发明名称
一种牡丹叶总苷提取物及其制备方法和用途

摘要
本发明提供了一种从牡丹叶新的药用部位中分离纯化的牡丹叶总苷提取物和其制备方法。具体涉及该牡丹叶总苷提取物中总苷的含量为 50% ~ 95%，其中芍药苷的含量为 45% ~ 95%。本发明提供的制备方法采用了中药现代化技术中的树脂技术，工艺简单，去除了大量杂质，活性成分的含量高。本发明同时还公开了牡丹叶总苷提取物在制备治疗糖尿病、冠心病药物中的应用。
1. 一种牡丹叶总苷提取物，其特征在于含有牡丹叶总苷的重量百分比为 50% ~ 95%。

2. 根据权利要求 1 所述的牡丹叶总苷提取物，其特征在于该提取物中主要含有芍药苷、羟基芍药苷、苯甲酰芍药苷、苯甲酰羟基芍药苷。

3. 根据权利要求 1 或 2 所述的牡丹叶总苷提取物，其特征在于含有芍药苷的重量百分比为 45% ~ 95%。

4. 根据权利要求 1、2、3 任一权利要求所述的牡丹叶总苷提取物的制备方法，其特征在于：
 (1) 以牡丹叶为原料，用水或含水的乙醇提取；
 (2) 浓缩提取液，至相对密度为 1.20 的浸膏，加水使浸膏溶解，离心，得上清液；
 (3) 上清液通过大孔吸附树脂柱，依次用水、含水乙醇洗脱除杂；
 (4) 再以乙醇或含水乙醇洗脱，收集洗脱液，洗脱液浓缩干燥，得牡丹叶总苷提取物。

5. 根据权利要求 4 所述的牡丹叶总苷提取物的制备方法，其特征在于提取为渗漉提取或回流提取。

6. 根据权利要求 4 所述的牡丹叶总苷提取物的制备方法，其特征在于提取所用的乙醇的浓度为 X，$0 < X \leq 95\%$。

7. 根据权利要求 6 所述的牡丹叶总苷提取物的制备方法，其特征在于提取所用的乙醇的浓度为 X，$50 \leq X \leq 95\%$。

8. 根据权利要求 4 所述的牡丹叶总苷提取物的制备方法，其特征在于所述的树脂为苯乙烯、二乙烯苯、丙烯酸酯或甲基丙烯酸酯中的任意一种或
几种为骨架材料的树脂。

9. 根据权利要求 8 所述的牡丹叶总苷提取物的制备方法，其特征在于所采用的吸附树脂可以是 ZTC - 1、D101、AB - 8 或 DM301 型树脂。

10. 根据权利要求 4 所述的牡丹叶总苷提取物的制备方法，其特征在于除杂所用的乙醇的浓度为 X，5 ≤ X ≤ 20%。

11. 根据权利要求 4 所述的牡丹叶总苷提取物的制备方法，其特征在于洗脱所用的乙醇的浓度为 X，20 ≤ X ≤ 95%。

12. 根据权利要求 11 所述的牡丹叶总苷提取物的制备方法，其特征在于洗脱所用的乙醇的浓度为 X，20 ≤ X ≤ 40%。

13. 含有权利要求 1 - 12 任一权利要求所述的牡丹叶总苷提取物的药物组合物。

14. 根据权利要求 13 所述的药物组合物，其特征在于该组合物可以是牡丹叶总苷提取物和其他药物组成。

15. 根据权利要求 13 所述的药物组合物，其特征在于该组合物可以是牡丹叶总苷提取物和药用辅料组成。

16. 根据权利要求 13、14 或 15 所述的药物组合物，其特征在于可以以口服制剂或注射制剂形式存在。

17. 根据权利要求 16 所述的药物组合物，其特征在于所述的口服制剂为胶囊剂、软胶囊剂、颗粒剂、口服液、片剂、滴丸。

18. 根据权利要求 16 所述的药物组合物，其特征在于所述的注射制剂为粉针剂或注射液。

19. 权利要求 1 - 18 任一权利要求所述的牡丹叶总苷提取物或者药物组
合物在制备治疗糖尿病、冠心病药物中的应用。
说明 书

一种牡丹叶总苷提取物及其制备方法和用途

技术领域

本发明属于中药新药研发领域。涉及一种从中药材新的药用部位中分离得到有效部位，并提供其制备方法和医药用途。

背景技术

牡丹不仅是观赏性植物，其还可以作为药用。2005 年版的《中国药典》收载牡丹皮（亦称丹皮）作为法定的中药材使用。牡丹皮是毛茛科芍药属植物牡丹（Paeonia suffruticosa Andr.）的干燥根皮。目前，关于牡丹皮的化学成分及其有效部位研究的很多。根据文献报道，牡丹皮中含有牡丹酚、牡丹酚甙、牡丹酚原甙、牡丹酚新甙、芍药甙、羟基芍药甙、苯甲酰芍药甙、苯甲酰羟基芍药甙、没食子酸、挥发油、无机元素等。现代药理研究表明，牡丹皮具有抗肿瘤、抗炎、抗菌、降血糖、降压、抗心肌缺血、抗心律失常、抗血栓和动脉硬化、免疫调节等作用（“牡丹皮药理作用的研究进展”《中国新医药》2004年第3卷第8期 p110-111）。其有效部位丹皮多糖有降血糖作用，丹皮总苷有治疗乙肝、免疫调节、抗炎的作用。但是牡丹皮采收周期较长（3 年），同时取其根部，植株无法存活，因此从合理利用药材资源出发，考虑是否可以开发药材的其它部位作为药用，研究其化学成分，明确有效部位，发现新的医药用途，是医药研究人员努力研究的方向。

牡丹叶为毛茛科芍药属植物牡丹（Paeonia suffruticosa Andr.）的干燥叶，据文献报道，牡丹叶中含有苷类，酚类，酚酸类，鞣质，黄酮，糖类等化学成分。目前，对牡丹叶的化学成分及其药理活性研究的很少，并且未见到关于从牡丹叶中提取分离有效部位的文献报道。
发明内容

本发明要解决的技术问题之一是提供一种牡丹叶总苷提取物，其中的活性成分是来自于牡丹叶中的有效部位——牡丹叶总苷。

本发明进一步提供了上述牡丹叶总苷为活性成分，用于治疗糖尿病、冠心病的纯中药药物制剂和相应的药物剂型。

本发明要解决的另一个技术问题是提供用于治疗糖尿病、冠心病的牡丹叶总苷提取物的制备方法。

为解决上述技术问题，本发明研究制定了如下技术方案。

本发明所用的牡丹叶为毛茛科植物牡丹 Paeonia suffruticosa Andr. 的干燥叶。本发明人经过多年的研究，用牡丹叶为原料，经过溶剂提取、大孔树脂吸附、溶剂洗脱、洗脱液浓缩干燥，得到牡丹叶总苷提取物，其中含有牡丹叶总苷重量百分比为 50% ~ 95%。该提取物中主要含有芍药苷、羟基芍药苷、苯甲酰羟基芍药苷、苯甲酰羟基芍药苷等。其中芍药苷的重量百分比为 45% ~ 95%。

本发明比较优选的实施方案，牡丹叶总苷是通过下述方法制备得到的：

1. (1) 以牡丹叶为原料，用水或含水的乙醇提取；

2. (2) 浓缩提取液，至相对密度为 1.20 的浸膏，加水使浸膏溶解，离心，得上清液；

3. (3) 上清液通过大孔吸附树脂柱，依次用水、含水乙醇洗脱除杂；

4. (4) 以乙醇或含水乙醇洗脱，收集洗脱液，洗脱液浓缩干燥，得牡丹叶总苷提取物。

本发明所述的制备方法中提取选用的乙醇浓度为 X，0 < X ≤ 95%，优选为 50 ≤ X ≤ 95%；提取方法可以是渗漉提取或回流提取，乙醇与原料之间应
保持比较大的比例，以保证提取完全，可以使用 8～16 倍药材重量的溶剂提取 2～3 次。

所述的吸附树脂可以为苯乙烯、二乙烯苯、丙烯酸酯或甲基丙烯酸酯中的任意一种或几种为骨架材料的树脂，具体可包括 ZTC-1、D101、AB-8 或 DM301 型树脂。优选为 ZTC-1 树脂。

所述除杂的过程中先用 4～10 倍于树脂体积（V/W）的水，再用 2～5 倍树脂体积（V/W）的含水乙醇，乙醇浓度为 X，5 ≤ X ≤ 20%。洗去柱内未被吸附的杂质，使用该方法能够有效地去除杂质。

所述制备方法中洗脱所用的乙醇的浓度为 X，20 ≤ X ≤ 95%；优选为 20 ≤ X ≤ 40%。并确定以 4～12 倍于树脂体积（V/W）的含水乙醇洗脱，洗脱液浓缩干燥，得牡丹叶总苷提取物。

在除杂及解吸的过程中，可通过随时检测洗脱液中牡丹叶总苷的含量来监控除杂或洗脱乙醇的用量，控制除杂或洗脱的时间。牡丹叶总苷的含量测定方法可通过本领域内公知的方法进行测定，本发明在此提供一套可行的高效液相色谱测定方法。具体如下：

1. 对照品溶液的制备：精密称取苯甲酸对照品 9.53mg，置于 100ml 量瓶中，用甲醇定容到体积，摇匀，得对照品储备液（0.0953mg/ml）。再精密吸取 1ml 上述溶液置 10ml 量瓶中，用甲醇定容到体积，摇匀，即得对照品溶液（9.53μg/ml）。

2. 供试品溶液的制备：将分段收集的洗脱液干燥得供试品，取供试品约 20mg，精密称定，至 10mL 量瓶中，加 5%氢氧化钠溶液适量超声处理（功率 250W，频率 33KHZ）10 分钟使溶解，取出，放至室温，用 5%氢氧化钠溶液定至刻度，摇匀，滤过，精密量取续滤液 1mL，至 10mL 具塞试管中，沸
水浴水解 2 小时，取出，放至室温，定量转移至 50mL 量瓶中，用稀盐酸调 pH=6，加水稀释至刻度，摇匀，用微孔滤膜（0.22μm）滤过，取续滤液，即得。

3、测定法 分别精密吸取对照品溶液与供试品溶液各 10μL，注入液相色谱仪，测定，即得。

本发明的优点：本发明公开了牡丹的新的药用部位，即牡丹叶，并以其为原料，首次提取分离得到了它的有效部位，即牡丹叶总苷提取物。由于采用了中药现代化技术中的树脂技术，工艺简单，去除了大量杂质，活性成分的含量高。

本发明所述的牡丹叶总苷提取物可以单独使用或以药物组合物形式使用。药物组合物可以是牡丹叶总苷提取物和药用辅料组成，也可以是牡丹叶总苷提取物与其它药物组成。

根据本发明的技术方案，该药物组合物可以以口服制剂或注射用制剂的形式存在，其中口服制剂包括胶囊剂、软胶囊剂、颗粒剂、口服液、片剂、滴丸等。注射剂型为粉针剂或注射液。所用辅料包括：淀粉、蔗糖、乳糖、糖粉、葡萄糖、甘露醇、木糖醇、聚乙二醇、丙二醇、甘油、丙二醇、微晶纤维素钠、糊精、环糊精、氯化钠、维生素 C、半胱氨酸、柠檬酸、硫酸钠、亚硫酸钠，硬脂酸盐和明胶等常规辅料，制剂的后期制备工艺及设备均属制药领域的常规技术，本发明对此不作限定，故在此不予详述。

通过研究观察，本发明所述的牡丹叶总苷提取物对糖尿病、冠心病有较好的治疗效果，且与芍药苷的治疗效果相当。为了便于理解该提取物的治疗效果，本发明人采用实施例 3 方法制备的牡丹叶总苷提取物（总苷含
量为 85%）及芍药苷（含量>92%）进行了如下药效学试验：

试验例 1 牡丹叶总苷提取物对冠脉结扎致大鼠实验性心肌梗死的治疗作用

Wistar 大鼠 144 只，体重 260～280g，雌雄兼用。随机分为 9 组，每组 16 只，分别为：假手术组、模型组、阳性药组（盐酸地尔硫卓 10mg/kg）、牡丹叶总苷提取物小剂量（10mg/kg）、中剂量（30mg/kg）、大剂量（90mg/kg）组；芍药苷小剂量（10mg/kg）、中剂量（30mg/kg）、大剂量（90mg/kg）组。腹腔注射乌拉坦（1000mg/kg）麻醉，分离十二指肠，各组分别记录标准 II 导联 ECG1min。胸部常规消毒，左锁骨中线第四肋间开胸，暴露心脏，距左冠状动脉前降支根部约 2mm 处结扎，送回心脏，关闭胸腔。结扎冠脉 15min 后记录 II 导心电图，以 T 波高耸伴有 ST 段抬高为结扎成功的标志，记录 II 导心电图作为给药前值，然后经十二指肠给药一次，剂量同前。结扎后 5h，腹主动脉取血，留血清，以备测心肌四酶等指标。然后处死大鼠，将心脏横切成 5 片置于 0.1% 的 NBT（用 pH7.4～7.8 的 0.2mol/LTris 溶液制）溶液中，37℃水浴 3～5min，洗去多余的染料，梗死区不着色，非梗死区被 NBT 染为紫蓝色，并照相，用图形分析软件比较心肌梗死面积占全心面积的百分比实验结果见表 1，表 2，表 3：

注：本试验设置牡丹叶总苷提取物及总苷中单体成分芍药苷同等剂量下口服给药进行对比研究。

表 1 牡丹叶总苷提取物和芍药苷对冠脉结扎致大鼠实验性心肌梗死 T 波变化绝对值的影响

\[(\bar{x} \pm s, \text{ 单位: mV, } n=9) \]
<table>
<thead>
<tr>
<th>组别</th>
<th>结扎后 15min</th>
<th>结扎后 2h</th>
<th>结扎后 5h</th>
<th>给药后 15min</th>
<th>给药后 2h</th>
<th>给药后 5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>假手术组</td>
<td>0.050±</td>
<td>0.046±</td>
<td>0.048±</td>
<td>0.050±</td>
<td></td>
<td></td>
</tr>
<tr>
<td>模型组</td>
<td>0.221±</td>
<td>0.212±</td>
<td>0.186±</td>
<td>0.162±</td>
<td>0.084**</td>
<td>0.063**</td>
</tr>
<tr>
<td>地尔硫卓 10mg/kg 组</td>
<td>0.219±</td>
<td>0.158±</td>
<td>0.085±</td>
<td>0.077±</td>
<td></td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物 10mg/kg 组</td>
<td>0.117</td>
<td>0.112**</td>
<td>0.070**</td>
<td>0.073**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物 30mg/kg 组</td>
<td>0.149</td>
<td>0.121</td>
<td>0.101*</td>
<td>0.088*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物 90mg/kg 组</td>
<td>0.201±</td>
<td>0.172±</td>
<td>0.144±</td>
<td>0.102±</td>
<td>0.077±</td>
<td></td>
</tr>
<tr>
<td>苎药苷 10mg/kg 组</td>
<td>0.130</td>
<td>0.124*</td>
<td>0.094*</td>
<td>0.079*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>苎药苷 30mg/kg 组</td>
<td>0.218±</td>
<td>0.167±</td>
<td>0.102±</td>
<td>0.077±</td>
<td></td>
<td></td>
</tr>
<tr>
<td>苎药苷 90mg/kg 组</td>
<td>0.140</td>
<td>0.068**</td>
<td>0.052**</td>
<td>0.040**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>苎药苷 10mg/kg 组</td>
<td>0.140</td>
<td>0.068**</td>
<td>0.052**</td>
<td>0.040**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>苎药苷 30mg/kg 组</td>
<td>0.140</td>
<td>0.124*</td>
<td>0.104*</td>
<td>0.089*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>苎药苷 90mg/kg 组</td>
<td>0.145</td>
<td>0.118**</td>
<td>0.082**</td>
<td>0.038**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：与假手术组比较，**P<0.01，***P<0.001；与模型组比较，*P<0.05 或 **P<0.01

由上表可见，冠脉结扎后，与假手术组比较，模型组在结扎后 15min、给药后 15min、2h、5h 各点均显著升高 T 波变化绝对值，经统计学处理差异具有非常显著性 (P<0.01 或 P<0.001)；与模型组比较，牡丹叶总苷提取物小剂量组在给药后 2h 和 5h、中剂量组在给药后 15min、2h、5h 及大剂量组在给药后 15min、2h、5h 均显著降低 T 波变化绝对值，经统计学处理差异具有显著性 (P<0.05 或 P<0.01)；与模型组比较，芍药苷小剂量组在
给药后 2h 和 5h、中剂量组在给药后 15min、2h、5h 及大剂量组在给药后 15min、2h、5h 均显著降低 T 波变化绝对值，经统计学处理差异具有显著性（P<0.05 或 P<0.01）；结果显示芍药苷和牡丹叶总苷提取物均具有明显的抗心肌缺血活性。

表 2 牡丹叶总苷提取物和芍药苷对冠脉结扎致大鼠实验性心肌梗死心肌酶的影响 (x ± s, n=9, 单位: U/L)

<table>
<thead>
<tr>
<th>组别</th>
<th>AST</th>
<th>CK-MB</th>
<th>CK</th>
<th>LDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>假手术组</td>
<td>256.444±</td>
<td>1900.222±</td>
<td>1889.111±</td>
<td>342.556±</td>
</tr>
<tr>
<td></td>
<td>31.381</td>
<td>803.021</td>
<td>813.064</td>
<td>59.361</td>
</tr>
<tr>
<td>模型组</td>
<td>765.500±</td>
<td>3713.500±</td>
<td>4556.750±</td>
<td>1669.333±</td>
</tr>
<tr>
<td></td>
<td>154.247**</td>
<td>1431.081**</td>
<td>1088.364***</td>
<td>456.804**</td>
</tr>
<tr>
<td>地尔硫卓</td>
<td>403.000±</td>
<td>2029.556±</td>
<td>2005.250±</td>
<td>628.444±</td>
</tr>
<tr>
<td>10mg/kg 组</td>
<td>148.405*</td>
<td>1580.475*</td>
<td>880.820*</td>
<td>335.071*</td>
</tr>
<tr>
<td>牡丹叶总苷提取</td>
<td>646.778±</td>
<td>3937.667±</td>
<td>3248.444±</td>
<td>1479.714±</td>
</tr>
<tr>
<td>取物 10mg/kg组</td>
<td>150.366</td>
<td>1477.883</td>
<td>1613.976</td>
<td>304.156</td>
</tr>
<tr>
<td>牡丹叶总苷提取</td>
<td>310.889±</td>
<td>3684.444±</td>
<td>2658.875±</td>
<td>724.778±</td>
</tr>
<tr>
<td>取物 30mg/kg组</td>
<td>51.518*</td>
<td>1408.431*</td>
<td>954.969*</td>
<td>143.767*</td>
</tr>
<tr>
<td>牡丹叶总苷提取</td>
<td>305.375±</td>
<td>2190.000±</td>
<td>2177.714±</td>
<td>560.429±</td>
</tr>
<tr>
<td>取物 90mg/kg组</td>
<td>111.559*</td>
<td>614.126**</td>
<td>211.879**</td>
<td>220.363*</td>
</tr>
<tr>
<td>芍药苷</td>
<td>685.128±</td>
<td>4037.642±</td>
<td>3189.213±</td>
<td>1503.638±</td>
</tr>
<tr>
<td>10mg/kg 组</td>
<td>146.256</td>
<td>1587.542</td>
<td>1487.573</td>
<td>384.182</td>
</tr>
<tr>
<td>芍药苷</td>
<td>570.986±</td>
<td>3848.015±</td>
<td>2787.775±</td>
<td>786.658±</td>
</tr>
<tr>
<td>30mg/kg 组</td>
<td>55.628*</td>
<td>1514.238</td>
<td>1023.211*</td>
<td>160.537*</td>
</tr>
<tr>
<td>芍药苷</td>
<td>427.526±</td>
<td>2260.152±</td>
<td>2366.472±</td>
<td>635.527±</td>
</tr>
<tr>
<td>90mg/kg 组</td>
<td>116.164*</td>
<td>686.236**</td>
<td>301.854**</td>
<td>239.196*</td>
</tr>
</tbody>
</table>

注：与假手术组比较，**P<0.01 或 ***P<0.001；与模型组比较，*P<0.05 或 **P<0.01

AST：谷丙转氨酶 CK-MB：肌酸磷酸激酶（CK）的同工酶
CK：肌酸磷酸激酶 LDH：乳酸脱氢酶
血清心肌四酶可以反映心肌细胞的受损程度，其中 CK-MB 是肌酸磷酸激酶（CK）的同工酶，只存在心肌细胞，当心肌细胞受损伤时，CK-MB 漏出，使其在血清中的活性增高，血清 CK-MB 活性越高，反映心肌损伤越重。由上表可见，冠脉结扎后，与假手术组比较，模型组能显著升高 AST、CK-MB、CK、LDH 值，差异具有显著性（P<0.01 或 P<0.001）；与模型组比较，阳性药组、牡丹叶总苷提取物中大剂量组及芍药苷中大剂量组均能显著降低 AST、CK、LDH，差异具有显著性（P<0.05 或 P<0.01）。而与模型组比较，牡丹叶总苷提取物中大剂量组和芍药苷大剂量组能显著降低 CK-MB，差异具有显著性（P<0.05 或 P<0.01）。

表 3 牡丹叶总苷提取物和芍药苷对冠脉结扎致大鼠心肌梗死面积及梗死区占全心面积%的影响（n=9）

<table>
<thead>
<tr>
<th>组别</th>
<th>全面积（mm²）</th>
<th>梗死面积（mm²）</th>
<th>梗死区占全心面积%</th>
</tr>
</thead>
<tbody>
<tr>
<td>假手术组</td>
<td>603.0±70.1</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
</tr>
<tr>
<td>模型组</td>
<td>621.9±75.4</td>
<td>128.3±29.5</td>
<td>19.6±5.1</td>
</tr>
<tr>
<td>地尔硫卓 10mg/kg 组</td>
<td>681.5±82.3</td>
<td>57.1±44.1***</td>
<td>5.1±3.5***</td>
</tr>
<tr>
<td>牡丹叶总苷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>提取物 10mg/kg 组</td>
<td>669.5±43.9</td>
<td>77.4±33.2*</td>
<td>11.0±6.9*</td>
</tr>
<tr>
<td>牡丹叶总苷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>提取物 30mg/kg 组</td>
<td>677.3±65.7</td>
<td>68.5±44.8*</td>
<td>9.7±5.4*</td>
</tr>
<tr>
<td>牡丹叶总苷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>提取物 90mg/kg 组</td>
<td>695.3±67.5</td>
<td>59.5±52.4**</td>
<td>6.9±4.2**</td>
</tr>
<tr>
<td>芍药苷 10mg/kg 组</td>
<td>683.2±82.1</td>
<td>80.3±26.8*</td>
<td>12.1±7.4*</td>
</tr>
<tr>
<td>芍药苷 30mg/kg 组</td>
<td>657.6±58.9</td>
<td>71.8±41.6*</td>
<td>10.5±6.1*</td>
</tr>
<tr>
<td>芍药苷 90mg/kg 组</td>
<td>683.0±61.8</td>
<td>60.5±37.4***</td>
<td>7.4±4.9**</td>
</tr>
</tbody>
</table>

注：与模型组比较，*P<0.05 或 **P<0.01 或 ***P<0.001

由上表可见，冠脉结扎后，与模型组比较，阳性药组能显著缩小梗死面积，梗死区占全心面积%差异具有显著性（P<0.001）。与模型组比较，牡
丹叶总苷提取物小，中，大剂量组和芍药苷小，中，大剂量组能显著缩小梗死面积，梗死区占全心面积%差异具有显著性（P<0.05 或 P<0.01）。

综上所述：实验结果表明，牡丹叶总苷提取物和芍药苷对冠脉结扎所致大鼠心肌梗死面积的影响与对血浆 AST, CK, LDH, 心电图 T 波变化绝对值的影响结果一致。能明显缩小心肌梗死面积，减少 AST, CK, LDH 的释放，降低心电图 T 波变化绝对值，提示其对大鼠实验性心肌梗死具有较好的治疗作用。牡丹叶总苷提取物和芍药苷同等剂量下抗心肌缺血的药理作用基本相当。

试验例 2 牡丹叶总苷提取物和芍药苷对冠脉结扎致实验性心肌梗死犬的治疗作用

健康成年杂种犬 54 只，体重 12-17kg，雌雄兼用。随机分为 9 组，每组 6 只，分别为：假手术组（只穿线不结扎），模型组，地尔硫卓组（5mg/kg），牡丹叶总苷提取物小剂量组（5mg/kg），中剂量组（15mg/kg）和大剂量组（45mg/kg）；芍药苷小剂量组 5mg/kg，中剂量组（15mg/kg）和大剂量组（45mg/kg）。经 3%戊巴比妥钠 30mg/kg 静脉麻醉。背位固定，颈部皮肤切开，气管插管，连接电动呼吸机。分离左侧颈总动脉，测定血压。分离股静脉，插管以备补液及静脉取血用。于剑突下切开，分离十二指肠，以备给药用。犬右侧卧位，于左侧第四肋间开胸，暴露心脏，做心包术。分离冠脉前降支，于中、下 1/3 处穿线以备结扎。固定多点式心外膜电极标测 EECG，标记点 12 个。术毕，稳定 15min 后记录 EECG 作为结扎前值，同时自股静脉取血，以备检测结扎前的各项血清学指标。结扎冠状动脉后 30min，记录 EECG 作为结扎后给药前值，并经十二指肠给药，假手术组和模型组给予等容量氯化钠注射液。记录给药后 20, 120, 240, 360min 的 ECG，并在实验结束取血，分离血清以备测血清酶学指标；给药后 360min 处死动物迅速取出心脏。将左心室均匀横切成 5 片，将 5 片心肌标本置于
0.5%的 N-BT（用 pH7.4～7.7 的 0.2mol/LTris 溶液配制）溶液中，37℃水浴
10min，洗去多余的染料，梗死区不着色，非梗死区被 N-BT 染为紫蓝色，
用图形分析软件比较心肌梗死面积占左心室面积的百分比，分别将梗死区
和非梗死区分离称重，比较梗死区左心室重量的比例（试验设定同样具有
抗心肌缺血活性的芍药苷作为药效学对照）。结果见表 4，表 5，表 6，表 7：

表 4 牡丹叶总苷提取物和芍药苷对实验性心肌梗死犬 ST (mV) 的影
响（x ± s, n=6）

<table>
<thead>
<tr>
<th></th>
<th>结扎后给药前</th>
<th></th>
<th>药后时间 (min)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>120</td>
<td>240</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>假手术组</td>
<td>12.12±</td>
<td>11.92±</td>
<td>16.21±</td>
<td>19.45±</td>
<td>18.63±</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.94</td>
<td>4.64</td>
<td>6.12</td>
<td>6.46</td>
<td>8.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>模型组</td>
<td>17.90±</td>
<td>63.35±</td>
<td>73.75±</td>
<td>47.23±</td>
<td>49.53±</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.68</td>
<td>14.14**</td>
<td>17.56**</td>
<td>32.31**</td>
<td>34.42*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>地尔硫卓 5mg/kg 组</td>
<td>20.28±</td>
<td>41.76±</td>
<td>34.65±</td>
<td>32.82±</td>
<td>32.86±</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.58</td>
<td>0.77***</td>
<td>11.86***</td>
<td>13.90*</td>
<td>14.25*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>芍药苷 5mg/kg 组</td>
<td>18.02±</td>
<td>54.58±</td>
<td>50.17±</td>
<td>38.87±</td>
<td>41.35±</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.40</td>
<td>10.93</td>
<td>7.37**</td>
<td>15.66*</td>
<td>14.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>芍药苷 15mg/kg 组</td>
<td>19.37±</td>
<td>52.34±</td>
<td>54.90±</td>
<td>35.65±</td>
<td>39.14±</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.38</td>
<td>26.43</td>
<td>14.91*</td>
<td>11.54*</td>
<td>21.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>芍药苷 45mg/kg 组</td>
<td>18.83±</td>
<td>43.75±</td>
<td>36.75±</td>
<td>31.33±</td>
<td>24.73±</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.84</td>
<td>9.75*</td>
<td>7.80***</td>
<td>13.33*</td>
<td>11.70*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物 5mg/kg 组</td>
<td>15.02±</td>
<td>44.58±</td>
<td>50.17±</td>
<td>48.87±</td>
<td>41.35±</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.40</td>
<td>10.93</td>
<td>7.37**</td>
<td>15.66</td>
<td>14.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物 15mg/kg 组</td>
<td>20.37±</td>
<td>50.34±</td>
<td>54.90±</td>
<td>35.65±</td>
<td>40.14±</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.38</td>
<td>26.43</td>
<td>14.91*</td>
<td>12.54*</td>
<td>21.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物 45mg/kg 组</td>
<td>15.83±</td>
<td>35.75±</td>
<td>30.75±</td>
<td>29.33±</td>
<td>26.73±</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.84</td>
<td>9.75*</td>
<td>7.80***</td>
<td>10.33*</td>
<td>11.70*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：与假手术组比较，*P<0.05 或**P<0.01；与模型组比较，*P<0.05 或**P<0.01 或***P<0.001

与假手术组比较，模型组在给药后各时间点 ST 明显升高 (P<0.01
或 P<0.001); 地尔硫卓组在 20～360min 可明显降低 ST 升高的毫伏数，
与模型组比较差异具有显著性 (P<0.05 或 P<0.001); 牡丹叶总苷提取物和
芍药苷各剂量组均不同程度的降低 ST 升高的毫伏数。牡丹叶总苷提取
物小剂量组在 120min，牡丹叶总苷提取物中剂量组，芍药苷小，中剂量组在 120～240min，与模型组比较差异具有显著性（p<0.05 或 p<0.01），牡丹叶总苷提取物大剂量组和芍药苷大剂量组作用显著，作用时间也较长，在 20～360min，与模型组比较差异具有显著性（p<0.05 或 p<0.01）。

表 5 牡丹叶总苷提取物和芍药苷对实验性心肌梗死犬 N—ST（个）的影响

<table>
<thead>
<tr>
<th>组别</th>
<th>药后时间（min）</th>
<th>20</th>
<th>120</th>
<th>240</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>模型组</td>
<td>8.50±1.22</td>
<td>9.00±0.89</td>
<td>8.33±3.14</td>
<td>7.00±4.05</td>
<td></td>
</tr>
<tr>
<td>地尔硫卓 5mg/kg 组</td>
<td>4.50±3.78***</td>
<td>3.17±2.02***</td>
<td>2.17±2.02***</td>
<td>3.33±2.80*</td>
<td></td>
</tr>
<tr>
<td>芍药苷 5mg/kg 组</td>
<td>8.17±2.79</td>
<td>5.67±3.78*</td>
<td>7.17±1.26</td>
<td>8.33±2.63</td>
<td></td>
</tr>
<tr>
<td>芍药苷 15mg/kg 组</td>
<td>5.33±4.13*</td>
<td>5.17±2.49*</td>
<td>5.97±3.5*</td>
<td>5.67±2.80*</td>
<td></td>
</tr>
<tr>
<td>芍药苷 45mg/kg 组</td>
<td>4.33±3.67**</td>
<td>5.33±2.59**</td>
<td>4.00±3.00*</td>
<td>4.17±1.76*</td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物 5mg/kg 组</td>
<td>7.17±2.79</td>
<td>5.67±3.78*</td>
<td>7.17±1.26</td>
<td>8.33±2.63</td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物 15mg/kg 组</td>
<td>6.33±4.13</td>
<td>5.17±2.49*</td>
<td>6.17±3.56*</td>
<td>7.67±4.80</td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物 45mg/kg 组</td>
<td>4.83±3.67**</td>
<td>5.93±2.59*</td>
<td>5.00±3.00*</td>
<td>4.97±1.76*</td>
<td></td>
</tr>
</tbody>
</table>

注：与模型组比较，*P<0.05 或 **P<0.01 或 ***P<0.001

与模型组比较，地尔硫卓组能够明显降低 N—ST 的点数，在 20～360min 差异具有显著性（p<0.05 或 p<0.01）。牡丹叶总苷提取物和芍药苷各剂量组可明显降低 N—ST 的点数，牡丹叶总苷提取物和芍药苷小剂量组在120min，牡丹叶总苷提取物中剂量组在 120～240min，牡丹叶总苷提取物大剂量组和芍药苷中，大剂量组在 20～360min，与模型组比较差异具有显著性（p<0.05 或 p<0.01）。

表 6 牡丹叶总苷提取物和芍药苷对实验性心肌梗死犬心肌梗死面积的影响
<table>
<thead>
<tr>
<th>组别</th>
<th>梗死区重/心室重 (%)</th>
<th>梗死区/总面积 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>模型组</td>
<td>13.82±4.26</td>
<td>14.08±3.98</td>
</tr>
<tr>
<td>地尔硫卓 5mg/kg 组</td>
<td>3.66±7.62*</td>
<td>3.63±1.73**</td>
</tr>
<tr>
<td>苓药苷 5mg/kg 组</td>
<td>4.74±2.76*</td>
<td>6.31±3.72*</td>
</tr>
<tr>
<td>苓药苷 15mg/kg 组</td>
<td>3.78±2.54**</td>
<td>4.51±2.41**</td>
</tr>
<tr>
<td>苓药苷 45mg/kg 组</td>
<td>2.72±2.31**</td>
<td>3.28±1.84**</td>
</tr>
<tr>
<td>牡丹叶总苷提取物 5mg/kg 组</td>
<td>5.89±2.89*</td>
<td>5.29±2.67*</td>
</tr>
<tr>
<td>牡丹叶总苷提取物 15mg/kg 组</td>
<td>3.74±2.09**</td>
<td>4.06±2.39**</td>
</tr>
<tr>
<td>牡丹叶总苷提取物 45mg/kg 组</td>
<td>2.09±2.44**</td>
<td>2.91±1.26**</td>
</tr>
</tbody>
</table>

注：与模型组比较，*P<0.05 或**P<0.01

与模型组比较，牡丹叶总苷提取物和芍药苷各剂量组、地尔硫卓组均明显缩小心肌梗死的面积，差异具有显著性（P<0.05 或 P<0.01 或 P<0.001），牡丹叶总苷提取物小，中，大剂量组作用明显，与芍药苷各组作用相当。

表7 牡丹叶总苷提取物和芍药苷对实验性心肌梗死犬心肌酶（IU/L）的影响（ mean ± s，n=6 ）

<table>
<thead>
<tr>
<th>组别</th>
<th>AST</th>
<th>LDH</th>
<th>CK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>药前</td>
<td>药后</td>
<td>药前</td>
</tr>
<tr>
<td>假手术组</td>
<td>32.5±</td>
<td>41.5±</td>
<td>50.0±</td>
</tr>
<tr>
<td>模型组</td>
<td>60.8</td>
<td>56.4</td>
<td>361.0</td>
</tr>
<tr>
<td>地尔硫卓 5mg/kg 组</td>
<td>32.8±</td>
<td>147.7±</td>
<td>35.7±</td>
</tr>
<tr>
<td>苓药苷 5mg/kg 组</td>
<td>14.8</td>
<td>72.2*</td>
<td>11.7</td>
</tr>
<tr>
<td>芍药苷 5mg/kg 组</td>
<td>28.0±</td>
<td>105.7±</td>
<td>99.3±</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>34.1</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>18.8±</td>
<td>109.7±</td>
<td>61.3±</td>
</tr>
<tr>
<td></td>
<td>10.3</td>
<td>56.8</td>
<td>25.2</td>
</tr>
</tbody>
</table>
与假手术组比较，模型组在给药后 AST、CK 显著升高，差异具有显著性（P<0.05）；与模型组比较，地尔硫卓组在给药后 CK 显著降低（P<0.05），但对 AST 及 LDH 无明显影响。牡丹叶总苷提取物与芍药苷各剂量组有降低 CK 的作用，差异均具有显著性（P<0.05）。

通过以上两个实验证实：牡丹叶总苷提取物具有明显的抗心肌缺血及梗死的药理学作用，同时通过试验对比了牡丹叶总苷提取物中芍药苷单体和牡丹叶总苷提取物的药效，结果证实两者具有相同的抗心肌缺血活性，考虑到牡丹叶是新的药用部位，牡丹叶总苷提取物的提取成本较单体成分芍药苷提取成本低，且两者同剂量下抗心肌缺血的药理作用基本相当，故认为将牡丹叶充分利用，提取其中总苷成分，将其制备成抗心肌缺血新药，具有很强的实用价值。

试验例 3 牡丹叶总苷提取物对四氧嘧啶诱发高血糖小鼠的降糖作用

选取 SPF 级 ICR 小鼠，尾静脉注射四氧嘧啶生理盐水溶液（65mg/kg），72 小时后测空腹血糖，选择血糖值大于 11.1mmol/L 的小鼠作为糖尿病动物模型。根据血糖值随机分为模型对照组、降糖灵组（150mg/kg）、牡丹叶
总苷提取物小剂量组（50mg/kg）、中剂量组（100mg/kg）、大剂量组（200mg/kg）、芍药苷小剂量组（50mg/kg）、芍药苷中剂量组（100mg/kg）、芍药苷大剂量组（200mg/kg），另设空白对照组（尾静脉注射生理盐水0.1ml/10g），每组12只。各给药组均按0.2ml/10g体积灌胃给药，空白对照组和模型对照组给予等体积生理盐水，每天1次，共给药14天。在给药第7天末次给药后1小时，眶后取血测小鼠空腹血糖；第14天末次给药后1小时，摘眼球取血，测小鼠空腹血糖。所得数据以$\bar{x} \pm s$表示，方差齐性运用F检验，组间比较运用t检验。结果见表8，表9。

表8 牡丹叶总苷提取物和芍药苷对四氧嘧啶诱发的糖尿病小鼠药后7天、14天血糖值的影响（$\bar{x} \pm s$, $n=12$）

<table>
<thead>
<tr>
<th>组别</th>
<th>剂量 (mg/kg)</th>
<th>给药0天</th>
<th>给药7天</th>
<th>给药14天</th>
<th>7天</th>
<th>14天</th>
<th>降糖率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>空白组</td>
<td>-</td>
<td>9.14±</td>
<td>10.01±</td>
<td>9.20±</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1.19</td>
<td>2.08</td>
<td>1.51</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>模型组</td>
<td>-</td>
<td>29.65±</td>
<td>28.19±</td>
<td>26.70±</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>2.27***</td>
<td>5.09***</td>
<td>5.81***</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>降糖灵组</td>
<td>150</td>
<td>29.71±</td>
<td>22.28±</td>
<td>15.38±</td>
<td>22.08</td>
<td>42.41</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>2.58</td>
<td>4.62**</td>
<td>4.62***</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物小剂量组</td>
<td>50</td>
<td>29.82±</td>
<td>25.59±</td>
<td>21.63±</td>
<td>9.23</td>
<td>18.99</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>2.17</td>
<td>4.82</td>
<td>3.37*</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物中剂量组</td>
<td>100</td>
<td>29.62±</td>
<td>24.06±</td>
<td>19.79±</td>
<td>14.68</td>
<td>25.90</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>2.28</td>
<td>3.58*</td>
<td>3.28**</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>牡丹叶总苷提取物大剂量组</td>
<td>200</td>
<td>29.79±</td>
<td>21.97±</td>
<td>16.43±</td>
<td>20.99</td>
<td>38.46</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>2.51</td>
<td>3.91**</td>
<td>4.45***</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>芍药苷小剂量组</td>
<td>50</td>
<td>29.55±</td>
<td>26.27±</td>
<td>22.92±</td>
<td>6.83</td>
<td>14.17</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>2.41</td>
<td>4.53</td>
<td>4.89</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>芍药苷中剂量组</td>
<td>100</td>
<td>29.68±</td>
<td>25.09±</td>
<td>21.40±</td>
<td>11.02</td>
<td>19.86</td>
<td></td>
</tr>
</tbody>
</table>
与模型组比较，*P<0.05，**P<0.01，***P<0.001；与空白对照组比较，****P<0.001。

由上表可见，给药前模型组与空白组比较，血糖值明显升高（P<0.001）；各给药组与模型组比较，血糖值均无明显变化（P>0.05）。给药第7天，模型组与空白组比较，血糖值明显升高，经统计学处理差异有显著性（P<0.001）；牡丹叶总苷提取物小剂量组、芍药苷小剂量组、芍药苷中剂量组与模型组比较，血糖值均有降低趋势，但无统计学意义（P>0.05）；牡丹叶总苷提取物中剂量组、牡丹叶总苷提取物大剂量组、芍药苷大剂量组与模型组比较，血糖值明显降低（P<0.05~0.01），降糖率为分别14.68%、20.99%和20.99%；降糖灵组与模型组比较，血糖值明显降低（P<0.01）。

给药第14天，模型组与空白组比较，血糖值明显升高（P<0.001）；牡丹叶总苷提取物小、中、大剂量组与模型组比较，血糖值明显降低（P<0.05~0.001），降糖率分别为18.99%、25.90%和38.46%；芍药苷小剂量组有降低趋势，芍药苷中剂量组及大剂量组血糖值明显降低（P<0.05~0.01）；降糖灵组与模型组比较，血糖值明显降低（P<0.001）。

表9 牡丹叶总苷提取物对四氧嘧啶诱发的糖尿病小鼠药后7天、14天体重的影响（x±s，n=12）

<table>
<thead>
<tr>
<th>组别</th>
<th>剂量 (mg/kg)</th>
<th>给药0天</th>
<th>给药7天</th>
<th>给药14天</th>
</tr>
</thead>
<tbody>
<tr>
<td>空白组</td>
<td>-</td>
<td>24.21±1.06</td>
<td>30.05±3.66</td>
<td>32.77±4.72</td>
</tr>
<tr>
<td>模型组</td>
<td>-</td>
<td>22.23±2.10**</td>
<td>26.98±2.59*</td>
<td>28.91±2.34*</td>
</tr>
<tr>
<td>降糖灵组</td>
<td>150</td>
<td>22.33±1.85</td>
<td>28.93±1.73</td>
<td>30.23±3.29</td>
</tr>
<tr>
<td>牡丹叶总苷提取物小剂量组</td>
<td>50</td>
<td>21.95±1.79</td>
<td>27.70±2.06</td>
<td>29.84±2.88</td>
</tr>
</tbody>
</table>
牡丹叶总苷提取物中剂量组
牡丹叶总苷提取物大剂量组
芍药苷
小剂量组
芍药苷
中剂量组
芍药苷
大剂量组

与空白对照组比较，\(* P<0.05\), \(* * P<0.01\).

由上表可见，给药前模型组与空白组比较，体重明显下降（\(P<0.01 \)）；各给药组与模型对照组比较体重均无明显变化（\(P>0.05 \)）。药后 7 天、14天，模型组与空白组比较，体重明显下降（\(P<0.05 \)）；各给药组与模型组比较，体重均无明显差异 (\(P>0.05 \))。

牡丹是传统的药用植物，有清热凉血、活血散瘀之功，多以根皮入药。本发明从牡丹叶中提取的其有效部位——牡丹叶总苷，通过药效试验结果显示其具有明显降血糖活性，效果优于牡丹叶的主要成分芍药苷。

具体实施方式

以下通过实施例详细说明本发明技术方案的实施，但不应以此限定本发明的实施范围。

实施例 1：牡丹叶总苷提取物的优选制备方法

取牡丹叶药材粉末，用 14 倍药材量 50% 乙醇加热回流提取 3 次，每次 1 小时。过滤，将乙醇提取液 60℃减压回收乙醇，将提取液浓缩至相对密度 1.20（25℃测定）的浸膏，加 5 倍于药材重量的水（60℃）使浸膏溶解，离心，上清液通过 ZTC-1 树脂柱，以 4 倍于树脂体积（V/W）的水及 5
倍树脂体积（V/W）的 5% 乙醇，洗去柱内未被吸附的杂质，然后以 6 倍于树脂体积（V/W）的 40% 乙醇解吸。收集解吸液，减压浓缩，真空干燥，得牡丹叶总苷提取物，其中牡丹叶总苷的含量 75%，芍药苷的含量为 69%。

实施例 2：牡丹叶总苷提取物的优选制备方法

取牡丹叶药材粉末，用 8 倍药材量 95% 乙醇加热回流提取 2 次，每次 1 小时。过滤，将乙醇提取液 60℃减压回收乙醇，将提取液浓缩至相对密度 1.20（25℃ 测定）的浸膏，加 10 倍于药材重量的水（60℃）使浸膏溶解，离心，上清液通过 D101 树脂柱，以 6 倍于树脂体积（V/W）的水及 2.5 倍树脂体积（V/W）的 10% 乙醇，洗去柱内未被吸附的杂质，然后以 10 倍于树脂体积（V/W）的 20% 乙醇解吸。收集解吸液，减压浓缩，真空干燥，得牡丹叶总苷提取物，其中牡丹叶总苷的含量为 90%，芍药苷的含量为 85%。

实施例 3：牡丹叶总苷提取物的优选制备方法

取牡丹叶药材粉末，用 10 倍药材量 80% 乙醇，渗漉提取。将乙醇提取液 60℃减压回收乙醇，将提取液浓缩至相对密度 1.20（25℃ 测定）的浸膏，加 8 倍于药材重量的水（60℃）使浸膏溶解，离心，上清液通过 DM301 树脂柱，以 10 倍于树脂体积（V/W）的水及 2 倍树脂体积（V/W）的 20% 乙醇，洗去柱内未被吸附的杂质，然后以 4 倍于树脂体积（V/W）的 60% 乙醇解吸。收集解吸液，减压浓缩，真空干燥，得牡丹叶总苷提取物，其中牡丹叶总苷的含量为 85%，芍药苷的含量为 79%。

实施例 4：牡丹叶总苷提取物的优选制备方法

取牡丹叶药材粉末，用 16 倍药材量热水，渗漉提取。将提取液浓缩至
10倍药材量，离心，上清液通过 AB-8 树脂柱，以 8 倍于树脂体积 (V/W) 的水及 2.5 倍树脂体积 (V/W) 的 10% 乙醇，洗去柱内未被吸附的杂质，然后以 8 倍于树脂体积 (V/W) 的 30% 乙醇洗吸。收集解吸液，减压浓缩，真空干燥，得牡丹叶总苷提取物，其中牡丹叶总苷的含量为 70%，芍药苷的含量为 63%。

实施例 5：牡丹叶总苷提取物的优选剂型胶囊剂

取实施例 4 方法制备的牡丹叶总苷提取物 100g，60℃干燥，研磨粉碎，过 80 目筛，加过 80 目筛的药用淀粉 98g 及硬脂酸镁 2g，混合均匀，用 85% 乙醇适量制成湿材，过 30 目筛制颗粒，烘干，使水分小于 5%，过 40 目晒整粒，分装于 3 号胶囊中。每粒胶囊含牡丹叶总苷提取物 0.1g，用铝塑复合包装，即得。

实施例 6：牡丹叶总苷提取物的优选剂型片剂

取实施例 4 方法制备的牡丹叶总苷提取物 30g，加入淀粉 30g，微晶纤维素 10g，以 10% 淀粉浆适量用 12 目筛制粒，在 55℃以下干燥，干粒加入硬脂酸镁，整粒，混匀，压片，即得。

实施例 7：牡丹叶总苷提取物的优选剂型冻干粉针

取实施例 2 方法制备的牡丹叶总苷提取物 50g，加适量注射用水，搅拌溶解后，超滤，得到无热源的澄清液，加注射用水至 1000ml，分装为 1000 支，按冻干粉针工艺冻干，制成冻干粉针。