
T. SMITH.
ELECTRIC LIGHT CORD ADJUSTER.
APPLICATION FILED OCT. 31, 1904.

1,034,741.

Patented Aug. 6, 1912.

UNITED STATES PATENT OFFICE.

THEODORE SMITH, OF CHICAGO, ILLINOIS, ASSIGNOR TO THEO. SMITH MANUFACTURING COMPANY, OF CHICAGO, ILLINOIS, A CORPORATION OF ILLINOIS.

ELECTRIC-LIGHT-CORD ADJUSTER.

1,034,741.

Specification of Letters Patent.

Patented Aug. 6, 1912.

Application filed October 31, 1904. Serial No. 230,647.

To all whom it may concern:

Be it known that I, THEODORE SMITH, a citizen of the United States, residing at Chicago, in the county of Cook and State of 5 Illinois, have invented a certain new and useful Improvement in Electric-Light-Cord Adjusters, of which the following is a specification.

My invention relates to electric light cord 10 adjusters, and has for its object to provide a new and improved adjusting device of this description.

My invention is illustrated in the accom-

panying drawings, wherein-

15 Figure 1 is a view showing one form of my adjusting device in position; Fig. 2 is a view showing a modified construction; Fig. 3 is a view of the device shown in Fig. 2, while the parts are being moved to adjust 20 the length of the cord; Fig. 4 is a view showing the eyelet through which the adjusting cord passes; Fig. 5 is a side view of the adjusting block; Fig. 6 is a top view of the device shown in Fig. 5; Fig. 7 is a view 25 similar to Fig. 6, showing a modified construction; Fig. 8 is a sectional view on line 8—8, Fig. 7.

Like letters refer to like parts throughout

the several figures.

One of the objects of my invention is to provide a cheap, efficient, satisfactory adjusting device for suspended electric lamps used in connection with flexible conductors.

In Fig. 1 I have shown a simple form of the device. In this figure the electric lamp A is suspended by a braided flexible cord, B. An adjusting block, C, is associated with the cord, and is provided with two inclined openings, C¹ and C². These inclined openings pass through the block in an angular direction, the edges of the openings on one side being much closer together than the edges on the opposite side. The conductor or cord is threaded through these openings so that the loop D is opposite the side of the block where the openings are the most widely separated. Under normal conditions the block is in the position shown in Fig. 1, and binds the cord so as to hold it from sliding, thus permitting the cord to be lengthened or shortened by changing the amount of cord in the loop D. When it is desired to raise or lower the lamp the block is moved toward the horizontal position and the cord slid therethrough. When released

the block moves to the position where it binds the cord and thus holds the parts in this new position. In Figs. 2 and 3 I have shown a construction adapted to be used where the cord is very long, that is, where 60 the cord is of such length that it is difficult to reach the block to adjust it. In such event I provide the block with a flexible controlling device having one end, E, connected to one end of the block C beyond the 65 opening, and the other end, F, connected to the other end of the block, beyond the opening. The block is provided with openings beyond the openings C¹ and C², and the end E of the controlling device is preferably 70 looped about the conducting cord B as The block can be adjusted by means of this flexible controlling device. If, for example, it is desired to raise the lamp, this may be done by pulling down 75 upon the part G of the controlling device. This puts a tension upon the part E and lifts the block as shown in Fig. 3, permitting it to slide upward to the desired point. When the desired adjustment is secured, the 80 controlling device is released and the block takes the position shown in Fig. 2, and clamps the cord. When it is desired to lower the block it is only necessary to pull upon the part F of the controlling device. 85 This will lower the block. The flexible controlling device passes over a suitable guide, which guide may be attached to the ceiling, or other fixed part. In order to make the device self-contained, however, I prefer to 90 provide the cord itself with the guiding device. This may be accomplished by placing between the strands of the flexible cord a spool or eyelet, H, as shown in Fig. 4. This spool can be readily placed in position 95 at any desired point, and when in position the controlling device may be threaded therethrough, the spool acting as the guide therefor.

The block C may be made of one piece, ¹⁰⁰ as shown in Figs. 5 and 6. In this event it must be placed in position before the lamp is attached to the cord, or the cord connected to the source of electric supply.

In Figs. 7 and 8 I have shown a device ¹⁰⁵ adapted to be readily attached to the cord after the cord is in position. In this construction the block C is "quarter cut", that is, split in a diagonal direction, as, for example, along the line I, Figs. 7 and 8. The ³¹⁰

two parts are then fastened together by a single screw, J. It will be seen that by this construction the two parts may be separated, and the cord looped, and the two parts then brought together and clamped with the single screw, J. By means of the diagonal cut a single screw is all that is required to securely clamp the parts together and prevent any relative movement thereof.

This device is particularly adapted to hold soft cords and greasy cords, such, for example, as are found in machine shops. Since the openings in the block are larger than the cord, so as to permit free move-15 ment of the block for adjustment, it will be seen that extremely flexible cords and

greasy cords are difficult to hold. I claim:

1. The combination with a flexible cord 20 of a block less in thickness than in length having two non-adjustable holes fixed in size extending through the block, one near each end thereof, and through which the cord is looped, said holes extending through that portion of the block which represents its lesser dimension and inclined in opposite directions in the plane of its greater dimension so that the distance between their edges on one side is greater than the distance between their edges on the other side, the loop of the cord being on the side where the distance between the edges of the holes is the greater, said holes being fixed with relation to each other, the position of the block between the holes fixed with relation to the portions on the opposite sides of said holes.

2. The combination with a flexible cord of a block having two holes through which the cord is looped in slidable relation thereto, a flexible controlling device connected to each end of said block, and a guiding device for said controlling device located above the block.

3. The combination with a flexible cord 45 of a block having two holes through which the cord is looped in slidable relation thereto, said holes inclined in opposite directions with the loop on the side of the block where the holes are more widely separated, a flexi- 50 ble controlling device connected with said block beyond the holes therein, and a guiding device for said flexible controlling device located above the block.

4. The combination with a flexible cord 55 of a block having two holes through which the cord is looped in slidable relation thereto, said holes being inclined in opposite directions with the loop on the side of the block where the holes are more widely sep- 60 arated, a flexible controlling device connected with said block beyond the holes therein, an eyelet located between the strands of the flexible cord above the block and through which said flexible controlling 65

device passes.

5. An adjusting device for flexible cords, comprising a block free from clamping parts and made up of two solid sections, having inclined meeting faces which extend 70 from one side of the block to the other, a single screw passing through the block and through both of said inclined faces to fasten the parts together, said block having two inclined holes inclined in opposite direc- 75 tions and passing therethrough, said holes formed by passages in the meeting faces when said faces are brought together.

Signed at Chicago, Illinois, this 20th day

of October, 1904. THEODORE SMITH.

Witnesses:

HOMER L. KRAFT, Edna K. Reynolds.