;
c2 [
¢2 [3] -> Discard;
t[3] -> [1] arpq2;

indev3 :: PollDevice(eth3);
c3 :: Classifier (12/0806 20/0001,
12/0806 20/0002,
12/0800,

)
indev3 > ¢3;
¢3 [0] -> ar3 -> out3;
c3[1]->t;

¢3 [2] -> Strip(14) -> MarkIPHeader -> from_world,;

c3 [3] -> Discard,
t[4] -> [1] arpq3;
ScheduleInfo(todevl 10, indevl 1,

todev2 10, indev2 1,
todev3 10, indev3 1);

== sampler.click

:: Counter > ¢2;

2] -> Strip(14) -> MarkIPHeader -> from_world;

PCT/US01/27413

elementclass RatedSampler {
$rate |
input -> s :: RatedSplitter($rate);
s [0] -=> [0] output;
s [1]->t:: Tee;
t [0] -> [O] output;
t [1] -> [1] output;
|5

elementclass ProbSampler {
$prob |
input -> s :: ProbSplitter($prob);
s [0] -=> [0] output;

_AS -

30

WO 02/21771 PCT/US01/27413

10

15

20

25

30

35

40

45

s[1]-=>t: Tee;

t [0] -> [0] output;
t[1] -> [1] output;
b

== gniffer.click

// setup a sniffer device, with a testing IP network address
1
/] argument: name of the device to setup and send packet to

elementclass Sniffer {
$dev |
FromLinux($dev, 192.0.2.0/24) -> Discard;
input -> sniffer_ctr :: Counter
-> ToLinuxSniffers($dev);
3

// note: ToLinuxSniffers take 2 us

= synkill.click

iz

// SYNKill

/1

// argument: true if monitor only, false if defend

1

// expects: input 0 - TCP packets with IP header to victim network

1/l input 1 - TCP packets with IP header to rest of internet

//

// action: protects against SYN flood by prematurely finishing the three way
7 handshake protocol.

1/

// outputs: output 0 - TCP packets to victim network

i output 1 - TCP packets to rest of internet

/! output 2 - control packets (created by TCPSYNProxy) to victim
/1

elementclass SYNKill {

$monitor | : :

// TCPSYNProxy(MAX CONNS, THRESH, MIN_TIMEOUT, MAX_TIMEOUT,
PASSIVE);

tcpsynproxy :: TCPSYNProxy(128, 4, 8, 80, $monitor);

-A9 -

31

WO 02/21771 PCT/US01/27413

W

10

15

20

25

30

35

40

45

input [0] -> [0] tepsynproxy [0] -> [0] output;
input [1] -> [1] tepsynproxy [1] -> [1] output;
topsynproxy [2]

-> GetIPAddress(16)

-> [2] output;
3

== ds.click

1

// DetectSuspicious

1

// argument: takes in the victim network address and mask. for example:
/I DetectSuspicious(121A0400%FFFFFF00)

/l

/I expects: IP packets.

/1

// action: detects packets with bad source addresses;

1 detects direct broadcast packets;

1 detects ICMP redirects.

/1

// outputs: output 0 push out accepted packets, unmodified,
/1 output 1 push out rejected packets, unmodified.

1

elementclass DetectSuspicious {
$vnet |

// see hitp://www.ietf.org/internet-drafts/draft-manning-dsua-03.txt for a
// list of bad source addresses to block out. we also block out packets with
// broadcast dst addresses.

bad _addr _filter :: Classifier(

12/$vnet, // port 0: victim network address

12/00, // port 1:0.0.0.0/8 (special purpose)

12/7F, /I port 2:127.0.0.0/8 (loopback)

12/0A, // port 3:10.0.0.0/8 (private network)
12/AC10%FFFO0, // port 4:172.16.0.0/12 (private network)
12/COAS, /l port 5:192.168.0.0/16 (private network)
12/A9FE, /I port 6:169.254.0.0/16 (autoconf addr)
12/C0000200%FFFFFFQ0, // port 7: 192.0.2.0/24 (testing addr)
12/E0%FO, /l port 8:224.0.0.0/4 (class D - multicast)
12/F0%FO0, // port 9: 240.0.0.0/4 (class E - reserved)

12/00FFFFFF%00FFFFFF, // port 10: broadcast saddr X.255.255.255

-Al10 -

32

WO 02/21771 PCT/US01/27413

12/0000FFFF%0000FFFF, // port 11: broadcast saddr X.Y.255.255
12/000000FF%000000FF, // port 12: broadcast saddr X.Y.Z.255
16/00FFFFFF%00FFFFFF, // port 13: broadcast daddr X.255.255.255
16/0000FFFF%0000FFFF, // port 14: broadcast daddr X.Y.255.255

5 16/000000FF%000000FF, // port 15: broadcast daddr X.Y.Z.255
9/01, /I port 16: ICMP packets

-);

input ->bad_addr_filter;

10 bad addr filter [0] -> [1] output;
bad_addr filter [1] -> [1] output;
bad_addr filter [2] ->[1] output;
bad_addr filter [3] -> [1] output;
bad_addr_filter [4] -> [1] output;

15 bad_addr_filter [5] -> [1] output;
bad_addr_filter [6] -> [1] output;
bad_addr_filter [7] -> [1] output;
bad_addr_filter [8] -> [1] output;
bad addr filter [9] -> [1] output;

20 bad addr filter {10] -> [1] output;
bad addr filter [11] ->[1] output;
bad_addr filter [12] -> [1] output;
bad_addr_filter [13] -> [1] output;
bad_addr_filter [14] -> [1] output;

25 bad_addr_filter [15] -> [1] output;

// ICMP rules: drop all fragmented and redirect ICMP packets

bad_addr_filter [16]
30 ->is_icmp_ frag packets :: Classifier(6/0000, -);
is_icmp_frag packets [1] -> [1] output;

is_icmp_frag packets [0]
->is_icmp_redirect :: IPClassifier(icmp type 5, -);
35 is_icmp_redirect [0] -> [1] output;

// finally, allow dynamic filtering of bad src addresses we discovered
// elsewhere in our script.

40 dyn_saddr_filter :: AddrFilter(SRC, 32);
is_icmp_redirect [1] -> dyn_saddr_filter;
bad_addr filter [17] -> dyn_saddr_filter;
dyn_saddr_filter [0] -> [0] output;
dyn_saddr_filter [1] -> [1] output;

45

b

-All -

33

WO 02/21771 PCT/US01/27413

10

15

20

25

30

== monitor.click

//

{/ TCPTrafficMonitor

/"

// expects: input 0 takes TCP packets w IP header for the victim network;
1 input 1 takes TCP packets w [P Header from the victim network.
// action: monitors packets passing by

// outputs: output 0 - packets for victim network, unmodified;

1/ output 1 - packets from victim network, unmodified.

/1

elementclass TCPTrafficMonitor {
// fwd annotation = rate of src_addr, rev annotation =rate of dst_addr
tcp_rm :: IPRateMonitor(PACKETS, 0, 1, 100, 4096, true);

// monitor all TCP traffic to victim, monitor non-RST packets from victim
input [0] -> [0] tcp_rm [0] -> [0] output;

input [1] ->1i1_tep_rst :: IPClassifier(rst, -);

il_tep_rst[0] -> [1] output;

il_tep_rst[1] -> [1] top_rm [1] -> [1] output;

¥

20094505.doc

-Al2 -

34

PCT/US01/27413

WO 02/21771
APPENDIX B
Lppendix listing of additional Click modules ("elements").
ADAPTIVESHAPER(ny ADAPTIVESHAPER (n)

10

15

20

25

30

35

40

45

50

55

NAME

AdaptiveShaper - Click element

SYNOPSIS

AdaptiveShaper (DROP_P, REPRESS WEIGHT)

PROCESSING TYPE

Push

DESCRIPTION

AdaptiveShaper is a push element that shapes input traffic
from input port 0 to output port 0. Packets are shaped
based on "repressive" traffic from input port 1 to output
port 1. Each repressive packet increases a multiplicative
factor £ by REPRESS WEIGHT. Each input packet is killed
instead of pushed out with £ * DROP_P probability. After
each dropped packet, f is decremented by 1.

EXAMPLES
ELEMENT HANDLERS

drop prob (read/write)
value of DROP_P

repress_welght (read/write)
value of REPRESS_ WEIGHT

SEE ALSO

PacketShaper (n), RatioShaper (n)

B-1

35

WO 02/21771 PCT/US01/27413

10

15

20

25

30

35

40

45

50

APPENDIX B

ADAPTIVESPLITTER(n) ADAPTIVESPLITTER (n)

NAME
AdaptiveSplitter - Click element

SYNOPSIS
AdaptiveSplitter (RATE)

PROCESSING TYPE
Push

DESCRIPTION
AdaptiveSplitter attempts to split RATE number of packets
per second for each address. It takes the fwd rate annota-
tion set by IPRateMonitor{(n), and calculates a split prob-
ability based on that rate. The split probability attempts
to guarantee RATE number of packets per second. That is,
‘the lower the fwd rate, the higher the split probability.

Splitted packets are on output port 1. Other packets are
on output port 0.

EXAMPLES
AdaptiveSplitter(10);

SEE ALSO
IPRateMonitor (n)

36

WO 02/21771

PCT/US01/27413

APPENDIX B

ADDRFILTER (n) ADDRFILTER (n)

NAME

AddrFilter = Click element

SYNOPSIS

AddrFilter (DST/SRC, N)

10 PROCESSING TYPE

Push

DESCRIPTION

15

20

Filters out IP addresses given in write handler. DST/SRC
specifies which IP address (dst or src) to filter. N is
the maximum number of IP addresses to filter at any time.
Packets passed the filter goes to output 0. Packets
rejected by the filter goes to output 1.

AddrFilter looks at addresses in the IP header of the
packet, not the annotation. It requires an IP header anno-
tation (MarkIPHeader(n)).

25 EXAMPLES

30

AddrFilter (DST, 8)

Filters by dst IP address, up to 8 addresses.

ELEMENT HANDLERS

35

40

45

50

table ((read))
Dumps the list of addresses to filter and

add ((write))

Expects a string "addr mask duration", where addr is
an IP address, mask i1s a netmask, and duration is the
number of seconds to filter packets from this IP
address. If 0 is given as a duration, filtering is
removed. For example, "18.26.4.0 255.255.255.0 10"
would filter out all packets with dst or source
address 18.26.4.* for 10 seconds. New addresses push
out old addresses if more than N number of filters
already exist.

reset ((write))
Resets on write.

55 SEE ALSO

Classifier(n), MarkIPHeader (n)

B-3

37

WO 02/21771

10

15

20

25

30

35

40

45

APPENDIX B

ATTACKLOG (n) ATTACKLOG (n)

NAME
AttackLog - Click element; maintains a log of attack pack-
ets in SAVE FILE.

SYNOPSIS

AttackLog (SAVE FILE, INDEX FILE, MULTIPLIER, PERIOD)

PROCESSING TYPE
Agnostic

DESCRIPTION

Maintains a log of attack packets din SAVE FILE. Expects
packets with ethernet headers, but with the first byte of
the ethernet header replaced by an attack bitmap, set in
kernel. AttacklLog classifies each packet by the type of
attack, and maintains an attack rate for each type of
attack. The attack rate 1s the arrival rate of attack
packets multiplied by MULTIPLIER.

AttackLog writes a block of data into SAVE FILE once every
PERIOD number of seconds. Each block is composed of
entries of the following format:

delimiter ({Os) 4 bytes
time 4 bytes
attack type 2 bytes
attack rate 4 bytes
ip header and payload (padded) 86 bytes

100 bytes

Entries with the same attack type are written out
together. A delimiter of OxFFFFFFFF is written to the end
of each block.

A circular timed index file is kept 1in INDEX FILE along
side the attacklog. See CircularIndex(n).

SEE ALSO
CircularIndex(n)

B-4

38

PCT/US01/27413

WO 02/21771
APPENDIX B
CIRCULARINDEX (n) CIRCULARINDEX (n)
NAME
5 CircularIndex - Click element; writes a timed circular
index into a file.
SYNOPSIS
CircularIndex
10
DESCRIPTION
CircularIndex writes an entry into a circular dindex file
periodically. The entry contains a 32 bit time stamp and a
"64 bit offset into another file. The following functions
15 are exported by CircularIndex.
int initialize(String FILE, wunsigned PERIOD, unsigned
WRAP) - Use FILE as the name of the circular file. Writes
entry into circular file once every PERIOD number of sec-
20 onds. WRAP is the number of writes before wrap around. If
WRAP is 0, the file is never wrapped around.
void write entry(long long offset) - Write entry into
index file. Use offset as the offset in the entry.
25
SEE ALSO
GatherRates(n), MonitorSRC16 (n)
30

B-5

39

PCT/US01/27413

WO 02/21771 PCT/US01/27413

APPENDIX B
DISCARDTODEVICE (n) DISCARDTODEVICE (n)
NAME
5 DiscardToDevice - Click element; drops all packets. gives
skbs to device.
SYNOPSIS
DiscardToDevice (DEVICE)
10
PROCESSING TYPE
Agnostic
DESCRIPTION
15 Discards all packets received on its single input. Gives
all skbuffs to specified device.
20

B-6

40

WO 02/21771

APPENDIX B
FILTERTCP (n)
NAME
5 FilterTCP - Click element
SYNOPSIS

FilterTCP ()

10 PROCESSING TYPE
Push

DESCRIPTION
Expects TCP/IP packets as input.
15

B-7

41

PCT/US01/27413

FILTERTCP (n)

WO 02/21771 PCT/US01/27413

10

15

20

25

APPENDIX B

FROMTUNNEL (n) FROMTUNNEL (n)

NAME
FromTunnel - Click element

SYNOPSIS
FromTunnel (TUNNEL, SIZE, BURST)

PROCESSING TYPE
Push

DESCRIPTION
Grab packets from kernel KUTunnel element. TUNNEL is a
/proc file in the handler directory of the KUTunnel ele-
ment. SIZE specifies size of the buffer to use (if packet
in kernel has larger size, it is dropped). BURST specifies
the maximum number of packets to push each time FromTunnel
runs.

EXAMPLES
FromTunnel (/proc/click/tunnel/config)

B-8

42

WO 02/21771 PCT/US01/27413

APPENDIX B
GATHERRATES (n) GATHERRATES (n)
NAME
5 GatherRates - Click element
SYNOPSIS

GatherRates (SAVE_FILE, INDEX FILE, TCPMONITOR_IN, TCPMONI-
TOR_OUT, MONITOR PERIOD, SAVE_PERIOD);

10
PROCESSING TYPE
Agnostic
DESCRIPTION
15 Gathers aggregate traffic rates from TCPMonitor (n) element
‘at TCPMONITOR_IN and TCPMONITOR OUT.
Aggregate rates are gathered once every MONITOR PERIOD
number of seconds. They are averaged and saved to
20 SAVE FILE once every SAVE PERIOD number of seconds. The

following entry is written to SAVE FILE for both incoming
and outgoing traffic:

delimiter (0s)
25 time
type {0 for incoming traffic, 1 for outgoing traffic)
packet rate of tcp traffic
byte rate of tcp traffic
rate of fragmented tcp packets
30 rate of tcp syn packets
rate of tcp fin packets
rate of tcp ack packets
rate of tcp rst packets
rate of tcp psh packets
35 rate of tcp urg packets
packet rate of non-tcp traffic
byte rate of non-tcp traffic
rate of fragmented non-tcp traffic
rate of udp packets
40 rate of icmp packets
rate of all other packets

[T SO SO O N SO N Y N SO S SO SO SO S NS
o
=
o
[]
0]

72 bytes
45
After the two entries, an additional delimiter of
OxFFFFFFFF is written. SAVE PERIOD must be a multiple of
MONITOR PERIOD.
50 A circular timed index is kept along side the stats file.

See CircularIndex(n).

55 SEE ALSO
TCPMonitor(n) CircularIndex(n)

B-9

43

WO 02/21771

10

15

20

APPENDIX B

ICMPPINGENCAP (n) ICMPPINGENCAP (n)

NAME
ICMPPINGEncap - Click element

SYNOPSIS
ICMPPINGEncap (SADDR, DADDR [, CHECKSUM?])

DESCRIPTION
Encapsulates each incoming packet in a ICMP ECHO/IP packet
with source address SADDR and destination address DADDR.
The ICMP and IP checksums are calculated if CHECKSUM? is
true; it is true by default.

EXAMPLES

ICMPPINGEncap(1.0.0.1, 2.0.0.2)

B-10

44

PCT/US01/27413

WO 02/21771 PCT/US01/27413

10

15

20

25

30

35

40

45

APPENDIX B
KUTUNNEL (n) KUTUNNEL (1)
NAME .
KUTunnel - Click element; stores packets in a FIFO queue
that userlevel Click elements pull from.
SYNOPSIS

KUTunnel ([CAPACITY])

PROCESSING TYPE
Push

DESCRIPTION
Stores incoming packets in a first-in-first-out queue.
Drops incoming packets if the queue already holds CAPACITY
packets. The default for CAPACITY is 1000. Allows user-
level elements to pull from queue via ioctl.

ELEMENT HANDLERS
length (read-only)
Returns the current number of packets in the queue.

highwater length (read-only)
Returns the maximum number of packets that have ever
been in the queue at once.

capacity (read/write)
Returns or sets the queue's capacity.

drops (read-only)
Returns the number of packets dropped so far.

SEE ALSO
Queue (n)

B-11

45

WO 02/21771 PCT/US01/27413

10

15

20

25

30

35

40

45

50

55

APPENDIX B

LOGGER (n) LOGGER (n)

NAME
Logger - Click element

SYNOPSIS
Logger (LOGFILE, INDEXFILE [, LOCKFILE, COMPRESS?, LOGSIZE,
PACKETSIZE, WRITEPERIOD, IDXCOALESC, PACKETFREQ, MAXBUF-
SIZE])

PROCESSING TYPE
Agnostic

DESCRIPTION
Has one input and one output.

Write packets to log file LOGFILE. A log file is a circu-
lar buffer containing packet records of the following
form:

| time (6 bytes)
| length (2 bytes) |
| packet data |

Time is the number of seconds and milliseconds since the
Epoch at which a given packet was seen. Length is the
length (in bytes) of the subsequent logged packet data.
One or more packet records constitute one packet sequence.

INDEXFILE maintains control data for LOGFILE. It contains
a sequence of sequence control blocks of the following
form:

| date (4 bytes)]
| offset (sizeof off t) |
| length (sizeof off t) |

Date is a number of seconds since the Epoch. Offset
points to the beginning of the packet sequence, i.e. to
the earliest packet record having a time no earlier than
date. Length is the number of bytes in the packet
seguence. IDXCOALESC is the number of coalescing packets
that a control block always cover. Default is 1024,

Sequence control blocks are always stored in increasing
chronological order; offsets need not be in increasing

order, since LOGFILE is a circular buffer.

COMPRESS? (true, false) determines whether packet data is
logged in compressed form. Default is true.

B-12

46

WO 02/21771

10

15

20

25

30

PCT/US01/27413

APPENDIX B

LOGSIZE specifies the maximum allowable log file size, in
KB. Default is 2GB. LOGSIZE=0 means "grow as necessary".

PACKETSIZE is the amount of packet data stored in the log.
By default, the first 120 (128-6-2) bytes are logged and
the remainder 1s discarded. ©Note that PACKETSIZE is the
amount of data logged before compression.

Packet records are buffered in memory and periodically
written to LOGFILE as a packet sequence. WRITEPERIOD is
the number of seconds that should elapse between writes to
LOGFILE. Default is 60. INDEXFILE is updated every time a
sequence of buffered packet records is written to LOGFILE.
The date in the sequence control block is the time of the
first packet record of the sequence, with milliseconds
omitted.

PACKETFREQ 1s an estimate of the number of packets per
second that will be passing through Logger. Combined with
WRITEPERIOD, this is a hint of buffer memory requirements.
By default, PACKETFREQ is 1000. Since by default WRITEPE-
RIOD is 60 and each packet record is at most 128 bytes,
Logger normally allocates 7500KB of memory for the buffer.
Logger will grow the memory buffer as needed up to a maxi-
mum of MAXBUFSIZE KB, at which point the buffered packet
records are written to disk even if WRITEPERIOD seconds
have not elapsed since the last write. Default MAXBUFSIZE
is 65536 (64MB).

B-13

47

WO 02/21771 PCT/US01/27413

10

15

20

25

30

35

40

45

50

55

APPENDIX B

MONITORSRC16 (n) MONITORSRC16 (n)

NAME
MonitorSRC16 - Click element

SYNOPSIS
MonitorSRC16 (SAVE_FILE, INDEX FILE, MULTIPLIER, PERIOD,
WRAP)

PROCESSING TYPE
Agnostic

DESCRIPTION
Examines src address of packets passing by. Collects
statistics for each 16 bit IP address prefix. The follow-~
ing data structure is written to SAVE FILE for every 16
bit IP address prefix every PERIOD number of seconds.

delimiter (0Os) (4 bytes)
time (4 bytes)
addr (4 bytes)
tcp rate (4 bytes)
non tcp rate (4 bytes)
percent of tcp (1 byte)
percent of tcp frag (1 byte)
percent of tcp syn (1 byte)
percent of tcp fin (1 byte)
percent of tcp ack (1 byte)
percent of tcp rst (1 byte)
percent of tcp psh (1 byte)
percent of tcp urg (1 byte)
percent of non tcp frag (1 byte)
percent of udp (1 byte)
percent of icmp (1 byte)
reserved (1 byte)
32 bytes

TCP and non TCP rates are multiplied by MULTIPLIER. An
additional delimiter of OxFFFFFFFF is written at the end
of a block of entries.

WARP specifies the number of writes before wrap-around.
For example, if PERIOD is 60, WARP is 5, then every 5 min-
utes, the stats file wrap around.

A timed circular index is maintained along side the
statistics file in INDEX FILE. See CircularIndex(n).

SEE ALSO
CircularIndex(n)

B-14

48

WO 02/21771

10

15

20

25

30

35

PCT/US01/27413

APPENDIX B

RANDOMTCPIPENCAP (n) RANDOMTCPIPENCAP (n)

NAME

RandomTCPIPEncap - Click element

SYNOPSIS

RandomTCPIPEncap (DA BITS [DP SEQN ACKN CHECKSUM SA MASK])

PROCESSING TYPE

Agnostic

DESCRIPTION

Encapsulates each incoming packet in a TCP/IP packet with
random source address and source port, destination address
DA, and control bits BITS. If BITS is -1, control bits
are also generated randomly. If destination port DP,
sequence number SEQN, or ack number ACKN is specified and
non-zero, it is used. Otherwise, it is generated randomly
for each packet. IP and TCP checksums are calculated if
CHECKSUM is true; it is true by default. SEQN and ACKN
should be 1in host order. SA and MASK are optional IP
address; i1f they are specified, the source address is com-—
puted as ((random() & MASK) | SA).

EXAMPLES

RandomTCPIPEncap(1.0.0.2 4)

SEE ALSO

RoundRobinTCPIPEncap (n), RandomUDPIPEncap (n)

B-15

49

WO 02/21771 PCT/US01/27413

APPENDIX B
RANDOMUDPIPENCAP (n) RANDOMUDPIPENCAP (n)
NAME
5 RandomUDPIPEncap - Click element
SYNOPSIS
RandomUDPIPEncap (SADDR SPORT DADDR DPORT PROB [CHECKSUM?]
(. ...
10
PROCESSING TYPE
Agnostic
DESCRIPTION
15 Encapsulates each incoming packet in a UDP/IP packet with
source address SADDR, source port SPORT, destination
address DADDR, and destination port DPORT. The UDP check-
sum 1s calculated if CHECKSUM? is true; it is true by
default.
20

PROB gives the relative chance of this argument be used
over others.

The RandomUDPIPEncap element adds both a UDP header and an
25 IP header.

You can a maximum of 16 arguments. Each argument specifies

a single UDP/IP header. The element will randomly pick one

argument. The relative probabilities are determined by
30 PROB.

The Strip(n) element can be used by the receiver to get
rid of the encapsuldtion header.

35 EXAMPLES
RandomUDPIPEncap(1.0.0.1 1234 2.0.0.2 1234 1 1,
1.0.0.2 1093 2.0.0.2 1234 2 1)
Will send about twice as much UDP/IP packets with 1.0.0.2

40 as its source address than packets with 1.0.0.1 as its
source address.

45 SEE ALSO
Strip(n), UDPIPEncap(n), RoundRobinUDPIPEncap (n)

B-16

50

WO 02/21771 PCT/US01/27413

10

15

20

25

APPENDIX B

RATEWARN (n) RATEWARN (n)

NAME
RateWarn - Click element; classifies traffic and sends out
warnings when rate of traffic exceeds specified rate.
SYNOPSIS

RateWarn (RATE, WARNFREQ)

PROCESSING TYPE
Push

DESCRIPTION
RateWarn has three output ports. It monitors the rate of
packet arrival on input port 0. Packets are forwarded to
output port 0 if rate is below RATE. If rate exceeds
‘RATE, it sends out a warning packet WARNFREQ number of
seconds apart on output port 2 in addition to forwarding
all traffic through output port 1.

SEE ALSO
PacketMeter (n)

B-17

51

WO 02/21771

10

15

20

25

30

35

40

45

50

55

PCT/US01/27413

APPENDIX B

RATIOSHAPER (n) RATIOSHAPER(n)

NAME

RatioShaper - Click element

SYNOPSIS

RatioShaper (FWD_WEIGHT, REV_WEIGHT, THRESH, P)

PROCESSING TYPE

Push

DESCRIPTION

RatioShaper shapes packets based on £fwd rate _anno and
rev _rate anno rate annotations set by IPRateMonitor(n).
If either annotation is greater than THRESH, and
FWD WEIGHT*fwd_rate_anno > REV_WEIGHT*rev_: rate_anno, the
packet is moved onto output port 1 with a probablllty of

min (1,

P* (fwd_rate_anno*FWD_WEIGHT)/(rev_rate anno*REV_WEIGHT))

FWD WEIGHT, REV_WEIGHT, and THRESH are integers. P is a
dec1mal between 0 and 1. Otherwise, packet 1s forwarded on
output port 0.

EXAMPLES

RatioShaper(1l, 2, 100, .2);

if fwd _rate_anno more than twice as big as rev_rate anno,
and both rates are above 100, drop packets with an initial
probability of 20 percent.

ELEMENT HANDLERS

fwd_weight (read/write)
value of FWD_WEIGHT

rev_weight (read/write)
value of REV_WEIGHT

thresh (read/write)
value of THRESH

drop_prob (read/write)
value of P

SEE ALSO

Block(n), IPRateMonitor (n)

B-18

52

WO 02/21771 PCT/US01/27413

10

15

20

APPENDIX B

REPORTACTIVITY (n) REPORTACTIVITY (nn)

NAME
ReportActivity - Click element

SYNOPSIS
ReportActivity (SAVE_FILE, IDLE)

PROCESSING TYPE
Agnostic

DESCRIPTION
Write dinto SAVE FILE a 32 bit time value followed by an
ASCII representation of that time stamp whenever a packet
comes by. If IDLE number of seconds pass by w/o a packet,
removes the file.

B-19

53

WO 02/21771 PCT/US01/27413

10

15

20

25

30

35

40

APPENDIX B
ROUNDROBINSETIPADDRESS (n) ROUNDROBINSETIPADDRESS (n)
NAME
RoundRobinSetIPAddress - Click element
SYNOPSIS

RoundRobinSetIPAddress (ADDR [, ...])

PROCESSING TYPE
Agnostic

DESCRIPTION
Set the destination IP address annotation of each packet
with an address chosen from the configuration string in
round robin fashion. Does not compute checksum (use
SetIPChecksum(n) or SetUDPTCPChecksum(n)) or encapsulate
the packet with headers (use RoundRobinUDPIPEncap(n) or
RoundRobinTCPIPEncap (n) with bogus address).

EXAMPLES
RoundRobinUDPIPEncap(2.0.0.2 0.0.0.0 0 0 0)
-> RoundRobinSetIPAddress(1.0.0.2, 1.0.0.3, 1.0.0.4)
~> StorelIPAddress(12)
—-> SetIPChecksum
—-> SetUDPTCPChecksum

this configuration segment places an UDP header onto each
packet, with randomly generated source and destination
ports. The destination IP address is 2.0.0.2, the source
IP address is 1.0.0.2, or 1.0.0.3, or 1.0.0.4. Both IP and
UDP checksum are computed.

SEE ALSO
RoundRobinUDPIPEncap (n), RoundRobinTCPIPEncap(n), UDPIPEn-
cap(n) , SetIPChecksum(n), SetUDPTCPChecksum(n), SetIPAd-
dress(n), StoreIPAddress(n)

B-20

54

WO 02/21771

10

15

20

25

30

35

40

45

ROUNDROBINTCPIPENCAP (n)

NAME

PCT/US01/27413

APPENDIX B

ROUNDROBINTCPIPENCAP (n)

RoundRobinTCPIPEncap - Click element

SYNOPSIS

RoundRobinTCPIPEncap (SA DA BITS [SP DP SEQN ACKN CHECKSUM]
L ...n

PROCESSING TYPE

Agnostic

DESCRIPTION

Encapsulates each incoming packet in a TCP/IP packet with
source address SA, source port SP (if 0, a random one is
generated for each packet), destination address DA, and
destination port DP (if 0, a randem one is generated for

“each packet), and control bits BITS. If SEQN and ACKN

specified are non-zero, they are used. Otherwise, they
are randomly generated for each packet. IP and TCP check~
sums are calculated if CHECKSUM is true; it is true by
default. SEQN and ACKN should be in host order.

The RoundRobinTCPIPEncap element adds both a TCP header
and an IP header.

You can give as many arguments as you'd like. Each argu-
ment specifies a single TCP/IP header. The element will
cycle through the headers in round-robin order.

The Strip(n) element can be used by the receiver to get
rid of the encapsulation header.

EXAMPLES
RoundRobinTCPIPEncap(2.0.0.2 1.0.0.2 4 1022 1234 42387492
2394839 1,)
2.0.0.2 1.0.0.2 2)
SEE ALSO

Strip(n), RoundRobinUDPIPEncap (n)

B-21

55

WO 02/21771

10

15

20

25

30

35

40

ROUNDROBINUDPIPENCAP (n)

NAME

PCT/US01/27413

APPENDIX B

ROUNDROBINUDPIPENCAP (n)

RoundRobinUDPIPEncap - Click element

SYNOPSIS

RoundRobinUDPIPEncap (SADDR DADDR [SPORT DPORT CHECKSUM?]
r -..1)

PROCESSING TYPE

Agnostic

DESCRIPTION

Encapsulates each incoming packet in a UDP/IP packet with
source address SADDR, source port SPORT, destination
address DADDR, and destination port DPORT. The UDP and IP
checksums are calculated if CHECKSUM? is true; it is true
by default. If either DPORT or SPORT is 0, the port will
be randomly generated for each packet.

The RoundRobinUDPIPEncap element adds both a UDP header
and an IP header.

You can give as many arguments as you'd like. Each argu-
ment specifies a single UDP/IP header. The element will
cycle through the headers in round-robin order.

The Strip(n) element can be used by the receiver to get
rid of the encapsulation header.

EXAMPLES

RoundRobinUDPIPEncap(2.0.0.2 1.0.0.2 1234 1002 1,
2.0.0.2 1.0.0.2 1234)

SEE ALSO

Strip(n), UDPIPEncap (n)

B-22

56

WO 02/21771 PCT/US01/27413

APPENDIX B
SETSNIFFFLAGS (n) SETSNIFFFLAGS (n)
NAME
5 SetSniffFlags - Click element; sets sniff flags annota-
tion.
SYNOPSIS
SetSniffFlags (FLAGS [, CLEAR])
10
PROCESSING TYPE
Agnostic
DESCRIPTION
15 Set the sniff flags annotation of incoming packets to
FLAGS bitwise or with the old flags. if CLEAR is true
(false by default), the old flags are ignored.
20

B-23

57

WO 02/21771 PCT/US01/27413

10

15

20

APPENDIX B

SETUDPTCPCHECKSUM (n) SETUDPTCPCHECKSUM (n)

NAME |
SetUDPTCPChecksum - Click element

SYNOPSIS
SetUDPTCPChecksum()

PROCESSING TYPE
Agnostic

DESCRIPTION
Expects an IP packet as input. Calculates the ICMP, UDP or
TCP header's checksum and sets the checksum header field.
Does not modify packet if it is not an ICMP, UDP, or TCP
packet.

SEE ALSO
SetIPChecksun(n)

B-24

58

WO 02/21771 PCT/US01/27413

10

15

APPENDIX B
STORESNIFFFLAGS (n) STORESNIFFFLAGS (n)
NAME
StoreSniffFlags - Click element; stores sniff flags anno-
tation in packet
SYNOPSIS

StoreSniffFlags (OFFSET)

PROCESSING TYPE
Agnostic

DESCRIPTION
Copy the sniff flags annotation into the packet at offset
OFFSET.

B-25

59

WO 02/21771

10

15

20

25

PCT/US01/27413

APPENDIX B

TCPMONITOR (n) TCPMONITOR (n)

NAME

TCPMonitor - Click element

SYNOPSIS

TCPMonitor()

PROCESSING TYPE

Push

DESCRIPTION

Monitors and splits TCP traffic. Output 0 are TCP traffic,
output 1 are non-TCP traffic. Keeps rates of TCpP, TCP
BYTE, SYN, ACK, PUSH, RST, FIN, URG, and fragmented pack-
ets. Also keeps rates of ICMP, UDP, non-TCP BYTE, and non-
TCP fragmented traffic.

ELEMENT HANDLERS

rates (read)
dumps rates

B-26

60

WO 02/21771

PCT/US01/27413

APPENDIX B

TCPSYNPROXY (n) TCPSYNPROXY (n)

NAME

TCPSYNProxy - Click element

SYNOPSIS

10

TCPSYNProxy (MAX CONNS, THRESHOLD, MIN_TIMEOUT, MAX TIMEOUT
[, PASSIVE])

PROCESSING TYPE

Push

DESCRIPTION

15

20

25

30

35

40

45

50

55

Help settup a three way TCP handshake from A to B by sup-
plying the last ACK packet to the SYN ACK B sent prema-
turely, and send RST packets to B later if no ACK was
received from A.

Expects IP encapsulated TCP packets, each with its ip
header marked (MarkIPHeader(n) or CheckIPHeader(n)).

Aside from responding to SYN ACK packets from B, TCPSYN-
Proxy also examines SYN packets from A. When a SYN packet
from A is received, if there are more than MAX CONNS num-
ber of outstanding 3 way connections per destination
(daddr + dport), reject the SYN packet. If MAX CONNS is 0,
no maximum is set.

The duration from sending an ACK packet to B to sending a
RST packet to B decreases exponentially as the number of
outstanding connections to B increases pass 2”THRESHOLD.
The minimum timeout is MIN_TIMEOUT. If the number of out-
standing half-open connections is above 2°THRESHOLD, the
timeout is

max (MIN TIMEOUT, MAX TIMEOUT >> (N >> THRESHOLD))

Where N is the number of outstanding half-open connec-
tions. For example, let the MIN TIMEOUT value be 4 sec-
onds, the MAX TIMEOUT value be 90 seconds, and THRESHOLD
be 3. Then when N < 8, timeout is 90. When N < 16, timeout
is 45. When N < 24, timeout is 22 seconds. When N < 32,
timeout 1is 11 seconds. When N < 64, timeout is 4 seconds.
Timeout period does not decrement if the threshold is O.

TCPSYNProxy has two inputs, three outputs. All inputs and
outputs take 1in and spew out packets with IP header.
Input 0 expects TCP packets from A to B. Input 1 expects
TCP packets from B to A. Output 0 spews out packets from A
to B. Output 1 spews out packets from B to A. Output 2
spews out the ACK and RST packets generated by the ele-
ment.

If PASSIVE is true (it is not by default), monitor TCP
three-way handshake instead of actively setting it up. In

B-27

61

WO 02/21771 PCT/US01/27413

10

15

20

25

30

35

APPENDIX B

this case, no ACK or RST packets will be sent. When an
outstanding SYN times out, the SYN ACK packet is sent out
of output port 2. No packets on port 0 are modified oz
dropped in this operating mode.

EXAMPLES
-> CheckIPHeader () -> TCPSYNProxy(128,3,10,90) ->

ELEMENT HANDLERS
summary (read)
' Returns number of ACK and RST packets sent and number
of SYN packets rejected.

table (read)
Dumps the table of half-opened connections.

reset (write)
Resets on write.

SEE ALSO
MarkIPHeader (n), CheckIPHeader(n)

B-28

62

WO 02/21771 PCT/US01/27413

10

15

20

25

APPENDIX B

TCPSYNRESP (n) TCPSYNRESP (n)
NAME
TCPSYNResp - Click element

SYNOPSIS
TCPSYNResp ()

PROCESSING TYPE
Push

DESCRIPTION
Takes in TCP packet, if it 1s a SYN packet, return a SYN
ACK. This is solely for debugging and performance tunning

purposes. No checksum is done. Spews out original packet
on output 0 untouched. Spews out new packet on output 1.

201094509.doc

B-29

63

5

10

15

20

25

30

WO 02/21771 PCT/US01/27413

What is claimed is:

1. A gateway device disposed between a data center and a
network for thwarting denial of service attacks on the
data center, the gateway device comprises:

a computing device comprising:

a monitoring process that monitors network
traffic through the gateway:;

a communication process that can communicate
statistics collected in the gateway from the
monitoring process with a control center and that can
receive queries or instructions from the control
center; and

a filtering process to allow filters to be
inserted to filter out packets that the gateway deems
to be part of an attack.

2. The gateway of claim 1 wherein the communication
process couples to a dedicated link to communicate with

the control center over a hardened network.

3. The gateway of claim 1 wherein the monitoring process

in the gateway samples network packet flow in the network.

4. The gateway of claim 1 wherein the gateway is
adaptable to be physically deployed in line in the

network.
5. The gateway of claim 1 wherein, the gateway is

adaptable to dynamically install filters on nearby

routers.

64

10

15

20

25

30

WO 02/21771 PCT/US01/27413

6. The gateway of claim 1 wherein the monitoring process
detects IP traffic and determines levels of unusual
amounts of IP fragmentation or fragmented IP packets with

bad or overlapping fragment offsets.

7. The gateway of claim 1 wherein the monitoring process
detects Internet Protocol (IP) traffic and determines
levels of IP packets that have bad source addresses or
Internet Control Message Protocol (ICMP) packets with

broadcast destination addresses.

8. The gateway of claim 1 wherein monitoring process
detects Internet Protocol (IP) traffic and determines
levels of Transmission Control Protocol (TCP) or User

Datagram Protocol (UDP) packets to unused ports.

9. The gateway of claim 1 wherein monitoring process
detects IP traffic and determines levels of TCP segments
advertising unusually small window sizes, which may
indicate a load on the data center, or TCP ACK packets not

belonging to a known connection.

10. The gateway of claim 1 wherein monitoring process
detects sustained rate higher than plausible for a human

user over a persistent HTTP connection.

11. The gateway of claim 1 wherein monitoring process
maintains statistical summary information of traffic over
different periods of time and at different levels of

detail.

12. The gateway of claim 11 wherein monitoring process

maintains statistics on parameters including source and

65

10

15

20

25

30

WO 02/21771 PCT/US01/27413

destination host or network addresses, protocols, types of
packets, number of open connections or of packets sent in

either direction.

13. The gateway of claim 12 wherein monitoring process
has configurable thresholds and issues a warning when one
of the measured parameters exceeds the corresponding

threshold.

14. The gateway of claim 13 wherein monitoring process

logs packets.

15. The gateway of claim 14 wherein monitoring process
logs specific packets identified as part of an attack to
enable an administrator to identify important properties

of the attack.

16. A method of protecting a victim site during a denial
of service attack, comprises:

disposing a gateway device between the victim site
and a network;

monitoring network traffic through the gateway and
measuring heuristics of the network traffic;

communicating statistics collected in the gateway to
a control center; and

filtering out packets that the gateway or control

center deems to be part of an attack.
17. The method of claim 16 wherein communicating occurs

over a dedicated link to the control center via a hardened

network.

66

10

15

20

25

30

WO 02/21771 PCT/US01/27413

18. The method of claim 16 wherein monitoring samples

network packet flow in the network.

19. The method of claim 16 wherein the gateway is
physically deployed in line in the network.

20. The method of claim 16 wherein filtering further
comprises:
dynamically installing filters on nearby routers via

an out of band connection.

21. The method of claim 16 wherein monitoring further
comprises:

detecting IP traffic and determining levels of
unusual amounts of IP fragmentation or fragmented IP

packets with bad or overlapping fragment offsets.

22. The method of claim 16 wherein monitoring further
comprises:

detecfing Internet Protocol (IP) traffic and
determining levels of IP packets that have bad source
addresses or Internet Control Message Protocol (ICMP)

packets with broadcast destination addresses.

23. The method of claim 16 wherein monitoring further
comprises:

detecting Internet Protocol (IP) traffic and
determining levels of Transport Control Protocol (TCP) or

User Datagram Protocol UDP packets to unused ports.

24. The method of claim 16 wherein monitoring further

comprises:

67

10

15

20

25

WO 02/21771 PCT/US01/27413

detecting IP traffic and determines levels of TCP
segments advertising unusually small window sizes, which
may indicate a load on the data center, or TCP ACK packets

not belonging to a known connection.

25. The method of claim 16 wherein monitoring further
comprises:

detecting a sustained rate of reload requests that is
higher than plausible for a human user over a persistent

HTTP connection.

26. The method of claim 16 wherein monitoring further
comprises:

logging statistics on parameters including source and
destination host or network addresses, protocols, types of
packets, number of open connections or of packets sent in

either direction.

27. The method of claim 16 wherein monitoring further
comprises:

issuing a warning to the control center when one of
the measured parameters exceeds a corresponding

configurable threshold.

28. The method of claim 16 wherein monitoring further
comprises:

logging specific packets identified as part of an
attack to enable an administrator to identify important

properties of the attack.

68

WO 02/21771 PCT/US01/27413

10

15

20

25

30

29. A computer program product residing on a computer
readable medium for protecting a victim site during a
denial of service attack, comprises instructions for
causing a computer device coupled at an entry to the site
to:

monitor network traffic sent to the victim site and
measuring heuristics of the network traffic;

communicate statistics collected in the computer
device to a control center; and

filter out packets that the device or control center

deems to be part of an attack.

30. The computer program product of claim 29 wherein
instructions to monitor further comprise instructions to:

sample network traffic flow.

31. The computer program product of claim 29 wherein
instructions to filter further comprise instructions to:
dynamically install filters on nearby routers via an

out of band connection.

32. The computer program product of claim 29 wherein
instructions to monitor further comprise instructions to:
detect IP traffic; and
determine levels of unusual amounts of IP
fragmentation or fragmented IP packets with bad or

overlapping fragment offsets.
33. The computer program product of claim 29 wherein

instructions to monitor further comprise instructions to:

detect Internet Protocol (IP) traffic; and

69

10

15

20

25

30

WO 02/21771 PCT/US01/27413

determine levels of IP packets that have bad source
addresses or Internet Control Message Protocol (ICMP)

packets with broadcast destination addresses.

34. The computer program product of claim 29 wherein

instructions to monitor further comprise instructions to:
detect Internet Protocol (IP) traffic; and
determine levels of Transport Control Protocol (TCP)

or User Datagram Protocol UDP packets to unused ports.

35. The computer program product of claim 29 wherein
instructions to monitor further comprises instructions to:
detect IP traffic; and
determine levels of TCP segments advertising
unusually small window sizes, which may indicate a load on
the data center, or TCP ACK packets not belonging to a

known connection.

36. The computer program product of claim 29 wherein

instructions to monitor further comprises instructions to:
detect a sustained rate of reload requests that is‘

higher than plausible for a human user over a persistent

HTTP connection.

37. The computer program product of claim 29 wherein
instructions to monitor further comprises instructions to:
log statistics on parameters including source and
destination host or network addresses, protocols, types of
packets, number of open connections or of packets sent in

either direction.

38. The computer program product of claim 29 wherein

instructions to monitor further comprises instructions to:

70

10

WO 02/21771 PCT/US01/27413

issue a warning to the control center when one of the
measured parameters exceeds a corresponding configurable

threshold.

39. The computer program of claim 29 further comprising
instructions to cause the processor to receive
communications from a control center to deliver data
pertaining to the types of traffic passing through the
gateway.

71

PCT/US01/27413

WO 02/21771

1/10

207 ‘199D
ele(

qQg ‘1o1us?
ele(

B(Z “191U29
eleq

["OId

v Qo:ao [onuoy)

Jjomau

pauspiey ‘0f Na

¥1 S

8¢

1 ‘wmaip

Kemajen) ‘gg

01

PCT/US01/27413

WO 02/21771

2/10

lainol
23pg

om/b

8€ ™SO

|
s

wopouw ‘g¢

s

AN

¢ DIA

€€ ‘ssaooid Buiiojuoy

€€ ‘ssaooxd
UOHBOIUNUIIO))

N v

r'd
5O

97 ‘Aemajen)

J

\

0C ‘1o1u90 ele(q

I

/

1oindwod ‘47

GE ‘sIL]

PCT/US01/27413

WO 02/21771

3/10

ele(

[43

8 ‘10109[}02
ele(q -

07 “121u30
e1R(]

\

¢ DId

JHomiau

pauspiey ‘0¢

0T “191u20 \

lV‘IOH z

€

Q7 ‘10303[[02
ele(q

WO 02/21771 PCT/US01/27413
4/10

40

42, Sample packet 1 : N

44, collect and log source info.

46, Collect and log
destination info.

50, Analyze collected source and

48, Rules —» ..
destination info.

52, Generate messages to
data center 24

FIG. 4

PCT/US01/27413

WO 02/21771

5/10

¥9 ‘ssao0ig
uonedunWo.)

79 ‘ssaooi1g

sisA[euy

09 “jueq Wapo

N

jnb

Y

J1omiau pauspley ‘O¢

S "DIA

AN

191Uu0 BIRp ‘4T

WO 02/21771

32

FIG. 6

6/10

32a Statistic Collection

33a, Packet ratio process.

33b, Repressor Traffic Process

33c, TCP Handshake Analysis

33d, Layer 3-7 analysis

33e, Logging and Historical
analysis

PCT/US01/27413

Analysis
process
32b

PCT/US01/27413

WO 02/21771

7/10

L\@A\ﬁ/
1d
¢ /

wig Jo anfeA

AHVA\\\é

/ﬁm
<

11 Jo anjep J

193004 111dS

V/ ug
«

W

ug jo anjeA

L "DIA

JIomIaN

ldJoonfeA

PCT/US01/27413

WO 02/21771

8/10

MM

§1939nq JO "ON

(i,
SHOMIBN

8 DIA

Am

JIOMIBN

MOJ
SJI0MIaN

WO 02/21771

threshold

—>

PCT/US01/27413
9/10
|
> 7\
v
Obtain ratio of packets
In/Out, 82

Compare packet ratio to
threshold, 84

<2

32

FIG. 9

>2

| _

Store and stamp, 86

Analysis, 88

89, Attack?

Raise alarm to
Control Center, 90

WO 02/21771 PCT/US01/27413
10/10

v

Forward SYN Packet
from client, 102

l

Forward SYN ACK Packet
from server to client, 104

I

Gateway 26 immediately
sends ACK to client, 106

l -

Time out period expires, 108

l

DID ACK arrive from yes
client? 110

[!

Forward ACK, 114

Non
ACK connect >
threshold,
122

Wait until less
than threshold,

Count, 111

1 l

Send reset to close i
connection, 112 Normal traffic exit, 116

CaitD FIG. 10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/27413

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) HO4L, 12/00
USCL 713/200

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 713/200, 201, 153, 154, 155, 156

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 5,968,176 A (NESSET, et al.) 19 OCTOBER 1999, see column 4, lines 21-45, column 1-39
13, lines 50 thru 14 , column 16, lines 45-47 and column 17, lines 32-40.

A US 6,128,298 A (WOOTTON, et al.) 03 OCTOBER 2000, see columns 2-4, column 7, 1, 16, and 29
lines 5-45 and column 8, lines 6-20.

A US 5,787,253 A (McCREERY, et al.) 28 JULY 1998, see columns 4-6. 1,16, and 29

I:l Further documents are listed in the continuation of Box C.

[

See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be
of particular relevance

“E” earlier application or patent published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“Q” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the
priority date claimed

“T later docurnent published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
' considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

11/30/2001

Date of ma%ipgoj IX international search report

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer
Hayes Gail %@ym ﬁ mm
‘ o

Telephone No. (703) 305-3853

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US01/27413

Continuation of B. FIELDS SEARCHED Item 3:

WEST: gateway$ or firewall$ or filter$, 11 and (track$ or monitor$ or log$), 12 and network$, 13 and filter$, 14 and statistic$ and
packet$, 15 and traffic$ and link$ and read$ o
EAST: gateway$ or filter$ or firewall$, 11 and (filter$ near packet$), 13 and statistic$ and packet$ and (ip or internet adj protocol$), 14
and traffic$

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

