APPARATUS FOR CONTINUOUSLY FEEDING A LIQUID FUEL AND A LIQUID OXIDIZER TO A COMBUSTION CHAMBER OF PROPULSION TYPE AND HAVING AN OPEN DISCHARGE NOZZLE
Filed Oct. 29, 1953

INVENTOR.
ROBERT H. GODDARD, DEC'D.
ESTHER C. GODDARD, EXECUTOR.

BY
G. Hud. Hawley
ATTY.
APPARATUS FOR CONTINUOUSLY FEEDING A LIQUID FUEL AND A LIQUID OXIDIZER TO A COMBUSTION CHAMBER OF PROPULSION TYPE AND HAVING AN OPEN DISCHARGE NOZZLE

This invention relates to a combustion chamber of the propulsion type which is in general of spherical section and which has an open discharge nozzle at one end thereof.

It is the general object of the invention to provide an improved construction for cooling the combustion chamber wall with a liquid oxidizer, for injecting a liquid fuel at the closed or inner end of the combustion chamber and near the axis thereof, and for presenting the partially vaporized oxidizer directly in the path of the injected liquid fuel.

Preferably, the two combustion elements engage each other in a substantially head-on relation, thus ensuring effective intermingling of the more or less vaporized liquids.

The invention further relates to arrangements and combinations of parts which will be hereinafter described and more particularly pointed out in the appended claims.

Preferred forms of the invention are shown in the drawings, in which

Fig. 1 is a sectional front elevation of a combustion chamber embodying the invention;

Fig. 2 is an enlarged sectional front elevation of certain parts shown in Fig. 1 and

Figs. 3, 4 and 5 are detail sectional views showing modified fuel-admitting structures.

Referring particularly to Figs. 1 and 2, a combustion chamber C is provided with a substantially spherical casing 10 connected at its outer end with an open discharge nozzle N, and having an axial feed opening 12 at its inner end.

An inner jacket casing 15 encloses the casing 10 and nozzle N and is held in spaced relation thereto by a plurality of vanes 17 (Fig. 2) extending axially of the chamber C and in radially moving planes. An outer jacket casing 20 encloses the inner jacket casing 15 and is held in spaced relation thereto by additional radiusing vanes or partitions 21.

The jacket space S defined by the jacket casings 15 and 20 is supplied with liquid oxygen or other liquid oxidizer through a feed pipe 22 adjacent at the outer end of the nozzle N. The inner jacket casing 15 (Fig. 2) has a plurality of openings 25 through which sprays or jets of liquid oxygen are delivered to the cooling space S2 between the casings 10 and 15, and these jets also impinge against the outer faces of the combustion chamber casing 10 and the nozzle N. The casing 10 and nozzle N are thus effectively cooled.

The partially vaporized oxidizer is delivered to the combustion chamber C through an annular slot 30 at the inner end of the chamber.

Liquid fuel, as gasoline, is delivered through a feed pipe 33 to a jet space S3 formed between an inner wall 35 and an outer end jet casing 36. The axial portion of the wall 35 is displaced inwardly of the combustion chamber, as indicated at 38, and is provided with a plurality of spray openings 39.

When combustion liquids are supplied under pressure through the pipes 22 and 33, a stream of liquid or partially vaporized oxidizer enters the combustion chamber through the annular slot or opening 30, and this stream of oxidizer is directed inwardly of the fuel jets injected through the openings 39. All parts of the combustion chamber wall and also the nozzle N are thus effectively cooled and protected from excessive heat, and the two combustion elements are very effectively intermingled.

In Fig. 3, a modified construction is shown in which the inwardly-projecting portion 40 of the inner end jet casing is provided with a spirally grooved or ribbed rotator 41 and with a slightly conical deflector 42 mounted below the axial opening of the portion 40. By the use of this construction, the fuel is injected with a rotary or whirling motion and is even more directly opposed to the path of the injected oxidizer, which path is indicated by the arrows a.

In the construction shown in Fig. 4, the displaced axial portion 50 of the combustion chamber end wall is provided with a single axial opening 51 and with a deflector 52 mounted in alignment with said opening. The result is similar to that produced by the construction shown in Fig. 3 but the construction is more simple.

An additional modification is shown in Fig. 5 in which a fuel space 54 is provided between an inner end wall 60 and an outer jacket casing 61. The liquid fuel is supplied under pressure through a pipe 62 and enters the combustion chamber through an annular slot 63. The axial portion 65 of the end wall 60 which is within the annular slot 63 may be supported from the outer jacket casing 61 by suitable spaced braces 66. In this construction, the combustion elements enter the chamber along substantially perpendicular paths and are also effectively intermingled.

With all forms of the invention, effective mixing of the combustion elements is attained and a high degree of combustion efficiency results.

Having thus described the invention and the advantages thereof, it will be understood that the invention is not to be limited to the details herein disclosed, otherwise than as set forth in the claims, but what is claimed is:

1. In propulsion apparatus having a combustion chamber with an open-discharge nozzle at its outer end, in combination, a substantially spherical chamber wall for said combustion chamber and having an axial feed opening at its inner end, an inner casing enclosing an inner jacket space about said spherical wall, an outer casing enclosing an outer jacket space about said inner casing, and means to supply a liquid oxidizer under pressure to said outer jacket space, said inner jacket casing having spaced openings through which portions of said liquid are sprayed against the combustion chamber wall, said inner jacket space communicating with an inner opening at its inner end, which opening is formed between adjacent portions of said combustion chamber wall and said inner casing, and through which annular opening partially vaporized oxidizer is fed from said inner jacket space to said combustion chamber, and means to supply liquid fuel to said combustion chamber in a direction opposed to the path of travel of the oxidizer.

2. The combination in propulsion apparatus as set forth in claim 1, in which the means to supply liquid fuel comprises an axial hollow end wall structure having an inwardly-displaced portion with an axial feed opening therethrough, and having means to outwardly deflect the liquid fuel fed through said axial opening.

3. The combination in propulsion apparatus as set forth in claim 1, in which the means to supply liquid
fuel comprises an axial hollow end wall structure having an inwardly-displaced portion with an axial feed opening therein, and having means to outwardly deflect the liquid fuel to feed through said axial opening and to give said axially fed liquid fuel a whirling motion.