(19) World Intellectual Property Organization International Bureau # (43) International Publication Date 19 February 2004 (19.02.2004) **PCT** # (10) International Publication Number $WO\ 2004/015885\ A1$ (51) International Patent Classification⁷: H02J 5/00, 17/00 H04B 5/00, U4D 5/UU, (21) International Application Number: PCT/US2003/025148 (22) International Filing Date: 12 August 2003 (12.08.2003) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 60/403,223 12 August 2002 (12.08.2002) US 60/403,069 12 August 2002 (12.08.2002) US - (71) Applicant (for all designated States except US): MO-BILEWISE, INC. [US/US]; 5150 El Camino Real, Suite B30, Los Altos, CA 94022 (US). - (72) Inventors; and - (75) Inventors/Applicants (for US only): DAYAN, Tal [US/US]; 14400 Blossom Hill Road, Los Gatos, CA 95032 (US). GOREN, Ofer [US/US]; 1891 Channing Avenue, Palo Alto, CA 94303 (US). KIKINIS, Dan [CH/US]; 20264 Ljepava Drive, Saratoga, CA 95070 (US). GOREN, Yehuda [US/US]; 260 Berry Court 11, Palo Alto, CA 94304 (US). - (74) Agents: MALLIE, Michael, J. et al.; Blakely, Sokoloff, Taylor & Zafman LLP, 12400 Wilshire Boulevard, 7th Floor, Los Angeles, CA 90025 (US). - (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW. - (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). #### **Published:** with international search report [Continued on next page] (54) Title: WIRELESS POWER SUPPLY SYSTEM FOR SMALL DEVICES (57) Abstract: An apparatus to provide wireless powering of a mobile device comprising a pad (100) having an embedded coil (101), the coil driven (101) by a power oscillator (102) and is controlled by a controller (103), to provide a narrow-band resonance coupling. ## WO 2004/015885 A1 before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette. #### WIRELESS POWER SUPPLY SYSTEM FOR SMALL DEVICES #### **Background** This application claim priority to, and incorporates by reference its provisional application no. 60/403,223 filed 08/12/2002 titled "Enhanced RF Wireless Adaptive Power Provisioning System For Small Devices" (Attorney Docket No. 6041.P006z), and related provisional application no. 60/403,069 filed 08/12/2002 titled "Enhanced RF Wireless Adaptive Power Provisioning System" (Attorney Docket No. 6041.P007z). This application incorporates by reference co-pending patent application titled "Alternative Wirefree Mobile Device Power Supply Method and System With Free Positioning" filed 08/01/2002, application number 10/211,224, Attorney Docket No. 6041.P005. One other approach for wireless powering of small mobile devices is using inductive coupling. Although mentioned in the co-pending application, it is a tricky approach. Leakage is the biggest problem, but load matching, inducing eddy currents in untargeted objects and hence heating them, or shorting the supply are just a few to mention. What is clearly needed is a method and system to improve the yield by doing a finely tuned microprocessor-controlled, narrow-band resonance coupling, hence improving the coupling to almost no loss in the near field, and at the same time keeping the far field virtually zero. #### **Brief Description of the Drawings** - Fig. 1 illustrates a pad in which a coil is embedded in accordance with one embodiment. - Fig. 2 illustrates a notebook in which a coil is attached to the bottom in accordance with one embodiment. - Fig. 3 illustrates a schematic overview of electrical circuitry of a system in accordance with one embodiment. - Fig. 4 illustrates an additional schematic overview of electrical circuitry of a system in accordance with one embodiment. - Fig. 5 illustrates an implementation of one embodiment. - Fig. 6 illustrates an overview diagram of the network connectivity in accordance with one embodiment. Fig. 7 illustrates flow diagram of the process in accordance with one embodiment. #### **Description of the Embodiment** Figure 1 shows a pad 100 in which a coil 101 is embedded. The coil is driven by a power oscillator 102 (power source not shown) and is controlled by intelligent controller 103, which may contain a microcontroller. Also shown is the near field 110 and the far field 111, which are available. The near field is defined typically as the field within the geometry size of the coil itself (i.e., if the coil is 5 inches in diameter, the near field would be that order of magnitude, whereas a point 50 inches away would be considered in the far field), while the far field is typically defined as the field seen from a distance of a multiple of the geometry of the device. Typically measurements for EMI are done at a distance of approximately 5 meters or more from the device, and actually they are mostly measuring the far field, whereas near field sniffer ports are used only for determining potential leaks, etc. Figure 2 shows a notebook computer 200 with a coil 201 attached to its bottom. Also attached is an RF-to-dc converter 202 and a dc plug 203 that is connected to converter 202 and plugged into a normal dc power supply pin of the notebook. It is clear that in some cases, the receiving system consisting of coil, RF/dc converter, etc., may be integrated into the host and not require an external supply connector. In some cases the RF-to-dc converter is an intelligent-type regulator, in other cases, it may be simply a basic diode/capacitor rectifying system or any type in between. As described earlier in co-pending patent application number 10/211,224, Attorney Docket No. 6041.P005, an array of coils can be used to improve coupling by always allowing a "reasonable" set of inductors/antennae to be found between the base and the device. A normal type of MOSFET can be used to switch, using a small dc bias to enable switching and sending the RF energy on top. Figure 3 shows a schematic overview of the electrical circuitry of the system. Power generator 102 drives the inductor coil 101 in the pad. In some cases, the inductor may not be an actual coil, but rather an antenna with microwave strips, etc., depending on the frequency selected. In yet other cases, it may be integrated into a PCB, etc. Typically, such a device would operate in either the 900 megahertz or in the 2.4 Regulator 103 shows more detail. In particular, it measures the power sent into the coil 101 by the means of sensing across the voltage wires and measuring at sense resistor 104 to determine how much power is actually drawn. The results would then be used by regulator 103 (i.e., a microprocessor, not shown) to drive the controls of the oscillator 102. These controls may include one or more of the frequency, frequency spread (that is, the bandwidth), and total power pushed into the inductor (or transmitting antenna) 101. The recipient antenna or inductor 201 forms, with capacitor 201a (previously not shown), a resonance receiving antenna system that is narrowly tuned. The higher the Q (quality quotient of the resonance circuit), the narrower the band it draws power on, and the better the coupling between the two, even if the mechanical situation is not ideal. Converter 202 is the ac or RF-to-dc converter, shown here with a bridge rectifier capacitor, an electronic regulator block, and another filter capacitor before going to dc connector 203. The quality of this circuitry may depend a lot on the Q, but also on the capability to control multiple loads. In some cases, a regulator may be contained in the host device, such that communication received in the host side regulator could include, for example, FM-modulated, AM-modulated, or other data that runs on the same carrier (frequency) that is carrying power, and such data can be introduced by controller 103 by modulating the center frequency of oscillator 102, or other appropriate means to achieve the desired type of modulation (not shown). Figure 4 shows a further simplified circuitry with the oscillator 102, the intelligent controller 103, the sensing resistor 104, and a load resistor 401 that represents the equivalent power load that is "seen" from the oscillator, in the case of an ideal resonant coupling of both coils and or antennae. The reactive component of Z_L , which can be determined by regulator/controller 103' using its sense lines over Sense Resistor 104 (R_S) lets regulator 103' determine coupling and transmission (transformation) ratio, of the actual situation, allowing a crude first regulation that compensates for the transformation ratio between inductors. Further, the communication link allows fine tuning by communicating between both sides. The back pass of the communication may be done by modulating the load signal, resulting in a specific pattern at the gross regulator on the primary side. It is clear that by managing the power regulation on the receiving side, the semblance of Z_L may be tweaked. It is also clear that by controlling multiple devices and communicating among said devices, an overload of the circuitry, for example, may be avoided, in case too many devices try to share one pad. A signal could be sent that allows only certain devices to participate, with others being told to delay charging. In yet other cases, the frequency of resonance of different devices may be slightly skewed, thus allowing multiplexing of power distribution by not tightly coupling all devices at the same time. Such an approach would be suitable for the times when greater amounts of power are needed in one or another device, because only certain devices would receive energy at a given time, depending on their resonances. Multiplexing could be done by frequency hopping on the oscillator side, or by other means, such as communicating and telling power regulators to back off. Figure 5 shows a table 501 in a coffee shop 500 that has, for example, four sections 502 a-d. On one of the sections (section 502b) the user has installed himself by setting down his notebook 505, his cell phone 506, and half a cup of cappuccino 510. **Figure 6** is an overview diagram of the network connectivity required. In this example, only cell phone 506 is shown, sitting on table section 502b; however, it is clear that more than one device may be connected at one time. Table section 502b is connected to intelligent controller 601, which has access to a power source 603 and also access to network 604, typically going through a router/firewall device 605 and Internet connection 611 to the Internet 610, from where a connection 612 leads to a server 620 that maintains the user's account. According to the user's preferences an account has been set up on the server that describes the features of the account, such as power, networking, etc., and the means of payment, for example, by time and/or actual power usage and/or megabytes of data uploaded or downloaded. All this data for each account is on file in a database (not shown) on the server. The account services may be charged as a flat monthly fee, and a record of the megabytes used kept only for internal usage, or the account may be billed by megabytes transferred. The fee structures may be in place for power usage: it may be billed as a flat fee for usage, or the fees may be on an hourly basis, where, for example, the user gets X hours of charging time, regardless of whether he uses the power for one or for multiple devices. To invoke the account services, the user may go to a Web site where he can register his devices to his account. Hence when the device ID comes up, the server knows which account permissions to retrieve. Figure 7 shows a simplified flow diagram of the process of the novel art of this disclosure. In step 701, a device is set on the table section. In step 702, the presence of the device is detected. In step 703 the ID is obtained from the device, as described above. In step 704, that ID is sent to the server and is looked up to identify the user account. Then in step 705, according to the account permissions, a record that OKs the usage and gives limits, rates, etc., is sent back and received. In step 706, the power and/or network restrictions for an unauthorized user are lifted, and the user is free to use power and networking services provided by his account for his device. The structure of the database is not described here in detail, but no special technique is required. It is well known in the art how to design databases that can look up, for example, an ID that is associated with an account and can obtain account-related information. It is clear that many modifications and variations of this embodiment may be made by one skilled in the art without departing from the spirit of the novelty of the art of this disclosure. ## In The Claims 1) An apparatus to provide wireless powering of a mobile device comprising: a pad having an embedded coil, the coil driven by a power oscillator and is controlled by a controller, to provide a narrow-band resonance coupling. 2/7 Fig. 2 さがけ 4/7 I;64 7/7 Fig 7 onal Application No PCT/US 03/25148 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H04B5/00 H02J5/00 H02J17/00 According to International Patent Classification (IPC) or to both national classification and IPC #### B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) $IPC\ 7\ H04B\ H02J$ Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, WPI Data | Category ° | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. | |------------|--|-----------------------| | Х | EP 0 160 990 A (LICENTIA GMBH)
13 November 1985 (1985-11-13)
the whole document | 1 | | X | WO 89 10651 A (EVERY SYS AG) 2 November 1989 (1989-11-02) abstract; figures 1,2 | 1 | | X | US 5 455 466 A (PARKS TERRY J ET AL) 3 October 1995 (1995-10-03) abstract; figures 1,2 | 1 | | X | US 5 898 579 A (NISHINO SHUZO ET AL) 27 April 1999 (1999-04-27) abstract | 1 | | | -/ | | | | | | | Further documents are listed in the continuation of box C. | X Patent family members are listed in annex. | |---|---| | "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family | | Date of the actual completion of the international search 26 November 2003 | Date of mailing of the international search report $09/12/2003$ | | Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 | Authorized officer Braccini, R | 1 Intermonal Application No PCT/US 03/25148 | | Action) DOCUMENTS CONSIDERED TO BE RELEVANT | Relevant to claim No. | |------------|--|-----------------------| | Category ° | Citation of document, with indication, where appropriate, of the relevant passages | Melevani (O ciaim No. | | Х | PATENT ABSTRACTS OF JAPAN vol. 1999, no. 07, 31 March 1999 (1999-03-31) & JP 06 014480 A (G 2 DESIGN LTD), 21 January 1994 (1994-01-21) abstract | 1 | | X | PATENT ABSTRACTS OF JAPAN vol. 015, no. 284 (E-1091), 18 July 1991 (1991-07-18) & JP 03 098432 A (EITO DENSHI:KK), 24 April 1991 (1991-04-24) abstract | 1 | | X | US 5 994 871 A (STOVE ANDREW G) 30 November 1999 (1999-11-30) column 1, line 30 -column 1, line 55; figures 1,3 | 1 | | X | WO 98 29919 A (LOHR GEORG ;SCHLEIFRING & APPARATEBAU GMBH (DE)) 9 July 1998 (1998-07-09) abstract | 1 | | X | US 5 982 764 A (BUTLER NEAL R ET AL) 9 November 1999 (1999-11-09) abstract; figure 4 | 1 | | Α | US 649 621 A (TESLA N)
15 May 1900 (1900-05-15) | | | Α | US 6 127 799 A (KRISHNAN RAJESH)
3 October 2000 (2000-10-03)
 | | | | | | | | | | | | | | | | | | 1 Information on patent family members Intermonal Application No PCT/US 03/25148 | | tent document
in search report | | Publication
date | | Patent family member(s) | | Publication date | |--------|-----------------------------------|-------|---------------------|----------------|------------------------------|--------|--| | EP | 0160990 | Α | 13-11-1985 | DE
EP
NO | 3417455
0160990
851884 | A2 | 14-11-1985
13-11-1985
12-11-1985 | |
WO |
8910651 |
А | 02-11-1989 |
AU |
3359989 |
A | 24-11-1989 | | | | | | MO | 8910651 | | 02-11-1989
09-05-1990 | | | | | | EP
JP | 0366739
2504100 | | 22-11-1990 | |
US | 5455466 |
A | 03-10-1995 | NONE | | | proj | | |
5898579 |
А |
27-04-1999 |
AU | 4093493 | Α | 13-12-1993 | | 00 | 3030373 | | 2, 01 2505 | AU | 4093593 | | 13-12-1993 | | | | | | DE | 69326762 | | 18-11-1999 | | | | | | DE | 69326762 | | 20-04-2000 | | | | | | DE | 69330516 | | 06-09-2001
25-04-2002 | | | | | | DE
Ep | 69330516
0640254 | | 01-03-1995 | | | | | | EP
EP | 0640254 | | 01-03-1995 | | | | | | ES | 2163409 | | 01-02-2002 | | | | | | ËS | 2139004 | | 01-02-2000 | | | | | | JP | 8501435 | | 13-02-1996 | | | | | | JP | 8501436 | | 13-02-1996 | | | | | | KR | 154345 | | 15-12-1998 | | | | | | WO
WO | 9323908
9323909 | | 25-11-1993
25-11-1993 | | | | | | US | 5619078 | | 08-04-1997 | | JP |
06014480 | |
21-01-1994 | EP | 0558316 | | 01-09-1993 | | | 03098432 | A | 24-04-1991 | NONE | | | | | |
5994871 | A | 30-11-1999 | CN | 1227008 |
T | 25-08-1999 | | 00 | 055 107 1 | • • | | EP | 0934619 | | 11-08-1999 | | | | | | WO | 9843337 | | 01-10-1998 | | | | | | JP | 2000511038 | | 22-08-2000 | | | | | | KR
 | 2000015813 | A
 | 15-03-2000 | | WO | 9829919 | Α | 09-07-1998 | DE | 19700110 | | 30-07-1998 | | | | | | DE | 19701357 | | 30-07-1998
15-06-2003 | | | | | | AT
AU | 241216
6609798 | | 31-07-1998 | | | | | | BR | 9806843 | | 14-03-2000 | | | | | | WO | 9829919 | | 09-07-1998 | | | | | | DE | 59808483 | D1 | 26-06-2003 | | | | | | EP | 1337001 | | 20-08-2003 | | | | | | EP | 1012899 | | 28-06-2000 | | | | | | JP | 2001507518 | | 05-06-2001 | | | | | | RU
AU | 2192099
6289598 | | 27-10-2002
07-08-1998 | | | | | | WO | 9832217 | | 23-07-1998 | | | | | | EP | 0953225 | | 03-11-1999 | | | | | | JP | 2001512634 | | 21-08-2001 | | | | | | US
 | 6351626 | B1
 | 26-02-2002 | | | 5982764 | Α | 09-11-1999 | US | 5912925 | | 15-06-1999 | | US | | | | EP | 0920746 | Δ2 | 09-06-1999 | | US | | | | JP | 2000515351 | | 14-11-2000 | Information on patent family members Intermonal Application No PCT/US 03/25148 | Patent document cited in search report | | Publication
date | | Patent family
member(s) | Publication date | |--|-----|---------------------|--------|----------------------------|------------------| | US 5982764 | Α | | WO | 9848526 A2 | 29-10-1998 | | | | | CA | 2221364 A1 | 21-11-1996 | | | | | CN | 1190506 A | 12-08-1998 | | | | | ĒΡ | 0872032 A1 | 21-10-1998 | | | | | JP | 11505395 T | 18-05-1999 | | | | | US | 6459882 B1 | 01-10-2002 | | | | | WO | 9637052 A1 | 21-11-1996 | | | | | US | 2003050011 A1 | 13-03-2003 | | | | | US | 5771438 A | 23-06-1998 | | | | | WO | 9807244 A2 | 19-02-1998 | | US 649621 | Α | | NONE | | | | US 6127799 | | 03-10-2000 |
AU | 4703000 A | 05-12-2000 | | 00 012,755 | • • | | CA | 2373911 A1 | 23-11-2000 | | | | | WO | 0070703 A1 | 23-11-2000 |