GEORGE B. STOWE, OF GALVESTON, TEXAS.

AUTOMOBILE-ENGINE HOOD AND DRAIN-TROUGH THEREFOR.

1,335,082.


Application filed October 4, 1918. Serial No. 256,300.

To all whom it may concern:

Be it known that I, GEORGE B. STOWE, a citizen of the United States, residing at Galveston, in the county of Galveston, State of Texas, have invented new and useful Automobile-Engine Hoods and Drain-Troughs Therefor; and I do hereby declare the following to be a full, clear, and exact description of the invention, such as will enable others skilled in the art to which it appertains to make and use the same.

This invention relates to an improved automobile hood and particularly drain troughs therefor, which are especially adapted for use in connection with the hood adjacent the joints between the sections of the hood, and the joints between the hood, the dash and the radiator.

In providing this improved structure, it is the aim to drain the water (which may seep through the longitudinal and transverse joints) to the forward end of the hood and to either side thereof in case of transverse joints, thereby preventing the water from reaching the spark plugs and various moving parts of the engine.

The invention further aims to provide an improved drain trough for the hinge joint of the upper part of the hood, said trough being connected to one section of the hood and to one side of the hinge joint in any suitable manner, either by riveting, welding or the like, preferably by means of spot-welding.

The invention further aims to provide a drain trough of this kind having its opposite ends closed, and a drain tube connected to the under part of the forward end of said trough, for draining the water to one side.

A further object of the invention is to provide a drain trough for each of the side joints of the hood, and for each end of the hood, and in each instance, one side of the drain trough is secured to its supporting means, as in the case of the trough for the upper central joint of the hood.

In practical fields the details of construction may necessitate alterations falling within the scope of what is claimed.

The invention comprises further features and combination of parts as hereinafter set forth, shown in the drawings and claimed.

In the drawings:

Figure 1 is a view in side elevation of an automobile engine hood showing the various drain troughs adjacent the respective joints of the hood, parts of the hood being broken away to show the structure.

Fig. 2 is a sectional view on line 2—2 of Fig. 1.

Fig. 3 is a detail perspective view of two sections of the hood, showing the drain trough for the central hinge joint.

Fig. 4 is a view in elevation of the drain trough, which is secured to the forward face of the dash.

Fig. 5 is a view in elevation of the drain trough which is secured to the rear face of the radiator.

Fig. 6 is a perspective view of one of the drain troughs which are transversely disposed under the ends of the hood.

Fig. 7 is a detail perspective view of the drain trough for the central joint between the sections of the hood.

Fig. 8 is a detail perspective view of one of the drain troughs for the side joints of the sections of the hood.

Referring more especially to the drawings, 1 designates an engine hood as a whole, and this hood comprises the usual side sections 2 and 3, and the upper curved or arched sections 4 and 5. The side section 2 is secured in any suitable manner to one side of the frame or chassis of the automobile as indicated at 6, while the other section 3 is designed to be detachably connected to the opposite side of the chassis or frame in any suitable manner (not shown). The sections 4 and 5 have their adjacent portions hingedly united in the usual manner as shown at 7, while the opposite edge portions of the sections 4 and 5 respectively, are hingedly connected in the usual manner as at 8 to the side sections 2 and 3 respectively. The dash 9 of the automobile on its front face is provided with a flange 10, which is in the form of an arch, in order to conform to the cross-sectional shape of the hood. A drain trough 11 is provided. This drain trough 11 is of a shape to conform to the cross-sectional shape of the hood, and is provided with a channel 12, and the flanges 13 and 14. The flange 13 is secured in any suitable manner, preferably by welding or the like to the flange 10 of the dash 9. It is to be noted that the drain trough 11 is constructed in such a manner that the flange 14 has its upper surface on a level with the outer or upper surface of the flange 10, so that when the automobile hood is in position, as shown clearly in Figs. 1 and 2, the hood will engage the
upper surfaces of the flanges 10 and 14, thereby covering the channel 12. It is obvious that any leakage between the rear edge of the hood and the dash, or any leakage of water through the hinged joint adjacent the channel, will be drained through the channel through either side of the hood and downwardly. The rear face of the radiator 15 has a flange 16 similar to the flange 10, and secured to the under surface of the flange 16 is a drain trough 17 which is identical in construction with the trough 11, and is secured in the same manner to the flange 16, and designed for the same purpose. The various parts of construction of the trough 17 are designated by the same reference characters as used for the corresponding parts of the trough 11. Secured in any suitable manner, preferably by spot-welding or the like, as at 18 to the side sections 2 and 3, are drain troughs 19, which are curved in cross section as shown and arranged adjacent the hinge joints 18, so that any water or the like that may seep or percolate through the joints 18, will be drained off toward the ends of said trough, so as to pass downwardly on the inner faces of the side sections 2 and 3. A drain trough 20 is provided for the central hinge joint 7 of the hood. This trough is semicircular in cross section, and its channel 21 is directly under the hinge joint 7. The ends of the channel 21 are closed by the end pieces 22 and 23. Projecting from the longitudinal edges of the wall of the channel are laterally extending flanges 24 and 25, and the flange 24 is secured in any suitable manner, preferably by spot welding or the like as at 26 in Fig. 2 to the section 4 of the hood, whereby the channel 21 may be arranged under the joint 7, and also whereby the flange 25 may be engaged by the section 5 of the hood, when the sections 3 and 5 are closed as shown in Fig. 2. By means of this channel 21, any water that will seep through the joint 7 may be carried off through the channel 21 to the forward end of the trough 20, and will then flow through the laterally extending outlet tube 27, which discharges to one side of the engine. In order to carry the water to one side and downwardly away from the engine, the tube 27 has right angle extending elbows 28, one of which is connected to the bottom of the forward end of the channel 21. These drain troughs may be constructed of any suitable material preferably sheet metal and their details of construction may be varied according to the needs of various makes of automobile engine hoods.

The invention having been set forth what is claimed as new and useful is:

The combination with an automobile engine hood, comprising hinged sections, of a drain trough semi-circular in cross section and provided with a longitudinal channel underlying the hinge joint between the sections, said trough having laterally extending longitudinally arranged flanges, one of which being spot-welded to one of the sections of the hood, whereby the channel may underlie said hinge joint, and whereby the other flange may be engaged by the other section of the hood, end walls closing the opposite ends of said channel, and a drain tube connected to one end of the trough and extending laterally for carrying off the water from the channel to one side and out of contact with the engine.

In testimony whereof I have signed my name to this specification in the presence of two subscribing witnesses.

GEORGE B. STOWE.

Witnesses:
E. E. STOWE,
W. N. STOWE.