Office de la Propriete Canadian CA 2076466 C 2002/01/15

Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 076 466
Un organisme An agency of

d'Industrie Canada Industry Canada 12 BREVET CANADIEN

CANADIAN PATENT
13) C

(22) Date de depot/Filing Date: 1992/08/20 (51) CL.Int.>/Int.CI.° GOBF 13/38, GO6F 3/00
(41) Mise a la disp. pub./Open to Public Insp.: 1993/04/22 (72) Inventeurs/Inventors:

T . Mills, William A., US;
(45) Date de delivrance/lssue Date: 2002/01/15 Granados, Tesea, US

(30) Priorite/Priority: 1991/10/21 (7/79,703) US Tannenbaum, Alan R., US:

Gray, Michael N., US;
Zetts, John M., US

(73) Proprietaire/Owner:
INTERNATIONAL BUSINESS MACHINE
CORPORATION, US

(74) Agent: BARRETT, B.P.

(54) Titre : METHODE UTILISANT UN CANAL A LARGE BANDE POUR METTRE EN MEMOIRE-TAMPON LES
DONNEES PROVENANT D'UN DISPOSITIF D'ENTREE
(54) Title: METHOD FOR BUFFERING HIGH BANDWIDTH DATA FROM AN INPUT DEVICE

ovgipémv X1 X2 X3 X4 y.E,[{)Js —CTRL60 ~CTAL62
\- j ! t _t (- I——E 62 _ -— o6
CAPACITANCE | AD

y—-E-ETE I
Yo . X ¢——> MEASUREMT f—mCONVI—n |
Y2 WIRE MODE (FINGER TOUCH} 130 ~
e - SE%(CT_ Mux. | g, L
i Yy B i " | 5p 40 KHz DISC
| = DRIVER

GATEl | RADIATIVE
PICKUP MEASUREM'T |
= . 46

—

f PERSONAL COMPUTER | ' 28
68 '
—_— ez
' PC t .
INTERFACE b Jr_’d ROM 76
§§ .
DISK 78 |
70 | __
_ — . 4—»-{ KEYBOARD 55,1
y Y Y DISPLAY 85 |
ROM {{ RAM {| CONTROL 10 —
34 4| 32 || PROCESSCR|| CONTROLLER OPERATING SYSTEM 8
N/ 35/ APPLICATION |
TOUCH PANEL ADAPTER CARD 37 60 | PROGRAM 82

(57) Abrége/Abstract:
An efficient buffering mechanism for access and retrieval of stored high bandwidth data and sufficient storage Is disclosed. In a
typical operating system, a channel containing only a limited buffer between the input devices and the running applications Is

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2076466 C 2002/01/15

(11)(21) 2 076 466

(13)

(57) Abréege(suite)/Abstract(continued):
provided by the operating system. This invention provides a parallel channel of a higher bandwidth with a far superior bufferi
capabillity that complements that of the operating system. When an input event from an input device with a high bandwidtr

C

ng
1S

received by the system, messages are sent to both the operating system channel and the high bandwidth channel iIr

d

compatible format for each channel. The message sent to the operating system channel generally contains only limited data
which may have to be translated from the actual input data to be acceptable to the operating system. The message sent to the
high bandwidth channel contains the full spectrum of data generated by the input device, The buffer In the operating system

channel also has the property of discarding data If the application does not retrieve them quickly enough during periods of hi
CPU utillization. The buffer in the high bandwidth channel keeps all data for up to 1000 Iinput events, or whatever Is deem

gh
ed

sufficient for the computer system, regardless of CPU usage. In response to the interception of a translated event in the
operating system queue for one of the applications in the system, the method of the present invention will check to see If there

are any events In the high bandwidth buffer. If there are, the system dequeues all the events to send them to the intend
application. Various flags are set If task preemption Is detected by the system upon examination of the events In the hi

ed
gh

bandwidth queue. Further, certain events may be sent asynchronously to the high bandwidth channel alone from various input

devices; the system Is prompted by a false "mouse” message In the operating system queue to cause the system to exami
the high bandwidth buffer for the true input event.

ne

BT9-~-91-050

Abstract

An efficient buffering mechanism for access and
retrieval of stored high bandwidth data and sufficient
storage 1igs disgsclosed. In a typical operating system, a
channel containing only a limited buffer between the input
devices and the running applications is provided by the
operating system. This invention provides a parallel
channel of a higher bandwidth with a far superior buffering
capability that complements that of the operating system.
When an input event from an input device with a high
bandwidth is received by the system, messages are sent to
both the operating system channel and the high bandwidth
channel in a compatible format for each channel. The message
sent to the operating system channel generally contains only
limited data which may have to be translated from the actual
input data to be acceptable to the operating system. The
message sent to the high bandwidth channel contains the full
spectrum of data generated by the input device. The buffer
in the operating system channel also has the property of
discarding data if the application does not retrieve them
quickly enough during periods of high CPU utilization,' The
buffer in the high bandwidth channel keeps all data for up
to 1000 input events, or whatever is deemed sufficient for
the computer system, regardless of CPU usage.

In response to the .interception of a translated event
in the operating system queue for one of the applications in
the system, the method of the present invention will check
to see if there are any events in the.high bandwidth buffer.
If there are, the system degueues all "t:he events to sen;d
them to the intended application. Various flags are set 1if
task preemption 1s detected by the' syvstem upon examination
of the events in the high bandwidth queue. Further, certaln
events may be sent asynchronously to the high bandwidth
channel alone from varidus input de.vices; the system 1is
prompted by a false "mouse" message in the operating system
queue to cause the system to examine the high bandwidth

buffer for the true input event.

BT9-91-050 1 2,@ 1 uug.f)g

METHOD FOR BUFFERING HIGH BANDWIDTH DATA
FROM AN INPUT DEVICE

Field of the Invention

This invention relateg generally to input devices for a
data procesging system. More particularly, it relates to a
method of preserving high bandwidth data from an input
device, particularly a touch screen, to allow multiple tasks

to be performed without loss of data.

Canadian Application 2,007,411-6, filed Jan. 9, 1990, Laid
Open Oct. 28, 1990, and entitled "Advanced User Interface'.

Background of the Invention

The use of a touch input device disposed over the
viewing surface of a computer display to provide a "user
friendly"” means for the control of a data processing system
is well known 1in the art. These devices are designed to
allow an unsophisticated user to perform desired tasks on a
computer system without extensive training. Human factor
studies have shown that an input device which allows the
user to input data directly on the computer display,
generally known in the art as a touch input device, achieves
greatest immediacy and accuracy between man and machine.

In the current graphical user interfaces developed to
aid man-machine interaction, there are many items, such as
menu selections, icons or windows, which a user can most
easily select by a finger. In other advanced software
applications which perform freehand drawing, gesture
recognition or handwriting character, a stylus 1s more
effective because of its greater precision. Thus, it would
be convenient to utilize a touch input system wh.ich allows
both stylus and finger touch detection. One such system is
described in commonly assigned U.S. Patent No. 4,686,332, to
F,. Greanlias, et al., entitled "Ccmbined Finger Touch and
Stylus Detection System For Use On The Viewing Surface Of A
Visual Display Device", filed June 26, 1986.

BT9-91-050 2 . :
2OTEAHH

’

Computer operating system software commonly tTreats
pointing devices gsuch as the mouse as locator devices
instead of data devices. The asgsumption 1s that, as a
locator device, the important events are the singular mouse
button c¢licks. For most applications, +the points of
greatesgst significance are the beginning and end locations of
the mouse movement where button down/button up events
typically occur and the present posgition of the mouse
pointer. The actual path of the mouse pointer 1is often
irrelevant. This has resulted in the limited buffering of
mouse generated events by the operating system, specifically
mouse move events that report the movement of the mouse.
The motion or path traversed by the mouse 1is reporﬁed to
applications as mouse move events which are made available
as they are generated (typically 40 moves per second).
However, 1if the application 1is busy executing tasks of
higher priority, the operating system coalesces the mouse
moves, preserving only the last move reported. When
software applications are unable to retrieve mouse moves as
fast as they are generated i.e., during periods of high CPU
utilization, they are discarded by the operating system.
This results in the loss of data. However, in the past, loss
of data did not present a problem for most applications. The
application herein has taught an operatihg system
enhancement which allows existing application programs to
understand new input dévicés. Specifically, such sy.é.tem
allows input from a touch sensor such as that described in
the 4,686,332 patent to be mapped onto mouse or Kkeyboard
messages which are understood by the applications and
operating system. However, a number of serious limitations
have been recently'discovered by the inventors herein with
the operatihg systems onto.whiCh the above-mentioned system
is grafted. _ o '

First, in the Advanced User Interface (AUI) touch
screen devices that support finger touch and/or stylus input
have tWo modes: they may faithfully emulate a mouse device,
including mouse button up, button down commands or they may
be used to perform gesture or handwriting input. Gesture
input is mapped by the system to commandé understandable by

the computer modules running on the system. The loss of

BT9-91-050 3

mouse move events due to high CPU utilization seriously
hinders the ability to use stylus or finger input for
handwriting, gestures, or computer graphics. Further, the
loss of data hinders the ability of the system to discern
between the two types of input.

A secondary limitation of emulating a mouse with a
touch screen is that the operating system does not provide
the means for passing additional touch screen generated data
to the application. The system mechanism for dJenerating
pointing device events 1is based on the mouse and therefore
the data reported is limited to a pair of X/Y coordinates at
display resolution and a timestamp with coarse resolution.
Current touch screen disgplays and devices are capable of
reporting numerous events and highly specific sensor data.

In addition, the point generation rate of a touch
screen may reach 200 points per second, 2 to 5 times the
rate of a mouse with a plethora data reported with every
point. Thus, with a touch screen, the problem of "mouse
move'" coalescing 1is exacerbated as the application must
retrieve points 2 to 5 times faster to avoid discording
pointgs. Future software applications specifically designed
to utilize these sensor produced coordinates and concomitant
stroke data may require processing of these data both
real-time as they are generated and at 1liftoff wupon
completion of the stroke. Yet with current operating
systems, this information is unavailable as these systems
are designed to accept only kevboard or mouse data.

Another limitation using mouse event reporting for a
touch screen inherent with most operating systems is that a
touch screen device emﬁlating. a mouse must report
coordinates in display resolution and coordinate values must
change by at least display pel in either axis to be accepted
as a valid mouse move. High resolution sensors may detect
many moves within the distance of one display pel. Thus,

the resolution of the pointing information ig lost.

SUMMARY OF THE INVENTION

‘ O A
BT9-91-050 4 NI ACS

It is an object of the present invention to provide
sufficient storage to buffer up to a 1000 input events of
any type or origin without loss of data.

It ig an object of the present invention to permit
multiple, concurrently active input devices, to write input

events into a data processing systemn.

It is an object of the present invention to provide
device arbitration when multiple input devices are
concurrently active.

It is an object of the present invention to make all
input events available to software applications and deliver
them ensuring the chronological order of all input events,
including mouse and keyboard, is preserved.

It is an object of the present invention to make all
pertinent data associated with each input event available to
applications as each event is handled.

It is an object of the present invention to make all
pertinent data associated with each point in each stroke on
a touch sensor input device available to applications at
liftoff. |

It ig an object of the present invention to implemént a
"stroke-ahead’ capability in addition to currently provided
mouse-ahead and type-ahead capabilities.

It is an object of the present invention to buffer
points of a touch stroke during input such that the gesture
input does not time out even when pre-emption occurs for an
extended period of time. ' |

It is an object of the present invention to enable
softw'are applications to dequeue individual input events
'sorting' by input device type, event typ'e, or timeétamp
randge. .. '

It is an object of the present invention to enable
software applications to halt execution while awaiting a
specific input event.

These and other objects and features of the invention
are acéomplished by an Extended Information Queue, a method
of enqueueing data to this gqueue, and a method of dequeueing
data from this gqueue. '

It provides an efficient buffering mechanism for

access and retrieval of stored high bandwidth data and

BT9-91-050 5 2OHTACO

FARRY

‘-

sufficient storage to buffer a stroke on a touch screen many
seconds 1in duration. In a typical operating system, a
channel containing a limited buffer between the input
devices and the running applications 1is provided by the
operating systemn. This invention provides a parallel
channel of a higher bandwidth with a far superior buffering
capability that complements that of the operating system,
the EIQ.

When an event such as a stylus touchdown on a touch
sensor is received by the system, messages are sent to both
the operating system channel and the high bandwidth channel
in compatible formats. The message Bent to the operating
system channel contains only limited data which 1is
translated into +the format produced by the mouse. The
message sent to the high bandwidth channel contains the full
spectrum of data generated by the input device. The buffer
in the operating system channel will discard "mouse moves"
if the application does not retrieve them quickly enough
during periods of high CPU utilization. The EIQ buffer in
the high bandwidth channel keeps all data for up to 1000
input events, or whatever 1is deemed sufficient for the
computer system, regardless of CPU usage.

In response to the interception of a "mouse" event to
one of the applications in the system, the method of the
present invention will check to see if there are any events
in the EIQ buffer. If there are, the system dequeues all the
events to send them to the intended application. Various
flags are set if task preemption is detected. by the system
upon examination of ‘the events in the EIQ queue.' For
example, as the preferred embodiment uses a dela'y timer to
distinguish between touch input intended to be a gesture and
that intended to be mouse emulation, gesture abort and
ignore timeout flags are set to assure that task preemption
does not affect the intended result. Further, certain
events may be sent asynchronously to the EIQ buffer alone
from various input devices. The present invention provides
a separate thread to generate a false "mouse" message to the
operating system gqueue to cause the system to examine the
EIQ buffer for the true input event.

BT9-91-050 ¢

Brief Description of the Drawings

FIG. 1 shows the front view of a overlay unit used for
the detection of finger touch and stylus position. The unit

ig disposed over a flat panel display to form what is known
as a "touch workpad”.

FIG. 2 is an architectural diagram of the combined
finger touch and stylus detection.

FIG. 3 depicts a plurality application program running
in a data processing system equipped with an operating
system enhancement according to the present invention.

FIG. 4 is a flow diagram which illustrates a preferred
embodiment of operating data processing system according to
the pregent invention.

FIG. 5 ig a flow diagram which illustrates the Extended
Information Queue subroutine.

FIG. 6A depicts a flow diagram for a delay timer
routine used to emulate mouse command input from a touch

Sensor.

FIG. 6B is a flow diagram for a gesture recognition
abort routine.

FIG. 7 is a flow diagram for a gesture recognition
routine.

FIG. 8 depicts a flow diagram for delay timer
processing.

FIG. 9 is a represgentation of the data blocks in the
operation system channel:queue and the EIQ buffer.

FIG. 10 is a flow diagram for touch sensor button event
processing.

Detailed Description of the Preferred Embodiment

The environment in which a preferred embodiment of the
invention is implemented 1is described with reference to
FiGs. 1 and 2. Referring to FIG. 1, a touch workpad 1is
shown.‘ The workpad comprises a housing 12 havihg a
rectangular recessed window 14 which surrounds the edges of
a rectangular teuch overlay 16. The touch overlay 16 1is
transparent and is disposed on a liquid crystal display

(LCD) 18. The overlay 16 consists of a laminate structure

BT9-91-050 7
Z0TEAGE

g Lo/

including several plastic sgubstrate layers laminated
together by means of adhesive layers. The overlay 16 also
includes a first plurality of transparent conductors 16A
disposed in the vertical direction and a second plurality of
transparent conductors 16B disposed in the horizontal
direction. Several of the conductors in both wvertical and
horizontal directions are positioned beyond the recessed
window 14 to allow more accurate location determination of
the stylus 20 or a finger on or near the overlay 16 at the
edges of the display window 14.

A stylus 20 1is connected to cable 22 to the touch
workpad. The stylus 20 acts as an antenna to pick up the
signals radiated by the overlay 16, and provides much
greater resolution that can be provided by a finger touch.
Also on the bezel of the housing are four button switches
24-27 which can be used to change the mode in which the data
from the workpad 10 is received. Workpad cable 28 is the
connector between the workpad and the computer with which
the user 1is communicating. The workpad cable 28 provides
power to the workpad 10 as well as display signals to
operate the LCD 18 and touch signals to operate the overlay
in both finger touch and stylus modes. In addition, the
cable 28 is also the conduit to the computer of the computer
of the measurement of the signal strength received by the
stylus 20 and the freqguency change due to changes 1n
capacitance due to a finger touch. .

FIG. 2 shows an architectural diagram of the finger
touch and stylus detection system. The system depictéd in
FIG. 2 1s very to that disclosed in the U.S. patent
4,686,332 in FIG. 9 Also, the touch control processor 30,
random access memory 32, read only memory and the I/0
controller 36 are on a touch panel adapter card 37 in a
personal computer while the rest of the touch electronics
are integrated in the touch workpad 10. As discussed 1in
connection with FICG. 1, the touch workpad 10 communicates
with the personal computer and touch panel adapter card 37
via cable 28. The vertical X conductors are connected
through the X bus 38 and the horizontal Y conductors are
connected through the Y bus 40 to the wire selection

multiplexer 42, respectively. The radiative pickup stylus

BT9~91-050 8

20 is connected through the gate 44 to the radiative pickup
measurement device 46. The wire selection multiplexer 42 is
connected through the mode multiplexer 50 to the capacitance
measurement device 52 which is used for capacitance finger
touch detection. The wire selection multiplexer 42 is also
connected through the mode multiplexer 50 to the 40 KHz
ogscilillator driver 54 which is used to drive the X bus 38 and
the Y bus 40 for the stylus detection operation. The mode
multiplexer 50 also has an enabling output to the gate 44 to
selectively connect the output of the stylus 20 to the
radiative pickup measurement device 46, for stylus detection
operations. The output of the capacitance measurement
device 52 is connected through the analog-to-digital
converter 56 to the workpad bus 58. The output of the
radiative pickup measurement device 46 is connected through
the analog-to-digital convertor 48 to the bus 58. A control
input 60 to the wire selection multiplexer 42 is connected
to the bugs 58. The control input 62 is connected to the
mode multiplexer 50 from the bus 58.

The workpad bus 58 is connected via workpad intefface
64 to the cable 28 which connects to PC interface 66 in the
touch panel adapter card 37 in the personal computer. The
PC interface 66 communicates to the main system bus 68 and
to the adapter card bus 70. The 1/0 controller 36 has an
I1/0 bus 72 which connects to the main bus 68 of the Personal
Computer. The I/0 controller 36 is also connected to adapter
card bus 70. The adapter bus 70 also interconnects the
control processor 30 with the read only memory (ROM) 34, and
the random access memory (RAM) 32. The personal computer
includes standard devices such as CPU 74, ROM 76, disk
storage 78, a memory 80 which stores operating system 81
and application programs 82, a standard keyboard 84 and
standard display 86. The standard display 86 is typically a
CRT, and in the preferred embodiment is in addition to the
LLCD 18 in the workpad 10.

The wire selection multiplexer 42 and the mode
multiplexer 50 connect selected patterns of a plurality of
the horizontal and vertical conductors in the overlay 16 to
either the capacitance measurement device 5Z or the 40 KHz

oscillator driver 54, in response to control signals applied

BT9-91-050 9 e EAGS

o
s

over the control inputs 60 and 62 from the bus 58 by the
control processor 30. During finger touch operations, the
capacitance measuring device 52 has its input operations,
the capacitance measuring device 52 has its input coupled
through the mode multiplexer 50 and the wire selection
multiplexer 42 to selected single conductors 1in the
horizontal and vertical conductor array in the overlay 16 in
response to control signals from the control processor 30.
The output of the capacitance measurement device 52 1s
converted to digital values by the A/D converter 56 and 1is
supplied over the bus 58 to the control processor 30. The
control processor 30 executes a sequence of stored program
instructions to detect the horizontal array conductor pailr
and the vertical array conductor pair in the overlay 16
which are being touched by the operator s finger.

The finger touch and stylus sensing modes operate
independently of one another, the detection system cycling
between the two modes until a finger touch or stylus 1is
detected. |

The previous mentioned Advanced User Interface or AUI,
igs an operating system extension which allows new forms of
input to be handled by applications which were not written
to understand that type of input. For example, most
applications to date are written accept only keyboard an
mouse input. A user could use the Advanced User Interface
(AUI) to utilize a touch sensor without modifying any of an
application’s code which was originally written to accept
only mouse and keyboard input. In one preferred embodiment,
AUI is stored in RAM 80 with the operating éyétem 81 and the
application programs 82. '

FIG. 3 depicts several peripheral input devices 130-138
along with the appropriate device specific code modules
141-145. The kevboard 130 is handled by keyboard device
driver 140 and the pointing devices 132 and 134 are handled
by unified pointing device driver 143. The EIQ driver 150
ac'cepts" input message fro'm, the pointing device driver 143
and the device specific code 144, 145 for the wvoice and
image sensors 136, 138. Any driver or device specific code
installed in the operating system may register itself with
the EIQ device driver 150 at which time the device

BT9-91-050 10

capabilities and type of EIQ entry it logs are made Rknown to
the EIQ driver 150. Once a device has registered, 1t may
write device sgpecific entries into the EIQ buffer 160 for
subsequent retrieval by the AUl environmental link layer 180
or applications 190-193 wvia requests made to the EIQ
subsystem 185. The EIQ driver 150, the EIQ buffer 160 and
the EIQ subsgystem 185 correspond to an improved version of
the Alternative Input Subsystem (AIS) in the 344,879
application. Some aspects of the AIS also accomplished by
the pointing device driver 143.

Keyboard and pointing device events are also passed to
the 05/2 operating system 170 for enqueueing onto its input
queue prior to receipt by the intended application. As the
operating system will only accept mouse or keyboard data,
all of the data from the touch sensor 134 is translated to a
"mouse" message by the pointing device driver 143 before
being sent to the operating system input channel. The touch
data is sent to the EIQ channel with its full complement of

data types. Among the data that can be stored in the EIQ
buffer 160 include the following:

X/Y coordinates at display resoiution,

X/Y coordinates at sensor resolution, much higher than
display resolution. .

The ID of the pointing device that generated' the
coordinates (e.g finger, stylus),

High resolution timestamps,

Events from buttons mounted on the display bezel, |

Detection of the stylus entering or leavingx the
proximity zone,

Events from buttons mounted on the stylus,

Tilt, rotation, and attitude of the stylus,

Z—-axis or pressure data,

Acceleration data,

Data stored in a personal stylus, |

Display status such as backlight state and dgrey scale
mappings,

Video status such asgs the current video mode.

As applications 190-193 dequeue "mouse" messages from

the PM input queue, AUI 180 intercepts the messages before

BT9-91-050 11 2T EAE0

the applications 190-193 receive them and requests the EIQ
subsystem 185 to retrieve all EIQ events that correspond
with the current message. This enables the AUI layer 180 to
ocbtain all pointing events reported by the pointing device
which may have been discarded by PM 172 due to the
coalescing of mouse events. As EIQ events are dequeued, the
coordinate and all associated data are moved into the stroke
buffer 188 and the entire stroke is made available to the
applications 190-193 at liftoff or mouse button up time.

The AUI environmental link 180 sublayer is also coupled
to character/gesture recognition subunit 194 which provides
recognition facilities to applications unable tTo process a
particular stroke and interface profiles 196 which map new
input against corresponding commands for which the
applications 190-193, operating system 170 and presentation
manager 172 were originally written.

The EIQ buffer 160 has sufficient gtorage to buffer
1024 events. As entries are written into the EIQ buffer
160, each event is given a unique timestamp. The
granularity of the +timestamp is one millisecond which
enables the buffering of up to 1000 events per second. The
timestamp assigned by the EIQ driver 150 is the same
timestamp given to the PM message passed to the PM input
queue. This is critical since the message dequeued from the
PM input gqueue must be matched up with its corresponding
entry in the EIQ Dbuffer 160. It also preserveS' the
chronological order of all input eveﬁts. _ | |

With multiple input devices 130, 132, 134, 136, 138
connected to the ope'ra'ting system 170, it is possible to
reCeive input events from multiple devices simultaneously.
The EIQ driver 150 acts as an arbitrator and assigns each
pointing' device a priority. When simultaneous entries are
made by 'two or more devices, the EIQ driver 150 marks the
EIQ entries of the lower priority device with a flag that
will alert AUI 180 that the device was arbitrated out and
should not be accepted as valid input.

As the EIQ buffer 160 will include all the 1input
events, both mouse and stylus events can be included if the
user 1is moving both simultaneously. Thus, to avoid

confusion, the preferred embodiment contains the option of

BT9-91~050 12

arbitrating one of the pointing devices out so that pointing
events from the extraneous pointer are not passed with the
events of the valid pointer to the application.

Another limitation of multi-tasking operating systems
is task pre-emption where tasks of higher ©priority
tenmporarily interrupt the currently executing program. Task
pre-emption is especially disruptive to stroke input because
the inking trail is temporarily halted and the user must
continue to write with the stylus without the wvisual
feedback of inking. It also causes inadvertent timeouts to
occur when the user i1is inking a gesture because AUI
maintains a delay timer waiting for the user to either
complete the gesture or stop moving the stylus to
distinguish touch input intended as a mouse command and that
as a gesture. §Since the pre-emption effectively causes AUI
to stop processing points, the delay timer never dgets reset
and a timeout occurs. To the AUI software, it appears as if
the user held the stylus motionless to force a timeout and
enter mouse emulation mode.

In cases of lengthy pre-emption, it is possible to
write several strokes before control returns to the original
program and points are again procesgsed. It is wvital that
all stroke data be preserved across such interruptions and
be presented to the interrupted application in such a way
that the interruption becomes transparent to the
application.

FIG. 4 is the main routine of the AUI subsystem where
all PM messages are intercepted at 206. FIG. 4 also deﬁicts
three preliminary steps where the electrical signals from
the input _devicé ‘are processed by the device specific code
141-145 at 200 1into input messages recognizable to the
pointing device driver 143 which converts all pointing
messages into "mouse" messages as the latter are understood
by 0S/2 170 and PM 172. The "mouse" messages are sent at
204 and.jprocessed. through the operating system 170 and
integréted ~operating environment 172. In one preferred
embodiment, only "mouse” ‘messages are proCessed by the
method of this invention, it assumed that all data which
requires a timestamp to keep it in chronological order 1is

converted into a mouse message to pass through 0S/2 170 and

VI A
BT9-91-050 13 BRI Se

PM 172. All other PM messages, e.dg., Keyboard, are passed
through directly to the application with minimum delay. In
the normal mode of operation, applications dequeue mouse
megsages from the PM input gueue as the events occur. The
AUl environmental link 180 then gets control and dequeues
the same event from the EIQ buffer 160 and stores it in the
gtroke buffer 188. Under ideal conditions, there is a one
to one relationship between PM input queue and EIQ events.
However, 1f an application is slow 1n retrieving messages,
some messages may be discarded which means that there will
be more than one and possibly several EIQ events to dequeue.
Several illustrative examples are discussed below to aid in
understanding.

EXAMPLE 1l: A normal scenario for processing a single
stroke on the touch sensor 134 is illustrated in FIGs. 4-8.
In this example, a user makes a dJgesture such as a right
arrow gesture on the touch sensor 134 by either finger or
stylus which is equated by the computer system either by AUI
or by an application which is "aware" of touch input as a
command to perform some specified action. A mouse button
down messgage 1s 1intercepted at 208. Since initially the
system is not in gesture mode, at 250, it is treated as the
beginning of a new stroke. The PM message timestamp 1s
loaded at 254 and the event is retrieved from the EIQ buffer
256. AUI then enters a gesture mode state 258 and starts
the delay timer 260 to detect the cessation of motion. 1f
the user desires mouse emulation instead of a gesture, the
user will stop motion of the pointing device for 200
milliseconds. Since mouse emulation is delayed while the
system is in gesture 'mode, the mouse button down is not
passed on to the application 262. Asgs the user moves the
pointing device, +the touch moves are reported to the
operating system 170 as a series of PM mouse move messades.

As these move messages are filtered at 210, the
timestamp of the "mouse”" move message at 270, the EIQ
timestémp of the last EIQ event retrieved the associated EIQ
events are retrieved 274. FIG. 5 illustrates the EIQ
processing routine. When mouse moves are dequeuved, they are
retrieved by timestamp range at 300. The beginning

timestamp is the time of the last retrieval plus 1 ms, and

OOV A
BT9-91-050 14 % RTA YA S0

the ending timestamp is the timestamp of the current PM
"mouse" move message. This ensures entries are dequeued
only once and that no entries are gkipped over when
retrieving contiguous entries. Since an entry can originate
from multiple devices, the event is run through filters
304-310 to engure it is a locator event that has not been
arbitrated out. Thus, at 304 a test is made whether the
event is a stylus or bezel button event, at 306 whether the
event is a display event, at 308 whether it 1s a locator
event and at 310 a test is made whether the event 1s a
locator device which hasg been arbitrated out. After the
filters, the entry is tested at 314 to differentiate between
a mouse device and a high bandwidth device such as a finger
touch or stylus. All device data is extracted from the EIQ
entry depending on whether it 1is a mouse at 364 or
finger/stylus at 316. In the case of finger/stylus, the
entry contains the coordinates expressed in sensor
resolution which are immediately passed to the application
at 320 if the application so requestéd at 318. Similarly, an
application may request to receive all pointef movés at
mouse regolution at 322, in which case the display
resolution coordinates are sent at 324.

An application typically requests to receive all points
if there is a need to procéss the pointer moves real-time.
An example of ._this is an application that does its own
inking. For an unaware application, the user may specify to
AUI via an application profile for the unaware application
that is to receive all points real-time. In additio,_nl to
receiving the points real-time, the application is aséured
of receiving all points 1in the stroke. This is the
preferred way an application can recover mouse moves
discarded by PM 172. Otherwise, an application must wait
until 1liftoff or button up time to retrieve the Stroke
buffer 188 which contains all mouse moves. The benefit of
this is a user can designate an éxisting app'licatio:n to
receive all points without having to modify the application
software. | '

In FIG. 5, once the device specific data has been
processed, a test is made to determine if AUI is in mouse

emulation mode at 326. If so, no further processing is done

gyt AL
BT9-91-050 15 ARETAL NS

and the next EIQ event 1is handled. If not, AUI 1is 1in
gesture mode which reguires the stroke buffer 188 to be
updated with the current point at 328. A quick check for
aborting gesture mode at 332, delay timer processing at 336,
and inking of the current point at 340 are performed.

The check for aborting gesture mode is detailed in FIG.
6B. After the timestamp of the last delay timer reset 1is
loaded at 450, the timestamp of the current EIQ entry 1is
subtracted from the current time 452. This result reveals
how far behind in time the system 1is in processing EIQ
events. EIQ events are normally retrieved quasi real-time
so a large difference in time indicateg that the system 1is
behind because it has been busy executing programs of higher
priority while the events were being engueued in the EIQ
buffer 160. In this scenario, pre-emption has not occurred
so the test at 454 fails and the routine returns at 470.

Delay timer processing is depicted in FIG. 8. First, a
test is performed at 600 whether the ignore timeout flag is
set. The coordinates in the current EIQ entry are examined
for movement at 602. If the delay timer needs to be
restarted at 604, it is restarted at 606 and a test is made
to ensure the timer has not already expired at 608. If the
timer was successfully restarted the timestamp of tThe
current entry is stored at 610 as the time of the last timer
restart and the routine exits at ©520. ,

Refefring back to FIG. 5, after iriking the 'current
point at 340, the 1loop at 302 is continued until. all
dequeued..EIQ entries are processed. 'When; the loop is
exited, the timestamp of the last;entry handled is saved at
342 to be used later for the detection of pre-emption. The
EIQ foutine then exits to 276 in FIG. 4 where a test is made
to see if mouse moves were passed to the application in the
EIQ routine. If so, the current PM mouse message 1s not
passed to the application at 278 since it has already
received it. Lastly, a return is made to PM at 242. |

EVentually, a mouse button up message is intercepted at
212 indicating the end of the stroke. Stylus lift-off from
the touch sensor is emulated by a mouse button up message by
the pointing device driver 143. After the timestamp of the
message is loaded at 214 and the timestamp of the last EIQ

BT9-91-050 16
VL BTN $%3

event is retrieved at 216, the call is made to the EIQ
routine at 218 to retrieve the last of the mouse events up
to and including the button up event. Since AUI has
determined that the touch input is a gesture, the stroke 1is
deinked at 222, the delay timer is stopped at 226, and the
application is given the chance to query the gtroke buffer
at 228. "Deinking" the stroke is removing the "ink trail”
displayed by the stylus or finger moved across the touch
sensor to provide wvisual feedback to the user. If the
application does not handle the stroke in the stroke buffer
188, gesture recognition is performed at 238. If the stroke
was recognized as a valid gesture the gesture is mapped to a
user specified action at 236 in the interface profiles 196.
If the stroke was not a recognized gesture, mouse emulation
is performed at 238 by generating a "mouse" button down
megasage at the last location of the stroke "mouse" and
sending it to the application. The current button up
message is then allowed to pass through to the application
at 240. In the case of a wvalid gesture at 236, no mouse
emulation 1is performed and the button wup message 1is
discarded at 278. This completes +the description of a
standard gesture input scenario.

EXAMPLE 2: The next scenario of importance is the user
touching down on the touch sensor 134 with finger or stylus
and holding at a given location to enter mouse emulation
mode. Similar to the first scenario, a mouse button down
event and mouse moves are received and appended to the
stroke buffer 188 and the delay timer is started. However,
the user holds the pointing device motionless which causes
the generation of mouse moves to cease. After 200
milligseconds of no motion, the delay timer expires.
Referring to FIG._6A, the current mouse location is gueried
at 400 and the target applidation is determined at 402 by a
guery to PM 172. A PM mouse button down message is
generated at 404 and posted to the application at 406. ‘When
the application dequeues the posted button down message, it
is intercepted at 208 by AUI which is already in gesture
mode at 250 and the button down handler is called at 2Z252.

Referring to FIG. 7, the posted button down is tested
to ensure it was posted by the timer routine at 500. A

BT9-91-050 17)
i 75060

series of tests for pre-emption are conducted. At 502, a
test whether both the ignore the delay timer timeout and
gesture abort flags are set is performed; at 504, a test
whether the ignore the timeout flag is set is conducted. At
506, a test whether the gesture abort flag is set 1is
concducted. The use of the flags are discussed below in
conjunction with further examples. In this scenario, no
pre-emption occurred so the tests for pre-emption flags at
502, 504, and 506 all fail and execution falls through to
508 where the last EIQ event time is subtracted from the
current time. Since the user held still and there were no
mouse moves, the last EIQ fetch time 1is dJreater than 70
milliseconds. This has the appearance that the application
may have been pre-empted, however the PM input dgqueue 1is
examined 520 for mouse events and none are found. The
absence of PM mouse events is the reason that no EIQ fetches
have occurred recently. If there had been events on the PM
input queue, it would have been assumed that the reason the
gsystem had not yet dequeued them is task pre-emption. Since
no pre-emption occurred, the test at 520 faills and mouse
emulation mode is entered at 512. The stroke 1is deinkéd at
514 and the posted button down message is allowed to pass to
the application.

The next several examples are all based on the'? two
above scenarios in EXAMPLES 1 and 2, with the exceptionéthat
pre-emption occurs which disrupts the normal mbde of
processing. The severity of pre-emption varies from brief,
inconsequential interruptions of tens of milliseconds to
complete system deadlock lasting several seconds. It should
be noted that the test for pre-emption at 510 in FIG. 7 and
at 614 in FIG. 8 is determining that no EIQ events have been
retrieved for 70 milliseconds. The value of 70 ms is used
due to the 32 ms granularity of the O0S5S/2 sys'tem timer.
Since the timer 1s only incremented every 32 ms, testing for
a change of 70 ms ensuresg that at least 64 ms and as muqh as
95 milliseconds have elapsed. In other words, given a point
generation rate of 125 points per second for the stylus,
this equates to 8-12 pointer moves that have buffered in the
EIQ buffer 160, but discarded by PM 172.

BT9-91-050 18

EXAMPLE 3: A user touches down on the touch sensor 134
and moves the stylus across the sensor for several seconds
before 1lifting ofEf. In the middle of the stroke, the
application was pre-empted for 150 milliseconds. What the
user saw was a brief interruption of the ink trail where the
stylus momentarily got ahead of the inking by 2-3 inches
before +the inking again caught up with the tip of the
stylus. A short period of pre-emption such as this 1s
innocuous and has no deleterious effect on AUl or
application processing. The only indication pre-emption
occurred is the interruption of the ink trail. This example
is wvery similar to EXAMPLE 1 except that when the first
"mouse" move after pre-emption is intercepted at 210, there
are 18 touch moves (150 ms/8ms per mouse move = 18) 1in the
EIQ buffer 188. This simply means the main loop of the KEIQ
routine 302 will iterate 18 times adding all the points the
stroke buffer at 328, restarting the delay timer as needed
at 336, and inking the points at 340. The time to process
all the points in this loop at 302 is very short which 1is
evident to the user by the rapid inking of the outstanding
points.

EXAMPLE 4: A user touches down and moves the stylus for
several seconds before lifting off. In the middle of the
stroke, the application was pre-empted for 300 milliseconds.
The user sees a much longer interruption of the ink trail
where the'stylus is ahead of the inking by 4-6 inches before
the inking again caught up with the tip of the stylus. A
long period of pre-emption such as this causes probiems,
since no points were processed'fcr 300 ms, the delay timer
could not be restarted and a timeout occurs. This timeout
would cause AUI to enter mouse emulation. The effect on the
user interface would be a gesture which was terminated in
mid-stroke.

Referring to FIGs. 6A and 4, the "mouse" button down
message generated.by the timer routine at 406 is intercepted
by AUI at 208. AUI is in gesture mode as the gesture was 1in
process before pre-emption occurred, so the test at 250 1is
positive and the message 1is routed to the button down
processor at 252. The button down appears to be normal, and

since no pre-emption flags are set the process drops through

BT9-91-050 19 DO AL

3

the tests at 502, 504 and 506 AUI subtracts the last EIQ
time from the current time at 508. The result is 300 ms,
which causes AUI to examine the PM input gqueue at 520.
Since the user never stopped moving, "mouse" moves are 1in
fact enqueued on the PM input queue, signifying pre-emption
had occurred. The delay timer is restarted at 522 and the
button down message is discarded at 524 which keeps AUI in
gesture input mode.

Returning to the EIQ routine in FIG. 5, the application
then dequeues a "mouse" move from the PM input dqueue at
which time AUI retrieves at 300 the 37 pointer moves (300
ms/8ms per mouse move = 37) buffered in the EIQ buffer 160.
These touch moves are processed very rapidly as 1n the
previous example and the inking again catches up with the
stylus.

EXAMPLE 5: This scenario is the same as that in EXAMPLE
4 with the exception that the pre-emption occurred while AUI
was processing mouse moves. Again, during this interruption
the delay timer expired. For clarity, assume processing was
pre-empted at the top of the EIQ loop at 302 in FIG. 5.
When execution resumes, AUI continues to process the mouse
moves dequeued from the EIQ buffer 160. The processing
continues as normal until the delay timer procesgsing 1S
performed at 336. As shown in FIG. 8, the point is tested
for motion at 602 and the timer is restarted at 604.
However, the delay timer fails to restart because it has
expired and is no longer active at 608. Upon failure, the
time of the last EIQ event is compared to the current fime
to test for pre-emption at 614. The result is 300 ms which
causes'the “ignore timeout” flag to be set at 618. The rest
of the EIQ events are processed and when the delay timer
routine is’' again called, the “ignore timeout”™ flag is set at
600 which causes the routine to exit at 620 without
attempting to reset the delay timer. AUI finally processes
the last EIQ event and passes the message to the application
at 240; At this time, there are two "mouse messages on the
PM input gqueue, a "mouse" move (representing 37 touch moves)
and a posted "mouse"” Dbutton down. Although the "mouse™
moves occurred before the mouse button down, a posted

message has higher priority, so the button down is the first

BT9-91-050 20
2NTEA65

message dequeued by PM 172. The button down is intercepted
at 208 and processed at 252. In the button down routine,
the “ignore timeout” and the “gesture abort”™ flags are both
tested to see if they are both set at 502. Since only the
“ignore timeout’ flag is set, the code falls through and
tegts true on the next test at 504. The flag being set here
means AUI itself was interrupted and the delay timeout was
bogus. The ‘ignore timeout’ flag is reset at 505 and the
delay timer is restarted at 522. The button down message 1s
then discarded at 524 so that AUI remains in gesture mode.

The period of time AUI is wvulnerable to pre-emption as
depicted above seems guite short, however, in practice it
occurs frequently. This is because pre-~emption often occurs
in a series of bursts. During the first burst, several
pointer moves accumulate in the EIQ buffer 160. When they
are dequeued, AUI processing is confined to the main EIQ
loop at 302 in FIG. 5 for an extended period of time
handling each mouse move. It is during this prolongéd EIQ
processing that the second or third burst of pre-emption
often occurs. Each instance of pre-emption causes pointer
moves to build up in the EIQ buffer 160 so it is simply a
matter of time before the two events coincide.

EXAMPLE 6: In this example, a user touches down on the
touch sensor 134 with the stylus, pauses briefly to enter
mouse emulation mode. The user then mnmoves the stylus to
drag a selected dJgraphic object acroSs the display and
finally liftes off having positioned the object. Pre—emption
interrupted the application for 500 milliseconds while the
user was pausing at the graphic object. This creates a
problem. When AUI dequeues all sixty buffered pointer
moves, it takes approximately 60 milliseconds to process
them. In the middle of the sixty pointer moves, the user
was motionless for 30 of them which should have caused the
delay timer to expire. However, since all the pointer moves
were processed in 60 ms, the delay timer did not have a
chance to expire as it normally would have 1if the pointer
moves had been processed over the 500 millisecond period.

So the period of stability is not seen and movement is again

detected which restarts the timer. AU remains in dgesture

mode instead of entering mouse emulation mode as intended by

BT9-91-050 21 DD AC

the user. This problem is further exacerbated by the fact
that during the 500 millisecond pre-emption, the delay timer
expired, o there is also a timer posted "mouse" button down
message in the PM input gqueue which must be handled.

When control returns, the first PM message dequeued 18
the posted "mouse" button down. As outlined in EXAMPLE 4,
the pre-emption is detected and the timer is restarted and
the button down message ig discarded. In FIG. 4, the PM
"mouse" move message is processed and intercepted by AUI at
210. In the EIQ main loop at 302 in FIG. 5, sixty pointer
moves are retrieved from the EIQ buffer 160 and a call 1is
made to check for a gesture abort flag at 330 for each
entry. The timestamp of the last wvalid timer restart (Box
610 in FIG. 8) is loaded at 450 and subtracted from the
timestamp of the current EIQ entry at 452. The result is
compared against the delay timer value 454 which 1is 200
‘milliseconds. The result should never be greater than the
delay timer unless pre-emption occurred and numerous EIQ
entries are being processed. Since the user had stopped for
200 mg in the middle of the stroke, the timer restart time
does not increment. Eventually, the restart time will test
true at 458. This is the point at which AUI would have
entered mouse emulation mode if pre-emption had not
occurred. It is also possible for the timer to expire while
handling a large number of pointer mbﬁes at 458. If so, the
“ignore timeout” flag is set to discard the timer posted
button down message in the PM input gueue at 460. A
"gesture abort’ flag is then set at 462 and a mouse button
down message is built using the X/Y coordinates of the
current EIQ entry at 4066. This message 1is posted to the
application under the coordinate at 468 and a return at 470
is made to the EIQ routine in FIG. b. When the test for
‘“gesture abort’® tests trué at 332, the remainder of the EIQ
entries are not processed and a return at 344 is made to the
mainline AUI code 1n FIG. 4.

Aﬁ this point, there may be two "mouse" button down
messages in the PM input queue. One posted by the timer at
406 and one posted by the gesture abort routine 468. 1f
there is a timer generated button down message in the Jgueue,

it is handled first since it occurréd first. When handled

BT9-91-050 22
AR STL %o

by the process mouse button down in gesture mode process 1in
FIG. 7, both the “ignore timeout’® and “gesture abort” flags
are set at 502 so the “ignore timeout’® flag is reset and the
button down message is discarded at 524. The timer 1is not
restarted. Returning to FIG. 4, the second button down
nmessage is now intercepted at 208 and since AUI is still in
gesture mode at 252, the second button is processed. Again
in FIG. 7, the only flag set is “gesture abort”™ at 506 the
branch is taken to enter mouse emulation mode at 512 and
deink the stroke at 514. The message is passed on to the

application at 516 and a mouse button down occurs where the

user stopped for 200 milliseconds.

A common feature of operating systems that support a
keyboard and/or mouse is “type-ahead”™ and "mouse-ahead’.
These capabilities allow the user to begin to type on the
keyboard and/or click with the mouse even though the active
application may be in a prewempted or busy state where user
input cannot be handled. The system preserves the order of
keyboard and mouse events such that when the application(s)
becomes ready to again receive user input, the events are
received in the original sequence and are routed to the
proper windows. This capability permits user input to
continue through periods of system overload and effectively
makes system unavailability somewhat transparent. It also
permits an expert or ‘power’ user to anticipate the
activation of a window or text field and begin tyvping before
the window or field is enabled for input.

A major deficiency of the mouse ahead feature is that
the mouse is strictly a locator device and the system only
buffers mouse button clicks and a single mouse mov.e in
between. All points received during movement of the\ﬁouse
are coalesced if the application is busy and only the last
point received is passed to the 'application when it starts
accepting user input again. This precludes the ability to
stroke a gesture when pre-emptive threads are active in the
backgrdund. A method for preventing the loss of such data.
For touch screen deviceg, this represents the loss of
information rich stroke data which seriously degradeé the

performance of the finger or stylus as an input device.

BT9-91~-050 23 TRLYILS AL 40
., d .3

Employing all the above technigues, AUI implements a
third capability known as “stroke ahead”™ where all the
finger, stylus and/or mouse clicks and movements are buffered
during periods of pre-emption, then played back to the
application as if there had been no delay. Buffering is
currently sufficient to store 8 gestures or 10 seconds of
handwriting across very long periods of pre-emption. In
addition, this sgtroke ahead capability permits common
graphical user interface techniques such as point and drag,
re-gizing and movement of windows, selection, and double
clicking to be executed without regard +to application
readiness.

FIG. 9 compares the EIQ data block found in the EIQ
buffer with the corresponding entry in the operating system
input buffer. The PM "mouse" message has only a limited
amount of information. It includes the message ID and the
target window ID as well as the X-Y coordinates within the
target window to which the "mouse" message 1is addressed.
Further, it containg the X-Y coordinates on the digplay to
which the mouse pointer will be mapped and the PM timestamp
indicating when the "mouse" event was sent to the operating

|

system.

The operating system (PM) timestamp 1is used tTo

correlate the EIQ data block to its corresponding PM "mouse™
message. As the "mouse" message alréady contains the window
information, it does not need to be included in the EIQ data
block, although it could be included if desired. The data
in the EIQ data block is intended to be illustrative rather
than exhaustive or exclusive. Among the data included 1is
the device identity, device specific information which can
be handled by an aware application, flags indicating the
state of the EIQ buffer, the display coordinates, the higher
resolution touch sensor coordinates, stylus rotation and
angle, and high resolution device timestamps. Depending on
the input device some of the entries may not be available
and so{are left blénk'in the EIQ data block.

Button and other Input Device Events

BT9-91-050 24

oy P T ~
stV § s ﬁ§) g

When incorporated into tablets such as the Workpad
depicted in FIG. 1, buttons, both bezel and stylus,
significantly enhance the human factors and useability.
These events are written into the EIQ buffer 160 by the
appropriate device driver, however, since these are not
pointer events and are not translated to false "mouse”
events by the pointing device driver, they are not enqueued
into the PM input queue and consequently, applications do
not receive notification that they occurred. The AUI
subsystem 180 circumvents this operating system limitation
by creating a separate task or thread of execution 700 1in
FIG. 10 that has the sole function of monitoring for button
events in the EIQ buffer 160. As the button events occur,
the thread is dispatched to handle the event, at which time
the application is sent a PM message containing the event
information. Separate threads are similarly written to
provide notification of wvoice events from the voice sensor
136 and image events from the image sensor 138. |

Referring to FIG. 10, during system initialization; the
thread is created and it enters a permanent loop at 700 to
monitor EIQ button events. The loop begins by calling the
EIQ subsystem 180 to dequeue a button event at 702.
Implicit in this function call is a request to halt the
axecution of the thread if there is not a button event in
the EIQ buffer 160. This "wait state’” will only be satisfied
by the enqueueing of a button event into the EIQ buffer 160.
When a button event is engueued into the EIQ buffer 160 by a
device driver, the thread is immediately re-dispatched and

execution resumes.

Once it is determined that a button event exists in the
EIQ buffer 160, the button must be' handled in the proper
order. The button event may be the only event in the EIQ
buffer 160, but it also may be in the middle of a long
series of pointer moves if‘ the user pressed the button i1in
the middle of a stroke. If the button was pressed
mid-stroke, it must be handled chronologically, preserving
the exact order of pointer moves and button events. As the
PM "mouse" moves are intercepted at 210 in FIG. 4 and
processed by the mainline AUI routine, the button event will
eventually be identified at 304 in EIQ routine in FIG. 5 and

BT9-91-050 25
2DTEAL0

processed at 360 and 362. However, if the button event is a
solitary EIQ entry, there will be no PM input gueue message
to trigger AUI, and the event will never be degueued.
Therefore, once the button monitor thread is
re-dispatched, the thread immediately issues a request to
the EIQ subsystem 180 at 704 to retrieve the next pointer
event that occurs. In the function call is the explicit
request to halt execution until either a pointer event
occurs or 64 milliseconds elapse. If a timeout did not
occur at 706, then the button event coincided with a pointer
event and it will eventually be dequeued and processed by
the main EIQ loop at 302. No further processing is done and
the loop restarts. However, if a timeout did not occur at
706, the current pointer position is queried at 708 and then
changed at 710 using the same coordinates. Whenever the
position of the pointing device is updated by software, PM
enqueues a ‘dummy’ mouse move message into the PM 1input
gqueue. When the application dequeues the "mouse” mové, AUI
intercepts it at 210 and the button event gets handled in
the EIQ routine at 302. Since the location of the pointing
device is not changed, the extraneous "mouse" move message
generated by PM has no effect on application processing;
While the present invention has been described with
reference to specific embodiments, it'will be understood by
those skilled in the art that changes in form and detail may
be made without departing from the spirit andl scope of the
invention. The embodiments presented are for purpose's of
example and illustration only and are not to be taken to

limit the scope of the invention narrower than the scope of

the appended claims.

Py 2076466

BT9-91-050

The embodiments of the invention in which an exclusive

prdperty or privilege is claimed are defined as follows:

1. In a data processing system having a central processor,
« method for buffering high bandwidth data from an input

device comprising the steps of:

buffering input data from the input device in a first
buffer, the first buffer having the property of
discarding at least some of the input data during

periods of high central processor utilization;

buffering the input data in a second buffer, the
second buffer storing all input data regardless of

central processor utilization;

determining whether input data have been discarded

from the first buffer; and,

responsive to the determination that 1input data
have been discarded from the first buffer, retrieving

the input data from the second buffer.

2. The method as recited in claim 1, wherein the input
data are coordinate points representing the path of a

pointing device across a surface of a touch sensor.

3. The system as recited in claim 2, wherein the
determining step is accomplished by comparing the
number of coordinate points in the first and second

buffers.

4. The system as recited in claim 1, wherein the
determining step is accomplished by comparing a last
timestamp associated with a last input data event
processed by the data processing system and a current

time.

2076460

BT9-91-050

The method as recited in claim 2, which further

comprises the steps of:

determining whether the pointing device has stopped

movement across the touch screen at a given coordinate

point for a predetermined period of time;

responsivé to the determination that the pointing
device has stopped movement for the predetermined time,

entering a mouse emulation mode.

The method as recited in claim 2, which further

comprises the steps of:

determining whether the pointing device has stopped
movement across the touch screen at a given coordinate

point for a predetermined period of time;

responsive to the failure to find motion cessation
before the pointing device is lifted from the touch

screen, attributing the coordinate point as a gesture;

mapping the coordinate points to points representing

known gestures to the data processing system; and,

responsive to matching the coordinate point to a known
gesture, sending a message indicating which message was

made to an appropriate computer module.

In a data processing system having a central processor,
a method for buffering high bandwidth data from a touch

screen, comprising the steps of:

buffering coordinate points and corresponding data in a
first format representing the path of a pointing device
across the touch screen in a first buffer, the first
buffer having the property of discarding at least some
of the coordinate points during period of high central
processor utilization;

BT9-91-050 2 07 6 4 6 6

10.

buffering the coordinate points and corresponding data
in a second format in a second buffer, the second
format including types of data not included in the
first format, the second buffer storing all coordinate

points regardless of central processor utilization;

dequeueing a first coordinate point from the first

buffer in the first format; and,

dequeueing the first coordinate point from the second

buffer in the second format.

The method as recited in claim 7, which further
comprises a step of determining whether coordinate

points have been discarded by the first buffer.

The method as recited in claim 8, wherein the
determining step is accomplished by comparing a last
timestamp associated with a last input data event
processed by the data processing system and a current

time.

The method as recited in claim 8, which further

comprises the steps of:

determining whether the pointing device has stopped
movement across the touch screen at a given coordinate

point for a predetermined period of time;

responsive to the determination that the pointing
device has stopped movement for the predetermined time,

entering a mouse emulation mode.

207 6466

BT9-91-050

11.

12.

13.

The method as recited in claim 7, which further

comprises the steps of:

determining whether the pointing device has stopped
movement across the touch screen at a given coordinate

point for a predetermined period of time;

responsive to the failure to find motion cessation
before the pointing device is lifted from the touch

screen, attributing the coordinate point as a gesture;

mapping the coordinate points to points representing

known gestures to the data processing system; and,

responsive to matching the coordinate point to a known
gesture, sending a message indicating which message was

made to an appropriate computer module.

A data processing system for buffering high bandwidth
data from an input device, the system having a central

processor and a memory, comprising;

a first memory buffer for buffering input data from the
input device, the first buffer having the property of
discarding at least some of the input data during
periods of high central processor utilization;

and,

a second memory buffer for buffering input data
from the input device, the second buffer storing all
the input data regardless of central processor

utilization; and,

means for determining whether input data have been

discarded from the first buffer;

whereby if coordinate points have been discarded from
the first buffer, the coordinate points are retrieved

from the second buffer.

The system as recited in claim 12, wherein the input
data are coordinate points representing the path of a

pointing device across a surface of a touch sensor.

3r9-91-050 207 646 6

14.

15.

16.

17.

The system as recited in claim 12, wherein the
determining means compares the number of coordinate

points in the first and second buffers.

The system as recited in claim 12, wherein the
determining means compares a last timestamp associated
with a last input data event processed by the data

processing system and a current time.

The system as recited in claim 13, which further

comprises:

means for determining whether the pointing device has
stopped movement across the touch sensor at a given

coordinate point for a predetermined period of time;

responsive to the determination that the pointing
device has stopped movement for the predetermined time,

entering a mouse emulation mode.

The system as recited in claim 13, which further

comprises:

means for determining whether the pointing device has
stopped movement across the touch screen at a given

coordinate point for a predetermined period of time;

responsive to the failure to find motion cessation
before the pointing device is lifted from the touch

screen, attributing the coordinate point as a gesture;

means for mapping the coordinate points to points

representing known gestures to the data processing

system; and,

means for sending a message indicating which message
was made to an appropriate computer module, responsive

to matching the coordinate point to a known gesture.

BT9-91-050 207 6466

18.

19.

20.

A data processing system for buffering high bandwidth

data from a touch sensor having a central processor and

a memory comprising:

a first memory buffer for buffering coordinate
points and corresponding data in a first format
representing the path of a pointing device across the
touch screen, the first buffer having the property of

discarding at least some of the coordinate points

during periods of high utilization;

a second memory buffer for buffering the

coordinate points and corresponding data in a second
format, the second format including types of data not
included in the first format, the second buffer storing
all coordinate points regardless of central processor

utilization;

means for dequeueing a first coordinate point from the

first buffer in the first format; and,

means for dequeueing the first coordinate point from

the second buffer in the second format.

The system as recited in claim 18, which further
comprises means for determining whether coordinate
points have been discarded by the first buffer which
compares the number of coordinate points in the first

and second buffers.

The system as recited in claim 18, which further
comprises means for determining whether coordinate
points have been discarded by the first buffer which
compares a last timestamp associatéd with a last input
data event processed by the data processing system and

a current time.

BT9-91-050 2 07 6 4 6 6

21.

22 .

23.

The system as recited 1n claim 18, which further

comprises:

means for determining whether the pointing device has
stopped movement across the touch sensor at a given

coordinate point for a predetermined period of time;

responsive to the determination that the pointing
device has stopped movement for the predetermined time,

entering a mouse emulation mode.

The system as recited in claim 18, which further

comprises:

means for determining whether the pointing device has
stopped movement across the touch screen at a given

coordinate point for a predetermined period of time;

responsive to the failure to find motion cessation
before the pointing device is lifted from the touch

screen, attributing the coordinate point as a gesture;

means for mapping the coordinate points to points
representing known gestures to the data processing

system; and,

means for sending a message indicating which message
was made to an appropriate computer module, responsive

to matching the coordinate points to a known gesture.

A data processing system for buffering high bandwidth
data from a touch sensor, the system having a central

processor and a memory, comprising:

an expanded buffer in the memory for buffering
coordinate points and corresponding data in an expanded
format representing the path of a pointing device
across the touch sensor, the buffer having the property
of storing all coordinate points regardless of central

processor utilization;

2076466

BT9-91-050

a limited buffer for buffering coordinate points in a
limited format having the property of discarding at
least some of the coordinate points during periods of

high central processor utilization;

means for translating input data from the touch sensor

to the expanded and limited formats;

means for enqueueing the input data to the expanded and

limited buffers:

means for dequeueing input data from the expanded and
limited buffers, dequeueing means responsive to finding
input data in the limited format in the limited buffer,

searching for input data in the expanded format in the

expanded buffer; and,

means for generating a spurious input to the limited

buffer responsive to special input data in the expanded
buffer of a type which is not generally translated into
the limited format by the translating means so that the
dequeueing means will search for the special input data

in the expanded buffer.

 aaa .
oV FEAES

PEp——————— SN VN
rE——— S PP T (——— (T Fieiniy GEETE— S — —— TP — T CE—— S—— A ——

PN

W —

8 WYHOOMd | 08
NOLLYDITddY

18 WILSAS ONILYHILO

% a¥v0 H3LdYAY TANYd HONOL
. s gt e 0t

SATIOUINGG HOSSIO0Hd |

@™
— > JOVAHILNI
SL_od T
¥. NdD .
89
- HILNdIWOD TYNOSHId
OF QvdYHOM HONOL
1 ANOD}e— LWIHNSYIW dN¥IId | _
ay JAILYIGYY JLVO[
HIAHG | - .
| 0SIQ ZHY 0% 05 . ; “...L;
. ” . 1 &lllm\f
(HONOL YIONIA) Il —z
I LNZHNSYIN |
JONYLIOVIYD T A
_ . ovu BN ./,/@_
29 6.0 091610 sng-A "X EX XX xvmano

g "Dl

PATENT AGENT

' FIGI 3 -
190 191 192 193 |NTERF|L1E9
APP A APP B | APP C APP D | _ PROFILES
188
180

AU ENVIRONMENTAL UNK SUrees |
o . % CHAR/GESTLQSE
PM | EIQ SUBSYSTEM | CECORITION |

170 o 160
0S| EQ |
A ! BUFFER |
150

EIQ i.
IDRIVER |

143 |

" DRIVER |

141 142

- -
3

TOUCH VOICE IMAGE
SENSOR SENSOH SENSOR |

140
DRIVER |
130

[KEYBOARD

A

PATENT AGENT

| FIG. 4A
SEND ELECTRICAL SIGNALS TOEIQ 2%
SEND MOUSE EVENT TOOS/2ANDPM_ 2%

NTERCEPT MESSAGE TO APPLICATION <"

208
YES

250

=

510 GESTURE ™~_YES
VES INPUT MODE 255
- ~ r PROCESS
Y0 NO BUTTON DOWN
o ~ 212 IN GESTURE |
20 No MOUSE MODE |
LOAD TIMESTAMP <_BUTTONUP _~ 254 ,
OF MESSAGE N2 |LOAD TIMESTAMP]
279 YES o1, | OFMESSAGE |
TODTUESTAP | | oo miEsTe ‘.
el LOAD TIMESTAMP 01L6AST RETRIETE SINE S |
RETRIEVE ALL EIQ EVENT FROMEIQ | |
EVENTS SINCE | _EIQ EVNTlEEBD 1 o5g
LAST ACCESS | 1 I preremm——
———T— | [RETRIEVEALLEIQEVENTS | | ENTER=RdRE [}
~ . AN 00 260
N\ ~ ~_ START DELAY TIMER | |
MOVES PASSED SEMULATIONMODE 2. - | - CESSATION |
\.TO APPLICATION . N e
\UN EIQ ROU- /~ NO o N 262
NN/ . (5222 DO NOT PASS |
N/ _ STROKE INKED > ~ MESSAGE t
YES ~J2 TO APPLICATION |
__YES - |
|_DEINK STROKE _|
| o0
| STOP DELAY TIMER | . .
l—-—-—-—-—n' _____ s Sl SIS NS e e G e o Sts Attt A Seelin AR PTG e S PO W Gt AeeT MYV Gwwe Fem Vmeh s -
| TOFIG. 4B o a ' TOFIG. 4B |

f‘,,// E : /) /: .
l -

PATENT AGENT

'FROM FIG. 4A | FROM FIG. 4A |

Moy desreces E————ly — AR sveewhl aven) - “"“Mm“_mm__““““u_"__ W GEgENh GREERL Jveand Asmwery

228

NOTIFY APPLICATION]
THAT STROKE IS
AVAILABLE

230

APPLICATION
HANDLED STROKE
' U“FFER? ~-

YES

232
PERFORM GESTURE|
RECOGNITION

VALID GESTURE >

PROCESS 238
GESTURE SEND MOUSE BUTTON |

DOWN MESSAGE TO |
APPLICATION

264

 PASS \\
LYES ~MESSAGE TO
"\ APPLICATION.

" DG NOT PASS - A
MDJSE MESSAGE | PASS MESSAGETO |
| TO APPLICATION _APPLICATION |
- 042
RETURN |

FIG. 4B

PATENT AGENT

| FROM FIG. 5A | | FROM FIG. 5A !

baa B B B B B R T v pp—p— “mm*““._.ﬂ—-“—_m_—mt—mm—_

REQUESTED ALL
~JMOUSE MOVES,
~ 2

PASS MOUSE COORDS TO APPLICATION|

326
YES_ MOUSE EMULATION
MODE ?__

NO
APPEND POINT DATA TO STROKE BUFFER | 1328

CHECK FOR GESTURE MODE ABORT | 330

332

ABORT GESTURE 159
NO

L 334

—MONITORING NO

FOR CESSATION OF -

| PERFORM DELAY TIMER PROCESSING |

(338
R STROKE BEING INKED

' YS'

N PFORMINI ‘

SAVE TIMESTAMP OF LAST EIQ EVENT DEQUEUED | 5342 |

_RETURN 5344

ard™

PATENT AGENT

FIG. 5A

RETRIEVE EVENTS FROM EIQ BETWEEN REQUESTED TIME RANGE
302

FOR EACH DEQUEUED EIQ EVENT

_~BEZEL
- < STYLUS BUTTON >

. EVENT
$
TNO
1306
— YES DISPLAY EVENT >
I | 0 P
NOTIFY ~—"
APPLICATION [0 NO

YES
310

DEVICE
~ ARBITRATED
. OUT

INO
_ _ 314
<" MOUSE EVENT

NO

APPLICATION™

POINTS ?
~ Jves
PASS HI-RESOLUT!

FRASE dulussh G, Em—— GG BB ARAD B PN WPPE OFTEER SNEMs MRS Orasyy ekt danh) SATEF TIURGE VMM cusynish daishaAls

-

. 308
NO LOCATOR
~~_EVENT ?

316

EXTRACT STYLUS/FINGER DATA |
___FROMEIQEVENT |

| EXTRACT
| MOUSE |
___DATA - |

<REQUESTED HI-RES>

320
ON' -
COORDS TO APPLICATION _

300

NOTIFY
APPLICATION
OF EVENT

362

MAP EVENT |
INTO ACTION|

364

TO FIG. 5B |

(M

PATENT AGENT

FIG. 6A
s 400

DETERMINE CURRENT MOUSE POINTER COORDINATES

DETERMINE APPL!CAT!ON UNDER MOUSE POINTER

GENERATE PM MOUSE BUTTON DOWN MESSAGE

POST MESSAGE TO APPLICATION

08
TEND *

FIG. 6B
. , 450
LOAD TIMESTAMP OF LAST DELAY TIMER RESET

. . 452
SUBTRACT RESET TIMESTAMP FROM CURRENT EVENT TIME

_TIMER VALUE _

E 456
~ STOP DELAY'TIER ..

458

' TIMER '

ALREADY EXPIRED st

[SET FLAG TO IGNORE TIMER GENERATED MOUSE |
BUTTON DOWN MESSAGE WHEN T IS RECEIVED |

' 462
~|sET GESTURE ABORT FLAGLS

COORDINATES OF THE CURRENT EIQ MOUSE MOVE EVENT |

| DETERMINE APPLICATION UNDER X/Y COORDINATE |

" SEND BUTTON DOWN MESSAGE TO THE APPLICATION _|

Ll

BUILD MOUSE BUTTON DOWN MESSAGE USING THE xN 1464

486

468

‘‘‘‘‘

PATENT AGENT

MESSAGE POSTED BY TIMER OR

YES

SUBTRACT TIME OF LAST EIQ EVENT |
RETRIEVED FROM THE CURRENT TIME |

FIG. 7

500

BUTTON

GESTURE ABORT
—_ROUTINE 2_—

YES | 502
IGNORE ~
TIMEOUT AND GESTURE ABORT YES
FLAGS BOTH SET -
— | 503
O o504 | RESET

IGNORE

' YES IGNORE
TIMEQUT FLAG SET
. 0 ‘

| TIMEOUT |
| FLAG

NO ™ g

GESTURE RESET
ABORTED FLAG SET. | IGNORE |
~ ? TIMEQUT [505
NO 508 FLAG |

510

. TIME ™~
—GREATER THAN 70 MILLI-
~—_SECONDS ?__—"

NO

YES

' A 520
" ARE <
" MOUSE MOVE
-~ MESSAGES ENQUEUED
. ONPMINPUT _~".
“QUEUE?Z -

— 512 N
| ENTERMOUSE | S
- |EMULATIONMODE} YES|
R — 514 [RESTART DELAY |522
' DEMKSTRORE -~ | TMER |

| 524

PASS MESSAGE TO | DO NOT PASS
ASS MESSAGE TO 516 | MESSAGE TO

Sii LU gy APPLICATION |

- - 518
RETURN L

S

PATENT AGENT

FIG. 8

IGNORE ~
JIMEOQUT FLAG SET
. =D ,

600

YES
NO 602

_ | PERFORM MOTION TEST |
ON CURRENT POINT |

~"RESTART ™~
~ DELAY TIMER
~ ?

[YES

606

 RESTART DELAY TIMER

608
" TIME .
" HAS ALREADY EXPIRED _

NO
610

SAVE TIMESTAMP |

YES
' "OFEQEVENT

612

SUBTRACT TIME OF LAST |
| EIQEVENT RETRIEVED |
|_FROMTHE CURRENT TIME |

. 514

—TIME T

—GREATER THAN 70 MILL
~~—_SECONDS 7__-

PATENT AGENT

. . | . .
dWVLISIWILIOVSSIN WD | dWY1S3NIL Wd |

MOGNIM NOILYOIddY 01 d3ddviN aHO0J
MOQNIM NOILVOIMddY OL G3ddVN GHOOD

A T~ GHO0D A MOGNIM — 7
X

MOGNIM NOILYOddY 13D8YL |~ — _ QIMOGNIM_ — — |

Qi 3ovSSIW ISNOW |

INIAZ O03H IHL FTANVH
LNS3I0a NOILYOINddY JHL 4t JNVLSIWIL NOILNTOS3E HO

: 4003 Z HOSNS

. ad003 A HOSNS

| . d400Q X HOSNH
._.z_OmE_E_xOmmhoS.ZOommooom>_._.¢._mmm5._0mm¢..50om_qu:mm

’Iililililii

H | dWVISIWILIOIAA] i
JTONVSNTALS T~ ITONVSNTALS _ |

NOLLYLOH SNIALS |~ NOIIVIOH SHTALS ~

SNLYLS NOLLNG 13738 ANV SNTALS | —$DV I ILVIS NOLING

S | __(QHO0D ZHOSNIS |
S [~ dEO0DAHOSNIS _ |
s |~ qHO0IX HOSNES ~
v |~ SovBEOIOT —

QHOOD ZAV1dSIG | (QHOOO ZAV1idSId _ 1

qHO03 A AVIdSId |

gHo09 X AV1dsSia [~ "d800d X AvV1dSid _ |

013 ‘GIM0O1443A0 DI
NOLLYIWHOANI INJAZ O1d103d

3 1~ SOV ONOH
s | _§6vid INSA3 3DIAST

illilllilll

dWVLSIWIL Wd NOILNTOS3H MO | dWV.LSINLL |

ISNOW "B3ONI ‘SNTAL

S | ~Ql30IA3a |
[D A

6 Ol

PATENT AGENT

FIG. 10
| 700

FOREVER _|

702
| WAITFORBUTTON EVENT

704

WAIT FOR MOUSE EVENT |
OR .
TIMEOUT IN64MS

706 o
~ YES

NO

[R\ B
~ | QUERY CURRENT MOUSE POSTITION |
I)
~ SETMOUSEPOSITION |
__TOSAMELOCATION |

(ﬂ, oo

PATENT AGENT

=t~ INTERFACE

OVE%LAY X1 Xo X3 X4 ‘{.Eéjs C_.TRL 60 —{/-CTRL 62 ‘“““1’_L
N]l C ! ,_E i | i
Y - .-f CAPACITANCE AD l 5
Vo] N <——{ MEASUREM'T |—»CONV. e
2 - WIRE MODE (FINGER TOUCH] 130
Y - Sﬁﬁm MUX.| o, % : ;
Y4 — "‘U") 40 KHz DISC : i— o
! 50 FACE
e 4 DRIVER B4 |
|] i.. A
1 CATE Plcmﬁf ﬁgg{} céﬁv
REM'T , i
e xBUs3E S L__| > ¢ 48 48 J
TOUCH WORKPAD 10]

PG

| J—>{ CPU 74
o N I | |le{FOM 2

DISK 78 l

66

KEYBOARD B4
DISPLAY 86

qL
LELLU

roM |[Ram 1| CONTROL o
34 1| 32 || PROCESSOR

TOUCH PANEL ADAPTER CARD 37

OPERATING SYSTEM 81

| APPLICATION |
6 |PROGRAM 82

g

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - abstract drawing

