发明名称
薄膜晶体管阵列基板及其制造方法

摘要
公开了一种薄膜晶体管阵列基板及其制造方法。该薄膜晶体管阵列基板不需要保护膜来保护薄膜晶体管，由此降低了制造成本。在该薄膜晶体管阵列基板中，栅极与选择线相连，源极与数据线相连，该数据线与选择线交叉以限定像素区域。漏极与源极相对，并且其间具有沟道。半导体层位于该沟道中。像素区域中的像素电极在该像素电极与漏极之间的基础上整个交叠区域中与漏极接触。在半导体层上与沟道相对应的设置沟道保护膜，以保护半导体层。
1. 一种薄膜晶体管阵列基板，该基板包括：
与选通线相连的栅极；
与数据线相连的源极，该数据线与所述选通线交叉，以限定像素区域；
与所述源极相对的漏极，其间具有沟道；
所述沟道中的半导体层；
位于所述像素区域中的像素电极，与所述漏极交叠的所有的像素电极都与所述漏极接触；
设置在所述半导体层上，与所述沟道相对应的沟道保护膜，用于保护所述沟道中的所述半导体层；以及
所述数据线和所述源极上的由与所述像素电极相同的材料形成的透明导电图案。
2. 根据权利要求1所述的薄膜晶体管阵列基板，其中所述沟道保护膜包括氮化硅或氧化硅中的至少一种。
3. 根据权利要求1所述的薄膜晶体管阵列基板，其中所述半导体层包括：
所述沟道中的有源层；以及
所述有源层上的欧姆接触层，该欧姆接触层暴露出所述源极和所述漏极之间的所述有源层。
4. 根据权利要求3所述的薄膜晶体管阵列基板，其中所述沟道保护膜形成在由所述欧姆接触层暴露出的所述有源层上。
5. 根据权利要求1所述的薄膜晶体管阵列基板，该基板还包括：存储电容器，其包括选通线和像素电极的重叠部分，并且其间具有栅极绝缘膜。
6. 根据权利要求5所述的薄膜晶体管阵列基板，其中仅将所述栅极绝缘膜设置在所述存储电容器的所述选通线和所述像素电极之间。
7. 根据权利要求1所述的薄膜晶体管阵列基板，该基板还包括从所
述选通线延伸的选通焊盘，
其中所述选通焊盘包括：
与所述选通线相连的下选通焊盘电极；
穿透所述栅极绝缘膜以暴露所述下选通焊盘电极的接触孔；以及
通过所述接触孔与所述下选通焊盘电极相连的上选通焊盘电极。
8、根据权利要求1所述的薄膜晶体管阵列基板，该基板还包括从所述数据线延伸的数据焊盘，
其中所述数据焊盘包括：
与所述数据线相连并设置在所述半导体层上的下数据焊盘电极；以及
所述下数据焊盘电极上的上数据焊盘电极，与所述下数据焊盘电极交叠的所有的上数据焊盘电极都与所述下数据焊盘电极接触。
9、一种制造薄膜晶体管阵列基板的方法，该方法包括：
在基板上形成栅极；
在所述栅极上形成栅极绝缘膜；
形成源极、漏极，以及所述源极和漏极之间的沟道中的半导体层，并在所述半导体层上形成沟道保护膜，以保护所述沟道中的所述半导体层；
在所述栅极绝缘膜上形成所述漏极；以及
形成像素电极，以使得与所述漏极交叠的所有像素电极都与所述漏极接触。
10、根据权利要求9所述的方法，其中形成所述源极、所述漏极、所述半导体层以及所述沟道保护膜的步骤包括：
在所述栅极绝缘膜上依次形成第一和第二半导体层以及源极/漏极金属层；
使用部分曝光掩模在所述源极/漏极金属层上形成具有阶梯覆盖的光刻胶图案；
使用所述光刻胶图案对所述第一和第二半导体层以及所述源极/漏极金属层进行构图，以提供有源层、欧姆接触层和源极、漏极；
对所述光刻胶图案进行灰化处理；

使用所述经灰化处理的光刻胶图案与所述沟道相对应地对所述源极/漏极金属层和所述欧姆接触层进行构图，以暴露出所述沟道中的所述有源层；

将所述暴露的有源层的表面暴露在 O, 或 N, 中的至少一种中，以在所述暴露的有源层上提供所述沟道保护膜；以及

g. 去除所述经灰化处理的光刻胶图案。

11. 根据权利要求 10 所述的方法，其中形成所述保护膜的步骤包括：
将包含在所述有源层中的硅与 O, 或 N, 中的至少一种结合，以在所述有源层上形成所述沟道保护膜。

12. 根据权利要求 9 所述的方法，该方法还包括：在与所述源极相连的数据线和所述源极上，由与所述像素电极相同的材料形成透明导电图案。

13. 根据权利要求 12 所述的方法，其中形成所述透明导电图案的步骤包括：

在设置有所述源极、所述漏极、所述半导体层和所述沟道保护膜的所述基板上沉积透明导电膜；
在所述透明导电膜上形成光刻胶图案；
对所述光刻胶图案进行灰化处理；以及
使用所述经灰化处理的光刻胶图案对所述透明导电膜进行蚀刻。

14. 根据权利要求 9 所述的方法，该方法还包括形成存储电容器，该存储电容器包括：与所述栅极相连的所述选通线；与所述选通线交叠的像素电极，并且其上具有所述栅极绝缘膜。

15. 根据权利要求 9 所述的方法，该方法还包括：

形成从与所述栅极相连的选通线延伸的下选通焊盘电极；
形成穿透所述栅极绝缘膜以暴露出所述下选通焊盘电极的接触孔；
以及
形成通过所述接触孔与所述下选通焊盘电极相连的上选通焊盘电极。

16. 根据权利要求 9 所述的方法，该方法还包括：
在所述半导体层上形成与所述源极相连的数据线延伸的下数据焊接电极；以及

在所述下数据焊接电极上形成上数据焊接电极，以使与所述下数据焊接电极交叠的所有的所述上数据焊接电极都与所述下数据焊接电极接触。

17、一种制造薄膜晶体管阵列基板的方法，该方法包括：

形成第一导电图案组，该第一导电图案组包括选通线、与所述选通信号相连的栅极，以及从所述选通信号延伸的下选通信号焊接电极；

形成栅极绝缘膜，以覆盖所述第一导电图案组；

形成第二导电图案组，该第二导电图案组包括与所述选通信号交叉的数据线、与所述数据线相连的源极、与所述源极相对并且其间具有沟道的漏极、从所述数据线延伸的下数据焊接电极、所述沟道中的包括有源层的半导体图案、以及与所述沟道相对应的沟道保护膜；

形成穿透所述栅极绝缘膜以暴露出所述下选通信号焊接电极的接触孔；以及

形成第三导电图案组，该第三导电图案组包括所述漏极上的像素电极，以使得与所述漏极交叠的所有的所述像素电极都与所述漏极接触；所述下数据焊接电极上的上数据焊接电极，以使得与所述下数据焊接电极交叠的所有的所述上数据焊接电极都与所述下数据焊接电极接触；以及通过一接触孔与所述下选通信号焊接电极相连的上选通信号焊接电极。

18、根据权利要求17所述的方法，其中形成所述沟道保护膜的步骤包括：

将所述有源层的硅与O，或N，中的至少一种结合，以在所述有源层上形成所述沟道保护膜。

19、根据权利要求17所述的方法，该方法还包括：在与所述源极相连的所述数据线、所述源极和所述漏极上，以与所述像素电极相同的材料形成透明导电图案。

20、一种薄膜晶体管阵列基板，该基板包括：

具有相对电极以及该相对电极之间的沟道的晶体管；设置在所述相
对电极之一上的像素电极，以使得沟道保护膜位于所述相对电极之间，而不是位于所述像素电极与所述一个相对电极的整个交叠部分之间；以及

与所述相对电极中的另一个相连的数据线，该数据线完全由与形成所述像素电极的相同材料覆盖。

21、根据权利要求 20 所述的薄膜晶体管阵列基板，其中在所述相对电极中的另一个上设置与形成所述像素电极相同的材料，以使所述沟道保护膜位于所述相对电极之间，而不是位于形成所述像素电极的材料与任一相对电极的整个交叠部分之间。

22、根据权利要求 20 所述的薄膜晶体管阵列基板，该基板还包括：
与所述晶体管中除所述相对电极之外的电极相连的选通线；
所述选通线上的栅极绝缘层；以及
包含所述像素电极与所述选通线的交叠部分以及其间的所述栅极绝缘膜的存储电容器。

23、根据权利要求 22 所述的薄膜晶体管阵列基板，其中所述栅极绝缘膜仅为所述像素电极和所述选通线的交叠部分之间的绝缘层。

24、根据权利要求 20 所述的薄膜晶体管阵列基板，该基板还包括与所述晶体管中除所述相对电极之外的电极相连的选通线，设置在所述选通线上的栅极绝缘膜、以及从所述选通线延伸的选通焊盘，该选通焊盘包括：

与所述选通线相连的下选通焊盘电极；
穿透所述栅极绝缘膜以暴露出所述下选通焊盘电极的接触孔；以及
通过所述接触孔与所述下选通焊盘电极相连的上选通焊盘电极。

25、根据权利要求 20 所述的薄膜晶体管阵列基板，该基板还包括设置在所述数据线上的栅极绝缘膜、以及从所述数据线延伸的数据焊盘，该数据焊盘包括：

与所述数据线相连的下数据焊盘电极；
所述下数据焊盘电极上的上数据焊盘电极，以使得所述上数据焊盘和下数据焊盘之间没有绝缘层。
薄膜晶体管阵列基板及其制造方法

技术领域
本发明涉及薄膜晶体管阵列基板，更具体地，涉及薄膜晶体管阵列基板及其制造方法，其用于保护薄膜晶体管，而不需要保护膜，并且可以降低制造成本。

背景技术
通常，液晶显示器（LCD）使用电场来控制液晶的光透射率，由此显示图像。LCD 通过形成在像素电极和公共电极之间的电场来驱动液晶，该像素电极和公共电极相对地设置在上基板和下基板上。

该 LCD 包括：相对地接合在一起的薄膜晶体管阵列基板（下阵列基板）和滤色器阵列基板（上阵列基板）；间隔物，用于在两个阵列基板之间保持恒定的单元间隙；填充在该单元间隙中的液晶。

该薄膜晶体管阵列基板包括：多个信号布线和薄膜晶体管；以及涂覆在其上的配向膜，用于提供液晶的初始取向。滤色器阵列基板包括：滤色器，用于实现颜色；黑底，用于防止光泄漏；以及涂覆在其上的配向膜，用于提供液晶的初始取向。

在这种 LCD 中，薄膜晶体管阵列基板具有复杂的制造工艺，这导致液晶显示器的制造成本大大增加，因为其涉及半导体工艺，并且使用多个掩模工艺。为了解决该问题，已经朝着减少掩模工艺的数量来开发薄膜晶体管阵列基板。这是因为一个掩模工艺包括许多单独的工艺，例如薄膜淀积、清洗、光刻、蚀刻、光刻胶剥离以及检查工艺等。近来，已经使用四道掩模工艺而不是标准的五道掩模工艺来制造薄膜晶体管。

图 1 是表示采用现有技术的四道掩模工艺的下晶体管阵列基板的平面图，而图 2 是表示沿图 1 的线 II-II’截取的薄膜晶体管阵列基板的截面图。
参照图1和图2,现有技术的液晶显示板的薄膜晶体管阵列基板包括：设置在下基板1上的选通线2和数据线4,选通线2和数据线4相互交叉，并且其间具有栅极绝缘膜12；设置在各个交叉点处的薄膜晶体管30；设置在由该交叉结构限定的单元区域处的像素电极22；设置在选通线2和存储电极28之间的交叠部分处的存储电容器40；与选通线2相连的选通焊盘50；以及与数据线4相连的数据焊盘60。

以交叉结构设置用于施加选通信号的选通线2以用于施加数据信号的数据线4,由此限定像素区域5。

薄膜晶体管30使得能够将数据线4上的像素信号充入像素电极22，并响应于选通线2上的选通信号而保持该像素信号。为了，薄膜晶体管30包括：与选通线2相连的栅极6；与数据线4相连的源极8；以及与像素电极22相连的漏极10。此外，薄膜晶体管30还包括与栅极6交叠的有源层14，并且其间具有栅极绝缘膜12，以限定源极8和漏极10之间的沟道。

有源层14还与数据线4、下数据焊盘电极62和存储电极28交叠。在有源层14上，还设置有用于与数据线4、源极8、漏极10、下数据焊盘电极62和存储电极28接触的欧姆接触层16。

像素电极22通过穿透保护膜18的第一接触孔20与薄膜晶体管30的漏极10相连，并且该像素电极22设置在像素区域5中。

因此，在通过薄膜晶体管30施加了像素信号的像素电极22与施加了基准电压的公共电极（未示出）之间形成了电场。由于介电各向异性而由该电场使得薄膜晶体管阵列基板和滤色器阵列基板之间的液晶分子旋转。通过像素区域5的光的透射率根据液晶分子的旋转程度而不同，由此实现灰度级。

存储电容器40包括：选通线2；以及存储电极28,与选通线2交叠,并且其间具有栅极绝缘膜12,有源层14和欧姆接触层16。这里，存储电极28通过在保护膜18处限定的第二接触孔42与像素电极22相连。存储电容器40使得能够稳定地保持被充入到像素电极22中的像素信号，知道充入下一像素信号为止。
选通焊盘 50 与选通驱动器（未示出）相连，以向选通线 2 施加选通信号。选通焊盘 50 包括：从选通线 2 延伸的下选通焊盘电极 52；以及通过穿透栅极绝缘膜 12 和保护膜 18 的第三接触孔 56 与下选通焊盘电极 52 相连的上选通焊盘电极 54。

数据焊盘 60 与数据驱动器（未示出）相连，以向数据线 4 施加数据信号。数据焊盘 60 包括：从数据线 4 延伸的下数据焊盘电极 62；以及通过穿透保护膜 18 的第四接触孔 66 与下数据焊盘电极 62 相连的上数据焊盘电极 64。

下面，将参照图 3A 到 3D 详细描述制造具有采用四道掩模工艺的上述结构的液晶显示板的薄膜晶体管阵列基板的方法。

参照图 3A，通过第一掩模工艺在下基板 1 上设置包括选通线 2、栅极 6 和下选通焊盘电极 52 的第一导电图案组。

更具体地，通过诸如溅射的淀积技术在下基板 1 上形成栅极金属层。然后，使用通过第一掩模进行光刻或蚀刻对该栅极金属层进行构图，由此形成包括选通线 2、栅极 6 和下选通焊盘电极 52 的第一导电图案组。该栅极金属层由铝族金属等制成。

参照图 3B，在设置有第一导电图案组的下基板 1 上涂覆栅极绝缘膜 12。此外，通过第二掩模工艺在栅极绝缘膜 12 上形成包括有源层 14 和欧姆接触层 16 的半导体图案，以及包括数据线 4、源极 8、漏极 10、下数据焊盘电极 62 和存储电极 28 的第二导电图案组。

更具体地，通过诸如等离子体增强化学气相沉积（PECVD）和溅射等的淀积技术在设置有第一导电图案组的下基板 1 上依次设置栅极绝缘膜 12、非晶硅层、n’非晶硅层以及数据金属层。这里，栅极绝缘膜 12 由诸如氮化硅（SiNx）或氧化硅（SiOx）的无机绝缘材料形成。数据金属层选自钼（Mo）、钛（Ti）、钽（Ta）或铝合金等。

然后，通过使用第二掩模进行光刻，在数据金属层上形成光刻胶图案。在这种情况下，使用在薄膜晶体管的沟道部分处具有衍射曝光部分的衍射曝光掩模作为第二掩模，由此使得沟道部分的光刻胶图案的高度低于其它源极/漏极图案部分。
随后，通过使用光刻胶图案进行湿蚀刻对数据金属层进行构图，由此提供包括数据线 4、源极 8、与源极 8 集成为一体的漏极 10、以及存储电极 28 的第二导电图案组。

接下来，通过使用同一光刻胶图案进行干蚀刻工艺对 n’非晶硅层和非晶硅层同时进行构图，由此提供欧姆接触层 16 和有源层 14。

通过灰化处理从沟道部分去除高度相对较低的光刻胶图案，并且随后通过干蚀刻对沟道部分的数据金属层和欧姆接触层 16 进行蚀刻。因此，暴露出沟道部分的有源层 14，以断开源极 8 和漏极 10。

然后，通过剥离工艺去除剩余在第二导电图案组上的光刻胶图案。

参照图 3C，在设置有第二导电图案组的栅极绝缘膜 12 上形成包括第一到第四接触孔 20、42、56 和 66 的保护膜 18。

更具体地，通过诸如等离子体增强化学气相淀积（PECVD）的淀积技术在设置有数据图案的栅极绝缘膜 12 上形成整个保护膜 18。然后，通过使用第三掩模进行光刻或蚀刻对保护膜 18 进行构图，由此限定第一到第四接触孔 20、42、56 和 66。第一接触孔 20 穿透保护膜 18 以暴露出漏极 10，而第二接触孔 42 穿透保护膜 18 以暴露出存储电极 28。第二接触孔 56 穿透保护膜 18 和栅极绝缘膜 12 以暴露出下数据焊盘电极 52，而第四接触孔 66 穿透保护膜 18 以暴露出下数据焊盘电极 62。这里，当使用诸如钼（Mo）的具有大的蚀刻比的金属作为数据金属时，第一、第二和第四接触孔 20、42、66 分别穿透漏极 10、存储电极 28 和下数据焊盘电极 62，由此暴露出其侧面。

保护膜 18 由与栅极绝缘膜 12 相同的无机绝缘材料或者诸如具有小的介电常数的丙烯酸有机化合物、BCB（苯环丁烯）或 PECB（全氟环丁烷）的有机绝缘材料制成。

参照图 3D，通过第四掩模工艺在保护膜 18 上设置包括像素电极 22、上选通焊盘电极 54 和上数据焊盘电极 64 的第三导电图案组图案。

更具体地，通过诸如溅射等的淀积技术将透明导电膜涂覆到保护膜 18 上。然后，通过使用第四掩模进行光刻和蚀刻对该透明导电膜进行构图，由此提供包括像素电极 22、上选通焊盘电极 54 和上数据焊盘电极
64 的第三导电图案组。像素电极 22 通过第一接触孔 20 与漏极 10 连接，
同时通过第二接触孔 42 与存储电极 28 电连接。上选通焊盘电极 54 通过
第三接触孔 56 与下选通焊盘电极 52 电连接。上数据焊盘电极 64 通过第四
接触孔 66 与下数据焊盘电极 62 电连接。

这里，该透明导电膜由铟锡氧化物（ITO）、氧化锡（TO）、铟锡锌氧化
物（ITZO）或铟锌氧化物（IZO）形成。

现有技术的薄膜晶体管阵列基板具有保护膜 18，用于保护薄膜晶体
管 30。通过使用 PECVD 设备施加无机绝缘材料，或者使用旋涂机或非旋
涂机涂覆有机绝缘材料来形成保护膜 18，增加了制造成本。

此外，在现有技术的薄膜晶体管阵列基板中，数据线经常断开。在
这种情况下，使用用于修理数据线的单独工艺。

此外，在现有技术的薄膜晶体管阵列基板中，当由有机绝缘材料形
成保护膜 18 时，由于保护膜 18 相对较厚，而使得形成在其上的像素电
极 22 损坏。具体地，像素电极 22 在由用于使漏极 10 与像素电极 22 接
触的接触孔 20 暴露出的保护膜 18 的侧面处损坏。因此，由于没有通过
漏极 10 为像素电极 22 提供像素信号，所以产生点缺陷。

此外，在现有技术的薄膜晶体管阵列基板中，存储电容器 40 包括：
选通线 2；以及存储电极 28，与栅极绝缘膜 12 相互交叠，并且其间具有
有源层 14 和欧姆接触层 16。在这种情况下，由于栅极绝缘膜 12、有源
层 14 和欧姆接触层 16 具有相对较厚的厚度，以使选通线 2 与存储电极
28 绝缘，而使得存储电容器 40 的电容值减小。此外，由于存储电容器
40 的电容值较低，而产生诸如斑点的图像质量的劣化。

发明内容

因此，提出了一种薄膜晶体管阵列基板及其制造方法，其中不需要
保护膜来保护薄膜晶体管，并且降低了制造成本。

在一个实施例中，仅通过介绍的方式，一种薄膜晶体管阵列基板，
其包括：选通线与相连的栅极；与数据线相连的源极，该数据线与选通
线交叉以限定像素区域；与源极相对的漏极，并且其间具有沟道；该沟
道中的半导体层；位于所述像素区域中的像素电极，与所述偏极交叠的所有像素电极都与所述偏极接触；设置在所述半导体层上，与所述沟道相对应的沟道保护膜，用于保护所述沟道中的所述半导体层；以及所述数据线和所述源极上的由与所述像素电极相同的材料形成的透明导电图案。

在另一实施例中，一种薄膜晶体管阵列基板，该基板包括：具有相对电极以及该相对电极之间的沟道的晶体管；设置在所述相对电极之一上的像素电极，以使得沟道保护膜位于所述相对电极之间，而不是位于所述像素电极与所述一个相对电极的整个交叠部分之间；以及与所述相对电极中的另一个相连的数据线，该数据线完全由与形成所述像素电极的相同材料覆盖。

在另一实施例中，一种制造薄膜晶体管阵列基板的方法，包括：在基板上形成栅极；在栅极上形成栅极绝缘膜；形成源极和漏极，以及源极和漏极之间的沟道中的半导体层，并且在半导体层上形成沟道保护膜，以保护沟道中的半导体层；在栅极绝缘膜上形成漏极；以及形成像素电极，以使得与漏极交叠的所有像素电极都与漏极接触。

在另一实施例中，一种制造薄膜晶体管阵列基板的方法，包括：形成第一导电图案组，该第一导电图案组包括选通线、与所述选通线相连的栅极，以及从所述选通线延伸的下选通焊盘电极；形成栅极绝缘膜，以覆盖所述第一导电图案组；形成第二导电图案组，该第二导电图案组包括与所述选通线交叉的数据线、与所述数据线相连的源极、与所述源极相对并且其间具有沟道的漏极、从所述数据线延伸的下数据焊盘电极、所述沟道中的包括有源层的半导体图案、以及与所述沟道相对应的沟道保护膜；形成穿透所述栅极绝缘膜以暴露出所述下选通焊盘电极的接触孔；以及形成第三导电图案组，该第三导电图案组包括所述漏极上的像素电极，以使得与所述漏极交叠的所有所述像素电极与所述漏极接触；所述下数据焊盘电极上的上数据焊盘电极，以使得与所述下数据焊盘电极交叠的所有所述上数据焊盘电极都与所述下数据焊盘电极接触；以及通过接触孔与所述下选通焊盘电极相连的上选通焊盘电极。
附图说明
将参照附图详细描述本发明的实施例。在附图中：
图 1 是表示现有技术的液晶显示板的薄膜晶体管阵列基板的平面图；
图 2 是沿图 1 的 II-II’ 线截取的薄膜晶体管阵列基板的截面图；
图 3A 到 3D 是表示逐步制造图 2 中所示的薄膜晶体管阵列基板的方法的截面图；
图 4 是表示根据本发明实施例的薄膜晶体管阵列基板的结构的平面图；
图 5 是表示沿图 4 中的 V-V’ 线截取的薄膜晶体管阵列基板的截面图；
图 6A 和图 6B 分别表示通过第一掩模工艺形成的第一导电图案组的平面图和截面图；
图 7A 和图 7B 分别表示半导体图案、第二导电图案组以及沟道保护膜的平面图和截面图；
图 8A 到图 8F 是用于详细说明制造图 7A 和图 7B 中所示的半导体图案、第二导电图案组以及沟道保护膜的方法的截面图；
图 9A 和图 9B 是表示通过第三掩模工艺形成的接触孔的平面图和截面图；以及
图 10A 和图 10B 是表示通过第四掩模工艺形成的第三导电图案组的平面图和截面图。

具体实施方式
现将详细描述本发明的优选实施例，其示例在附图中示出。
下面，将参照图 4 到 10B 详细描述本发明的优选实施例。
图 4 是表示根据本发明实施例的薄膜晶体管阵列基板的结构的平面图，而图 5 是表示沿图 4 的 V-V’ 线截取的薄膜晶体管阵列基板的截面图。
参照图 4 和图 5，薄膜晶体管阵列基板包括：设置在下基板 101 上的选通线 102 和数据线 104，该选通线 102 和数据线 104 相互交叉，并且其
间具有栅极绝缘膜 112；设置在各个交叉点处的薄膜晶体管 130；设置在
由该交叉结构限定的像素区域中的像素电极 122；以及用于保护薄膜晶体
管 130 的沟道保护膜 120。此外，该薄膜晶体管阵列基板还包括：设置在
像素电极 122 与选通线 102 之间的交叠部分中的存储电容器 140；与选通
线 102 相连的选通焊盘 150；以及与数据线 104 相连的数据焊盘 160。

用于提供选通信号的选通线 102 和用于提供数据信号的数据线 104
相互采用交叉结构，以限定像素区域 105。

薄膜晶体管 130 使得数据线 104 上的像素信号能够充入像素电极
122，并且能够响应于选通线 102 上的选通信号而保持该像素信号。为此，
薄膜晶体管 130 包括：与选通线 102 相连的栅极 106；与数据线 104 相连
的源极 108；以及与像素电极 122 相连的漏极 110。此外，薄膜晶体管 130
包括与栅极 106 交叠的源层 114，并且其间具有栅极绝缘膜 112，以在
源极 108 和漏极 110 之间限定沟道。

源层 114 还与数据线 104 和下数据焊盘电极 162 交叠。在有源层
114 上，还设置有用于形成数据线 104、源极 108、漏极 110 和下数据焊
盘电极 162 的欧姆接触层 116。

沟道保护膜 120 由限定源极 108 和漏极 110 之间的沟道的有源层 114
上的氮化硅（Si₃N₄）或氧化硅（SiO₂）形成。沟道保护膜 120 通过在形成
源极 108、漏极 110 和像素电极 122 时或者在所有工艺之前或之后进行清
洗时剥离光刻胶图案，来防止形成沟道的有源层 114 损坏。

像素电极 122 通过穿透保护膜 118 的漏极接触孔 154 与薄膜晶体管
130 的漏极 110 相连，并且像素电极 122 设置在像素区域 105 中。

在源极 108、漏极 110 和数据线 104 上由与像素电极 122 相同的材料
形成透明导电图案 118。形成在数据线 104 上的透明导电图案 118 使得能
够在数据线 104 损坏时将数据信号施加给各个薄膜晶体管 130 的源极。
形成在源极 108 和漏极 110 上的透明导电图案 118 防止由诸如钼（Mo）
的易腐蚀金属制成的源极 108 和漏极 110 被腐蚀。该透明导电图案 118
被形成为与相邻的透明导电图案 118 或相邻的像素电极 122 间隔开，以
防止短路。形成在源极 108 上的透明导电图案 118 与形成在漏极 110 上
的透明导电图案118 例间隔隔开大约 4 到 5 \( \mu \)m，而形成在数据线104 上的透明导电图案118 与像素电极122 例间隔隔开大约 4 到 5 \( \mu \)m。

因此，在通过薄膜晶体管130 施加了像素信号的像素电极122 与施加有基准电压的公共电极（未示出）之间形成了电场。这种电场使滤色器阵列基板和薄膜晶体管阵列基板之间的液晶分子由于介电各向异性而旋转。穿过像素区域105 的光的透射率根据液晶分子的旋转程度而不同。由此实现级度级。

存储电容器140 包括：选通线102；以及存储电极128，该存储电极128 与选通线102 交叠，其间具有栅极绝缘膜112，并且与像素电极122 直接相连。存储电容器140 使得能够稳定地保持充入像素电极122 的像素信号，直到充入下一像素信号为止。

选通焊盘150 与选通驱动器（未示出）相连，以将由选通驱动器产生的选通信号施加给选通线120。选通焊盘150 包括：从选通线102 延伸的下选通焊盘电极152；以及通过贯穿栅极绝缘膜112 的接触点154 与下选通焊盘电极152 相连的上选通焊盘电极156。

数据焊盘160 与数据驱动器（未示出）相连，以将由数据驱动器产生的数据信号施加给数据线104。数据焊盘160 包括：从数据线104 延伸的下数据焊盘电极162；以及与下数据焊盘电极162 直接相连的上数据焊盘电极166。

图6A 和图6B 分别是表示根据本发明实施例的制造薄膜晶体管阵列基板的第一导电图案组的方法的平面图和截面图。

参照图6A 和图6B，通过第一掩模工艺在下基板101 上形成包括选通线102、栅极106 和下选通焊盘电极152 的栅极图案。

更具体地，通过诸如溅射的淀积技术在下基板101 上形成栅极金属层。然后，通过使用第一掩模进行光刻和蚀刻对栅极金属层进行构图，由此提供包括选通线102、栅极106 和下选通焊盘电极152 的栅极图案。该栅极图案由铝（Al）或包括 Al/Nd 在内的铝族金属形成。

图7A 和图7B 分别为根据本发明实施例的制造薄膜晶体管阵列基板的半导体图案、第二导电图案组以及沟道保护膜的方法的平面图和截面图案。
参照图 7A 和图 7B，将栅极绝缘膜 112 涂覆到设置有第一导电图案组的下基板 101 上。此外，通过第二掩模工艺在栅极绝缘膜 112 上形成包括有源层 114 和欧姆接触层 116 的半导体图案，以及包括数据线 104、源极 108 和、漏极 110 和下数据焊盘电极 162 的第二导电图案组。此外，在限定源极 108 和漏极 110 之间的沟道的有源层 114 上形成沟道保护膜 120。

更具体地，如图 8A 所示，通过诸如 PECVD 或溅射等的淀积技术在栅极绝缘膜 112 上依次形成第一半导体层 147、第二半导体层 149 以及源极/漏极金属层 151。这里，第一半导体层 147 是无掺杂的非晶硅，而第二半导体层 149 是 N 型或 P 型非晶硅。源极/漏极金属层 151 由诸如钼（Mo）或铜（Cu）等的金属制成。

然后，在源极/漏极金属层 151 上形成光刻胶膜，并且随后下基板 101 的上部设置部分曝光第二掩模 170，如图 8B 所示。该第二掩模 170 包括：由透明材料制成的掩模基底 172；设置在掩模基底 172 的屏蔽区域 S2 处的屏蔽部分 174；以及设置在掩模基底 172 的部分曝光区域 S3 处的衍射曝光部分（或半透射部分）176。这里，通过掩模基底 172 曝光的区域变成曝光区域 S1。将使用第二掩模 170 的光刻胶膜曝光，并且随后进行显影，由此在与第二掩模 170 的屏蔽区域 174 和衍射曝光部分 176 相对应的屏蔽区域 S2 和部分曝光区域 S3 处提供具有阶梯覆盖的光刻胶图案 178。换句话说，设置在部分曝光区域 S3 中的光刻胶图案 178 的第二高度 h2 低于设置在屏蔽区域 S2 中的光刻胶图案 178 的第一高度 h1。

通过使用光刻胶图案 178 作为掩模进行湿蚀刻对源极/漏极金属层 151 进行构图，由此提供包括数据线 104、与数据线 104 相连的源极 108 和漏极 110、以及下数据焊盘电极 162 的第二导电图案组，如图 8C 所示。

此外，通过使用光刻胶图案 178 作为掩模进行干蚀刻对第一半导体层 147 和第二半导体图案 149 进行构图，由此沿第二导电图案组设置欧姆接触层 116 和有源层 114，如图 8D 所示。然后，使用氧 (O2) 等离子体对该结构进行氧化处理，降低在部分曝光区域 S3 中的高度为第二高度
h2 的光刻胶图案 178 以及屏蔽区域 S2 中的高度为第一高度 h1 的光刻胶图案 178 的高度。通过使用上述光刻胶图案进行蚀刻处理来去除衍射曝光区域 S3（即设置在薄膜晶体管的沟道部分中的源极/漏极金属层 154 和欧姆接触层 116）。由此，暴露出沟道部分的有源层 114，以将源极 108 与漏极 110 断开。

如图 8E 所示，通过使用光刻胶图案 178 作为掩模将沟道部分的已暴露的有源层 114 的表面暴露在 O，（例如，O₂）或 N，（例如，N₂）等离子体中。然后，O，或 N，与包含在有源层 114 中的硅（Si）进行反应，由此提供的 SiO₂或 SiNₓ形成的沟道保护膜。该沟道保护膜防止由于后期形成工艺（即，剥离和清洗）中使用的剥离液和清洗液而导致沟道部分的有源层 114 的损坏。

如图 8F 所示，通过剥离工艺去除第二导电图案组上的光刻胶图案 178。

参照图 9A 和 9B，通过第三掩模工艺提供用于暴露出栅极绝缘层 112 的接触孔 154，该栅极绝缘层 112 被形成用来覆盖下选通焊盘电极 152。更具体地，通过使用第三掩模进行光刻或蚀刻对被形成用来覆盖下选通焊盘电极 152 的栅极绝缘层 112 进行构图，由此提供用于暴露出下选通焊盘电极 152 的接触孔 154。

参照 10A 和 10B，通过第四掩模工艺在设置有接触孔 154 的下基板 101 上形成包括像素电极 122、透明导电图案 118、上选通焊盘电极 156 和上数据焊盘电极 166 的第三图案组。

更具体地，通过诸如氧等的沉积技术将透明导电膜涂覆到设置有接触孔 154 的基板 101 上。这里，该透明导电膜由铟锡氧化物（ITO）、氧化锡（ITO）、铟锌氧化物（ITZO）或铟锌氧化物（IZO）形成。然后，通过光刻和蚀刻对透明导电膜进行构图，由此提供包括像素电极 122、透明导电图案 118、上选通焊盘电极 156 和上数据焊盘电极 166 的第三导电图案组。像素电极 122 与漏极 110 直接相连。透明导电图案 118 形成在漏极 110 上，并与数据线 104、源极 108 和漏极 110 直接相连。上选通焊盘电极 156 通过接触孔 154 与下选通焊盘电极 152 电连接。上数据焊盘
电极 166 与下数据焊盘电极 162 直接相连。

如上所述，根据本发明，可以通过沟道保护膜来保护与薄膜晶体管的沟道相对应的暴露有源层，而不需任何附加的保护膜。因此，可以消除现有技术中用于形成保护膜的沉积设备和涂覆设备，以降低成本，并且可以防止现有技术中由于暴露泄漏的接触孔的阶梯覆盖而导至像素电极断开。

此外，根据本发明，在数据线、源极和漏极上形成透明导电膜。因此，可以在透明导电图案的帮助下将像素信号供给给各个薄膜晶体管，而不需要在数据线断开的情况下修理数据线，或者防止数据线、源极和漏极被腐蚀。

此外，根据本发明，通过选通线与像素电极相互交叠（其间具有栅极绝缘膜）来形成存储电容器。因此，减小了构成存储电容器的两个导电材料之间的距离，以使得可以增大存储电容器的电容值，以改善图像质量并避免斑点等。

尽管上述附图中所示的实施例对本发明进行了说明，但是对于本领域的技术人员来说，应该理解，本发明并不限于这些实施例，而是在不脱离本发明的主旨的情况下，对本发明进行各种变化和修改。因此，本发明的范围应仅由所附权利要求及其等同物确定。

本申请要求 2004 年 6 月 25 日在韩国提交的韩国专利申请 No. P2004-48259 的优先权，在此通过引用将其并入。
图 1
现有技术
图 2
现有技术
图3A
现有技术
图3C
现有技术
图 3D
现有技术
图 6B
O₂等离子体
图 10A