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Title: LOCK-FREE STATE MERGING IN PARALLELIZED CONSTRAINT
SATISFACTION PROBLEM SOLVERS

BACKGROUND
[0001] Technological advances in hardware such as processors, memory, and
storage continue to serve as a catalyst for creating larger and more complex software
applications that provide a richer user experience by handling many different types of
data types of media (e.g., voice, text and video), development programs, and so on.
[0002] The hardware support counted on by these vendors 1n single-processor
systems may be distant because historical circuit speedups associated with Moore’s
law no longer appear to be readily obtainable. The principle aspect of Moore’s law 18
that approximately every eighteen months the number of transistors on a chip will
double due, generally, to technological advances 1n device fabrication. Historically,
when this was accomplished, the processor clock speed could also be increased.
However, the heat density now associated with the more tightly packed transistors 1s
so high that increasing the clock speed means heat cannot be efficiently and
cttectively dissipated. Thus, smaller devices no longer directly translate into faster
and cooler running machines.
[0003] One alternative being exploited 1s to sitmply employ more of the devices. In
other words, 1n the realm of processors, for example, design parallel or
multi-processor systems to accommodate the software demands. However, parallel
processing systems require sophisticated coordination techniques for handling
algorithms or computational thread processing. Constraint solving 1s useful 1n testing
these coordination techniques. Traditional sequential algorithms, however, are
notoriously difficult to reconstruct in ways that make etfective use of all available
shared-memory parallel processors.
[0004] Constraint satisfaction problem (CSP) solvers — such as Boolean
satisfiability (SAT) solvers — are 1n no way exceptions to the previous observation.
Typically, sequential CSP solvers have a current state that includes a partial solution
(an assignment to some of the constraint variables) from which the solver attempts to
move to a new state with an augmented solution created by assigning one or more

currently unassigned variables. The new assignmentation may engender other
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assignments through the propagation of constraints. Propagation of constraints, in
turn, can lead to the detection of a conflict among the current assignments which (in
order to relieve the conflict) must be partially undone, changed to new assignments,
and re-propagated.

[0005] In parallel processing systems, a parallel implementation of this problem
solving regime per force has several parallel computations propagating constraints in
the fashion just described. A problem 1s to merge several conflict-free solver states

(post propagation) into a single conflict-free solver state.

SUMMARY

[0006] The following presents a simplified summary 1n order to provide a basic
understanding of some aspects of the disclosed innovation. This summary 18 not an
extensive overview, and 1t 18 not intended to 1dentify key/critical elements or to
delineate the scope thercof. Its sole purpose 1s to present some concepts 1n a
simplified form as a prelude to the more detailed description that 1s presented later.
[0007] The disclosed architecture provides support for parallel processing in
generic constraint satisfaction problem (CSP) solvers. The state of a computational
thread of the solvers 1s represented as a set of support graphs. Sets of support graphs
ar¢ a recognized mechanism 1n the efficient implementation of truth maintenance
systems (TMS), which are frequently an important component of generic CSP solvers.
As described herein, the support graphs are used in a new way by merging the graphs
in a pairwise fashion, yielding a new conflict-free graph. This allows construction of
a CSP solver by mapping parallel propagation of constraints over multiple new
assignments and reducing to a new problem solver state (with more variables
assigned) by merging the states resulting from the multiple propagations. The
architecture can be applied, generally, in any CSP solver having certain formal
propertics. For example, in one implementation, the architecture can be applied
specifically 1n the context of a Boolean satisfiability (SAT) solver.

[0008] The architecture disclosed and claimed herein comprises a computer-
implemented system that facilitates solver processing. The system includes a
bookkeeping component for representing input solver state of a computational thread

as a sct of graphs. A merge component performs pairwise merging of at least two
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input graphs of the set of graphs into a merged graph that represents final state of the

computational thread.

[0008a] According to one aspect of the present invention, there is provided a computer-
implemented system that facilitates constraint solver processing, comprising: a bookkeeping
component for representing input solver state of a computational thread as a set of graphs, the
input solver state received from parallel solvers operating on the computational thread; a
merge component for pairwise merging of at least two input graphs of the set of graphs into a
merged graph that represents final state of the computational thread; a propagation component
for constraint propagation to generate completeness in the merged graph, wherein the
propagation component facilitates non-chronological backtracking as part of the constraint
propagation to directly change an earlier assumption without changing an intermediate
assumption and the propagation component facilitates adding more than one learned
constraint during constraint propagation of the merged graph for the parallel solvers, which
are parallel SAT solvers, wherein the representing input set of support graphs to be merged by

the merge component are conflict-free support graphs.

[0008b]} According to another aspect of the present invention, there is provided a
computer-implemented method of constraint solver processing, comprising: representing input
solver state of a computational thread as a set of support graphs; receiving the support graphs
assocliated with solver state of parallel solvers, the solver state associated with processing of
the computational thread; paring a support graph from each of the parallel solvers for merging
of nodes having same literal; pairwise merging the support graphs into a merged graph that
represents final state of the computational thread; solving completeness of the merged graph
by propagating constraints utilizing non-chronological backtracking as part of the constraint
propagation to directly change an earlier assumption without changing an intermediate
assumption; adding more than one learned constraint during constraint propagation of the

merged graph for the parallel solvers, which are parallel SAT solvers; and processing

conflicting literals of the merged graph to make the merged graph conflict-free.
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{0008c] According to still another aspect of the present invention, there 1s provided a
computer-implemented solver system, comprising: computer-implemented means for
representing input solver state of a computational thread as a set of support graphs; computer-
implemented means for receiving the support graphs from parallel CSP solvers, the support
graphs representative of parallel solver state associated with processing of the computational
thread; computer-implemented means for paring support graphs from each ot the parallel CSP
solvers; computer-implemented means for pairwise merging the support graphs into a merged
graph; computer-implemented means for eliminating contlicts in the merged graph to output a
conflict-free merged graph that represents final state of the computational thread; computer-
implemented means for solving completeness of the merged graph by propagating constraints
utilizing non-chronological backtracking as part of the constraint propagation to directly
change an earlier assumption without changing an intermediate assumption; and computer-
implemented means for adding more than one learned constraint during constraint propagation

of the merged graph for the parallel solvers, which are parallel SAT solvers.

[0008d] According to yet another aspect of the present invention, there is provided a
computer readable medium having computer executable instructions stored thereon for

execution by one or more computers, that when executed implement a method as described

above or detailed below.
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[0009] To the accomplishment of the foregoing and related ends, certain
illustrative aspects of the disclosed innovation are described herein in connection with
the following description and the annexed drawings. These aspects are indicative,
however, of but a few of the various ways in which the principles disclosed herein can
be employed and is intended to include all such aspects and their equivalents. Other

advantages and novel features will become apparent from the following detailed

description when considered in conjunction with the drawings.

- BRIEF DESCRIPTION OF THE DRAWINGS
[0010] FIG. 1 1llustrates a system that facilitates solver processing in accordance
with a parallel implementation.
[0011]  FIG. 2 1llustrates a methodology of processing solver state in accordance
with the innovation.
[0012]  FIG. 3 illustrates an alternative parallel solver system that employs learning
and reasoning to infer guesses for answer assignments.
[0013]  FIG. 4 illustrates an (L,K)-deduction graph derived from an exemplary
constraint propagation process.
[0014]  FIG. 51llustrates a new graph for ﬁrocessing the conflicting constraint
output from the support graph of FIG. 4.
[0015]  FIG. 6 1llustrates a method of preparing and merging two support graphs.
[0016]  FIG. 7 illustrates a method of paring down two input support graphs for a
pairwise merging process.
[0017]  FIG. 8 illustrates a method of processing conflicts of a merged graph.
[0018] FIG. 9 1llustrates a method of paring and merging support graphs into a
final merged conflict-free graph for a sequential SAT solver.
[0019]  FIG. 10 illustrates a method of paring and merging support graphs into a
final merged conflict-free graph for a p-arallel SAT solver.
[0020]  FIG. 11 1llustrates a diagram of a system that applies solver state processing
of the subject innovation to a multi-core processing system.
[0021]  FIG. 12 illustrates a diagram of a system that applies solver state processing

in accordance with the subject innovation to multi-core multi-processor systems.
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[0022]  FIG. 13 illustrates a diagram of a system that applies solver state processing
in accordance with the subject innovation to solver state processing across separate
computing systems.

[0023]  FIG. 14 illustrates 1s a diagram of a CSP solver system that employs a truth
maintenance system and an inference engine for application as a problem solver in a
large search space.

[0024]  FIG. 15 1llustrates a block diagram of a computing system operable to
employ the disclosed parallelized solver state architecture.

[0025]  FIG. 16 1llustrates a schematic block diagram of an exemplary computing
environment that can exploit parallelized solver processing according to the disclosed

1nnovation.

DETAILED DESCRIPTION
[0026]  The disclosed architecture provides a solution for shared-memory parallel
processor systems that, conventionally, have notoriously been difficult to address
even as a sequential problem. The mnnovation provides lock-free state merging in
parallel constraint satisfaction problem (CSP) solvers. The state of a computational
thread of the solvers 1s represented as a set of support graphs. (In the interest of
simplicity, the phrase “support graph™ will be used rather than “set of support
oraphs”’, when no confusion will ensue.) These support graphs are used 1n a new way
by merging the graphs 1n a pairwise fashion describing a process that 1s lock-free and
which yields a new conflict-free support graph. The architecture can be applied,
generally, in any CSP solver where the underlying problem 1s reducible to Boolean
satisfiability, and in one specific implementation, the architecture can be applied
specifically in the context of a Boolean satisfiability (SAT) solver.
[0027] In the specific implementation of SAT solvers, the SAT solver problem
begins with a set of Boolean formulae that engender the problem 1n one of two ways.
It 15 desired to know whether the formula 1s always true. Put another way, 1t 1s
desired to determine 1f the formula 1s a theorem. An equivalent question, by taking
the complement (or negation) of any formula, 1s to determine 1f the formula 1s
satisfiable. That 1s to ask, 1s there an assignment of variables that makes the formula
true? For purposes of mechanization, this can be a way the problem 1s approached. It

1s attacked as a satisfiability problem and not a theorem proving problem.
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[0028] In the space of digital design, i1t 1s desired to know whether a Boolean
formula 1s a theorem or not. Rather than proving the formula to be shown 1s a
theorem, show that the negation 1s not satisfiable. The Boolean formula 1s presented
in a canonical form such as a disjunctive normal form, for example. The disjunctive
normal form 1s a representation where the set of formulae 1s finite, and there are only
two logical connectives that occur in any one of the formulac—a negation sign (logical
NOT) and the disjunction (or logical OR). Accordingly, in order for the original
problem, now 1n canonical form, to be satisfiable, there 1s an assignment of variables
that ensures these disjunctive formulae are true. Each of the formulae 1n the canonical
form 18 called a clause. Asused herein, the term “clause’ can also refer to a
constraint.

[0029]  Oftentimes in such complex domains such as CSP solvers, there 18 no
analytic method by which even a partial solution may be derived. One must assume
an answer — essentially a guess. Consequently, mitial assumptions once deemed true
by a program can change over time and later be discovered to be false. Accordingly,
the program has the problem of undoing inferences 1t might have made, based on
assumptions later found to be false. To be efficient, the process attempts to undo as
little as possible.

[0030] A SAT confronts the problem just described because m order to
demonstrate satisfiability, a partial assignment of answers 1s guessed. The guess
causes other Boolean variable answers to be assigned because of the logical
consequences of the new guess. The result of such a guess 1s that either a successful
set of guesses 1s eventually made which cause all the variables to become assigned, or
the last guess made leads to a logical inconsistency, at which point one of the guesses
1S gIven up.

[0031] Conventionally, chronological backtracking can be employed to move
backward, choosing values for one variable at a time. This backtracking may
continue until a variable has no legal values left to assign.

[0032]  The disclosed innovation employs “non-chronological” backtracking by
providing the capability to undo the most relevant assumptions, for example, change
only that one assumption, and change nothing to the intermediate assumptions. In

other words, the algorithm can go back in the arbitrary path, pick one assumption, and
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change only that assumption, 1n contrast to conventional systems where backing up
changes all nodes between the current position and some earlier position.

[0033] The mnnovation 1s now described with reference to the drawings, wherein
like reference numerals are used to refer to like elements throughout. In the following
description, for purposes of explanation, numerous specific details are set forth in
order to provide a thorough understanding thercof. It may be evident, however, that
the innovation can be practiced without these specific details. In other instances,
well-known structures and devices are shown 1n block diagram form in order to
facilitate a description thereof.

[0034] Referring mitially to the drawings, FIG. 1 1llustrates a system 100 that
facilitates solver processing in accordance with a parallel implementation. The
system 100 includes a bookkeeping component 102 for representing solver state 104
(denoted SOLVER STATE,, SOLVER STATE,,...,.SOLVER STATEy, where N 1s a
positive integer) associated with processing of a computational thread parallel solvers
as a sct of support graphs. The solver state 104 can be received from different
systems 1n a parallel fashion for processing by the bookkeeping component 102. The
bookkeeping component 102 processes the solver state 104 into support graphs for
subsequent merging. The system 100 can also include a merge component 106 for
pairwise merging of at least two input support graphs of the set of support graphs 1nto
a merged graph that represents the final state of the computation thread.

[0035] Manipulation of the support graphs by the bookkeeping and merge
components (102 and 106) can be simultancous. In other words, solver state from one
of the solvers 1s recerved and processed during the processing of solver state from
another solver.

[0036] In onc implementation, the bookkeeping component 102 recerves the input
solver state 104 from parallel CSP solvers operating on the computation thread. As
described in more detail infra, a CSP solver 1s defined according to a lattice of
valuations A4 and a set of values D, where D and A4 are the same set. In a more specific
alternative implementation, the bookkeeping component 102 recerves the input solver
state 104 from parallel Boolean SAT solvers operating on the computation thread.
[0037] Where the mnput solver state 104 1s from two parallel SAT solvers operating

on the computational thread, the merge component 102 facilitates adding » new and
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distinct literals to each of n copies of an L-complete, K-consistent deduction graph,
where 7 1s a positive integer. This will also be described further hereinbelow.

[0038] The merge component 106 merges the input solver state into the merged
graph 1n a lock-free manner, without cycles, and eliminates conflicts in the merged
oraph, thereby outputting a conflict-free graph 108.

[0039] With respect to lock-free processing, one way of achieving parallelism 1s to
have the capability of handling parallel thread processing. In other words, there exist
a number of parallel threads which eventually require results finalization.

[0040] One conventional way of performing parallel thread handling 1s that a first
thread simply locks the other threads out of some shared data structure until the first
thread has reached a result. It then becomes incumbent upon the other threads obtain
results that are consistent with previous thread results.

[0041]  The subject innovation avoids conventional locking by processing one-step
ahead, 1n parallel, and then combining the results. Accordingly, this method 1s
lock-free, 1n that, since there are m independent agents, where m 18 a positive integer,
cach agent has taken a step ahead, and 1n order to get the overall answer, the agents
must combine the results. At the heart of the process, results are combined two at a
time.

[0042] When merging support graphs, there are several undesirable things that can
happen. First, a conflict occurs between the two graphs. In other words, a variable x
has been assigned a true value 1n a first graph and the same variable x in the other
oraph has the assignment false. Solving, the two graphs are merged and a set of
assumptions 18 found that leads to this conflict. Once found, the associated
assumption or on¢ of the assumptions, 18 withdrawn.

[0043] A second problem can occur when as assignment 1n one graph 1s an
assumption and the same assignment 1n another graph 1s derived by unit resolution. If
oraph merger 1s now attempted, the resulting graph would exhibit a cycle. To resolve,
assumptions are given up 1n a very economical way using a greedy method. This 18
described 1n greater detail infra.

[0044]  FIG. 2 illustrates a methodology of processing solver state in accordance
with the mmnovation. While, for purposes of simplicity of explanation, the one or more
methodologies shown herein, for example, in the form of a flow chart or flow

diagram, arec shown and described as a series of acts, 1t 1s to be understood and
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appreciated that the subject innovation 1s not limited by the order of acts, as some acts
may, 1n accordance therewith, occur 1n a different order and/or concurrently with
other acts from that shown and described herein. For example, those skilled 1in the art
will understand and appreciate that a methodology could alternatively be represented
as a serics of interrelated states or events, such as 1n a state diagram. Moreover, not
all 1llustrated acts may be required to implement a methodology in accordance with
the innovation.

[0045] At 200, support graphs arc generated from the solver states of parallel
solvers. At 202, the support graphs of solver state are received, the solver state
assoclated with processing of a computational thread. At 204, the support graphs
from each solver are pared down simultancously for merging of nodes having the
same literals. At 206, the support graphs are pairwise merged 1nto a merged support
graph that represents the final state of the computational thread. At 208, constraint
propagation 1s initiated to achieve completeness of the merged graph. At 210, non-
chronological backtracking 1s utilized during constraint propagation to change
previous assumptions and resolve conflicts. At 212, conflicting literals are eliminated
to output a conflict-free merged graph.

[0046] Referring now to FIG. 3, there 1s 1llustrated an alternative parallel solver
system 300 that employs learning and reasoning to infer guesses for assignment of
answers. The system 300 includes multiple systems (e.g., two sequential solver
systems) 302 that generate solver state. For example, a first system 304 (denoted
SYSTEM,), a first sequential CSP solver, for example, generates solver state 306
(denoted SOLVER STATER;,...,.SOLVER STATE s, where S 1s a positive integer),
and a second system 308 (denoted SYSTEM3), a second sequential CSP solver, for
example, generates solver state 308 (denoted SOLVER STATEg,,...,.SOLVER
STATEgT, where T 1s a positive integer).

[0047]  The bookkeeping component 102 receives the solver state (306 and 310)
from the corresponding first and second systems (304 and 308) and creates graphs
(¢.g., support graphs) of the solver state for parallel thread processing and that
accounts for system constraints. The graphs are passed to the merge component 106
for merging into a merged graph having conflict-free state 108. However, the merged
oraph may not be complete. Accordingly, constraint propagation facilitated by a

propagation component 312 1s utilized to ensure completeness 1n the merged graph.
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This 1s described 1n greater detail hereinbelow. The propagation component 312 also
facilitates non-chronological backtracking as part of the constraint propagation to
directly change an carlier assumption without changing an intermediate assumption.
[0048] The system 300 can also employ a learning and reasoning component 314
(also referred to herein as an inference engine) that facilitates making inferences about
variable assignments based on guesses during constraint propagation.

[0049] The system 300 can operate 1 applications where not all of the answers are
known. Accordingly, assumptions ar¢ made about what 1s going 1n the world. For
example, as a server program 1s exposed to more data, 1t can occur that earlier
assumptions that the program made will be discovered to be false. The program then
has the problem of undoing inferences that might have made based on false premises.
[0050] In the satisfiability problem, a similar problem can exist because in order to
demonstrate satisfiability, an assignment of answers may have to be guessed. In other
words, 1n the sequential case when a new guess 1s made, this causes other Boolean
variable answers to be assigned because of the logical consequences of the new guess.
Moreover, one of two things eventually happens. Either a successful set of guesses 1s
made, which cause all the variables to become assigned, or the last guess made leads
to a logical inconsistency, at which point one of the guesses 1s given up.

[0051] In the most classical version of Boolean satisfiability, the sign of the last
guess 18 changed so if previously the Boolean variable was assigned false, the
assignment 1s changed to true and the process proceeds again. It 1s possible that a
logical inconsistency occurs when an assignment can be neither true nor false, which
means that some earlier assignment made must have been wrong.

[0052]  Rather than backing up and moving forward repeatedly, as necessary, the
actual set of assumptions that Iead to the observed conflict 1s 1dentified. Once a
conflict has been observed, 1t 1s desired to diagnose exactly what leads to the conflict,
which may or may not be the last assumption made. Such a diagnosis can be
precisely made and consequently a set of incompatible assumptions 1dentified.

[0053] The subject architecture (e.g., 1n connection with selection) can employ
various learning and reasoning based schemes for carrying out various aspects
thercof. For example, a process for determining which assignment to toggle (¢.g.,
from true to false or from false to true) can be facilitated via an automatic classifier

system and process.
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[0054] A classifier 1s a function that maps an mput attribute vector, x = (x1, x2, x3,
x4, xn), to a class label class(x). The classifier can also output a confidence that the
input belongs to a class, that 1s, f(x) = confidence(class(x)). Such classification can
employ a probabilistic and/or other statistical analysis (¢.g., one factoring into the
analysis utilities and costs to maximize the expected value to one or more people) to
prognose or infer an action that a user desires to be automatically performed.

[0055]  As used herein, terms “to infer” and “inference” refer generally to the
process of reasoning about or inferring states of the system, environment, and/or user
from a set of observations as captured via events and/or data. Inference can be
employed to 1dentify a specific context or action, or can generate a probability
distribution over states, for example. The inference can be probabilistic—that 1s, the
computation of a probability distribution over states of interest based on a
consideration of data and events. Inference can also refer to techniques employed for
composing higher-level events from a set of events and/or data. Such inference
results 1n the construction of new events or actions from a set of observed events
and/or stored event data, whether or not the events are correlated in close temporal
proximity, and whether the events and data come from one or several event and data
SOurces.

[0056] A support vector machine (SVM) 1s an example of a classifier that can be
employed. The SVM operates by finding a hypersurface in the space of possible
inputs that splits the triggering input events from the non-triggering events 1n an
optimal way. Intuitively, this makes the classification correct for testing data that 1s
near, but not 1dentical to training data. Other directed and undirected model
classification approaches include, for example, various forms of statistical regression,
naive Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models,
and other statistical classification models representing different patterns of
independence can be employed. Classification as used herein also 1s inclusive of
methods used to assign rank and/or priority.

[0057]  As will be readily appreciated from the subject specification, the subject
architecture can employ classifiers that are explicitly trained (e.g., via a generic
training data) as well as implicitly trained (e.g., via observing user behavior, receiving
extrinsic information). For example, SVM’s are configured via a learning or training

phase within a classifier constructor and feature selection module. Thus, the
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classifier(s) can be employed to automatically learn and perform a number of
functions according to predetermined criteria.

[0058]  In other words, the learning and reasoning component 314 can apply
learned constraints for conflict processing. One example, as described below, one
learned constraint can be added to a sequential SAT solver for conflict resolution.
Stmilarly, 1n a parallel SAT solver, several learned constraints can be added during
constraint propagation processing.

[0059]  Prior to looking at a constraint propagation example, preliminary
information 1s provided for a better understanding. A constraint satisfaction problem
(CSP) 1s typically described as follows: given a finite set of variables ¥, a (typically
finite) set of values D, a (possibly infinite) lattice of valuations A and a finite set of
functions (constraints) D' — A4, find a tuple in D"' such that the lattice meet among
that tuple’s 1images 1n all the constraints 1s maximal 1n A. Following 1s a description
where D and A4 are both the lattice of Booleans, specifically describing the invention
in the context of a SAT solver. This restriction notwithstanding, the invention 1s
generalizable to any CSP where D and A are the same set.

[0060] Variables are denoted xi,X,,...,X,, where n 18 a positive integer. Literals are

“signed” variables: X1,7X1,X2,7X>,... . L 1s the set of literals with / ranging over L. A

clause 1s a finite set of literals including the empty clause, denoted o. A clause

§X1,71X, X3,7X4} 18 often written instead as X; v 77X, v X3 v 71Xy (the logical OR (v) of
its elements). Any finite set of propositional formulae can be rendered as a logically
cquivalent fiite set of clauses.

[0061] A variable can be unassigned, or assigned a value of True (€.g., X;) or
False (€.g., 7X1). An assignment of the value True to the variable x 1s conflated
with the literal x. An assignment of the value False to the variable X 1s conflated
with the literal 7x. Valuations are attributed to clauses as a result of lifting
assignments from variables to clauses. A clause with an assignment of True 18
satisfied, and a clause with an assignment of False 1s violated. Satisfiability 1s the
question of whether there 1s an assignment of logical variables that satisfies a set of
clauses. Tautology 1s the question of whether a set of clauses 1s satisfied by every

assignment. Satisfiability and tautology are dual concepts in that a formula 1s a

tautology 1f and only 1f 1ts negation 1s unsatisfiable.

11



CA 02668121 2009-04-28
WO 2008/064185V O PCT/US2007/085149

[0062] Let K be a set of clauses over the literals in L. An (L,K)-deduction graph 1s
a directed graph whose nodes are labeled with individual literals paired with subsets
of L and whose edges are labeled with members of K. When there 1s no confusion
about which L and K are meant, the graph 1s referred to simply as a deduction graph.
A node 1s a k-antecedent to another just in case there 1s a directed edge from the first
to the second where the edge 1s labeled with the clause £.

[0063] An (L,K) deduction graph 1s well-labeled just 1n case the label on a node 1s
the union of the labels on its antecedent nodes, 1f the node / has no incoming arcs then

it 1s labeled with {/}, all incoming edges to the node for literal / are labeled with a
clause of the form / v £, all outgoing edges from the node for the literal / are labeled
with a clause of the form —/ v k. Whenever there 1s an edge labeled /v [ v ... v [

incident upon the / node, there are m-1 other edges labeled /v [; v ... v [, that are also
incident upon the / node.

[0064] A node/1in an (L,K)-deduction graph labeled with a singleton set consisting
of itself (e.g., "' Xo(@{7Xo}) 18 called an assumption literal. A well-labeled (L,K)-
deduction graph 1s uniquely justified if the incoming arcs incident upon a node are
labeled with exactly one clause. A well-labeled (L,K)-deduction graph 1s K-consistent
just 1n case 1t does not contain both the nodes / and 7/. A well-labeled (L,K)-
deduction graph 1s K-complete just in case for every A mm K of the form /v [} v ... v [,
whenever 7/4,...,7/,, are 1n the graph, / 1s 1n the graph with input incident edges
labeled with £. An acyclic well-labeled (L,K)-deduction graph, G, 1s L-complete 1f
there 1s no larger (1n terms of nodes) well-labeled graph, G’.

[0065] FIG. 4 and FIG. 5 1llustrate a parallelized solver example that employs
support graphs for conflict processing. FIG. 4 illustrates an (L,K)-deduction graph
400 derived from an exemplary constraint propagation process. To 1illustrate
application of the above definitions, consider an example of a satisfiability problem
and an attempted partial solution. Begin with an initial set of constraints C that

include,

M = (_'Xl V Xz)

Dy = (_'Xl VvV X3V X9)
03 = (X2 VvV X3V Xy)
Vg = (_'X4 V X5V X10)
D5 = (_'X4 V Xg V X11)
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Dg = (_'XS V _'X6)

D7 = (X1 V X7V _'Xlz)
D] = (X1 V Xg)

W9 = (TX7 VvV X3 V TX]3)

and a current stack of assumptions. In the deduction graph 400, assumptions are
modeled as assumption nodes, which nodes have no imnput arc. Accordingly, the

assumptions for the graph 400 include,

X1@iX14,
Xo@{ X0},
_'Xl()@{_'xlo} . and

X @ TX1 .

The graph 400 includes four assumption nodes: a first assumption node 402 where X,
has been assigned true (€.g., X1); a second assumption node 404 where Xo has been
assigned false (e.g., 7Xo); a third assumption node 406 where X;¢ has been assigned
false (e.g., 7X10); and, a fourth assumption node 408 where X;; has been assigned false
(c.g., 7X11).

[0066] Looking at a snapshot 1n time, the graph 400 indicates that assumption node
402 has an assignment of true to Xx; (€.g., X1), and assumption node 404 has an
assignment of false to Xo (€.g., 7X9). Now consider the edges labeled ®,, the
constraint clause w, = (7X; v X3 Vv Xo), as listed above; in other words, 1t can be read as
“not X; or X3 or Xo.”” However, notice that 1n the constraint m,, X; appears negatively
as 7X;, which means that the assignment as true 1n the graph 400 makes the disjunct
false, and Xo as being assigned negatively, also makes Xo disjunct false. But the
overall constraint ®, has to be made true, and the only remaining way that can get
constraint clause m; to be true 1s when X3 1s assigned to be true (e.g., X3). This 18
exactly what the graph 400 indicates at node 410, by assigning X; as true. Thus, based
on the assumptions at the input nodes 402 and 404, and the associated constraint w,,
the only way to satisty the constraint m, 1s to assign X3 as true. This 1s an application
of unit resolution.

[0067] Continuing with the other nodes, the edge to a node 412 uses the constraint

®1 = (77X v Xz). However, X; at the node 402 1s assigned true, leaving the only
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remaining possibility in satisfying the constraint ®; 18 to assign X, at node 412 as true.
Looking at the edges labeled w3, the constraint clause w3 = (7X; v 7X3 v Xy) can only
be satisfied by assigning true to x4 at node 414. In other words, the input nodes to 414
arc 410 and 412, which assign true to X3 and X,, respectively, leaving the only
remaining possible way to satisfy ms 18 to assign true to Xj.

[0068] Looking at the edges labeled with m4, the constraint clause w4 = (7X3 v X5 v
X10) can only be satisfied by assigning true to Xs at node 416, since the mput X 1s
assigned false and the input x4 15 assigned true. The edges labeled ms use the
constraint clause ms = (7X4 v Xg Vv X11), which can only be satisfied by assigning true
to Xs at node 418, since the inputs x11 1s assigned false and the input X, 1s assigned
true. Finally, the edges labeled wg use the constraint clause wg = (7Xs v 7Xg), which
constraint fails based on the existing assignments of Xs true and Xs true at the
corresponding nodes 416 and 418.

[0069] Constraint propagation leads to the (L,K)-deduction graph 400 and, when
reaching a last node 420, outputs a newly-derived constraint (written 1n a different

form),

Q)C(K((,O6)) = _'(Xl A Xg A X100 N ﬂX11),,

where « (kappa) represents “conflict” and the constraint 1s a report of what went
wrong. Here, the output mc(k(we)) indicates that 1t cannot be that simultancously, x;
1S true, Xo 18 false, Xjq 1s false, and Xy, 1s false, one of which has to be given up for
further processing. This 1s equivalent to not X; or Xo or Xjo or X;1, which 1s 1n correct
form. FIG. 5 illustrates a new graph 500 for processing the conflicting constraint
output from the support graph of FIG. 4. Selecting assumptions for three of four of
the above (e.g., 7Xo, X190, and 7X;;) yields the new graph 500 and yet another newly-

derived output constraint

G)C(K((,Og)) = _'(ﬂXQ A X0 /A X111 A X192 A X13).

[0070] More specifically, the graph 500 1s created by making assumptions

(dropping one of the early assumptions), using assumption nodes 502, 504, and 506 as

14



CA 02668121 2009-04-28
WO 2008/064185V O PCT/US2007/085149

ﬂXg@g{_'Xg}, _'Xlo@{_'Xlo}, and "X“@{"X“}, respectively. Beginning with these
assumptions and applying the newly-derived constraint wc(k(ws)) to the edges yields
an assignment of false to x; at node 508 to satisty the constraint oc(k(we)).

[0071] Looking at the edges labeled @7, another assumption node 510 (assigned
X12@{X12}) 1s introduced, and the constramnt clause ®w7 = (X7 v X7 v 7X1;) can only be
satisfied by assigning true to X7 at node 512, since the mput x; 1s assigned false and
the input X, 18 assigned true.

[0072] Looking at the edge labeled ws, the constraint clause wg = (X1 v Xg) can only

be satisfied by assigning true to Xz at node 514, since the mput x; 18 assigned false.

Now considering the edges labeled wo, the constraint clause wo = (7X7 v X3 v 7X13)
cannot be satisfied using the current inputs (node 512, node 514, and an assumption
node 516). Thus, the newly-derived constraint o(k(mo)) = (7 Xo A X190 A X171 A X912
A X13), output at node 518, 18 a report of what went wrong with the deduction graph
500. The constraint derivation process continues until no conflict states exist.

[0073] Described in a more general way, once support graphs are obtained for the
solver states of each parallel solver thread, merging can be commenced. Although the
description focuses on pairwise merging, it 1S within contemplation that merging can
be accomplished using more than two graphs. State merging 1s lock-free. In other
words, one conventional way of achieving parallelism involves threads processing.
For example, where a multiplicity of parallel threads 1s processing data, eventually 1t
1s desired to merge the results of the threads. One way of doing this 1s by a first
thread simply locking the other threads out from some shared data structure until the
first thread completes 1ts process. Accordingly, 1t 1s incumbent upon the other locked-
out threads to write results that are consistent with those that have already been
written. This conventional architecture 1s at least inefficient. The disclosed
architecture avoids such explicit locking mechanism.

[0074]  As described supra, the algorithm(s) perform processing one step ahead in
parallel and then the results are combined. In other words, in order to arrive at the
overall result, each agent processes ahead one step and the separate interim results are
combined, and this continues until reaching the overall answer. Additionally, conflict
processing 18 resolved and the merge process 1s cycle free.

[0075]  As before, in deconflict processing, one or more assumptions may be given

up 1n one or the other of the graphs. Morcover, 1t 1s desirable to be very economical
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about what assumptions to give up. By defining all of the sets of information (e.g.,
assumptions, deductions, graphs,...) used by the disclosed architecture, a reduction
algorithm (also referred to herein as redux) makes choices 1n a way that it gives up
as little as possible between the two graphs being merged. Recall that in a single
graph case, the point of 1dentifying these conflicts 1s to 1dentify an assumption that
has as little a consequence as possible 1f 1t were to be given up, rather than having to
backup over several previous assumptions, which a point for the set of support graphs.
[0076] Now applying the same technique(s) to a pair of graphs, the graphs are
merged in a cycle-free fashion such that 1f an assumption 1s given up, as little as
possible 1s affected or lost. This can be addressed by utilizing a “greedy” method or
algorithm. In other words, the method finds a cheap way of minimizing what 1s being
given up by making the choice that seems to be the best at the particular point in time.
More 1ntensive algorithms can be employed that utilize much more analysis; however,
in on¢ 1implementation, the greedy method 1s sufficient.

[0077]  FIG. 6 illustrates a method of preparing and merging two support graphs.
At 600, two support graphs are received for processing. At 602, the graphs are pared
(or reduced) down for merging nodes that correspond to the same literals to reduce or
climiate cycling using a greedy method. At 604, merge the support graphs 1nto a
merged graph. At 606, process the merged graph for completeness by propagating
constraints, 1f needed. At 608, process merged graph for conflicts, if needed. At 610,
the final merged graph 1s output that represents conflict-free solver state.

[0078]  In preparation for a more detailed description of how two (L,K)-deduction
oraphs can be merged, the following definitions are presented. If G, G’ are acyclic, L-

complete (L,K)- deduction graphs, then

Cg.g 18 the set of assumptions in common to the graphs G and G’.
Ag 18 the set of assumptions of G.

D¢ 18 the set of deductions of G.

Ag.c 18 the set of assumptions of G that are deductions of G

B g 18 the set of assumptions of G that are not mentioned in G’
Ag=Csc Y Age Y Bge

Ag=Cee VAgcY Bg g
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fo: Ag — 276 — fi; being a function that produces the dependents of an
assumption in G.

ha: L-Ac — 246 _ hg being a function that produces the antecedents of a

deduction 1n G.

[0079]  FIG. 7 illustrates a method of paring down two mput support graphs for a
pairwise merging process. At 700, 1n this particular implementation, this process 1S
initiated according to a function called redux. The function redux (G,G") produces
a pair of graphs (G1,G,) defined as follows. At 702, a first definition 1s provided: Let
[ € Ag.c be anode such that |f;(/)| (the size of the set of dependents) 1s at least as
large as the choice of any other assumption node in 4. At 704, a second definition

is provided: Let /' € A5 be a node such that |f;(/”)| 1s at least as large as the choice

, the

of any other assumption node in Ag'g. At 706, 1f |[f(/)| 1s smaller than |f5 (/")
roles of G and G' are reversed. At 708, /" € hg (/) 1s chosen such that |/ (/)] 1s as
small as any other choice of /”. At 710, define G” be the subgraph of G' that lacks /"
At 712, 1t Ago=Ag ¢ =, then exit

and any node /; such that /; 1s in |[f; (/)
redux, returning the pair (G,G”). At 714, 1fnot A= Ag ¢ =, then call redux
(G,G”).

[0080] Eventually, redux pares the two graphs down so that the nodes
corresponding to the same literals can be merged without fear of cycles. As indicated
infra, redux pares 1n a “‘greedy’ fashion, in the sense that 1t attempts to give up as
few derived (non-assumption literals) as possible. It 1s desirable to pare 1n a way such
that in the end, as much parallel forward progress as possible 1s achieved. However, 1t
1S to be understood that other algorithms can be employed that pare back the graphs
for merging without fear of cycles.

[0081]  Note that the merged graph — call it G, again — 18 no longer L-complete,
which can be remedied by propagating constraints to make 1t so. It 1s also possible
that the merged graph contains conflicting literals / and 1/, in which case,
deconflict (G)is computed for this graph, which produces a conflict-free graph.
FI1G. 8 1llustrates a method of processing conflicts of a merged graph. At 800, in this

particular implementation, removing conflicts 1s mitiated according to a function

called deconflict. At 802, choose /' € hg (/) such that |f; (/)| 1s as small as any
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other such choice. At 804, choose /" € hg (—/) such that |[f;(/7)
other such choice. At 806, if |f; (1) < |[f5' (I")

assumption to be deleted, along with all of its dependents. At 808, this process 1S

1s as small as any

, choose / (otherwise, /) as the

repeated until all conflicting nodes are eliminated.

[0082] The redux and deconflict functions can be employed in a SAT solver
by positing a me rge function, which first applies redux to a pair of graphs, and then
applies deconflict to the result. FIG. 9 illustrates a method of paring and merging
support graphs into a final merged conflict-free graph for a sequential SAT solver. At
900, graph paring (¢.g., using redux) and conflict processing (¢.g., using
deconflict) are mnitiated 1n a sequential SAT solver. At 902, an inner loop of the
sequential SAT solver adds one new literal to an L-complete, K-consistent deduction
graph. At 904, the support graphs are pared to merge nodes and produce cycle-free
processing. At 906, constraints are propagated to make the merged graph L-complete.
At 908, a conflict-free merged graph (using, ¢.g., function deconflict) is provided
by, optionally, adding one learned constraint. At 910, the process 1s repeated, as
necessary, to output a merged contlict-free graph of solver state.

[0083] FIG. 10 1llustrates a method of paring and merging support graphs into a
final merged conflict-free graph for a parallel SAT solver. At 1000, graph paring
(¢.g., using redux) and conflict processing (€.g., using deconflict) are initiated in
a parallel SAT solver. At 1002, an inner loop of the parallel SAT solver adds n new
and distinct literals to each of » copies of an L-complete, K-consistent support graph.
At 1004, the n graphs are pared to merge nodes and produce cycle-free processing.

At 1006, constraints are propagated within each deduction graph to make the merged
oraph L-complete. At 1008, a conflict-free merged graph (using, ¢.g., function
deconflict) 1s output by, optionally, adding learned constraints.

[0084]  FIG. 11 1illustrates a diagram of a system 1100 that applies solver state
processing of the subject innovation to a multi-core processing system 1102. Multi-
core processing system 1102 1s a shared memory parallel processing system, as can be
facilitated by a first processing core 1104 (denoted CORE,) and a second processing
core 1106 (denoted CORE,), both fabricated on the same die. The processing system

1002 can also include onboard memory 1108 for shared buffering of a computational
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thread that 1s being processed. Although illustrated on the same die, the memory
1108 can be located external to the die and serve the same purpose.

[0085] In support of shared thread processing by each of the cores (1104 and
1106), a pair of solvers 1s provided. For example, a first solver 1110 (denoted
SOLVER)) and a second solver 1112 (denoted SOLVER3), both of which can be CSP
solvers, for example, are provided to perform constraint processing during thread
execution among multiple cores (1104 and 1106) of the processor system 1102.
[0086] A state system 1114 1s provided for pairwise support graph processing in
accordance with the disclosed mmnovation. The state system 1114 provides pairwise
processing of solver state (denoted as SOLVER, STATE and SOLVER, STATE)
recerved from the associated parallelized solvers (1110 and 1112) 1in the form of
support graphs. The state system 1114 can include the bookkeeping component 102,
merge component 106, propagation component 312 and inference component 314
described supra for accomplishing the support graph reduction (or paring), support
graph merging, conflicts processing, and variable assignments.

[0087] It 1s to be understood that the state system 1114 can be implemented strictly
in software, strictly in hardware (¢.g., as an ASIC-application specific integrated
circuit device or a field programmable gate array (FPGA)), or as a combination of
both hardware and software. Alternatively, the components (102, 106, 312 and 314)
of the state system 1114 can be implemented separately as combinations of hardware
and/or software.

[0088]  FIG. 12 1llustrates a diagram of a system 1200 that applies solver state
processing 1in accordance with the subject innovation to multi-core multi-processor
systems. The multi-core multi-processor system 1200 includes a first multi-core
processor system 1202 and a second multi-core processor system 1204, cach a shared
memory parallel processing system. The first processor system 1202 includes a first
processing core 1206 (denoted CORE)) and a second processing core 1208 (denoted
CORE,), both fabricated on the same diec and sharing a shared memory 1208 for
shared buffering of a computational thread that 1s being processed.

[0089] The second multi-core processor system 1204 includes a first processing
core 1212 (denoted CORE),) and a second processing core 1214 (denoted CORE)),
both fabricated on the same die and sharing a shared memory 1216 for shared

buffering of a computational thread that is being processed.
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[0090] In support of shared thread processing by each of the cores (1206 and
1208), corresponding sets of solvers are provided. For example, a first solver 1218
(denoted SOLVER)) and a second solver 1220 (denoted SOLVER;), both of which
can be CSP solvers, for example, are provided to perform constraint processing during
thread execution among the multiple cores (1206 and 1208) of the processor system
1202. Similarly, in support of shared thread processing by each of the cores (1212
and 1214), corresponding sets of solvers are provided. For example, a third solver
1222 (denoted SOLVERG3) and a fourth solver 1224 (denoted SOLVER,), both of
which can be CSP solvers, for example, are provided to perform constraint processing
during thread execution among the multiple cores (1212 and 1214) of the processor
system 1204.

[0091] Each of the solvers (1218, 1220, 1222 and 1224) passes solver state to a
state processing system 1226. For example, solver state (denoted S; STATE and S,
STATE) 1s forwarded from the first processor system 1202 to the state system 1226
and solver state (denoted S; STATE and S4 STATE) 18 forwarded from the second
processor system 1204 to the state system 1226.

[0092]  The state system 1226 1s provided for pairwise support graph processing in
accordance with the disclosed mnnovation. The state system 1226 provides pairwise
processing of solver state received from the parallelized solvers (1218, 1220, 1222
and 1224) 1n the form of support graphs. For example, in such multi-core
multi-processor systems thread computation processing can occur across any
combination of the cores (1206, 1208, 1212 and 1214). For example, processing can
occur using cores 1208, 1212 and 1214. Accordingly, states from these three cores
should be passed to the state system 1226 for pairwise processing m accordance with
the disclosed algorithms. In support thereof, the state system 1226 can include a
selection component 1228 for selecting related state from ecach of the solvers (1218,
1220, 1222 and 1224) based on the thread undergoing state processing. In other
words, unrelated state will not be selected for support graph processing. However, 1t
1s to be understood that state processing can now be performed 1n parallel as well, by
include an additional state system (not shown) such that one state system 1s dedicated
to cach processor system (1202 or 1204).

[0093]  As before, the state system 1226 can further include the bookkeeping

component 102, merge component 106, propagation component 312 and inference
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component 314 described supra for accomplishing the support graph reduction (or
paring), support graph merging, conflicts processing, and variable assignments.
[0094]  Additionally, 1t 1s to be appreciated that the state system 1226 can be
implemented strictly in software, strictly in hardware (¢.g., ASIC, FPGA), or as a
combination of both hardware and software.

[0095]  The state systems (1114 of FIG. 11 and/or 1226) can also be implemented
as a standalone software and/or hardware pluggable modules for installation into a
computing system for the handling of solver state. For example, a card with a high-
speed interface and memory (e.g., non-volatile or flash) can be employed for suitable
interface to a processor subsystem and for solver state processing. Alternatively, or 1n
combination therewith, a software module can be installed that processes solver state
in accordance with the disclosed innovation.

[0096] FIG. 13 1llustrates a diagram of a system 1300 that applies solver state
processing mn accordance with the subject innovation to solver state processing across
separate computing systems. Here, a first computing system 1302 1s a
single-processor system having a system processor 1304 (and a single core 1306) for
performing program and data processing. A second computing system 1308 1s a
multi-processor system having a multi-processor subsystem 1310 (and two processors
1312 and 1314) for performing program and data processing. The systems (1302 and
1308) are disposed in communication on a network 1316 (or suitable high-speed
interface) and further, in communications with the state system 1226 of FIG. 12 for
solver state processing. If a thread 1s processed across both systems (1302 and 1308),
solver state can be processed from both systems similar to the description provided
above 1 FIG. 12.

[0097]  FIG. 14 1llustrates 1s a diagram of a CSP solver system 1400 that employs a
truth maintenance system 1402 and an inference engine 1404 (using learning and
reasoning) for application as a problem solver 1n a large search space. The engine
1404 explores alternatives, makes choices, and analyzes the choices for correctness.
When a conflict occurs, the truth maintenance system facilitates elimination of the
conflict, and updates 1ts knowledge base accordingly, for future use.

[0098]  As used 1n this application, the terms “component” and “system’ are
intended to refer to a computer-related entity, either hardware, a combination of

hardware and software, software, or software 1n execution. For example, a
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component can be, but 18 not limited to being, a process running on a processor, a
processor, a hard disk drive, multiple storage drives (of optical and/or magnetic
storage medium), an object, an executable, a thread of execution, a program, and/or a
computer. By way of 1llustration, both an application running on a server and the
server can be a component. One or more components can reside within a process
and/or thread of execution, and a component can be localized on one computer and/or
distributed between two or more computers.

[0099] Referring now to FIG. 15, there 1s 1llustrated a block diagram of a
computing system 1500 operable to employ the disclosed parallelized solver state
architecture. In order to provide additional context for various aspects therecof, FIG.
15 and the following discussion are intended to provide a brief, general description of
a suitable computing system 1500 1n which the various aspects of the innovation can
be implemented. While the description above 1s 1n the general context of computer-
executable mstructions that may run on one or more computers, those skilled 1n the art
will recognize that the innovation also can be implemented 1n combination with other
program modules and/or as a combination of hardware and software.

[00100] Generally, program modules include routines, programs, components, data
structures, etc., that perform particular tasks or implement particular abstract data
types. Morecover, those skilled 1n the art will appreciate that the inventive methods
can be practiced with other computer system configurations, including single-
processor or multiprocessor computer systems, minicomputers, mainframe computers,
as well as personal computers, hand-held computing devices, microprocessor-based or
programmable consumer e¢lectronics, and the like, each of which can be operatively
coupled to one or more associated devices.

[00101] The illustrated aspects of the innovation may also be practiced in
distributed computing environments where certain tasks are performed by remote
processing devices that are linked through a communications network. In a
distributed computing environment, program modules can be located in both local and
remote memory storage devices.

[00102] A computer typically includes a variety of computer-readable media.
Computer-readable media can be any available media that can be accessed by the
computer and includes volatile and non-volatile media, removable and non-removable

media. By way of example, and not limitation, computer-readable media can
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comprise computer storage media and communication media. Computer storage
media includes both volatile and non-volatile, removable and non-removable media
implemented 1n any method or technology for storage of information such as
computer-readable instructions, data structures, program modules or other data.
Computer storage media includes, but 1s not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital video disk (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store the desired
information and which can be accessed by the computer.

[00103] With reference again to FIG. 15, the exemplary computing system 1500 for
implementing various aspects includes a computer 1502, the computer 1502 including
a processing unit 1504, a system memory 1506 and a system bus 1508. The system
bus 1508 provides an interface for system components including, but not limited to,
the system memory 1506 to the processing unit 1504. The processing unit 1504 can
be any of various commercially available processors. Dual microprocessors and other
multi-processor architectures may also be employed as the processing unit 1504,
[00104] The system bus 1508 can be any of several types of bus structure that may
further interconnect to a memory bus (with or without a memory controller), a
peripheral bus, and a local bus using any of a variety of commercially available bus
architectures. The system memory 1506 includes read-only memory (ROM) 1510
and random access memory (RAM) 1512. A basic iput/output system (BIOS) 1s
stored 1n a non-volatile memory 1510 such as ROM, EPROM, EEPROM, which
BIOS contains the basic routines that help to transfer information between elements
within the computer 1502, such as during start-up. The RAM 1512 can also include a
high-speed RAM such as static RAM for caching data.

[00105] The computer 1502 further includes an mternal hard disk drive (HDD)
1514 (e.g., EIDE, SATA), which internal hard disk drive 1514 may also be configured
for external use 1n a suitable chassis (not shown), a magnetic tloppy disk drive (FDD)
1516, (¢.g., to read from or write to a removable diskette 1518) and an optical disk
drive 1520, (e.g., reading a CD-ROM disk 1522 or, to read from or write to other high
capacity optical media such as the DVD). The hard disk drive 1514, magnetic disk
drive 1516 and optical disk drive 1520 can be connected to the system bus 1508 by a

hard disk drive interface 1524, a magnetic disk drive interface 1526 and an optical
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drive mterface 1528, respectively. The interface 1524 for external drive
implementations includes at least one or both of Universal Serial Bus (USB) and
IEEE 1394 interface technologies. Other external drive connection technologies are
within contemplation of the subject innovation.

[00106] The drives and their associated computer-readable media provide
nonvolatile storage of data, data structures, computer-executable 1nstructions, and so
forth. For the computer 1502, the drives and media accommodate the storage of any
data 1n a suitable digital format. Although the description of computer-readable
media above refers to a HDD, a removable magnetic diskette, and a removable optical
media such as a CD or DVD, 1t should be appreciated by those skilled 1n the art that
other types of media which are readable by a computer, such as zip drives, magnetic
cassettes, flash memory cards, cartridges, and the like, may also be used 1n the
exemplary operating environment, and further, that any such media may contain
computer-executable instructions for performing the methods of the disclosed
Innovation.

[00107] A number of program modules can be stored 1n the drives and RAM 1512,
including an operating system 1530, one or more application programs 1532 (e.g., the
lock-free CSP solver processing systems described above), other program modules
1534, and program data 1536. All or portions of the operating system, applications,
modules, and/or data can also be cached in the RAM 1512. It is to be appreciated that
the innovation can be implemented with various commercially available operating
systems or combinations of operating systems.

[00108] A user can enter commands and information into the computer 1502
through one or more wired/wireless input devices, for example, a keyboard 1538 and
a pointing device, such as a mouse 1540. Other input devices (not shown) may
include a microphone, an IR remote control, a joystick, a game pad, a stylus pen,
touch screen, or the like. These and other input devices are often connected to the
processing unit 1504 through an 1mnput device intertace 1542 that 1s coupled to the
system bus 1508, but can be connected by other interfaces, such as a parallel port, an
IEEE 1394 serial port, a game port, a USB port, an IR 1nterface, etc.

[00109] A monitor 1544 or other type of display device 1s also connected to the

system bus 1508 via an interface, such as a video adapter 1546. In addition to the
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monitor 1544, a computer typically includes other peripheral output devices (not
shown), such as speakers, printers, etc.

[00110] The computer 1502 may operate 1in a networked environment using logical
connections via wired and/or wireless communications to one or more remote
computers, such as a remote computer(s) 1548. The remote computer(s) 1548 can be
a workstation, a server computer, a router, a personal computer, portable computer,
microprocessor-based entertainment appliance, a peer device or other common
network node, and typically includes many or all of the elements described relative to
the computer 1502, although, for purposes of brevity, only a memory/storage device
1550 1s 1llustrated. The logical connections depicted include wired/wireless
connectivity to a local area network (LAN) 1552 and/or larger networks, for example,
a wide arca network (WAN) 1554. Such LAN and WAN networking environments
arc commonplace 1n offices and companies, and facilitate enterprise-wide computer
networks, such as intranets, all of which may connect to a global communications
network, for example, the Internet.

[00111] When used 1n a LAN networking environment, the computer 1502 1s
connected to the local network 1552 through a wired and/or wireless communication
network interface or adapter 1556. The adaptor 1556 may facilitate wired or wireless
communication to the LAN 1552, which may also include a wireless access point
disposed thercon for communicating with the wireless adaptor 1556.

[00112] When used in a WAN networking environment, the computer 1502 can
include a modem 1558, or 18 connected to a communications server on the WAN
1554, or has other means for establishing communications over the WAN 1554, such
as by way of the Internet. The modem 1558, which can be internal or external and a
wired or wireless device, 1s connected to the system bus 1508 via the serial port
interface 1542. In a networked environment, program modules depicted relative to
the computer 1502, or portions thercof, can be stored 1n the remote memory/storage
device 1550. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the
computers can be used.

[00113] The computer 1502 1s operable to communicate with any wireless devices
or entities operatively disposed 1in wireless communication, for example, a printer,

scanner, desktop and/or portable computer, portable data assistant, communications
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satellite, any piece of equipment or location associated with a wirelessly detectable
tag (¢.g., a kiosk, news stand, restroom), and telephone. This includes at least Wi-Fi
and Bluctooth™ wireless technologies. Thus, the communication can be a predefined
structure as with a conventional network or simply an ad hoc communication between
at least two devices.

[00114] Referring now to FIG. 16, there 1s 1llustrated a schematic block diagram of
an exemplary computing environment 1600 that can exploit parallelized solver
processing according to the disclosed innovation. The system 1600 includes one or
more client(s) 1602. The client(s) 1602 can be hardware and/or software (¢.g.,
threads, processes, computing devices). The client(s) 1602 can house cookie(s)
and/or associated contextual information by employing the subject innovation, for
example.

[00115] The system 1600 also includes one or more server(s) 1604. The server(s)
1604 can also be hardware and/or software (¢.g., threads, processes, computing
devices). The servers 1604 can house threads to perform transformations by
employing the architecture, for example. One possible communication between a
client 1602 and a server 1604 can be in the form of a data packet adapted to be
transmitted between two or more computer processes 1n support of parallelized solver
state processing. The data packet may include a cookie and/or associated contextual
information, for example. The system 1600 includes a communication framework
1606 (e.g., a global communication network such as the Internet) that can be
employed to facilitate communications between the client(s) 1602 and the server(s)
1604,

[00116] Communications can be facilitated via a wired (including optical fiber)
and/or wireless technology. The client(s) 1602 are operatively connected to one or
more client data store(s) 1608 that can be employed to store information local to the
client(s) 1602 (e.g., cookie(s) and/or associated contextual information). Similarly,
the server(s) 1604 are operatively connected to one or more server data store(s) 1610
that can be employed to store information local to the servers 1604.

[00117] What has been described above includes examples of the disclosed
innovation. It 1s, of course, not possible to describe every conceivable combination of
components and/or methodologies, but one of ordinary skill in the art may recognize

that many further combinations and permutations are possible. Accordingly, the
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innovation 1s intended to embrace all such alterations, modifications and variations that fall
within the scope of the appended claims. Furthermore, to the extent that the term "includes”
1s used in either the detailed description or the claims, such term is intended to be inclusive in
a manner similar to the term "comprising" as "comprising" is interpreted when employed as a

transitional word in a claim.
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CLAIMS:

1. A computer-implemented system that facilitates constraint solver processing,

comprising:

a bookkeeping component for representing input solver state of a
computational thread as a set of graphs, the input solver state received from parallel solvers

operating on the computational thread;

a merge component for pairwise merging of at least two input graphs of the set

of graphs into a merged graph that represents final state of the computational thread;

a propagation component for constraint propagation to generate completeness
in the merged graph, wherein the propagation component facilitates non-chronological
backtracking as part of the constraint propagation to directly change an earlier assumption
without changing an intermediate assumption and the propagation component facilitates
adding more than one learned constraint during constraint propagation of the merged graph
for the parallel solvers, which are parallel SAT solvers, wherein the representing input set of

support graphs to be merged by the merge component are contlict-free support graphs.

2. The system of claim 1, wherein the bookkeeping component receives the input

solver state from parallel Boolean satisfiability (SAT) solvers operating on the computational

thread.

3. The system of claim 1, wherein the bookkeeping component receives the input
solver state from parallel constraint satisfaction problem (CSP) solvers operating on the

computational thread.

4. The system of claim 3, wherein the CSP solvers are defined according to a

lattice of valuations A and a set of values D, where D and A are the same set.

5. The system of claim 1, wherein the merge component merges the input solver

state into the merged graph in a lock-free manner.
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6. The system of claim 1, further comprising a learning and reasoning component

for inferring a variable assignment based on a guess during a constraint propagation process.

7. The system of claim 1, wherein the input solver state is from two parallel SAT
solvers operating on the computational thread, and the merge component facilitates adding n
new and distinct literals to each of n copies of an L-complete, K-consistent deduction graph,

where n 1s a positive integer.
8. A computer-implemented method of constraint solver processing, comprising:

representing input solver state of a computational thread as a set of support

graphs;

receiving the support graphs associated with solver state of parallel solvers, the

solver state associated with processing of the computational thread;

paring a support graph from each of the parallel solvers for merging of nodes

having same literal;

pairwise merging the support graphs into a merged graph that represents final

state of the computational thread,;

solving completeness of the merged graph by propagating constraints utilizing
non-chronological backtracking as part of the constraint propagation to directly change an

earlier assumption without changing an intermediate assumption;

adding more than one learned constraint during constraint propagation of the

merged graph for the parallel solvers, which are parallel SAT solvers; and

processing conflicting literals of the merged graph to make the merged graph

conflict-free.

0. The method of claim 8, further comprising paring down the support graphs for

the pairwise merging according to nodes having same literals.
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10. The method of claim 8, further comprising manipulating the support graphs ot

the respective parallel solvers simultaneously.

11. The method of claim 8, further comprising eliminating a conflicting literal
from a set of conflicting literals and designating remaining conflicting literals of the set as

assumptions for a new deduction graph.
12. The method of claim 8, wherein the parallel solvers are Boolean SAT solvers.
13. A computer-implemented solver system, comprising:

computer-implemented means for representing input solver state ot a

computational thread as a set of support graphs;

computer-implemented means for recetrving the support graphs from parallel
CSP solvers, the support graphs representative of parallel solver state associated with

processing of the computational thread;

computer-implemented means for paring support graphs from each of the

parallel CSP solvers;

computer-implemented means for pairwise merging the support graphs into a

merged graph;

computer-implemented means for eliminating conflicts in the merged graph to

output a conflict-free merged graph that represents final state of the computational thread;

computer-implemented means for solving completeness of the merged graph
by propagating constraints utilizing non-chronological backtracking as part of the constraint
propagation to directly change an earlier assumption without changing an intermediate

assumption; and

computer-implemented means for adding more than one learned constraint

during constraint propagation of the merged graph for the parallel solvers, which are parallel

SA'T solvers.
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14. A computer readable medium having computer executable instructions stored
thereon for execution by one or more computers, that when executed implement a method

according to any one of claims 8 to 12.
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