(12) STANDARD PATENT

(11) Application No. AU 2006216732 C1

(19) AUSTRALIAN PATENT OFFICE

(54) Title

Extending time to disease progression or survival in cancer patients using a HER dimerization inhibitor

(51) International Patent Classification(s)

A61K 39/395 (2006.01)

A61P 35/00 (2006.01)

(21) Application No: 2006216732 (22) Date of Filing: 2006.02.21

(87) WIPO No: WO06/091693

(30) Priority Data

(31) Number (32) Date (33) Country 60/655,277 2005.02.23 US

 (43)
 Publication Date:
 2006.08.31

 (44)
 Accepted Journal Date:
 2011.03.10

 (44)
 Amended Journal Date:
 2017.07.20

(71) Applicant(s) Genentech, Inc.

(72) Inventor(s)

Derynck, Mika K.; Kelsey, Stephen M.

(74) Agent / Attorney

Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001, AU

(56) Related Art

US 2004/0106161 A1

US 6632979 B2

VALLE, J.W. et al: Eur. J. Of Cancer, Supplement, vol. 2, no. 8,

September 2004, page 8

AGUS et al :Proc. Am.Soc. Clin. Oncol., vol. 22, 2003, page ABS 771

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 31 August 2006 (31.08.2006)

(51) International Patent Classification: A61K 39/395 (2006.01) A61P 35/00 (2006.01)

(21) International Application Number:

PCT/US2006/006334

(22) International Filing Date:

21 February 2006 (21.02.2006)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/655.277

23 February 2005 (23.02.2005)

(71) Applicant (for all designated States except US): GENEN-TECH, INC. [US/US]; 1 Dna Way, Ms 49, South San Francisco, California 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DERYNCK, Mika K. [US/US]; 27 Hilltop Road, San Mateo, California 94402 (US). KELSEY, Stephen M. [US/US]; 360 14th Street, Montara, California 94037 (US).

(74) Agents: SCHWARTZ, Timothy R. et al.; MS 49, 1 Dna Way, Ms 49, South San Francisco, California 94080 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (10) International Publication Number WO 2006/091693 A3

AT. AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 19 October 2006

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: EXTENDING TIME TO DISEASE PROGRESSION OR SURVIVAL IN CANCER PATIENTS USING A HER DIMERIZATION INHIBITOR

(57) Abstract: The present application describes extending time to disease progression or survival in a cancer patient, where the patient's cancer displays HER activation, by treating the patient with a HER dimerization inhibitor, such as pertuzumab.

EXTENDING TIME TO DISEASE PROGRESSION OR SURVIVAL IN CANCER PATIENTS

This application claims the benefit of U.S. Provisional Application Serial No. 60/655,277, filed 23 February 2005, the entire disclosure of which is incorporated herein by reference.

5

Field of the Invention

The present invention concerns extending time to disease progression or survival in a cancer patient, where the patient's cancer displays HER activation, by treating the patient with a HER dimerization inhibitor, such as pertuzumab.

10

15

20

25

30

35

Background of the Invention

HER Receptors and Antibodies Thereagainst

The HER family of receptor tyrosine kinases are important mediators of cell growth, differentiation and survival. The receptor family includes four distinct members including epidermal growth factor receptor (EGFR, ErbB1, or HER1), HER2 (ErbB2 or p185^{neu}), HER3 (ErbB3) and HER4 (ErbB4 or tyro2).

EGFR, encoded by the erbB1 gene, has been causally implicated in human malignancy. In particular, increased expression of EGFR has been observed in breast, bladder, lung, head, neck and stomach cancer as well as glioblastomas. Increased EGFR receptor expression is often associated with increased production of the EGFR ligand, transforming growth factor alpha (TGF- α), by the same tumor cells resulting in receptor activation by an autocrine stimulatory pathway. Baselga and Mendelsohn *Pharmac. Ther.* 64:127-154 (1994). Monoclonal antibodies directed against the EGFR or its ligands, TGF- α and EGF, have been evaluated as therapeutic agents in the treatment of such malignancies. See, *e.g.*, Baselga and Mendelsohn., *supra*; Masui *et al. Cancer Research* 44:1002-1007 (1984); and Wu *et al. J. Clin. Invest.* 95:1897-1905 (1995).

The second member of the HER family, p185^{neu}, was originally identified as the product of the transforming gene from neuroblastomas of chemically treated rats. The activated form of the *neu* proto-oncogene results from a point mutation (valine to glutamic acid) in the transmembrane region of the encoded protein. Amplification of the human homolog of *neu* is observed in breast and ovarian cancers and correlates with a poor prognosis (Slamon *et al.*, *Science*, 235:177-182 (1987); Slamon *et al.*, *Science*, 244:707-712 (1989); and US Pat No. 4,968,603). To date, no point mutation analogous to that in the *neu* proto-oncogene has been reported for human tumors. Overexpression of HER2 (frequently but not uniformly due to gene amplification) has also been observed in other carcinomas including carcinomas of the stomach, endometrium, salivary gland, lung, kidney, colon, thyroid, pancreas and bladder. See, among others, King *et al.*, *Science*, 229:974 (1985); Yokota *et al.*, *Lancet*: 1:765-767 (1986); Fukushige *et al.*,

1

Mol Cell Biol., 6:955-958 (1986); Guerin et al., Oncogene Res., 3:21-31 (1988); Cohen et al., Oncogene, 4:81-88 (1989); Yonemura et al., Cancer Res., 51:1034 (1991); Borst et al., Gynecol. Oncol., 38:364 (1990); Weiner et al., Cancer Res., 50:421-425 (1990); Kern et al., Cancer Res., 50:5184 (1990); Park et al., Cancer Res., 49:6605 (1989); Zhau et al., Mol. Carcinog., 3:254-257 (1990); Aasland et al. Br. J. Cancer 57:358-363 (1988); Williams et al. Pathobiology 59:46-52 (1991); and McCann et al., Cancer, 65:88-92 (1990). HER2 may be overexpressed in prostate cancer (Gu et al. Cancer Lett. 99:185-9 (1996); Ross et al. Hum. Pathol. 28:827-33 (1997); Ross et al. Cancer 79:2162-70 (1997); and Sadasivan et al. J. Urol. 150:126-31 (1993)).

5

10

15

20

25

30

35

Antibodies directed against the rat p185^{neu} and human HER2 protein products have been described.

Drebin and colleagues have raised antibodies against the rat *neu* gene product, p185^{neu} See, for example, Drebin *et al.*, *Cell* 41:695-706 (1985); Myers *et al.*, *Meth. Enzym.* 198:277-290 (1991); and WO94/22478. Drebin *et al. Oncogene* 2:273-277 (1988) report that mixtures of antibodies reactive with two distinct regions of p185^{neu} result in synergistic anti-tumor effects on *neu*-transformed NIH-3T3 cells implanted into nude mice. See also U.S. Patent 5,824,311 issued October 20, 1998.

Hudziak et al., Mol. Cell. Biol. 9(3):1165-1172 (1989) describe the generation of a panel of HER2 antibodies which were characterized using the human breast tumor cell line SK-BR-3. Relative cell proliferation of the SK-BR-3 cells following exposure to the antibodies was determined by crystal violet staining of the monolayers after 72 hours. Using this assay, maximum inhibition was obtained with the antibody called 4D5 which inhibited cellular proliferation by 56%. Other antibodies in the panel reduced cellular proliferation to a lesser extent in this assay. The antibody 4D5 was further found to sensitize HER2-overexpressing breast tumor cell lines to the cytotoxic effects of TNF-α. See also U.S. Patent No. 5,677,171 issued October 14, 1997. The HER2 antibodies discussed in Hudziak et al. are further characterized in Fendly et al. Cancer Research 50:1550-1558 (1990); Kotts et al. In Vitro 26(3):59A (1990); Sarup et al. Growth Regulation 1:72-82 (1991); Shepard et al. J. Clin. Immunol. 11(3):117-127 (1991); Kumar et al. Mol. Cell. Biol. 11(2):979-986 (1991); Lewis et al. Cancer Immunol. Immunother. 37:255-263 (1993); Pietras et al. Oncogene 9:1829-1838 (1994); Vitetta et al. Cancer Research 54:5301-5309 (1994); Sliwkowski et al. J. Biol. Chem. 269(20):14661-14665 (1994); Scott et al. J. Biol. Chem. 266:14300-5 (1991); D'souza et al. Proc. Natl. Acad. Sci. 91:7202-7206 (1994); Lewis et al. Cancer Research 56:1457-1465 (1996); and Schaefer et al. Oncogene 15:1385-1394 (1997).

A recombinant humanized version of the murine HER2 antibody 4D5 (huMAb4D5-8, rhuMAb HER2, trastuzumab or HERCEPTIN®; U.S. Patent No. 5,821,337) is clinically active in patients with HER2-overexpressing metastatic breast cancers that have received extensive prior anti-cancer therapy (Baselga *et al.*, *J. Clin. Oncol.* 14:737-744 (1996)). Trastuzumab received marketing approval from the Food and Drug Administration September 25, 1998 for the treatment of patients with metastatic breast cancer whose tumors overexpress the HER2 protein.

Other HER2 antibodies with various properties have been described in Tagliabue et al. Int. J. Cancer 47:933-937 (1991); McKenzie et al. Oncogene 4:543-548 (1989); Maier et al. Cancer Res. 51:5361-5369 (1991); Bacus et al. Molecular Carcinogenesis 3:350-362 (1990); Stancovski et al. PNAS (USA) 88:8691-8695 (1991); Bacus et al. Cancer Research 52:2580-2589 (1992); Xu et al. Int. J. Cancer 53:401-408 (1993); WO94/00136; Kasprzyk et al. Cancer Research 52:2771-2776 (1992); Hancock et al. Cancer Res. 51:4575-4580 (1991); Shawver et al. Cancer Res. 54:1367-1373 (1994); Arteaga et al. Cancer Res. 54:3758-3765 (1994); Harwerth et al. J. Biol. Chem. 267:15160-15167 (1992); U.S. Patent No. 5,783,186; and Klapper et al. Oncogene 14:2099-2109 (1997).

5

10

15

20

25

30

35

Homology screening has resulted in the identification of two other HER receptor family members; HER3 (US Pat. Nos. 5,183,884 and 5,480,968 as well as Kraus *et al. PNAS (USA)* 86:9193-9197 (1989)) and HER4 (EP Pat Appln No 599,274; Plowman *et al., Proc. Natl. Acad. Sci. USA*, 90:1746-1750 (1993); and Plowman *et al., Nature*, 366:473-475 (1993)). Both of these receptors display increased expression on at least some breast cancer cell lines.

The HER receptors are generally found in various combinations in cells and heterodimerization is thought to increase the diversity of cellular responses to a variety of HER ligands (Earp et al. Breast Cancer Research and Treatment 35: 115-132 (1995)). EGFR is bound by six different ligands; epidermal growth factor (EGF), transforming growth factor alpha (TGF-a), amphiregulin, heparin binding epidermal growth factor (HB-EGF), betacellulin and epiregulin (Groenen et al. Growth Factors 11:235-257 (1994)). A family of heregulin proteins resulting from alternative splicing of a single gene are ligands for HER3 and HER4. The heregulin family includes alpha, beta and gamma heregulins (Holmes et al., Science, 256:1205-1210 (1992); U.S. Patent No. 5,641,869; and Schaefer et al. Oncogene 15:1385-1394 (1997)); neu differentiation factors (NDFs), glial growth factors (GGFs); acetylcholine receptor inducing activity (ARIA); and sensory and motor neuron derived factor (SMDF). For a review, see Groenen et al. Growth Factors 11:235-257 (1994); Lemke, G. Molec. & Cell. Neurosci. 7:247-262 (1996) and Lee et al. Pharm. Rev. 47:51-85 (1995). Recently three additional HER ligands were identified; neuregulin-2 (NRG-2) which is reported to bind either HER3 or HER4 (Chang et al. Nature 387 509-512 (1997); and Carraway et al Nature 387:512-516 (1997)); neuregulin-3 which binds HER4 (Zhang et al. PNAS (USA) 94(18):9562-7 (1997)); and neuregulin-4 which binds HER4 (Harari et al. Oncogene 18:2681-89 (1999)) HB-EGF, betacellulin and epiregulin also bind to HER4.

While EGF and TGFα do not bind HER2, EGF stimulates EGFR and HER2 to form a heterodimer, which activates EGFR and results in transphosphorylation of HER2 in the heterodimer. Dimerization and/or transphosphorylation appears to activate the HER2 tyrosine kinase. See Earp *et al.*, *supra*. Likewise, when HER3 is co-expressed with HER2, an active signaling complex is formed and antibodies directed against HER2 are capable of disrupting this complex (Sliwkowski *et al.*, *J. Biol. Chem.*, 269(20):14661-14665 (1994)). Additionally, the affinity of HER3 for heregulin (HRG) is increased to a higher affinity state when co-expressed with HER2. See also, Levi *et al.*, *Journal of Neuroscience* 15:

3

1329-1340 (1995); Morrissey et al., Proc. Natl. Acad. Sci. USA 92: 1431-1435 (1995); and Lewis et al., Cancer Res., 56:1457-1465 (1996) with respect to the HER2-HER3 protein complex. HER4, like HER3, forms an active signaling complex with HER2 (Carraway and Cantley, Cell 78:5-8 (1994)).

5

10

15

20

25

30

35

Patent publications related to HER antibodies include: US 5,677,171, US 5,720,937, US 5,720,954, US 5,725,856, US 5,770,195, US 5,772,997, US 6,165,464, US 6,387,371, US 6,399.063. US2002/0192211A1, US 6.015.567, US 6.333,169, US 4,968,603, US 5,821,337, US 6,054,297, US 6.407.213, US 6.719.971, US 6,800,738, US2004/0236078A1, US 5,648,237, US 6,267,958, US 6,685,940, US 6,821,515, WO98/17797, US 6,127,526, US 6,333,398, US 6,797,814, US 6,339,142, US 6.417,335, US 6,489,447, WO99/31140, US2003/0147884A1, US2003/0170234A1, US2005/0002928A1, WO01/00245, US 6.573,043, US2003/0152987A1, WO99/48527, US2002/0141993A1, US2003/0086924, US2004/0013667A1, WO00/69460, WO01/00238, WO01/15730, US 6,627,196B1, US6,632,979B1, WO01/00244, US2002/0090662A1, WO01/89566, US2002/0064785, US2003/0134344. 04/24866. US2004/0082047. US2003/0175845A1, WO03/087131, US2003/0228663, WO2004/008099A2, US2004/0106161, WO2004/048525, US2004/0258685A1, US 5,985,553, US 5,747,261, US 4,935,341, US 5,401,638, US 5,604,107, WO 87/07646, WO 89/10412, WO 91/05264, EP 412.116 B1, EP 494.135 B1, US 5.824.311, EP 444.181 B1, EP 1,006,194 A2, US 2002/0155527A1, WO 91/02062, US 5.571.894, US 5.939,531, EP 502,812 B1, WO 93/03741, EP 554,441 B1, EP 656,367 A1, US 5,288,477, US 5,514,554, US 5,587,458, WO 93/12220, WO 93/16185, US 5,877,305, WO 93/21319, WO 93/21232, US 5,856,089, WO 94/22478, US 5,910,486, US 6,028,059, WO 96/07321, US 5,804,396, US 5,846,749, EP 711,565, WO 96/16673, US 5,783,404, US 5,977,322, US 6,512,097, WO 97/00271. US 6.270.765. US 6.395.272. US 5.837.243, WO 96/40789, US 5,783,186, US 6,458,356, WO 97/20858, WO 97/38731, US 6,214,388, US 5,925,519, WO 98/02463, US 5,922,845, WO 98/18489, WO 98/33914, US 5,994,071, WO 98/45479, US 6,358,682 B1, US 2003/0059790, WO 99/55367, WO 01/20033, US 2002/0076695 A1, WO 00/78347, WO 01/09187, WO 01/21192, WO 01/32155, WO 01/53354, WO 01/56604, WO 01/76630, WO02/05791, WO 02/11677, US 6,582,919, US2002/0192652A1, US 2003/0211530A1, WO 02/44413, US 2002/0142328, US 6,602,670 B2, WO 02/45653, WO 02/055106, US 2003/0152572, US 2003/0165840, WO 02/087619, WO 03/006509, WO03/012072. WO 03/028638, US 2003/0068318, WO 03/041736, EP 1,357,132, US 2003/0202973, US 2004/0138160, US 5,705,157, US 6,123,939, EP 616,812 B1, US 2003/0103973, US 2003/0108545, US 6,403,630 B1, WO 00/61145, WO 00/61185, US 6,333,348 B1, WO 01/05425, WO 01/64246, US 2003/0022918, US 2002/0051785 A1, US 6,767,541, WO 01/76586, US 2003/0144252, WO 01/87336, US 2002/0031515 A1, WO 01/87334, WO 02/05791, WO 02/09754, US 2003/0157097, US 2002/0076408, WO 02/055106, WO 02/070008, WO 02/089842 and WO 03/86467.

Diagnostics

Patients treated with the HER2 antibody trastuzumab are selected for therapy based on HER2 overexpression/amplification. See, for example, WO99/31140 (Paton *et al.*), US2003/0170234A1

(Hellmann, S.), and US2003/0147884 (Paton *et al.*); as well as WO01/89566, US2002/0064785, and US2003/0134344 (Mass *et al.*). See, also, US2003/0152987, Cohen *et al.*, concerning immunohistochemistry (IHC) and fluorescence *in situ* hybridization (FISH) for detecting HER2 overexpression and amplification.

5

10

15

20

25

30

35

WO2004/053497 and US2004/024815A1 (Bacus *et al.*), as well as US 2003/0190689 (Crosby and Smith), refer to determining or predicting response to trastuzumab therapy. US2004/013297A1 (Bacus *et al.*) concerns determining or predicting response to ABX0303 EGFR antibody therapy. WO2004/000094 (Bacus *et al.*) is directed to determining response to GW572016, a small molecule, EGFR-HER2 tyrosine kinase inhibitor. WO2004/063709, Amler *et al.*, refers to biomarkers and methods for determining sensitivity to EGFR inhibitor, erlotinib HCl. US2004/0209290, Cobleigh *et al.*, concerns gene expression markers for breast cancer prognosis. Patients treated with pertuzumab can be selected for therapy based on HER activation or dimerization. Patent publications concerning pertuzumab and selection of patients for therapy therewith include: WO01/00245 (Adams *et al.*); US2003/0086924 (Sliwkowski, M.); US2004/0013667A1 (Sliwkowski, M.); as well as WO2004/008099A2, and US2004/0106161 (Bossenmaier *et al.*).

Cronin *et al. Am. J. Path.* 164(1): 35-42 (2004) describes measurement of gene expression in archival paraffin-embedded tissues. Ma *et al. Cancer Cell* 5:607-616 (2004) describes gene profiling by gene oliogonucleotide microarray using isolated RNA from tumor-tissue sections taken from archived primary biopsies.

Pertuzumab (also known as recombinant human monoclonal antibody 2C4; OMNITARG™, Genentech, Inc, South San Francisco) represents the first in a new class of agents known as HER dimerization inhibitors (HDI) and functions to inhibit the ability of HER2 to form active heterodimers with other HER receptors (such as EGFR/HER1, HER3 and HER4) and is active irrespective of HER2 expression levels. See, for example, Harari and Yarden *Oncogene* 19:6102-14 (2000); Yarden and Sliwkowski. *Nat Rev Mol Cell Biol* 2:127-37 (2001); Sliwkowski *Nat Struct Biol* 10:158-9 (2003); Cho *et al. Nature* 421:756-60 (2003); and Malik *et al. Pro Am Soc Cancer Res* 44:176-7 (2003).

Pertuzumab blockade of the formation of HER2-HER3 heterodimers in tumor cells has been demonstrated to inhibit critical cell signaling, which results in reduced tumor proliferation and survival (Agus *et al. Cancer Cell* 2:127-37 (2002)).

Pertuzumab has undergone testing as a single agent in the clinic with a phase Ia trial in patients with advanced cancers and phase II trials in patients with ovarian cancer and breast cancer as well as lung and prostate cancer. In a Phase I study, patients with incurable, locally advanced, recurrent or metastatic solid tumors that had progressed during or after standard therapy were treated with pertuzumab given intravenously every 3 weeks. Pertuzumab was generally well tolerated. Tumor regression was achieved in 3 of 20 patients evaluable for response. Two patients had confirmed partial responses. Stable disease lasting for more than 2.5 months was observed in 6 of 21 patients (Agus *et*

5

15

20

25

30

35

al. Pro Am Soc Clin Oncol 22:192 (2003)). At doses of 2.0-15 mg/kg, the pharmacokinetics of pertuzumab was linear, and mean clearance ranged from 2.69 to 3.74 mL/day/kg and the mean terminal elimination half-life ranged from 15.3 to 27.6 days. Antibodies to pertuzumab were not detected (Allison et al. Pro Am Soc Clin Oncol 22:197 (2003)).

It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

Summary of the Invention

A first aspect provides a method for extending time to disease progression (TTP) or survival in a cancer patient comprising administering to the patient a HER dimerization inhibitor comprising an antibody that binds to Domain II of HER2 extracellular domain and inhibits HER2 dimerization or HER heterodimerization, and administering to the patient trastuzumab in an amount which extends TTP or survival in the patient, wherein the cancer is selected from the group consisting of gastric cancer, stomach cancer, metastatic breast cancer (MBC), non-small cell lung cancer (NSCLC), and colorectal cancer.

A second aspect provides use of a HER dimerization inhibitor comprising an antibody that binds to Domain II of HER2 extracellular domain and inhibits HER2 dimerization or HER heterodimerization in the manufacture of a medicament for extending TTP or survival in a cancer patient, wherein the cancer is selected from the group consisting of gastric cancer, stomach cancer, metastatic breast cancer (MBC), non-small cell lung cancer (NSCLC), and colorectal cancer, and wherein the medicament is administered to the patient with trastuzumab.

A third aspect provides use of a HER dimerization inhibitor comprising an antibody that binds to Domain II of HER2 extracellular domain and inhibits HER2 dimerization or HER heterodimerization and trastuzumab in the manufacture of a medicament for extending TTP or survival in a cancer patient, wherein the cancer is selected from the group consisting of gastric cancer, stomach cancer, metastatic breast cancer (MBC), non-small cell lung cancer (NSCLC), and colorectal cancer.

A fourth aspect provides use of an antibody comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, respectively, in the manufacture of a medicament for extending TTP or survival in a cancer patient, wherein the cancer displays HER2 activation, and wherein the medicament is administered to the patient with trastuzumab.

A fifth aspect provides use of an antibody comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, respectively, and trastuzumab in the manufacture of a medicament for extending TTP or survival in a cancer patient, wherein the cancer displays HER2 activation.

5

15

20

25

30

Disclosed herein are the clinical data from human cancer patients treated with a HER dimerization inhibitor, pertuzumab. Patients were evaluated for HER activation, as determined using a phospho-ELISA bioassay. Clinical benefit, as measured by time to disease progression (TTP) and survival, was observed in patients displaying HER activation.

Accordingly, disclosed herein is a method for extending time to disease progression (TTP) or survival in a cancer patient comprising administering a HER dimerization inhibitor to the patient in an amount which extends TTP or survival in the patent, wherein the patient's cancer displays HER activation.

Also disclosed is a method for extending time to disease progression (TTP) or survival in a patient with ovarian, peritoneal, or fallopian tube cancer comprising administering pertuzumab to the patient in an amount which extends TTP or survival in the patient, wherein the patient's cancer displays HER2 activation.

Brief Description of the Drawings

Figure 1 provides a schematic of the HER2 protein structure, and amino acid sequences for Domains I-IV (SEQ ID Nos.19-22, respectively) of the extracellular domain thereof.

Figures 2A and 2B depict alignments of the amino acid sequences of the variable light (V₁) (Fig. 2A) and variable heavy (V_H) (Fig. 2B) domains of murine monoclonal antibody 2C4 (SEQ ID Nos. 1 and 2, respectively); V_L and V_H domains of variant 574/pertuzumab (SEQ ID Nos. 3 and 4, respectively), and human V_L and V_H consensus frameworks (hum $\kappa 1$, light kappa subgroup I; humIII, heavy subgroup III) (SEQ ID Nos. 5 and 6, respectively). Asterisks identify differences between variable domains of pertuzumab and murine monoclonal antibody 2C4 or between variable domains of pertuzumab and the human framework. Complementarity Determining Regions (CDRs) are in brackets.

Figures 3A and 3B show the amino acid sequences of pertuzumab light chain (Fig. 3A; SEQ ID NO. 13) and heavy chain (Fig. 3B; SEQ ID No. 14). CDRs are shown in bold. Calculated molecular mass of the light chain and heavy chain are 23,526.22 Da and 49,216.56 Da (cysteines in reduced form). The carbohydrate moiety is attached to Asn 299 of the heavy chain.

Figure 4 depicts, schematically, binding of 2C4 at the heterodimeric binding site of HER2, thereby preventing heterodimerization with activated EGFR or HER3.

Figure 5 depicts coupling of HER2/HER3 to the MAPK and Akt pathways.

Figure 6 compares various activities of trastuzumab and pertuzumab.

Figures 7A and 7B show the amino acid sequences of trastuzumab light chain (Fig. 7A; SEQ ID No. 15) and heavy chain (Fig. 7B; SEQ ID No. 16), respectively.

Figures 8A and 8B depict a variant pertuzumab light chain sequence (Fig. 8A; SEQ ID No. 17) and a variant pertuzumab heavy chain sequence (Fig. 8B; SEQ ID No. 18), respectively.

Fig. 9 provides baseline demographics of patients treated in Example 1.

Fig. 10 shows all grade 3-4 adverse events (irrespective of relatedness to treatment).

Fig. 11 shows serious adverse events (irrespective or relatedness to treatment).

Fig. 12 summarizes serious adverse events judged to be related to study drug by investigators.

Fig. 13 provides information on selected adverse events.

5

10

15

20

25

30

35

Fig. 14 depicts cardiac serious adverse events and adverse events requiring expedited reporting.

Fig. 15 summarizes efficacy results for the phase II study of pertuzumab in Example 1.

Fig. 16 shows time to disease progression (TTP) efficacy for evaluable ovarian cancer subjects treated with either a low dose (420mg) or high dose (1050mg) of pertuzumab.

Fig. 17 shows overall survival efficacy for evaluable ovarian cancer subjects treated with either low dose (420mg) or high dose (1050mg) of pertuzumab. Historical median survival for ovarian cancer subjects treated with topotecan was 43 weeks, and for liposomal doxorubicin was 36 weeks.

Fig. 18 provides CA-125 responses for ovarian cancer subjects treated with either 420mg or 1050mg of pertuzumab.

Fig. 19 provides phospho-HER2 (pHER2) status, as determined by ELISA, for ovarian cancer subjects treated with 420mg of pertuzumab.

Fig. 20 provides clinical efficacy results by pHER2 status, as determined by ELISA, for ovarian cancer subjects treated with 420mg of pertuzumab.

Fig. 21 provides pHER2 status, as determined by ELISA, for ovarian patients treated with 420mg of pertuzumab showing evidence of activity (partial response, PR, or stable disease, SD, for greater than 18 weeks). BSLD refers to baseline sum of longest diameter.

Fig. 22 shows TTP efficacy by pHER2 status. Ovarian cancer subjects were treated with 420mg of pertuzumab. Overall TTP was 6.6 weeks; TTP in pHER positive subjects was 20.9 weeks; TTP in pHER2 negative subjects was 6.0 weeks; and TTP in subjects with unknown pHER2 status was 9.1 weeks.

Fig. 23 depicts overall survival by pHER2 status. Ovarian cancer subjects were treated with 420mg of pertuzumab. Historical median survival for ovarian cancer subjects treated with topotecan was 43 weeks, and for liposomal doxorubicin was 36 weeks.

15

20

25

30

35

Detailed Description of the Preferred Embodiments

I. Definitions

In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

Herein "time to disease progression" or "TTP" refer to the time, generally measured in weeks or months, from the time of initial treatment (e.g. with a HER dimerization inhibitor, such as pertuzumab), until the cancer progresses or worsens. Such progression can be evaluated by the skilled clinician. In the case of ovarian cancer, for instance, progression can be evaluated by RECIST (see, for example, Therasse et al., J. Nat. Cancer Inst. 92(3): 205-216 (2000)).

By "extending TTP" is meant increasing the time to disease progression in a treated patient relative to an untreated patient (i.e. relative to a patient not treated with a HER dimerization inhibitor, such as pertuzumab), or relative to a patient who does not display HER activation, and/or relative to a patient treated with an approved anti-tumor agent (such as topotecan or liposomal doxorubicin, where the cancer is ovarian cancer).

"Survival" refers to the patient remaining alive, and includes overall survival as well as progression free survival.

"Overall survival" refers to the patient remaining alive for a defined period of time, such as 1 year, 5 years, etc from the time of diagnosis or treatment.

"Progression free survival" refers to the patient remaining alive, without the cancer progressing or getting worse.

By "extending survival" is meant increasing overall or progression free survival in a treated patient relative to an untreated patient (i.e. relative to a patient not treated with a HER dimerization inhibitor, such as pertuzumab), or relative to a patient who does not display HER activation, and/or relative to a patient treated with an approved anti-tumor agent (such as topotecan or liposomal doxorubicin, where the cancer is ovarian cancer).

An "objective response" refers to a measurable response, including complete response (CR) or partial response (PR).

By "complete response" or "CR" is intended the disappearance of all signs of cancer in response to treatment. This does not always mean the cancer has been cured.

"Partial response" or "PR" refers to a decrease in the size of one or more tumors or lesions, or in the extent of cancer in the body, in response to treatment.

A "HER receptor" is a receptor protein tyrosine kinase which belongs to the HER receptor

5

family and includes EGFR, HER2, HER3 and HER4 receptors. The HER receptor will generally comprise an extracellular domain, which may bind an HER ligand and/or dimerize with another HER receptor molecule; a lipophilic transmembrane domain; a conserved intracellular tyrosine kinase domain; and a carboxyl-terminal signaling domain harboring several tyrosine residues which can be phosphorylated. The HER receptor may be a "native sequence" HER receptor or an "amino acid sequence variant" thereof. Preferably the HER receptor is native sequence human HER receptor.

The terms "ErbB1," "HER1", "epidermal growth factor receptor" and "EGFR" are used interchangeably herein and refer to EGFR as disclosed, for example, in Carpenter *et al. Ann. Rev. Biochem.* 56:881-914 (1987), including naturally occurring mutant forms thereof (*e.g.* a deletion mutant EGFR as in Humphrey *et al. PNAS (USA)* 87:4207-4211 (1990)). *erbB1* refers to the gene encoding the EGFR protein product.

5

10

15

20

25

30

35

The expressions "ErbB2" and "HER2" are used interchangeably herein and refer to human HER2 protein described, for example, in Semba *et al.*, *PNAS (USA)* 82:6497-6501 (1985) and Yamamoto *et al.* Nature 319:230-234 (1986) (Genebank accession number X03363). The term "*erb*B2" refers to the gene encoding human ErbB2 and "*neu*" refers to the gene encoding rat p185^{neu}. Preferred HER2 is native sequence human HER2.

Herein, "HER2 extracellular domain" or "HER2 ECD" refers to a domain of HER2 that is outside of a cell, either anchored to a cell membrane, or in circulation, including fragments thereof. In one embodiment, the extracellular domain of HER2 may comprise four domains: "Domain I" (amino acid residues from about 1-195; SEQ ID NO:19), "Domain II" (amino acid residues from about 196-319; SEQ ID NO:20), "Domain III" (amino acid residues from about 320-488: SEQ ID NO:21), and "Domain IV" (amino acid residues from about 489-630; SEQ ID NO:22) (residue numbering without signal peptide). See Garrett *et al. Mol. Cell.*. 11: 495-505 (2003), Cho *et al. Nature* 421: 756-760 (2003), Franklin *et al. Cancer Cell* 5:317-328 (2004), and Plowman *et al. Proc. Natl. Acad. Sci.* 90:1746-1750 (1993), as well as Fig. 1 herein.

"ErbB3" and "HER3" refer to the receptor polypeptide as disclosed, for example, in US Pat. Nos. 5,183,884 and 5,480,968 as well as Kraus *et al. PNAS (USA)* 86:9193-9197 (1989).

The terms "ErbB4" and "HER4" herein refer to the receptor polypeptide as disclosed, for example, in EP Pat Appln No 599,274; Plowman *et al.*, *Proc. Natl. Acad. Sci. USA*, 90:1746-1750 (1993); and Plowman *et al.*, *Nature*, 366:473-475 (1993), including isoforms thereof, *e.g.*, as disclosed in WO99/19488, published April 22, 1999.

By "HER ligand" is meant a polypeptide which binds to and/or activates a HER receptor. The HER ligand of particular interest herein is a native sequence human HER ligand such as epidermal growth factor (EGF) (Savage *et al.*, *J. Biol. Chem.* 247:7612-7621 (1972)); transforming growth factor alpha (TGF-α) (Marquardt *et al.*, *Science* 223:1079-1082 (1984)); amphiregulin also known as schwanoma or keratinocyte autocrine growth factor (Shoyab *et al. Science* 243:1074-1076 (1989); Kimura *et al. Nature* 348:257-260 (1990); and Cook *et al. Mol. Cell. Biol.* 11:2547-2557 (1991)); betacellulin (Shing *et al.*, *Science* 259:1604-1607 (1993); and Sasada *et al. Biochem. Biophys. Res. Commun.* 190:1173 (1993)); heparin-binding epidermal growth factor (HB-EGF) (Higashiyama *et al.*, *Science* 251:936-939 (1991)); epiregulin (Toyoda *et al.*, *J. Biol. Chem.* 270:7495-7500 (1995); and Komurasaki *et al. Oncogene* 15:2841-2848 (1997)); a heregulin (see below); neuregulin-2 (NRG-2) (Carraway *et al.*, *Nature* 387:512-516 (1997)); neuregulin-3 (NRG-3) (Zhang *et al.*, *Proc. Natl. Acad.*

Sci. 94:9562-9567 (1997)); neuregulin-4 (NRG-4) (Harari et al. Oncogene 18:2681-89 (1999)); and cripto (CR-1) (Kannan et al. J. Biol. Chem. 272(6):3330-3335 (1997)). HER ligands which bind EGFR include EGF, TGF-α, amphiregulin, betacellulin, HB-EGF and epiregulin. HER ligands which bind HER3 include heregulins. HER ligands capable of binding HER4 include betacellulin, epiregulin, HB-EGF, NRG-2, NRG-3, NRG-4, and heregulins.

5

10

15

20

25

30

35

"Heregulin" (HRG) when used herein refers to a polypeptide encoded by the heregulin gene product as disclosed in U.S. Patent No. 5,641,869, or Marchionni *et al.*, *Nature*, 362:312-318 (1993). Examples of heregulins include heregulin-α, heregulin-β1, heregulin-β2 and heregulin-β3 (Holmes *et al.*, *Science*, 256:1205-1210 (1992); and U.S. Patent No. 5,641,869); *neu* differentiation factor (NDF) (Peles *et al. Cell* 69: 205-216 (1992)); acetylcholine receptor-inducing activity (ARIA) (Falls *et al. Cell* 72:801-815 (1993)); glial growth factors (GGFs) (Marchionni *et al.*, *Nature*, 362:312-318 (1993)); sensory and motor neuron derived factor (SMDF) (Ho *et al. J. Biol. Chem.* 270:14523-14532 (1995)); γ-heregulin (Schaefer *et al. Oncogene* 15:1385-1394 (1997)).

A "HER dimer" herein is a noncovalently associated dimer comprising at least two HER receptors. Such complexes may form when a cell expressing two or more HER receptors is exposed to an HER ligand and can be isolated by immunoprecipitation and analyzed by SDS-PAGE as described in Sliwkowski *et al.*, *J. Biol. Chem.*, 269(20):14661-14665 (1994), for example. Other proteins, such as a cytokine receptor subunit (*e.g.* gp130) may be associated with the dimer. Preferably, the HER dimer comprises HER2.

A "HER heterodimer" herein is a noncovalently associated heterodimer comprising at least two different HER receptors, such as EGFR-HER2, HER2-HER3 or HER2-HER4 heterodimers.

A "HER inhibitor" is an agent which interferes with HER activation or function. Examples of HER inhibitors include HER antibodies (*e.g.* EGFR, HER2, HER3, or HER4 antibodies); EGFR-targeted drugs; small molecule HER antagonists; HER tyrosine kinase inhibitors; HER2 and EGFR dual tyrosine kinase inhibitors such as lapatinib/GW572016; antisense molecules (see, for example, WO2004/87207); and/or agents that bind to, or interfere with function of, downstream signaling molecules, such as MAPK or Akt (see Fig. 5). Preferably, the HER inhibitor is an antibody or small molecule which binds to a HER receptor.

A "HER dimerization inhibitor" is an agent which inhibits formation of a HER dimer or HER heterodimer. Preferably, the HER dimerization inhibitor is an antibody, for example an antibody which binds to HER2 at the heterodimeric binding site thereof. The most preferred HER dimerization inhibitor herein is pertuzumab or MAb 2C4. Binding of 2C4 to the heterodimeric binding site of HER2 is illustrated in Fig. 4. Other examples of HER dimerization inhibitors include antibodies which bind to EGFR and inhibit dimerization thereof with one or more other HER receptors (for example EGFR monoclonal antibody 806, MAb 806, which binds to activated or "untethered" EGFR; see Johns et al., J. Biol. Chem. 279(29):30375-30384 (2004)); antibodies which bind to HER3 and inhibit

dimerization thereof with one or more other HER receptors; antibodies which bind to HER4 and inhibit dimerization thereof with one or more other HER receptors; peptide dimerization inhibitors (US Patent No. 6,417,168); antisense dimerization inhibitors; etc.

A "HER2 dimerization inhibitor" is an agent that inhibits formation of a dimer or heterodimer comprising HER2.

5

10

15

20

25

30

35

A "HER antibody" is an antibody that binds to a HER receptor. Optionally, the HER antibody further interferes with HER activation or function. Preferably, the HER antibody binds to the HER2 receptor. A HER2 antibody of particular interest herein is pertuzumab. Another example of a HER2 antibody is trastuzumab. Examples of EGFR antibodies include cetuximab and ABX0303.

"HER activation" refers to activation, or phosphorylation, of any one or more HER receptors. Generally, HER activation results in signal transduction (*e.g.* that caused by an intracellular kinase domain of a HER receptor phosphorylating tyrosine residues in the HER receptor or a substrate polypeptide). HER activation may be mediated by HER ligand binding to a HER dimer comprising the HER receptor of interest. HER ligand binding to a HER dimer may activate a kinase domain of one or more of the HER receptors in the dimer and thereby results in phosphorylation of tyrosine residues in one or more of the HER receptors and/or phosphorylation of tyrosine residues in additional substrate polypeptides(s), such as Akt or MAPK intracellular kinases, see, Fig. 5, for example.

"Phosphorylation" refers to the addition of one or more phosphate group(s) to a protein, such as a HER receptor, or substrate thereof.

An antibody which "inhibits HER dimerization" is an antibody which inhibits, or interferes with, formation of a HER dimer. Preferably, such an antibody binds to HER2 at the heterodimeric binding site thereof. The most preferred dimerization inhibiting antibody herein is pertuzumab or MAb 2C4. Binding of 2C4 to the heterodimeric binding site of HER2 is illustrated in Fig. 4. Other examples of antibodies which inhibit HER dimerization include antibodies which bind to EGFR and inhibit dimerization thereof with one or more other HER receptors (for example EGFR monoclonal antibody 806, MAb 806, which binds to activated or "untethered" EGFR; see Johns *et al.*, *J. Biol. Chem.* 279(29):30375-30384 (2004)); antibodies which bind to HER3 and inhibit dimerization thereof with one or more other HER receptors; and antibodies which bind to HER4 and inhibit dimerization thereof with one or more other HER receptors.

An antibody which "blocks ligand activation of a HER receptor more effectively than trastuzumab" is one which reduces or eliminates HER ligand activation of HER receptor(s) or HER dimer(s) more effectively (for example at least about 2-fold more effectively) than trastuzumab. Preferably, such an antibody blocks HER ligand activation of a HER receptor at least about as effectively as murine monoclonal antibody 2C4 or a Fab fragment thereof, or as pertuzumab or a Fab fragment thereof. One can evaluate the ability of an antibody to block ligand activation of a HER receptor by studying HER dimers directly, or by evaluating HER activation, or downstream signaling,

11

which results from HER dimerization, and/or by evaluating the antibody-HER2 binding site, etc. Assays for screening for antibodies with the ability to inhibit ligand activation of a HER receptor more effectively than trastuzumab are described in Agus et al. Cancer Cell 2: 127-137 (2002) and WO01/00245 (Adams et al.). By way of example only, one may assay for: inhibition of HER dimer formation (see, e.g., Fig. 1A-B of Agus et al. Cancer Cell 2: 127-137 (2002); and WO01/00245); reduction in HER ligand activation of cells which express HER dimers (WO01/00245 and Fig. 2A-B of Agus et al. Cancer Cell 2: 127-137 (2002), for example); blocking of HER ligand binding to cells which express HER dimers (WO01/00245, and Fig. 2E of Agus et al. Cancer Cell 2: 127-137 (2002), for example); cell growth inhibition of cancer cells (e.g. MCF7, MDA-MD-134, ZR-75-1, MD-MB-175, T-47D cells) which express HER dimers in the presence (or absence) of HER ligand 10 (WO01/00245and Figs. 3A-D of Agus et al. Cancer Cell 2: 127-137 (2002), for instance); inhibition of downstream signaling (for instance, inhibition of HRG-dependent AKT phosphorylation or inhibition of HRG- or TGFa- dependent MAPK phosphorylation) (see, WO01/00245, and Fig. 2C-D of Agus et al. Cancer Cell 2: 127-137 (2002), for example). One may also assess whether the antibody inhibits HER dimerization by studying the antibody-HER2 binding site, for instance, by evaluating a 15 structure or model, such as a crystal structure, of the antibody bound to HER2 (See, for example, Franklin et al. Cancer Cell 5:317-328 (2004)).

5

20

25

30

35

A "heterodimeric binding site" on HER2, refers to a region in the extracellular domain of HER2 that contacts, or interfaces with, a region in the extracellular domain of EGFR, HER3 or HER4 upon formation of a dimer therewith. The region is found in Domain II of HER2. Franklin et al. Cancer Cell 5:317-328 (2004).

The HER2 antibody may "inhibit HRG-dependent AKT phosphorylation" and/or inhibit "HRG- or TGFa-dependent MAPK phosphorylation" more effectively (for instance at least 2-fold more effectively) than trastuzumab (see Agus et al. Cancer Cell 2: 127-137 (2002) and WO01/00245, by way of example).

The HER2 antibody may be one which, like pertuzumab, does "not inhibit HER2 ectodomain cleavage" (Molina et al. Cancer Res. 61:4744-4749(2001)). Trastuzumab, on the other hand, can inhibit HER2 ectodomain cleavage.

A HER2 antibody that "binds to a heterodimeric binding site" of HER2, binds to residues in domain II (and optionally also binds to residues in other of the domains of the HER2 extracellular domain, such as domains I and III), and can sterically hinder, at least to some extent, formation of a HER2-EGFR, HER2-HER3, or HER2-HER4 heterodimer. Franklin et al. Cancer Cell 5:317-328 (2004) characterize the HER2-pertuzumab crystal structure, deposited with the RCSB Protein Data Bank (ID Code IS78), illustrating an exemplary antibody that binds to the heterodimeric binding site of HER2.

An antibody that "binds to domain II" of HER2 binds to residues in domain II and optionally

residues in other domain(s) of HER2, such as domains I and III. Preferably the antibody that binds to domain II binds to the junction between domains I, II and III of HER2.

Protein "expression" refers to conversion of the information encoded in a gene into messenger RNA (mRNA) and then to the protein.

Herein, a sample or cell that "expresses" a protein of interest (such as a HER receptor or HER ligand) is one in which mRNA encoding the protein, or the protein, including fragments thereof, is determined to be present in the sample or cell.

5

10

15

20

25

30

35

The technique of "polymerase chain reaction" or "PCR" as used herein generally refers to a procedure wherein minute amounts of a specific piece of nucleic acid, RNA and/or DNA, are amplified as described in U.S. Pat. No. 4,683,195 issued 28 July 1987. Generally, sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified. The 5' terminal nucleotides of the two primers may coincide with the ends of the amplified material. PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis *et al.*, *Cold Spring Harbor Symp. Quant. Biol.*, 51: 263 (1987); Erlich, ed., PCR Technology, (Stockton Press, NY, 1989). As used herein, PCR is considered to be one, but not the only, example of a nucleic acid polymerase reaction method for amplifying a nucleic acid test sample, comprising the use of a known nucleic acid (DNA or RNA) as a primer and utilizes a nucleic acid polymerase to amplify or generate a specific piece of nucleic acid or to amplify or generate a specific piece of nucleic acid which is complementary to a particular nucleic acid.

"Quantitative real time polymerase chain reaction" or "qRT-PCR" refers to a form of PCR wherein the amount of PCR product is measured at each step in a PCR reaction. This technique has been described in various publications including Cronin *et al.*, *Am. J. Pathol.* 164(1):35-42 (2004); and Ma *et al.*, *Cancer Cell* 5:607-616 (2004).

The term "microarray" refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.

The term "polynucleotide," when used in singular or plural, generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single-and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term "polynucleotide" as used herein refers to triple- stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the

molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term "polynucleotide" specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotides" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term "polynucleotides" as defined herein. In general, the term "polynucleotide" embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.

5

10

15

20

25

30

35

The term "oligonucleotide" refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNA:DNA hybrids and double- stranded DNAs. Oligonucleotides, such as single- stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.

The phrase "gene amplification" refers to a process by which multiple copies of a gene or gene fragment are formed in a particular cell or cell line. The duplicated region (a stretch of amplified DNA) is often referred to as "amplicon." Usually, the amount of the messenger RNA (mRNA) produced also increases in the proportion of the number of copies made of the particular gene expressed.

"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., *Current Protocols in Molecular Biology*, Wiley Interscience Publishers, (1995).

"Stringent conditions" or "high stringency conditions", as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium

chloride, 75 mM sodium citrate at 42°C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5× Denhardt's solution, sonicated salmon sperm DNA (50 &gr;g/ml), 0.1% SDS, and 10% dextran sulfate at 42°C., with washes at 42°C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide at 55°C., followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55°C.

5

10

15

20

25

30

35

"Moderately stringent conditions" may be identified as described by Sambrook et al., *Molecular Cloning: A Laboratory Manual*, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (*e.g.*, temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37°C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5× Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.

A "native sequence" polypeptide is one which has the same amino acid sequence as a polypeptide (*e.g.*, HER receptor or HER ligand) derived from nature, including naturally occurring or allelic variants. Such native sequence polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. Thus, a native sequence polypeptide can have the amino acid sequence of naturally occurring human polypeptide, murine polypeptide, or polypeptide from any other mammalian species.

The term "antibody" herein is used in the broadest sense and specifically covers monoclonal antibodies, polyclonal antibodies, multispecific antibodies (*e.g.* bispecific antibodies), and antibody fragments, so long as they exhibit the desired biological activity.

The term "monoclonal antibody" as used herein refers to an antibody from a population of substantially homogeneous antibodies, *i.e.*, the individual antibodies comprising the population are identical and/or bind the same epitope(s), except for possible variants that may arise during production of the monoclonal antibody, such variants generally being present in minor amounts. Such monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target, wherein the target-binding polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence from a plurality of polypeptide sequences. For example, the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones or recombinant DNA clones. It should be understood that the selected target binding sequence can be further altered, for example, to improve affinity for the target, to humanize the target binding sequence, to improve its production in cell culture, to reduce its immunogenicity *in vivo*, to create a multispecific antibody, *etc.*, and that an antibody comprising the altered target binding sequence is also a monoclonal antibody of this invention. In contrast to

polyclonal antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen. In addition to their specificity, the monoclonal antibody preparations are advantageous in that they are typically uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a

The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of techniques, including, for example, the hybridoma method (e.g., Kohler et al., Nature, 256:495 (1975); Harlow et al., Antibodies: A

5

10

15

20

25

30

35

Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681, (Elsevier, N.Y., 1981)), recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567), phage display technologies (see, e.g., Clackson et al., Nature, 352:624-628 (1991); Marks et al., J. Mol. Biol., 222:581-597 (1991); Sidhu et al., J. Mol. Biol., 338(2):299-310 (2004); Lee et al., J.Mol.Biol.340(5):1073-1093 (2004); Fellouse, Proc. Nat.

Acad. Sci. USA 101(34):12467-12472 (2004); and Lee et al. J. Immunol. Methods 284(1-2):119-132 (2004), and technologies for producing human or human-like antibodies in animals that have parts or all of the human immunoglobulin loci or genes encoding human immunoglobulin sequences (see, e.g., WO 1998/24893; WO 1996/34096; WO 1996/33735; WO 1991/10741; Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al.,

Year in Immuno., 7:33 (1993); U.S. Patent Nos. 5,545,806; 5,569,825; 5,591,669 (all of GenPharm); U.S. Patent No. 5,545,807; WO 1997/17852; U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; and 5,661,016; Marks et al., Bio/Technology, 10: 779-783 (1992); Lonberg et al., Nature, 368: 856-859 (1994); Morrison, Nature, 368: 812-813 (1994); Fishwild et al., Nature Biotechnology, 14: 845-851 (1996); Neuberger, Nature Biotechnology, 14: 826 (1996); and Lonberg and Huszar, Intern. Rev. Immunol., 13: 65-93 (1995)).

The monoclonal antibodies herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; and Morrison *et al.*, *Proc. Natl. Acad. Sci. USA*, 81:6851-6855 (1984)). Chimeric antibodies of interest herein include "primatized" antibodies comprising variable domain antigenbinding sequences derived from a non-human primate (*e.g.* Old World Monkey, Ape etc) and human constant region sequences, as well as "humanized" antibodies.

"Humanized" forms of non-human (e.g., rodent) antibodies are chimeric antibodies that

contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones *et al.*, *Nature* 321:522-525 (1986); Riechmann *et al.*, *Nature* 332:323-329 (1988); and Presta, *Curr. Op. Struct. Biol.* 2:593-596 (1992).

5

10

15

20

25

30

35

Humanized HER2 antibodies include huMAb4D5-1, huMAb4D5-2, huMAb4D5-3, huMAb4D5-4, huMAb4D5-5, huMAb4D5-6, huMAb4D5-7 and huMAb4D5-8 or trastuzumab (HERCEPTIN®) as described in Table 3 of U.S. Patent 5,821,337 expressly incorporated herein by reference; humanized 520C9 (WO93/21319); and humanized 2C4 antibodies such as pertuzumab as described herein.

For the purposes herein, "trastuzumab," "HERCEPTIN®," and "huMAb4D5-8" refer to an antibody comprising the light and heavy chain amino acid sequences in SEQ ID NOS. 15 and 16, respectively.

Herein, "pertuzumab" and "OMNITARG™" refer to an antibody comprising the light and heavy chain amino acid sequences in SEQ ID NOS. 13 and 14, respectively.

Differences between trastuzumab and pertuzumab functions are illustrated in Fig. 6.

An "intact antibody" herein is one which comprises two antigen binding regions, and an Fc region. Preferably, the intact antibody has a functional Fc region.

"Antibody fragments" comprise a portion of an intact antibody, preferably comprising the antigen binding region thereof. Examples of antibody fragments include Fab, Fab', F(ab')₂, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragment(s).

"Native antibodies" are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has

regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one end (V_L) and a constant domain at its other end. The constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light-chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains.

5

10

15

20

25

30

35

The term "variable" refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called hypervariable regions both in the light chain and the heavy chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FRs). The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β -sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β -sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat *et al.*, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).

The term "hypervariable region" when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a "complementarity determining region" or "CDR" (e.g. residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)) and/or those residues from a "hypervariable loop" (e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)). "Framework Region" or "FR" residues are those variable domain residues other than the hypervariable region residues as herein defined.

Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab')₂ fragment that has two antigen-binding sites and is still capable of cross-linking antigen.

"Fv" is the minimum antibody fragment which contains a complete antigen-recognition and antigen-binding site. This region consists of a dimer of one heavy chain and one light chain variable

domain in tight, non-covalent association. It is in this configuration that the three hypervariable regions of each variable domain interact to define an antigen-binding site on the surface of the V_H - V_L dimer. Collectively, the six hypervariable regions confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three hypervariable regions specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

5

10

15

20

25

30

35

The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear at least one free thiol group. F(ab')₂ antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

The "light chains" of antibodies from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains.

The term "Fc region" herein is used to define a C-terminal region of an immunoglobulin heavy chain, including native sequence Fc regions and variant Fc regions. Although the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof. The C-terminal lysine (residue 447 according to the EU numbering system) of the Fc region may be removed, for example, during production or purification of the antibody, or by recombinantly engineering the nucleic acid encoding a heavy chain of the antibody. Accordingly, a composition of intact antibodies may comprise antibody populations with all K447 residues removed, antibody populations with no K447 residues removed, and antibody populations having a mixture of antibodies with and without the K447 residue.

Unless indicated otherwise, herein the numbering of the residues in an immunoglobulin heavy chain is that of the EU index as in Kabat *et al.*, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991), expressly incorporated herein by reference. The "EU index as in Kabat" refers to the residue numbering of the human IgG1 EU antibody.

A "functional Fc region" possesses an "effector function" of a native sequence Fc region. Exemplary "effector functions" include C1q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR), etc. Such effector functions generally require the Fc region to be combined with a binding domain (e.g. an antibody variable domain) and can be assessed using

19

various assays as herein disclosed, for example.

5

10

15

20

25

30

35

A "native sequence Fc region" comprises an amino acid sequence identical to the amino acid sequence of an Fc region found in nature. Native sequence human Fc regions include a native sequence human IgG1 Fc region (non-A and A allotypes); native sequence human IgG2 Fc region; native sequence human IgG3 Fc region; and native sequence human IgG4 Fc region as well as naturally occurring variants thereof.

A "variant Fc region" comprises an amino acid sequence which differs from that of a native sequence Fc region by virtue of at least one amino acid modification, preferably one or more amino acid substitution(s). Preferably, the variant Fc region has at least one amino acid substitution compared to a native sequence Fc region or to the Fc region of a parent polypeptide, *e.g.* from about one to about ten amino acid substitutions, and preferably from about one to about five amino acid substitutions in a native sequence Fc region or in the Fc region of the parent polypeptide. The variant Fc region herein will preferably possess at least about 80% homology with a native sequence Fc region and/or with an Fc region of a parent polypeptide, and most preferably at least about 90% homology therewith, more preferably at least about 95% homology therewith.

Depending on the amino acid sequence of the constant domain of their heavy chains, intact antibodies can be assigned to different "classes". There are five major classes of intact antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into "subclasses" (isotypes), *e.g.*, IgG1, IgG2, IgG3, IgG4, IgA, and IgA2. The heavy-chain constant domains that correspond to the different classes of antibodies are called α , δ , ϵ , γ , and μ , respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.

"Antibody-dependent cell-mediated cytotoxicity" and "ADCC" refer to a cell-mediated reaction in which nonspecific cytotoxic cells that express Fc receptors (FcRs) (e.g. Natural Killer (NK) cells, neutrophils, and macrophages) recognize bound antibody on a target cell and subsequently cause lysis of the target cell. The primary cells for mediating ADCC, NK cells, express FcγRIII only, whereas monocytes express FcγRI, FcγRII and FcγRIII. FcR expression on hematopoietic cells in summarized is Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in US Patent No. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. PNAS (USA) 95:652-656 (1998).

"Human effector cells" are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least FcγRIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK

cells being preferred. The effector cells may be isolated from a native source thereof, e.g. from blood or PBMCs as described herein.

5

10

15

20

25

30

35

The terms "Fc receptor" or "FcR" are used to describe a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcγRI, FcγRII, and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA (an "activating receptor") and FcγRIIB (an "inhibiting receptor"), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcγRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcγRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain (see review M. in Daëron, *Annu. Rev. Immunol.* 15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, *Annu. Rev. Immunol* 9:457-92 (1991); Capel *et al., Immunomethods* 4:25-34 (1994); and de Haas *et al., J. Lab. Clin. Med.* 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term "FcR" herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer *et al., J. Immunol.* 117:587 (1976) and Kim *et al., J. Immunol.* 24:249 (1994)), and regulates homeostasis of immunoglobulins.

"Complement dependent cytotoxicity" or "CDC" refers to the ability of a molecule to lyse a target in the presence of complement. The complement activation pathway is initiated by the binding of the first component of the complement system (C1q) to a molecule (e.g. an antibody) complexed with a cognate antigen. To assess complement activation, a CDC assay, e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed.

"Single-chain Fv" or "scFv" antibody fragments comprise the V_H and V_L domains of antibody, wherein these domains are present in a single polypeptide chain. Preferably, the Fv polypeptide further comprises a polypeptide linker between the V_H and V_L domains which enables the scFv to form the desired structure for antigen binding. For a review of scFv see Plückthun in *The Pharmacology of Monoclonal Antibodies*, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994). HER2 antibody scFv fragments are described in WO93/16185; U.S. Patent No. 5,571,894; and U.S. Patent No. 5,587,458.

The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a variable heavy domain (V_H) connected to a variable light domain (V_L) in the same polypeptide chain $(V_H - V_L)$. By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404.097; WO 93/11161; and Hollinger *et al.*, *Proc. Natl. Acad. Sci. USA*, 90:6444-6448 (1993).

A "naked antibody" is an antibody that is not conjugated to a heterologous molecule, such as a

cytotoxic moiety or radiolabel.

5

10

15

20

25

30

35

An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody *in situ* within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

An "affinity matured" antibody is one with one or more alterations in one or more hypervariable regions thereof which result an improvement in the affinity of the antibody for antigen, compared to a parent antibody which does not possess those alteration(s). Preferred affinity matured antibodies will have nanomolar or even picomolar affinities for the target antigen. Affinity matured antibodies are produced by procedures known in the art. Marks *et al. Bio/Technology* 10:779-783 (1992) describes affinity maturation by VH and VL domain shuffling. Random mutagenesis of CDR and/or framework residues is described by: Barbas *et al. Proc Nat. Acad. Sci, USA* 91:3809-3813 (1994); Schier *et al. Gene* 169:147-155 (1995); Yelton *et al. J. Immunol.* 155:1994-2004 (1995); Jackson *et al., J. Immunol.* 154(7):3310-9 (1995); and Hawkins *et al, J. Mol. Biol.* 226:889-896 (1992).

The term "main species antibody" herein refers to the antibody structure in a composition which is the quantitatively predominant antibody molecule in the composition. In one embodiment, the main species antibody is a HER2 antibody, such as an antibody that binds to Domain II of HER2, antibody that inhibits HER dimerization more effectively than trastuzumab, and/or an antibody which binds to a heterodimeric binding site of HER2. The preferred embodiment herein of the main species antibody is one comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, and most preferably comprising the light chain and heavy chain amino acid sequences in SEQ ID Nos. 13 and 14 (pertuzumab).

An "amino acid sequence variant" antibody herein is an antibody with an amino acid sequence which differs from a main species antibody. Ordinarily, amino acid sequence variants will possess at least about 70% homology with the main species antibody, and preferably, they will be at least about 80%, more preferably at least about 90% homologous with the main species antibody. The amino acid sequence variants possess substitutions, deletions, and/or additions at certain positions within or adjacent to the amino acid sequence of the main species antibody. Examples of amino acid sequence

variants herein include an acidic variant (e.g. deamidated antibody variant), a basic variant, an antibody with an amino-terminal leader extension (e.g. VHS-) on one or two light chains thereof, an antibody with a C-terminal lysine residue on one or two heavy chains thereof, etc, and includes combinations of variations to the amino acid sequences of heavy and/or light chains. The antibody variant of particular interest herein is the antibody comprising an amino-terminal leader extension on one or two light chains thereof, optionally further comprising other amino acid sequence and/or glycosylation differences relative to the main species antibody.

5

10

15

20

25

30

35

A "glycosylation variant" antibody herein is an antibody with one or more carbohydrate moeities attached thereto which differ from one or more carbohydate moieties attached to a main species antibody. Examples of glycosylation variants herein include antibody with a G1 or G2 oligosaccharide structure, instead a G0 oligosaccharide structure, attached to an Fc region thereof, antibody with one or two carbohydrate moieties attached to one or two light chains thereof, antibody with no carbohydrate attached to one or two heavy chains of the antibody, etc, and combinations of glycosylation alterations.

Where the antibody has an Fc region, an oligosaccharide structure may be attached to one or two heavy chains of the antibody, *e.g.* at residue 299 (298, Eu numbering of residues). For pertuzumab, G0 was the predominant oligosaccharide structure, with other oligosaccharide structures such as G0-F, G-1, Man5, Man6, G1-1, G1(1-6), G1(1-3) and G2 being found in lesser amounts in the pertuzumab composition.

Unless indicated otherwise, a "G1 oligosaccharide structure" herein includes G-1, G1-1, G1(1-6) and G1(1-3) structures.

An "amino-terminal leader extension" herein refers to one or more amino acid residues of the amino-terminal leader sequence that are present at the amino-terminus of any one or more heavy or light chains of an antibody. An exemplary amino-terminal leader extension comprises or consists of three amino acid residues, VHS, present on one or both light chains of an antibody variant.

A "deamidated" antibody is one in which one or more asparagine residues thereof has been derivitized, e.g. to an aspartic acid, a succinimide, or an iso-aspartic acid.

The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include, but are not limited to, carcinoma, lymphoma, blastoma (including medulloblastoma and retinoblastoma), sarcoma (including liposarcoma and synovial cell sarcoma), neuroendocrine tumors (including carcinoid tumors, gastrinoma, and islet cell cancer), mesothelioma, schwannoma (including acoustic neuroma), meningioma, adenocarcinoma, melanoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer (e.g. epithelial squamous cell cancer), lung cancer including small-cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum,

23

hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer (including metastatic breast cancer), colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, testicular cancer, esophagael cancer, tumors of the biliary tract, as well as head and neck cancer.

An "advanced" cancer is one which has spread outside the site or organ of origin, either by local invasion or metastasis.

10

15

20

25

30

35

A "refractory" cancer is one which progresses even though an anti-tumor agent, such as a chemotherapeutic agent, is being administered to the cancer patient. An example of a refractory cancer is one which is platinum refractory.

A "recurrent" cancer is one which has regrown, either at the initial site or at a distant site, after a response to initial therapy.

Herein, a "patient" is a human patient. The patient may be a "cancer patient," *i.e.* one who is suffering or at risk for suffering from one or more symptoms of cancer.

A "tumor sample" herein is a sample derived from, or comprising tumor cells from, a patient's tumor. Examples of tumor samples herein include, but are not limited to, tumor biopsies, circulating tumor cells, circulating plasma proteins, ascitic fluid, primary cell cultures or cell lines derived from tumors or exhibiting tumor-like properties, as well as preserved tumor samples, such as formalin-fixed, paraffin-embedded tumor samples or frozen tumor samples.

A "fixed" tumor sample is one which has been histologically preserved using a fixative.

A "formalin-fixed" tumor sample is one which has been preserved using formaldehyde as the fixative.

An "embedded" tumor sample is one surrounded by a firm and generally hard medium such as paraffin, wax, celloidin, or a resin. Embedding makes possible the cutting of thin sections for microscopic examination or for generation of tissue microarrays (TMAs).

A "paraffin-embedded" tumor sample is one surrounded by a purified mixture of solid hydrocarbons derived from petroleum.

Herein, a "frozen" tumor sample refers to a tumor sample which is, or has been, frozen.

A cancer or biological sample which "displays HER expression, amplification, or activation" is one which, in a diagnostic test, expresses (including overexpresses) a HER receptor, has amplified HER gene, and/or otherwise demonstrates activation or phosphorylation of a HER receptor.

A cancer or biological sample which "displays HER activation" is one which, in a diagnostic test, demonstrates activation or phosphorylation of a HER receptor. Such activation can be determined directly (e.g. by measuring HER phosphorylation by ELISA) or indirectly (e.g. by gene expression profiling or by detecting HER heterodimers, as described herein).

Herein, "gene expression profiling" refers to an evaluation of expression of one or more genes as a surrogate for determining HER phosphorylation directly.

A "phospho-ELISA assay" herein is an assay in which phosphorylation of one or more HER receptors, especially HER2, is evaluated in an enzyme-linked immunosorbent assay (ELISA) using a reagent, usually an antibody, to detect phosphorylated HER receptor, substrate, or downstream signaling molecule. Preferably, an antibody which detects phosphorylated HER2 is used. The assay may be performed on cell lysates, preferably from fresh or frozen biological samples.

5

10

15

20

25

30

35

A cancer cell with "HER receptor overexpression or amplification" is one which has significantly higher levels of a HER receptor protein or gene compared to a noncancerous cell of the same tissue type. Such overexpression may be caused by gene amplification or by increased transcription or translation. HER receptor overexpression or amplification may be determined in a diagnostic or prognostic assay by evaluating increased levels of the HER protein present on the surface of a cell (e.g. via an immunohistochemistry assay; IHC). Alternatively, or additionally, one may measure levels of HER-encoding nucleic acid in the cell, e.g. via fluorescent in situ hybridization (FISH; see WO98/45479 published October, 1998), southern blotting, or polymerase chain reaction (PCR) techniques, such as quantitative real time PCR (qRT-PCR). One may also study HER receptor overexpression or amplification by measuring shed antigen (e.g., HER extracellular domain) in a biological fluid such as serum (see, e.g., U.S. Patent No. 4,933,294 issued June 12, 1990; WO91/05264 published April 18, 1991; U.S. Patent 5,401,638 issued March 28, 1995; and Sias et al. J. Immunol. Methods 132: 73-80 (1990)). Aside from the above assays, various in vivo assays are available to the skilled practitioner. For example, one may expose cells within the body of the patient to an antibody which is optionally labeled with a detectable label, e.g. a radioactive isotope, and binding of the antibody to cells in the patient can be evaluated, e.g. by external scanning for radioactivity or by analyzing a biopsy taken from a patient previously exposed to the antibody.

Conversely, a cancer which "does not overexpress or amplify HER receptor" is one which does not have higher than normal levels of HER receptor protein or gene compared to a noncancerous cell of the same tissue type. Antibodies that inhibit HER dimerization, such as pertuzumab, may be used to treat cancer which does not overexpress or amplify HER2 receptor.

Herein, an "anti-tumor agent" refers to a drug used to treat cancer. Non-limiting examples of anti-tumor agents herein include chemotherapeutic agents, HER dimerization inhibitors, HER antibodies, antibodies directed against tumor associated antigens, anti-hormonal compounds, cytokines, EGFR-targeted drugs, anti-angiogenic agents, tyrosine kinase inhibitors, growth inhibitory agents and antibodies, cytotoxic agents, antibodies that induce apoptosis, COX inhibitors, farnesyl transferase inhibitors, antibodies that binds oncofetal protein CA 125, HER2 vaccines, Raf or ras inhibitors, liposomal doxorubicin, topotecan, taxane, dual tyrosine kinase inhibitors, TLK286, EMD-7200, pertuzumab, trastuzumab, erlotinib, and bevacizumab.

An "approved anti-tumor agent" is a drug used to treat cancer which has been accorded marketing approval by a regulatory authority such as the Food and Drug Administration (FDA) or foreign equivalent thereof.

Where a HER dimerization inhibitor is administered as a "single anti-tumor agent" it is the only anti-tumor agent administered to treat the cancer, *i.e.* it is not administered in combination with another anti-tumor agent, such as chemotherapy.

5

10

15

20

25

30

35

By "standard of care" herein is intended the anti-tumor agent or agents that are routinely used to treat a particular form of cancer. For example, for platinum-resistant ovarian cancer, the standard of care is topotecan or liposomal doxorubicin.

A "growth inhibitory agent" when used herein refers to a compound or composition which inhibits growth of a cell, especially a HER expressing cancer cell either *in vitro* or *in vivo*. Thus, the growth inhibitory agent may be one which significantly reduces the percentage of HER expressing cells in S phase. Examples of growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), taxanes, and topo II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in *The Molecular Basis of Cancer*, Mendelsohn and Israel, eds., Chapter 1, entitled "Cell cycle regulation, oncogenes, and antineoplastic drugs" by Murakami *et al.* (WB Saunders: Philadelphia, 1995), especially p. 13.

Examples of "growth inhibitory" antibodies are those which bind to HER2 and inhibit the growth of cancer cells overexpressing HER2. Preferred growth inhibitory HER2 antibodies inhibit growth of SK-BR-3 breast tumor cells in cell culture by greater than 20%, and preferably greater than 50% (*e.g.* from about 50% to about 100%) at an antibody concentration of about 0.5 to 30 μg/ml, where the growth inhibition is determined six days after exposure of the SK-BR-3 cells to the antibody (see U.S. Patent No. 5,677,171 issued October 14, 1997). The SK-BR-3 cell growth inhibition assay is described in more detail in that patent and hereinbelow. The preferred growth inhibitory antibody is a humanized variant of murine monoclonal antibody 4D5, *e.g.*, trastuzumab.

An antibody which "induces apoptosis" is one which induces programmed cell death as determined by binding of annexin V, fragmentation of DNA, cell shrinkage, dilation of endoplasmic reticulum, cell fragmentation, and/or formation of membrane vesicles (called apoptotic bodies). The cell is usually one which overexpresses the HER2 receptor. Preferably the cell is a tumor cell, *e.g.* a breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, thyroid, pancreatic or bladder cell. *In vitro*, the cell may be a SK-BR-3, BT474, Calu 3 cell, MDA-MB-453, MDA-MB-361 or SKOV3 cell. Various methods are available for evaluating the cellular events associated with

26

apoptosis. For example, phosphatidyl serine (PS) translocation can be measured by annexin binding; DNA fragmentation can be evaluated through DNA laddering; and nuclear/chromatin condensation along with DNA fragmentation can be evaluated by any increase in hypodiploid cells. Preferably, the antibody which induces apoptosis is one which results in about 2 to 50 fold, preferably about 5 to 50 fold, and most preferably about 10 to 50 fold, induction of annexin binding relative to untreated cell in an annexin binding assay using BT474 cells (see below). Examples of HER2 antibodies that induce apoptosis are 7C2 and 7F3.

5

10

15

20

25

30

35

The "epitope 2C4" is the region in the extracellular domain of HER2 to which the antibody 2C4 binds. In order to screen for antibodies which bind to the 2C4 epitope, a routine cross-blocking assay such as that described in *Antibodies, A Laboratory Manual*, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Preferably the antibody blocks 2C4's binding to HER2 by about 50% or more. Alternatively, epitope mapping can be performed to assess whether the antibody binds to the 2C4 epitope of HER2. Epitope 2C4 comprises residues from Domain II in the extracellular domain of HER2. 2C4 and pertuzumab binds to the extracellular domain of HER2 at the junction of domains I, II and III. Franklin *et al. Cancer Cell* 5:317-328 (2004).

The "epitope 4D5" is the region in the extracellular domain of HER2 to which the antibody 4D5 (ATCC CRL 10463) and trastuzumab bind. This epitope is close to the transmembrane domain of HER2, and within Domain IV of HER2. To screen for antibodies which bind to the 4D5 epitope, a routine cross-blocking assay such as that described in *Antibodies, A Laboratory Manual*, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Alternatively, epitope mapping can be performed to assess whether the antibody binds to the 4D5 epitope of HER2 (e.g. any one or more residues in the region from about residue 529 to about residue 625, inclusive of the HER2 ECD, residue numbering including signal peptide).

The "epitope 7C2/7F3" is the region at the N terminus, within Domain I, of the extracellular domain of HER2 to which the 7C2 and/or 7F3 antibodies (each deposited with the ATCC, see below) bind. To screen for antibodies which bind to the 7C2/7F3 epitope, a routine cross-blocking assay such as that described in *Antibodies*, *A Laboratory Manual*, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Alternatively, epitope mapping can be performed to establish whether the antibody binds to the 7C2/7F3 epitope on HER2 (e.g. any one or more of residues in the region from about residue 22 to about residue 53 of the HER2 ECD, residue numbering including signal peptide).

"Treatment" refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with cancer as well as those in which cancer is to be prevented. Hence, the patient to be treated herein may have been diagnosed as having cancer or may be predisposed or susceptible to cancer.

The term "effective amount" refers to an amount of a drug effective to treat cancer in the

patient. The effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (*i.e.*, slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (*i.e.*, slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. To the extent the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic. The effective amount may extend progression free survival (*e.g.* as measured by Response Evaluation Criteria for Solid Tumors, RECIST, or CA-125 changes), result in an objective response (including a partial response, PR, or complete respose, CR), increase overall survival time, and/or improve one or more symptoms of cancer (*e.g.* as assessed by FOSI).

5

10

15

20

25

30

35

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g. At²¹¹, I¹³¹, I¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹², P³² and radioactive isotopes of Lu), chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof.

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN® cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenethiophosphoramide and trimethylolomelamine; TLK 286 (TELCYTA™); acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL®); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue topotecan (HYCAMTIN®), CPT-11 (irinotecan, CAMPTOSAR®), acetylcamptothecin, scopolectin, and 9-aminocamptothecin); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); podophyllotoxin; podophyllinic acid; teniposide; cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard: nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimnustine; bisphosphonates, such as clodronate; antibiotics such as the enediyne antibiotics (e. g., calicheamicin, especially calicheamicin gamma1I and calicheamicin omegaI1 (see, e.g., Agnew, Chem Intl. Ed. Engl., 33: 183-186 (1994)) and anthracyclines such as annamycin, AD 32, alcarubicin, daunorubicin, dexrazoxane, DX-52-1, epirubicin, GPX-100, idarubicin, KRN5500, menogaril, dynemicin, including dynemicin A, an esperamicin, neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores, aclacinomysins, actinomycin, authramycin,

5

10

15

20

25

30

35

azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin, liposomal doxorubicin, and deoxydoxorubicin), esorubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, and zorubicin; folic acid analogues such as denopterin, pteropterin, and trimetrexate; purine analogs such as fludarabine, 6mercaptopurine, thiamiprine, and thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, and floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane: folic acid replenisher such as folinic acid (leucovorin); aceglatone; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, anti-metabolites such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capecitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX^{RM}, TDX); inhibitors of dihydropyrimidine dehydrogenase such as eniluracil; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfornithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; 2-ethylhydrazide; procarbazine; PSK® polysaccharide complex (JHS Natural Products, Eugene, OR); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2',2"trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine (ELDISINE®, FILDESIN®); dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiotepa; taxoids and taxanes, e.g., TAXOL® paclitaxel (Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANETM Cremophorfree, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, Illinois), and TAXOTERE® docetaxel (Rhône-Poulenc Rorer, Antony, France); chloranbucil; gemcitabine (GEMZAR®); 6-thioguanine; mercaptopurine; platinum; platinum analogs or platinum-based analogs such as cisplatin, oxaliplatin and carboplatin; vinblastine (VELBAN®); etoposide (VP-16); ifosfamide; mitoxantrone; vincristine (ONCOVIN®); vinca alkaloid; vinorelbine (NAVELBINE®); novantrone; edatrexate; daunomycin; aminopterin; xeloda; ibandronate; topoisomerase inhibitor RFS 2000; difluorometlhylornithine (DMFO); retinoids such as retinoic acid; pharmaceutically acceptable salts, acids or derivatives of any of the above; as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, vincristine, and prednisolone, and FOLFOX, an abbreviation for a treatment regimen with

oxaliplatin (ELOXATINTM) combined with 5-FU and leucovorin.

5

10

15

20

25

30

35

Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX® tamoxifen), raloxifene, droloxifene, 4hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and FARESTON® toremifene; aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminoglutethimide, MEGASE® megestrol acetate, AROMASIN® exemestane, formestanie, fadrozole, RIVISOR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole; and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; as well as troxacitabine (a 1,3-dioxolane nucleoside cytosine analog); antisense oligonucleotides, particularly those that inhibit expression of genes in signaling pathways implicated in abherant cell proliferation, such as, for example, PKC-alpha, Raf, H-Ras, and epidermal growth factor receptor (EGF-R); vaccines such as gene therapy vaccines, for example, ALLOVECTIN® vaccine, LEUVECTIN® vaccine, and VAXID® vaccine; PROLEUKIN® rIL-2; LURTOTECAN® topoisomerase 1 inhibitor; ABARELIX® rmRH; and pharmaceutically acceptable An "antimetabolite chemotherapeutic agent" is an salts, acids or derivatives of any of the above. agent which is structurally similar to a metabolite, but can not be used by the body in a productive manner. Many antimetabolite chemotherapeutic agents interfere with the production of the nucleic acids, RNA and DNA. Examples of antimetabolite chemotherapeutic agents include gemcitabine (GEMZAR®), 5-fluorouracil (5-FU), capecitabine (XELODA™), 6-mercaptopurine, methotrexate, 6thioguanine, pemetrexed, raltitrexed, arabinosylcytosine ARA-C cytarabine (CYTOSAR-U[®]), dacarbazine (DTIC-DOME®), azocytosine, deoxycytosine, pyridmidene, fludarabine (FLUDARA®), cladrabine, 2-deoxy-D-glucose etc. The preferred antimetabolite chemotherapeutic agent is gemcitabine.

"Gemcitabine" or "2'-deoxy-2', 2'-difluorocytidine monohydrochloride (b-isomer)" is a nucleoside analogue that exhibits antitumor activity. The empirical formula for gemcitabine HCl is C9H11F2N3O4 · HCl. Gemcitabine HCl is sold by Eli Lilly under the trademark GEMZAR®.

A "platinum-based chemotherapeutic agent" comprises an organic compound which contains platinum as an integral part of the molecule. Examples of platinum-based chemotherapeutic agents include carboplatin, cisplatin, and oxaliplatinum.

By "platinum-based chemotherapy" is intended therapy with one or more platinum-based chemotherapeutic agents, optionally in combination with one or more other chemotherapeutic agents.

By "chemotherapy-resistant" cancer is meant that the cancer patient has progressed while receiving a chemotherapy regimen (*i.e.* the patient is "chemotherapy refractory"), or the patient has progressed within 12 months (for instance, within 6 months) after completing a chemotherapy regimen.

By "platinum-resistant" cancer is meant that the cancer patient has progressed while receiving

platinum-based chemotherapy (*i.e.* the patient is "platinum refractory"), or the patient has progressed within 12 months (for instance, within 6 months) after completing a platinum-based chemotherapy regimen.

An "anti-angiogenic agent" refers to a compound which blocks, or interferes with to some degree, the development of blood vessels. The anti-angiogenic factor may, for instance, be a small molecule or antibody that binds to a growth factor or growth factor receptor involved in promoting angiogenesis. The preferred anti-angiogenic factor herein is an antibody that binds to vascular endothelial growth factor (VEGF), such as bevacizumab (AVASTIN®).

5

10

15

20

25

30

35

The term "cytokine" is a generic term for proteins released by one cell population which act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormone such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH): hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-α and -β; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGFβ; platelet-growth factor; transforming growth factors (TGFs) such as TGF-α and TGF-β; insulin-like growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon-a, β, and -γ; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocytemacrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1, IL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12; a tumor necrosis factor such as TNFα or TNF-β; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence cytokines.

As used herein, the term "EGFR-targeted drug" refers to a therapeutic agent that binds to EGFR and, optionally, inhibits EGFR activation. Examples of such agents include antibodies and small molecules that bind to EGFR. Examples of antibodies which bind to EGFR include MAb 579 (ATCC CRL HB 8506), MAb 455 (ATCC CRL HB8507), MAb 225 (ATCC CRL 8508), MAb 528 (ATCC CRL 8509) (see, US Patent No. 4,943, 533, Mendelsohn *et al.*) and variants thereof, such as chimerized 225 (C225 or Cetuximab; ERBUTIX®) and reshaped human 225 (H225) (see, WO 96/40210, Imclone Systems Inc.); IMC-11F8, a fully human, EGFR-targeted antibody (Imclone); antibodies that bind type II mutant EGFR (US Patent No. 5,212,290); humanized and chimeric antibodies that bind EGFR as described in US Patent No. 5,891,996; and human antibodies that bind EGFR, such as ABX-EGF (see WO98/50433, Abgenix); EMD 55900 (Stragliotto *et al. Eur. J. Cancer* 32A:636-640 (1996)); EMD7200 (matuzumab) a humanized EGFR antibody directed against EGFR

that competes with both EGF and TGF-alpha for EGFR binding; and mAb 806 or humanized mAb 806 (Johns *et al.*, *J. Biol. Chem.* 279(29):30375-30384 (2004)). The anti-EGFR antibody may be conjugated with a cytotoxic agent, thus generating an immunoconjugate (see, *e.g.*, EP659,439A2, Merck Patent GmbH). Examples of small molecules that bind to EGFR include ZD1839 or Gefitinib (IRESSATM; Astra Zeneca); CP-358774 or Erlotinib (TARCEVATM; Genentech/OSI); and AG1478, AG1571 (SU 5271; Sugen); EMD-7200.

5

10

15

20

25

30

35

A "tyrosine kinase inhibitor" is a molecule which inhibits tyrosine kinase activity of a tyrosine kinase such as a HER receptor. Examples of such inhibitors include the EGFR-targeted drugs noted in the preceding paragraph; small molecule HER2 tyrosine kinase inhibitor such as TAK165 available from Takeda; CP-724,714, an oral selective inhibitor of the ErbB2 receptor tyrosine kinase (Pfizer and OSI); dual-HER inhibitors such as EKB-569 (available from Wyeth) which preferentially binds EGFR but inhibits both HER2 and EGFR-overexpressing cells; GW572016 (available from Glaxo) an oral HER2 and EGFR tyrosine kinase inhibitor; PKI-166 (available from Novartis); pan-HER inhibitors such as canertinib (CI-1033; Pharmacia); Raf-1 inhibitors such as antisense agent ISIS-5132 available from ISIS Pharmaceuticals which inhibits Raf-1 signaling; non-HER targeted TK inhibitors such as Imatinib mesylate (Gleevac™) available from Glaxo; MAPK extracellular regulated kinase I inhibitor CI-1040 (available from Pharmacia); quinazolines, such as PD 153035,4-(3-chloroanilino) quinazoline; pyridopyrimidines; pyrimidopyrimidines; pyrrolopyrimidines, such as CGP 59326, CGP 60261 and CGP 62706; pyrazolopyrimidines, 4-(phenylamino)-7H-pyrrolo[2,3-d] pyrimidines; curcumin (diferuloyl methane, 4,5-bis (4-fluoroanilino)phthalimide); tyrphostines containing nitrothiophene moieties; PD-0183805 (Warner-Lamber); antisense molecules (e.g. those that bind to HER-encoding nucleic acid); quinoxalines (US Patent No. 5,804,396); tryphostins (US Patent No. 5,804,396); ZD6474 (Astra Zeneca); PTK-787 (Novartis/Schering AG); pan-HER inhibitors such as CI-1033 (Pfizer); Affinitac (ISIS 3521; Isis/Lilly); Imatinib mesylate (Gleevac; Novartis); PKI 166 (Novartis); GW2016 (Glaxo SmithKline); CI-1033 (Pfizer); EKB-569 (Wyeth); Semaxinib (Sugen); ZD6474 (AstraZeneca); PTK-787 (Novartis/Schering AG); INC-1C11 (Imclone); or as described in any of the following patent publications: US Patent No. 5,804,396; WO99/09016 (American Cyanimid); WO98/43960 (American Cyanamid); WO97/38983 (Warner Lambert); WO99/06378 (Warner Lambert); WO99/06396 (Warner Lambert); WO96/30347 (Pfizer, Inc); WO96/33978 (Zeneca); WO96/3397 (Zeneca); and WO96/33980 (Zeneca).

A "fixed" or "flat" dose of a therapeutic agent herein refers to a dose that is administered to a human patient without regard for the weight (WT) or body surface area (BSA) of the patient. The fixed or flat dose is therefore not provided as a mg/kg dose or a mg/m² dose, but rather as an absolute amount of the therapeutic agent.

A "loading" dose herein generally comprises an initial dose of a therapeutic agent administered to a patient, and is followed by one or more maintenance dose(s) thereof. Generally, a single loading

dose is administered, but multiple loading doses are contemplated herein. Usually, the amount of loading dose(s) administered exceeds the amount of the maintenance dose(s) administered and/or the loading dose(s) are administered more frequently than the maintenance dose(s), so as to achieve the desired steady-state concentration of the therapeutic agent earlier than can be achieved with the maintenance dose(s).

A "maintenance" dose herein refers to one or more doses of a therapeutic agent administered to the patient over a treatment period. Usually, the maintenance doses are administered at spaced treatment intervals, such as approximately every week, approximately every 2 weeks, approximately every 3 weeks, or approximately every 4 weeks.

II. Production of Antibodies

5

10

15

20

25

30

35

Since, in the preferred embodiment, the HER dimerization inhibitor is an antibody, a description follows as to exemplary techniques for the production of HER antibodies used in accordance with the present invention. The HER antigen to be used for production of antibodies may be, *e.g.*, a soluble form of the extracellular domain of a HER receptor or a portion thereof, containing the desired epitope. Alternatively, cells expressing HER at their cell surface (*e.g.* NIH-3T3 cells transformed to overexpress HER2; or a carcinoma cell line such as SK-BR-3 cells, see Stancovski *et al. PNAS (USA)* 88:8691-8695 (1991)) can be used to generate antibodies. Other forms of HER receptor useful for generating antibodies will be apparent to those skilled in the art.

(i) Polyclonal antibodies

Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, *e.g.*, keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl₂, or R¹N=C=NR, where R and R¹ are different alkyl groups.

Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, e.g., 100 µg or 5 µg of the protein or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.

(ii) Monoclonal antibodies

5

10

15

20

25

30

35

Various methods for making monoclonal antibodies herein are available in the art. For example, the monoclonal antibodies may be made using the hybridoma method first described by Kohler *et al.*, *Nature*, 256:495 (1975), by recombinant DNA methods (U.S. Patent No. 4,816,567).

In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized *in vitro*. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, *Monoclonal Antibodies: Principles and Practice*, pp.59-103 (Academic Press, 1986)).

The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Maryland USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, *J. Immunol.*, 133:3001 (1984); and Brodeur *et al.*, *Monoclonal Antibody Production Techniques and Applications*, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).

Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).

The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson *et al.*, *Anal. Biochem.*, 107:220 (1980).

After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, *Monoclonal Antibodies: Principles and Practice*, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown *in vivo* as ascites tumors in an animal.

The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional antibody purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as *E. coli* cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol., 5:256-262 (1993) and Plückthun, Immunol. Revs., 130:151-188 (1992).

In a further embodiment, monoclonal antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty *et al.*, *Nature*, 348:552-554 (1990). Clackson *et al.*, *Nature*, 352:624-628 (1991) and Marks *et al.*, *J. Mol. Biol.*, 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks *et al.*, *Bio/Technology*, 10:779-783 (1992)), as well as combinatorial infection and *in vivo* recombination as a strategy for constructing very large phage libraries (Waterhouse *et al.*, *Nuc. Acids. Res.*, 21:2265-2266 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.

The DNA also may be modified, for example, by substituting the coding sequence for human heavy chain and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; and Morrison, *et al.*, *Proc. Natl Acad. Sci. USA*, 81:6851 (1984)), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.

Typically such non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.

(iii) Humanized antibodies

5

10

15

20

25

30

35

Methods for humanizing non-human antibodies have been described in the art. Preferably, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are

typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones *et al.*, *Nature*, 321:522-525 (1986); Riechmann *et al.*, *Nature*, 332:323-327 (1988); Verhoeyen *et al.*, *Science*, 239:1534-1536 (1988)), by substituting hypervariable region sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework region (FR) for the humanized antibody (Sims *et al.*, *J. Immunol.*, 151:2296 (1993); Chothia *et al.*, *J. Mol. Biol.*, 196:901 (1987)). Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter *et al.*, *Proc. Natl. Acad. Sci. USA*, 89:4285 (1992); Presta *et al.*, *J. Immunol.*, 151:2623 (1993)).

It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, *i.e.*, the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding.

WO01/00245 describes production of exemplary humanized HER2 antibodies which bind HER2 and block ligand activation of a HER receptor. The humanized antibody of particular interest herein blocks EGF, TGF-α and/or HRG mediated activation of MAPK essentially as effectively as murine monoclonal antibody 2C4 (or a Fab fragment thereof) and/or binds HER2 essentially as

effectively as murine monoclonal antibody 2C4 (or a Fab fragment thereof). The humanized antibody herein may, for example, comprise nonhuman hypervariable region residues incorporated into a human variable heavy domain and may further comprise a framework region (FR) substitution at a position selected from the group consisting of 69H, 71H and 73H utilizing the variable domain numbering system set forth in Kabat *et al.*, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991). In one embodiment, the humanized antibody comprises FR substitutions at two or all of positions 69H, 71H and 73H.

An exemplary humanized antibody of interest herein comprises variable heavy domain complementarity determining residues GFTFTDYTMX, where X is preferrably D or S (SEQ ID NO:7); DVNPNSGGSIYNQRFKG (SEQ ID NO:8); and/or NLGPSFYFDY (SEQ ID NO:9), optionally comprising amino acid modifications of those CDR residues, *e.g.* where the modifications essentially maintain or improve affinity of the antibody. For example, the antibody variant of interest may have from about one to about seven or about five amino acid substitutions in the above variable heavy CDR sequences. Such antibody variants may be prepared by affinity maturation, *e.g.*, as described below. The most preferred humanized antibody comprises the variable heavy domain amino acid sequence in SEO ID NO:4.

The humanized antibody may comprise variable light domain complementarity determining residues KASQDVSIGVA (SEQ ID NO:10); SASYX¹X²X³, where X¹ is preferably R or L, X² is preferably Y or E, and X³ is preferably T or S (SEQ ID NO:11); and/or QQYYIYPYT (SEQ ID NO:12), *e.g.* in addition to those variable heavy domain CDR residues in the preceding paragraph. Such humanized antibodies optionally comprise amino acid modifications of the above CDR residues, *e.g.* where the modifications essentially maintain or improve affinity of the antibody. For example, the antibody variant of interest may have from about one to about seven or about five amino acid substitutions in the above variable light CDR sequences. Such antibody variants may be prepared by affinity maturation, *e.g.*, as described below. The most preferred humanized antibody comprises the variable light domain amino acid sequence in SEO ID NO:3.

The present application also contemplates affinity matured antibodies which bind HER2 and block ligand activation of a HER receptor. The parent antibody may be a human antibody or a humanized antibody, *e.g.*, one comprising the variable light and/or variable heavy sequences of SEQ ID Nos. 3 and 4, respectively (*i.e.* comprising the VL and/or VH of pertuzumab). The affinity matured antibody preferably binds to HER2 receptor with an affinity superior to that of murine 2C4 or pertuzumab (*e.g.* from about two or about four fold, to about 100 fold or about 1000 fold improved affinity, *e.g.* as assessed using a HER2-extracellular domain (ECD) ELISA). Exemplary variable heavy CDR residues for substitution include H28, H30, H34, H35, H64, H96, H99, or combinations of two or more (*e.g.* two, three, four, five, six, or seven of these residues). Examples of variable light

CDR residues for alteration include L28, L50, L53, L56, L91, L92, L93, L94, L96, L97 or combinations of two or more (e.g. two to three, four, five or up to about ten of these residues).

Various forms of the humanized antibody or affinity matured antibody are contemplated. For example, the humanized antibody or affinity matured antibody may be an antibody fragment, such as a Fab, which is optionally conjugated with one or more cytotoxic agent(s) in order to generate an immunoconjugate. Alternatively, the humanized antibody or affinity matured antibody may be an intact antibody, such as an intact IgG1 antibody. The preferred intact IgG1 antibody comprises the light chain sequence in SEQ ID NO:13 and the heavy chain sequence in SEQ ID NO:14.

(iv) Human antibodies

5

10

15

20

25

30

35

As an alternative to humanization, human antibodies can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (J_H) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggermann et al., Year in Immuno., 7:33 (1993); and U.S. Patent Nos. 5,591,669, 5,589,369 and 5.545,807. Alternatively, phage display technology (McCafferty et al., Nature 348:552-553 (1990)) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats; for their review see, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al., Nature, 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222:581-597 (1991), or Griffith et al., EMBO J. 12:725-734 (1993). See, also, U.S.

Patent Nos. 5,565,332 and 5,573,905.

As discussed above, human antibodies may also be generated by *in vitro* activated B cells (see U.S. Patents 5,567,610 and 5,229,275).

Human HER2 antibodies are described in U.S. Patent No. 5,772,997 issued June 30, 1998 and WO 97/00271 published January 3, 1997.

(v) Antibody fragments

5

10

15

20

25

30

35

Various techniques have been developed for the production of antibody fragments comprising one or more antigen binding regions. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, the antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab')₂ fragments (Carter et al., Bio/Technology 10:163-167 (1992)). According to another approach, F(ab')₂ fragments can be isolated directly from recombinant host cell culture. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Patent No. 5,571,894; and U.S. Patent No. 5,587,458. The antibody fragment may also be a "linear antibody", e.g., as described in U.S. Patent 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.

(vi) Bispecific antibodies

Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of the HER2 protein. Other such antibodies may combine a HER2 binding site with binding site(s) for EGFR, HER3 and/or HER4. Alternatively, a HER2 arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2 or CD3), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the HER2-expressing cell. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express HER2. These antibodies possess a HER2-binding arm and an arm which binds the cytotoxic agent (e.g. saporin, anti-interferon-α, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies).

WO 96/16673 describes a bispecific HER2/FcγRIII antibody and U.S. Patent No. 5,837,234 discloses a bispecific HER2/FcγRI antibody IDM1 (Osidem). A bispecific HER2/Fcα antibody is shown in WO98/02463. U.S. Patent No. 5,821,337 teaches a bispecific HER2/CD3 antibody. MDX-210 is a bispecific HER2-FcγRIII Ab.

Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light

chain pairs, where the two chains have different specificities (Millstein *et al.*, *Nature*, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker *et al.*, *EMBO J.*, 10:3655-3659 (1991).

According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance.

In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh *et al.*, *Methods in Enzymology*, 121:210 (1986).

According to another approach described in U.S. Patent No. 5,731,168, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the C_H3 domain of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (*e.g.* tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (*e.g.* alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Patent No. 4,676,980, along with a number of cross-linking techniques.

Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan *et al.*, *Science*, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Recent progress has facilitated the direct recovery of Fab'-SH fragments from *E. coli*, which can be chemically coupled to form bispecific antibodies. Shalaby *et al.*, *J. Exp. Med.*, 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from *E. coli* and subjected to directed chemical coupling *in vitro* to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the HER2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny *et al.*, *J. Immunol.*, 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger *et al.*, *Proc. Natl. Acad. Sci. USA*, 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_L) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding

sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber *et al.*, *J. Immunol.*, 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt *et al. J. Immunol.* 147: 60 (1991).

(vii) Other amino acid sequence modifications

5

10

15

20

25

30

35

Amino acid sequence modification(s) of the antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of the antibody are prepared by introducing appropriate nucleotide changes into the antibody nucleic acid, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the antibody, such as changing the number or position of glycosylation sites.

A useful method for identification of certain residues or regions of the antibody that are preferred locations for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells *Science*, 244:1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with antigen. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation *per se* need not be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed antibody variants are screened for the desired activity.

Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include antibody with an N-terminal methionyl residue or the antibody fused to a cytotoxic polypeptide. Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody.

Another type of variant is an amino acid substitution variant. These variants have at least one amino acid residue in the antibody molecule replaced by a different residue. The sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative substitutions are shown in Table 1 under the heading of "preferred

substitutions". If such substitutions result in a change in biological activity, then more substantial changes, denominated "exemplary substitutions" in Table 1, or as further described below in reference to amino acid classes, may be introduced and the products screened.

5 <u>Table 1</u>

10

Original Residue	Exemplary Substitutions	Preferred Substitutions
Ala (A)	Val; Leu; Ile	Val
Arg (R)	Lys; Gln; Asn	Lys
Asn (N)	Gln; His; Asp, Lys; Arg	Gln
Asp (D)	Glu; Asn	Glu
Cys (C)	Ser; Ala	Ser
Gln (Q)	Asn; Glu	Asn
Glu (E)	Asp; Gln	Asp
Gly (G)	Ala	Ala
His (H)	Asn; Gln; Lys; Arg	Arg
Ile (I)	Leu; Val; Met; Ala; Phe; Norleucine	Leu
Leu (L)	Norleucine; Ile; Val; Met; Ala; Phe	Ile
Lys (K)	Arg; Gln; Asn	Arg
Met (M)	Leu; Phe; Ile	Leu
Phe (F)	Trp; Leu; Val; Ile; Ala; Tyr	Tyr
Pro (P)	Ala	Ala
Ser (S)	Thr	Thr
Thr (T)	Val; Ser	Ser
Trp (W)	Tyr; Phe	Tyr
Tyr (Y)	Trp; Phe; Thr; Ser	Phe
Val (V)	Ile; Leu; Met; Phe; Ala; Norleucine	Leu

Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Amino acids may be grouped according to similarities in the properties of their side chains (in A. L. Lehninger, in *Biochemistry*, second ed., pp. 73-75, Worth Publishers, New York (1975)):

- (1) non-polar: Ala (A), Val (V), Leu (L), Ile (I), Pro (P), Phe (F), Trp (W), Met (M)
- (2) uncharged polar: Gly (G), Ser (S), Thr (T), Cys (C), Tyr (Y), Asn (N), Gln (Q)
- (3) acidic: Asp (D), Glu (E)
- (4) basic: Lys (K), Arg (R), His(H)

Alternatively, naturally occurring residues may be divided into groups based on common sidechain properties:

- (1) hydrophobic: Norleucine, Met, Ala, Val, Leu, Ile;
- (2) neutral hydrophilic: Cys, Ser, Thr, Asn, Gln;
- (3) acidic: Asp, Glu;
- 10 (4) basic: His, Lys, Arg;

15

20

25

30

35

- (5) residues that influence chain orientation: Gly, Pro;
- (6) aromatic: Trp, Tyr, Phe.

Non-conservative substitutions will entail exchanging a member of one of these classes for another class.

Any cysteine residue not involved in maintaining the proper conformation of the antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).

A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g. binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and human HER2. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.

Another type of amino acid variant of the antibody alters the original glycosylation pattern of

the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.

Glycosylation of antibodies is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

5

10

15

20

25

30

35

Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).

Where the antibody comprises an Fc region, the carbohydrate attached thereto may be altered. For example, antibodies with a mature carbohydrate structure that lacks fucose attached to an Fc region of the antibody are described in US Pat Appl No US 2003/0157108 A1, Presta, L. See also US 2004/0093621 A1 (Kyowa Hakko Kogyo Co., Ltd). Antibodies with a bisecting N-acetylglucosamine (GlcNAc) in the carbohydrate attached to an Fc region of the antibody are referenced in WO03/011878, Jean-Mairet *et al.* and US Patent No. 6,602,684, Umana *et al.* Antibodies with at least one galactose residue in the oligosaccharide attached to an Fc region of the antibody are reported in WO97/30087, Patel *et al.* See, also, WO98/58964 (Raju, S.) and WO99/22764 (Raju, S.) concerning antibodies with altered carbohydrate attached to the Fc region thereof.

It may be desirable to modify the antibody of the invention with respect to effector function, e.g. so as to enhance antigen-dependent cell-mediated cyotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol. 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al. Anti-Cancer Drug Design

3:219-230 (1989).

5

10

15

20

25

30

35

WO00/42072 (Presta, L.) describes antibodies with improved ADCC function in the presence of human effector cells, where the antibodies comprise amino acid substitutions in the Fc region thereof. Preferably, the antibody with improved ADCC comprises substitutions at positions 298, 333, and/or 334 of the Fc region (Eu numbering of residues). Preferably the altered Fc region is a human IgG1 Fc region comprising or consisting of substitutions at one, two or three of these positions. Such substitutions are optionally combined with substitution(s) which increase C1q binding and/or CDC.

Antibodies with altered C1q binding and/or complement dependent cytotoxicity (CDC) are described in WO99/51642, US Patent No. 6,194,551B1, US Patent No. 6,242,195B1, US Patent No. 6,528,624B1 and US Patent No. 6,538,124 (Idusogie *et al.*). The antibodies comprise an amino acid substitution at one or more of amino acid positions 270, 322, 326, 327, 329, 313, 333 and/or 334 of the Fc region thereof (Eu numbering of residues).

To increase the serum half life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in US Patent 5,739,277, for example. As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgG₁, IgG₂, IgG₃, or IgG₄) that is responsible for increasing the *in vivo* serum half-life of the IgG molecule.

Antibodies with improved binding to the neonatal Fc receptor (FcRn), and increased half-lives, are described in WO00/42072 (Presta, L.) and US2005/0014934A1 (Hinton *et al.*). These antibodies comprise an Fc region with one or more substitutions therein which improve binding of the Fc region to FcRn. For example, the Fc region may have substitutions at one or more of positions 238, 250, 256, 265, 272, 286, 303, 305, 307, 311, 312, 314, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424, 428 or 434 (Eu numbering of residues). The preferred Fc region-comprising antibody variant with improved FcRn binding comprises amino acid substitutions at one, two or three of positions 307, 380 and 434 of the Fc region thereof (Eu numbering of residues).

Engineered antibodies with three or more (preferably four) functional antigen binding sites are also contemplated (US Appln No. US2002/0004587 A1, Miller *et al.*).

Nucleic acid molecules encoding amino acid sequence variants of the antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the antibody.

(viii) Screening for antibodies with the desired properties

Techniques for generating antibodies have been described above. One may further select antibodies with certain biological characteristics, as desired.

To identify an antibody which blocks ligand activation of a HER receptor, the ability of the antibody to block HER ligand binding to cells expressing the HER receptor (e.g. in conjugation with another HER receptor with which the HER receptor of interest forms a HER hetero-oligomer) may be determined. For example, cells naturally expressing, or transfected to express, HER receptors of the HER hetero-oligomer may be incubated with the antibody and then exposed to labeled HER ligand. The ability of the antibody to block ligand binding to the HER receptor in the HER hetero-oligomer may then be evaluated.

For example, inhibition of HRG binding to MCF7 breast tumor cell lines by HER2 antibodies may be performed using monolayer MCF7 cultures on ice in a 24-well-plate format essentially as described in WO01/00245. HER2 monoclonal antibodies may be added to each well and incubated for 30 minutes. ¹²⁵I-labeled rHRGβ1₁₇₇₋₂₂₄ (25 pm) may then be added, and the incubation may be continued for 4 to 16 hours. Dose response curves may be prepared and an IC₅₀ value may be calculated for the antibody of interest. In one embodiment, the antibody which blocks ligand activation of a HER receptor will have an IC₅₀ for inhibiting HRG binding to MCF7 cells in this assay of about 50nM or less, more preferably 10nM or less. Where the antibody is an antibody fragment such as a Fab fragment, the IC₅₀ for inhibiting HRG binding to MCF7 cells in this assay may, for example, be about 100nM or less, more preferably 50nM or less.

Alternatively, or additionally, the ability of an antibody to block HER ligand-stimulated tyrosine phosphorylation of a HER receptor present in a HER hetero-oligomer may be assessed. For example, cells endogenously expressing the HER receptors or transfected to expressed them may be incubated with the antibody and then assayed for HER ligand-dependent tyrosine phosphorylation activity using an anti-phosphotyrosine monoclonal (which is optionally conjugated with a detectable label). The kinase receptor activation assay described in U.S. Patent No. 5,766,863 is also available for determining HER receptor activation and blocking of that activity by an antibody.

In one embodiment, one may screen for an antibody which inhibits HRG stimulation of p180 tyrosine phosphorylation in MCF7 cells essentially as described in WO01/00245. For example, the MCF7 cells may be plated in 24-well plates and monoclonal antibodies to HER2 may be added to each well and incubated for 30 minutes at room temperature; then rHRG β 1₁₇₇₋₂₄₄ may be added to each well to a final concentration of 0.2 nM, and the incubation may be continued for 8 minutes. Media may be aspirated from each well, and reactions may be stopped by the addition of 100 μ l of SDS sample buffer (5% SDS, 25 mM DTT, and 25 mM Tris-HCl, pH 6.8). Each sample (25 μ l) may be electrophoresed on a 4-12% gradient gel (Novex) and then electrophoretically transferred to polyvinylidene difluoride membrane. Antiphosphotyrosine (at 1 μ g/ml) immunoblots may be developed, and the intensity of the predominant reactive band at $M_r \sim 180,000$ may be quantified by reflectance densitometry. The antibody selected will preferably significantly inhibit HRG stimulation of p180 tyrosine phosphorylation to about 0-35% of control in this assay. A dose-response curve for inhibition of HRG

stimulation of p180 tyrosine phosphorylation as determined by reflectance densitometry may be prepared and an IC₅₀ for the antibody of interest may be calculated. In one embodiment, the antibody which blocks ligand activation of a HER receptor will have an IC₅₀ for inhibiting HRG stimulation of p180 tyrosine phosphorylation in this assay of about 50nM or less, more preferably 10nM or less. Where the antibody is an antibody fragment such as a Fab fragment, the IC₅₀ for inhibiting HRG stimulation of p180 tyrosine phosphorylation in this assay may, for example, be about 100nM or less, more preferably 50nM or less.

5

10

15

20

25

30

35

One may also assess the growth inhibitory effects of the antibody on MDA-MB-175 cells, *e.g.*, essentially as described in Schaefer *et al. Oncogene* 15:1385-1394 (1997). According to this assay, MDA-MB-175 cells may be treated with a HER2 monoclonal antibody (10µg/mL) for 4 days and stained with crystal violet. Incubation with a HER2 antibody may show a growth inhibitory effect on this cell line similar to that displayed by monoclonal antibody 2C4. In a further embodiment, exogenous HRG will not significantly reverse this inhibition. Preferably, the antibody will be able to inhibit cell proliferation of MDA-MB-175 cells to a greater extent than monoclonal antibody 4D5 (and optionally to a greater extent than monoclonal antibody 7F3), both in the presence and absence of exogenous HRG.

In one embodiment, the HER2 antibody of interest may block heregulin dependent association of HER2 with HER3 in both MCF7 and SK-BR-3 cells as determined in a co-immunoprecipitation experiment such as that described in WO01/00245 substantially more effectively than monoclonal antibody 4D5, and preferably substantially more effectively than monoclonal antibody 7F3.

To identify growth inhibitory HER2 antibodies, one may screen for antibodies which inhibit the growth of cancer cells which overexpress HER2. In one embodiment, the growth inhibitory antibody of choice is able to inhibit growth of SK-BR-3 cells in cell culture by about 20-100% and preferably by about 50-100% at an antibody concentration of about 0.5 to 30 μg/ml. To identify such antibodies, the SK-BR-3 assay described in U.S. Patent No. 5,677,171 can be performed. According to this assay, SK-BR-3 cells are grown in a 1:1 mixture of F12 and DMEM medium supplemented with 10% fetal bovine serum, glutamine and penicillin streptomycin. The SK-BR-3 cells are plated at 20,000 cells in a 35mm cell culture dish (2mls/35mm dish). 0.5 to 30 μg/ml of the HER2 antibody is added per dish. After six days, the number of cells, compared to untreated cells are counted using an electronic COULTER™ cell counter. Those antibodies which inhibit growth of the SK-BR-3 cells by about 20-100% or about 50-100% may be selected as growth inhibitory antibodies. See US Pat No. 5,677,171 for assays for screening for growth inhibitory antibodies, such as 4D5 and 3E8.

In order to select for antibodies which induce apoptosis, an annexin binding assay using BT474 cells is available. The BT474 cells are cultured and seeded in dishes as discussed in the preceding paragraph. The medium is then removed and replaced with fresh medium alone or medium containing 10µg/ml of the monoclonal antibody. Following a three day incubation period, monolayers

are washed with PBS and detached by trypsinization. Cells are then centrifuged, resuspended in Ca²⁺ binding buffer and aliquoted into tubes as discussed above for the cell death assay. Tubes then receive labeled annexin (*e.g.* annexin V-FTIC) (1μg/ml). Samples may be analyzed using a FACSCANTM flow cytometer and FACSCONVERTTM CellQuest software (Becton Dickinson). Those antibodies which induce statistically significant levels of annexin binding relative to control are selected as apoptosis-inducing antibodies. In addition to the annexin binding assay, a DNA staining assay using BT474 cells is available. In order to perform this assay, BT474 cells which have been treated with the antibody of interest as described in the preceding two paragraphs are incubated with 9μg/ml HOECHST 33342TM for 2 hr at 37°C, then analyzed on an EPICS ELITETM flow cytometer (Coulter Corporation) using MODFIT LTTM software (Verity Software House). Antibodies which induce a change in the percentage of apoptotic cells which is 2 fold or greater (and preferably 3 fold or greater) than untreated cells (up to 100% apoptotic cells) may be selected as pro-apoptotic antibodies using this assay. See WO98/17797 for assays for screening for antibodies which induce apoptosis, such as 7C2 and 7F3.

To screen for antibodies which bind to an epitope on HER2 bound by an antibody of interest, a routine cross-blocking assay such as that described in *Antibodies, A Laboratory Manual*, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed to assess whether the antibody cross-blocks binding of an antibody, such as 2C4 or pertuzumab, to HER2. Alternatively, or additionally, epitope mapping can be performed by methods known in the art and/or one can study the antibody-HER2 structure (Franklin *et al. Cancer Cell* 5:317-328 (2004)) to see what domain(s) of HER2 is/are bound by the antibody.

(ix) Pertuzumab compositions

In one embodiment of a HER2 antibody composition, the composition comprises a mixture of a main species pertuzumab antibody and one or more variants thereof. The preferred embodiment herein of a pertuzumab main species antibody is one comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, and most preferably comprising a light chain amino acid sequence selected from SEQ ID No. 13 and 17, and a heavy chain amino acid sequence selected from SEQ ID No. 14 and 18 (including deamidated and/or oxidized variants of those sequences). In one embodiment, the composition comprises a mixture of the main species pertuzumab antibody and an amino acid sequence variant thereof comprising an amino-terminal leader extension. Preferably, the amino-terminal leader extension is on a light chain of the antibody variant (e.g. on one or two light chains of the antibody variant). The main species HER2 antibody or the antibody variant may be an full length antibodies. The antibody variant herein may comprise an amino-terminal leader extension on any one or more of the heavy or light chains thereof. Preferably, the amino-terminal leader extension is on one or two light chains of the antibody. The amino-terminal leader extension preferably comprises or consists of VHS-. Presence of the amino-terminal leader extension in the composition can be

detected by various analytical techniques including, but not limited to, N-terminal sequence analysis, assay for charge heterogeneity (for instance, cation exchange chromatography or capillary zone electrophoresis), mass spectrometry, etc. The amount of the antibody variant in the composition generally ranges from an amount that constitutes the detection limit of any assay (preferably N-terminal sequence analysis) used to detect the variant to an amount less than the amount of the main species antibody. Generally, about 20% or less (e.g. from about 1% to about 15%, for instance from 5% to about 15%) of the antibody molecules in the composition comprise an amino-terminal leader extension. Such percentage amounts are preferably determined using quantitative N-terminal sequence analysis or cation exchange analysis (preferably using a high-resolution, weak cation-exchange column, such as a PROPAC WCX-10TM cation exchange column). Aside from the amino-terminal leader extension variant, further amino acid sequence alterations of the main species antibody and/or variant are contemplated, including but not limited to an antibody comprising a C-terminal lysine residue on one or both heavy chains thereof, a deamidated antibody variant, etc.

Moreover, the main species antibody or variant may further comprise glycosylation variations, non-limiting examples of which include antibody comprising a G1 or G2 oligosaccharide structure attached to the Fc region thereof, antibody comprising a carbohydrate moiety attached to a light chain thereof (e.g. one or two carbohydrate moieties, such as glucose or galactose, attached to one or two light chains of the antibody, for instance attached to one or more lysine residues), antibody comprising one or two non-glycosylated heavy chains, or antibody comprising a sialidated oligosaccharide attached to one or two heavy chains thereof etc.

The composition may be recovered from a genetically engineered cell line, *e.g.* a Chinese Hamster Ovary (CHO) cell line expressing the HER2 antibody, or may be prepared by peptide synthesis.

(x) Immunoconjugates

5

10

15

20

25

30

35

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g. a small molecule toxin or an enzymatically active toxin of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Conjugates of an antibody and one or more small molecule toxins, such as a calicheamicin, a maytansine (U.S. Patent No. 5,208,020), a trichothene, and CC1065 are also contemplated herein.

In one preferred embodiment of the invention, the antibody is conjugated to one or more maytansine molecules (*e.g.* about 1 to about 10 maytansine molecules per antibody molecule). Maytansine may, for example, be converted to May-SS-Me which may be reduced to May-SH3 and

reacted with modified antibody (Chari et al. Cancer Research 52: 127-131 (1992)) to generate a maytansinoid-antibody immunoconjugate.

5

10

15

20

25

30

35

Another immunoconjugate of interest comprises an antibody conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics are capable of producing double-stranded DNA breaks at sub-picomolar concentrations. Structural analogues of calicheamicin which may be used include, but are not limited to, $\gamma_1^{\ 1}$, $\alpha_2^{\ 1}$, $\alpha_2^{\ 1}$, N-acetyl- $\gamma_1^{\ 1}$, PSAG and θ^I_1 (Hinman *et al. Cancer Research* 53: 3336-3342 (1993) and Lode *et al. Cancer Research* 58: 2925-2928 (1998)). See, also, US Patent Nos. 5,714,586; 5,712,374; 5,264,586; and 5,773,001 expressly incorporated herein by reference.

Enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins, dianthin proteins, *Phytolaca americana* proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, for example, WO 93/21232 published October 28, 1993.

The present invention further contemplates an immunoconjugate formed between an antibody and a compound with nucleolytic activity (*e.g.* a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).

A variety of radioactive isotopes are available for the production of radioconjugated HER2 antibodies. Examples include At²¹¹, I¹³¹, I¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹², P³² and radioactive isotopes of Lu.

Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta *et al. Science* 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026. The linker may be a "cleavable linker" facilitating release of the cytotoxic drug in the cell. For example, an acid-labile linker, peptidase-sensitive linker, dimethyl linker or disulfide-containing linker (Chari *et al. Cancer Research* 52: 127-131 (1992)) may be used.

Alternatively, a fusion protein comprising the antibody and cytotoxic agent may be made, *e.g.* by recombinant techniques or peptide synthesis.

Other immunoconjugates are contemplated herein. For example, the antibody may be linked to one of a variety of nonproteinaceous polymers, *e.g.*, polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol. The antibody also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions. Such techniques are disclosed in *Remington's Pharmaceutical Sciences*, 16th edition, Oslo, A., Ed., (1980).

The antibodies disclosed herein may also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein *et al.*, *Proc. Natl. Acad. Sci. USA*, 82:3688 (1985); Hwang *et al.*, *Proc. Natl. Acad. Sci. USA*, 77:4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545; and WO97/38731 published October 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin *et al. J. Biol. Chem.* 257: 286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon *et al. J. National Cancer Inst.*81(19)1484 (1989).

III. Selecting patients for therapy

5

10

15

20

25

30

35

The patient herein is optionally subjected to a diagnostic test prior to therapy. For example, the diagnostic test may evaluate HER (*e.g.* HER2 or EGFR) expression (including overexpression), amplification, and/or activation (including phosphorylation or dimerization).

Generally, if a diagnostic test is performed, a sample may be obtained from a patient in need of therapy. Where the subject has cancer, the sample is generally a tumor sample. In the preferred embodiment, the tumor sample is from an ovarian cancer, peritoneal cancer, fallopian tube cancer, metastatic breast cancer (MBC), non-small cell lung cancer (NSCLC), prostate cancer, or colorectal cancer tumor sample.

The biological sample herein may be a fixed sample, e.g. a formalin fixed, paraffin-embedded (FFPE) sample, or a frozen sample.

According to one embodiment of the invention herein, the patient selected for therapy has a tumor displaying HER (and preferably HER2) activation. In one embodiment, the extent of HER (or

HER2) activation in cancer cells significantly exceeds the level of activation of that receptor in non-cancerous cells of the same tissue type. Such excessive activation may result from overexpression of the HER receptor and/or greater than normal levels of a HER ligand available for activating the HER receptor in the cancer cells. Such excessive activation may cause and/or be caused by the malignant state of a cancer cell. In some embodiments, the cancer will be subjected to a diagnostic or prognostic assay to determine whether amplification and/or overexpression of a HER receptor is occurring which results in such excessive activation of the HER receptor. Alternatively, or additionally, the cancer may be subjected to a diagnostic or prognostic assay to determine whether amplification and/or overexpression a HER ligand is occurring in the cancer which attributes to excessive activation of the receptor. In a subset of such cancers, excessive activation of the receptor may result from an autocrine stimulatory pathway. Various assays for determining HER activation will be described in more detail below. The preferred methods for determining HER activation are: detecting the presense of HER dimers or heterodimers, evaluating HER or HER2 phosphorylation, and gene expression profiling.

(i) HER dimers

5

10

15

20

25

30

35

Tumors samples can be assessed for the presence of HER dimers, as indicating HER or HER2 activation. Any method known in the art may be used to detect HER2 dimers, such as EGFR-HER2, HER2-HER3, in tumors. Several preferred methods are described below. These methods detect noncovalent protein-protein interactions or otherwise indicate proximity between proteins of interest.

Immunoaffinity-based methods, such as immunoprecipitation or ELISA, may be used to detect HER dimers. In one embodiment, HER2 antibodies are used to immunoprecipitate complexes comprising HER2 from tumor cells, and the resulting immunoprecipitant is then probed for the presence of EGFR or HER3 by immunoblotting. In another embodiment, EGFR or HER3 antibodies may be used for the immunoprecipitation step and the immunoprecipitant then probed with HER2 antibodies. In a further embodiment, HER ligands specific to EGFR, HER3, EGFR-HER2 complexes or HER2-HER3 complexes may be used to precipitate complexes, which are then probed for the presence of HER2. For example, ligands may be conjugated to avidin and complexes purified on a biotin column.

In other embodiments, such as ELISA or antibody "sandwich"-type assays, antibodies to HER2 are immobilized on a solid support, contacted with tumor cells or tumor cell lysate, washed, and then exposed to antibody against EGFR or HER3. Binding of the latter antibody, which may be detected directly or by a secondary antibody conjugated to a detectable label, indicates the presence of heterodimers. In certain embodiments, EGFR or HER3 antibody is immobilized, and HER2 antibody is used for the detection step. In other embodiments HER ligands may be used in place of, or in combination with HER antibodies.

Chemical or UV cross-linking may also be used to covalently join dimers on the surface of living cells. Examples of chemical cross-linkers include dithiobis(succinimidyl) propionate (DSP) and

3,3dithiobis(sulphosuccinimidyl) propionate (DTSSP). In one embodiment, cell extracts from chemically cross-linked tumor cells are analyzed by SDS-PAGE and immunoblotted with antibodies to EGFR and/or HER3. A supershifted band of the appropriate molecular weight most likely represents EGFR-HER2 or HER2-HER3 dimers, as HER2 is the preferred dimerization partner for EGFR and HER3. This result may be confirmed by subsequent immunoblotting with HER2 antibodies.

Fluorescence resonance energy transfer (FRET) may also be used to detect EGFR-HER2 or HER2-HER3 dimers. FRET detects protein conformational changes and protein-protein interactions in vivo and in vitro based on the transfer of energy from a donor fluorophore to an acceptor fluorophore. Selvin, *Nat. Struct. Biol.*, 7:730-34 (2000). Energy transfer takes place only if the donor fluorophore is in sufficient proximity to the acceptor fluorophore. In a typical FRET experiment, two proteins or two sites on a single protein are labeled with different fluorescent probes. One of the probes, the donor probe, is excited to a higher energy state by incident light of a specified wavelength. The donor probe then transmits its energy to the second probe, the acceptor probe, resulting in a reduction in the donor's fluorescence intensity and an increase in the acceptor's fluorescence emission. To measure the extent of energy transfer, the donor's intensity in a sample labeled with donor and acceptor probes is compared with its intensity in a sample labeled with donor probe only. Optionally, acceptor intensity is compared in donor/acceptor and acceptor only samples. Suitable probes are known in the art and include, for example, membrane permeant dyes, such as fluorescein and rhodamine, organic dyes, such as the cyanine dyes, and lanthanide atoms. Methods and instrumentation for detecting and measuring energy transfer are also known in the art.

FRET-based techniques suitable for detecting and measuring protein-protein interactions in individual cells are also known in the art. For example, donor photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence lifetime imaging microscopy (FLIM) may be used to detect the dimerization of cell surface receptors. Gadella & Jovin, *J. Cell Biol.*, 129:1543-58 (1995). In one embodiment, pbFRET is used on cells either "in suspension" or "in situ" to detect and measure the formation of EGFR-HER2 or HER2-HER3 dimers, as described in Nagy et al., Cytometry, 32:120-131 (1998). These techniques measure the reduction in a donor's fluorescence lifetime due to energy transfer. In a particular embodiment, a flow cytometric Foerster-type FRET technique (FCET) may be used to investigate EGFR-HER2 and HER2-HER3 dimerization, as described in Nagy et al., supra, and Brockhoff et al., Cytometry, 44:338-48 (2001).

FRET is preferably used in conjunction with standard immunohistochemical labeling techniques. Kenworthy, *Methods*, 24:289-96 (2001). For example, antibodies conjugated to suitable fluorescent dyes can be used as probes for labeling two different proteins. If the proteins are within proximity of one another, the fluorescent dyes act as donors and acceptors for FRET. Energy transfer is detected by standard means. Energy transfer may be detected by flow cytometric means or by digital microscopy systems, such as confocal microscopy or wide-field fluorescence microscopy coupled to a

charge-coupled device (CCD) camera.

5

10

15

20

25

30

35

In one embodiment of the present invention, HER2 antibodies and either EGFR or HER3 antibodies are directly labeled with two different fluorophores, for example as described in Nagy *et al*, *supra*. Tumor cells or tumor cell lysates are contacted with the differentially labeled antibodies, which act as donors and acceptors for FRET in the presence of EGFR-HER2 or HER2-HER3 dimers. Alternatively, unlabeled antibodies against HER2 and either EGFR or HER3 are used along with differentially labeled secondary antibodies that serve as donors and acceptors. See, for example, Brockhoff *et al.*, *supra*. Energy transfer is detected and the presence of dimers is determined if the labels are found to be in close proximity.

In other embodiments HER receptor ligands that are specific for HER2 and either EGFR or HER3 are fluorescently labeled and used for FRET studies.

In still other embodiments of the present invention, the presence of dimers on the surface of tumor cells is demonstrated by co-localization of HER2 with either EGFR or HER3 using standard direct or indirect immunofluorescence techniques and confocal laser scanning microscopy.

Alternatively, laser scanning imaging (LSI) is used to detect antibody binding and co-localization of HER2 with either EGFR or HER3 in a high-throughput format, such as a microwell plate, as described in Zuck *et al.*, *Proc. Natl. Acad. Sci. USA*, 96:11122-27 (1999).

In further embodiments, the presence of EGFR-HER2 and/or HER2-HER3 dimers is determined by identifying enzymatic activity that is dependent upon the proximity of the dimer components. A HER2 antibody is conjugated with one enzyme and an EGFR or HER3 antibody is conjugated with a second enzyme. A first substrate for the first enzyme is added and the reaction produces a second substrate for the second enzyme. This leads to a reaction with another molecule to produce a detectable compound, such as a dye. The presence of another chemical breaks down the second substrate, so that reaction with the second enzyme is prevented unless the first and second enzymes, and thus the two antibodies, are in close proximity. In a particular embodiment tumor cells or cell lysates are contacted with a HER2 antibody that is conjugated with glucose oxidase and a HER3 or EGFR antibody that is conjugated with horse radish peroxidase. Glucose is added to the reaction, along with a dye precursor, such as DAB, and catalase. The presence of dimers is determined by the development of color upon staining for DAB.

Dimers may also be detected using methods based on the eTagTM assay system (Aclara Bio Sciences, Mountain View, CA), as described, for example, in U.S. Patent Application 2001/0049105, published December 6, 2001, both of which are expressly incorporated by reference in their entirety. An eTagTM, or "electrophoretic tag," comprises a detectable reporter moiety, such as a fluorescent group. It may also comprise a "mobility modifier," which consists essentially of a moiety having a unique electrophoretic mobility. These moieties allow for separation and detection of the eTagTM from a complex mixture under defined electrophoretic conditions, such as capillary electrophoresis (CE).

The portion of the eTag[™] containing the reporter moiety and, optionally, the mobility modifier is linked to a first target binding moiety by a cleavable linking group to produce a first binding compound. The first target binding moiety specifically recognizes a particular first target, such as a nucleic acid or protein. The first target binding moiety is not limited in any way, and may be for example, a polynucleotide or a polypeptide. Preferably, the first target binding moiety is an antibody or antibody fragment. Alternatively, the first target binding moiety may be a HER receptor ligand or binding-competent fragment thereof.

5

10

15

20

25

30

35

The linking group preferably comprises a cleavable moiety, such as an enzyme substrate, or any chemical bond that may be cleaved under defined conditions. When the first target binding moiety binds to its target, the cleaving agent is introduced and/or activated, and the linking group is cleaved, thus releasing the portion of the eTagTM containing the reporter moiety and mobility modifier. Thus, the presence of a "free" eTagTM indicates the binding of the target binding moiety to its target.

Preferably, a second binding compound comprises the cleaving agent and a second target binding moiety that specifically recognizes a second target. The second target binding moiety is also not limited in any way and may be, for example, an antibody or antibody fragment or a HER receptor ligand or binding competent ligand fragment. The cleaving agent is such that it will only cleave the linking group in the first binding compound if the first binding compound and the second binding compound are in close proximity.

In an embodiment of the present invention, a first binding compound comprises an eTagTM in which an antibody to HER2 serves as the first target binding moiety. A second binding compound comprises an antibody to EGFR or HER3 joined to a cleaving agent capable of cleaving the linking group of the eTagTM. Preferably the cleaving agent must be activated in order to be able to cleave the linking group. Tumor cells or tumor cell lysates are contacted with the eTagTM, which binds to HER2, and with the modified EGFR or HER3 antibody, which binds to EGFR or HER3 on the cell surface. Unbound binding compound is preferable removed, and the cleaving agent is activated, if necessary. If EGFR-HER2 or HER2-HER3 dimers are present, the cleaving agent will cleave the linking group and release the eTagTM due to the proximity of the cleaving agent to the linking group. Free eTagTM may then be detected by any method known in the art, such as capillary electrophoresis.

In one embodiment, the cleaving agent is an activatable chemical species that acts on the linking group. For example, the cleaving agent may be activated by exposing the sample to light.

In another embodiment, the eTagTM is constructed using an antibody to EGFR or HER3 as the first target binding moiety, and the second binding compound is constructed from an antibody to HER2.

In yet another embodiment, the HER dimer is detected using an antibody or other reagent which specifically or preferentially binds to the dimer as compared to binding thereof to either HER receptor in the dimer.

(ii) HER2 phosphorylation

5

10

15

20

25

30

35

Phosphorylation of HER receptor may be assessed by immunoprecipitation of one or more HER receptors, such as HER2 receptor, and analysis of phosphorylated tyrosine residue(s) in the immunoprecipitated receptor(s). For example, positivity is determined by the presence of a phospho-HER2 band on the gel, using an anti-phosphotyrosine antibody to detect phosphorylated tyrosine residue(s) in the immunoprecipitated HER receptor(s). Anti-phosphotyrosine antibodies are commercially available from PanVera (Madison, WI), a subsidiary of Invitrogen, Chemicon International Inc. (Temecula, CA), or Upstate Biotechnology (Lake Placid, NY). Negativity is determined by the absence of the band. Various assay formats for detecting phosphorylated proteins are contemplated including Western blot analysis, immunohistochemistry, ELISA, etc.

In one embodiment, phosphorylation of HER2 (HER2) receptor is assessed by immunohistochemistry using a phospho-specific HER2 antibody (clone PN2A; Thor *et al.*, *J. Clin. Oncol*, 18(18):3230-3239 (2000)).

Other methods for detecting phosphorylation of HER receptor(s) include, but are not limited to, KIRA ELISA (U.S. Patent Nos. 5,766,863; 5,891,650; 5,914,237; 6,025,145; and 6,287,784), mass spectrometry (comparing size of phosphorylated and non-phosphorylated HER2), and e-tag proximity assay with both a HER (e.g. HER2) antibody and phospho-specific or phospho-tyrosine specific antibody (e.g., using the eTagTMassay kit available from Aclara BioSciences (Mountain View, CA). Details of the eTag assay are described hereinabove.

One may also use phospho-specific antibodies in cellular array to detect phosphorylation status in a cellular sample of signal transduction protein (US2003/0190689).

Example 2 below describes a preferred method for determining HER2 phosphorylation by phospho-HER2 ELISA.

(iii) Gene expression profiling

In one embodiment, gene expression profiling can serve as a surrogate for measuring HER phosphorylation directly. This is particularly useful where the sample is a fixed sample (e.g. parrafinembedded, formalin fixed tumor sample) where HER phosphorylation may be difficult to reliably quantify. For example, expression of two or more HER receptors and one or more HER ligand in a sample is evaluated, wherein expression of the two or more HER receptors and one or more HER ligand indicates positive HER activation in the sample. Alternatively or additionally, expression of betacellulin and/or amphiregulin in the sample can be measured, wherein betacellulin and/or amphiregulin expression indicates positive HER activation in the sample.

According to a preferred embodiment of gene expression profiling for evaluating HER2 activation, a sample from the patient is tested for expression of two or more HER receptors (preferably selected from EGFR, HER2, and HER3) and one or more HER ligands (preferably selected from betacellulin, amphiregulin, epiregulin, and TGF-α, most preferably betacellulin or amphiregulin). For

example, the two or more HER receptors may be EGFR and HER2, or HER2 and HER3, and the one or more HER ligands may be betacellulin or amphiregulin. Preferably, expression of HER2 and EGFR or HER3, as well as betacellulin or amphiregulin is determined. The sample may be tested for expression of betacellulin or amphiregulin alone, or in combination with testing for expression of two or more HER receptors. Positive expression of the identified gene(s) indicates the patient is a candidate for therapy with a HER dimerization inhibitor, such as pertuzumab. Moreover, positive expression of the gene(s) indicates the patient is more likely to respond favorably to therapy with the HER dimerization inhibitor than a patient who does not have such positive expression.

5

10

15

20

25

30

35

Various methods for determining expression of mRNA or protein include, but are not limited to, gene expression profiling, polymerase chain reaction (PCR) including quantitative real time PCR (qRT-PCR), microarray analysis, serial analysis of gene expression (SAGE), MassARRAY, Gene Expression Analysis by Massively Parallel Signature Sequencing (MPSS), proteomics, immunohistochemistry (IHC), etc. Preferably mRNA is quantified. Such mRNA analysis is preferably performed using the technique of polymerase chain reaction (PCR), or by microarray analysis. Where PCR is employed, a preferred form of PCR is quantitative real time PCR (qRT-PCR). In one embodiment, expression of one or more of the above noted genes is deemed positive expression if it is at the median or above, *e.g.* compared to other samples of the same tumor-type. The median expression level can be determined essentially contemporaneously with measuring gene expression, or may have been determined previously.

The steps of a representative protocol for profiling gene expression using fixed, paraffinembedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are given in various published journal articles (for example: Godfrey *et al. J. Molec. Diagnostics* 2: 84-91 (2000); Specht *et al.*, *Am. J. Pathol.* 158: 419-29 (2001)). Briefly, a representative process starts with cutting about 10 microgram thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific promoters followed by PCR. Finally, the data are analyzed to identify the best treatment option(s) available to the patient on the basis of the characteristic gene expression pattern identified in the tumor sample examined.

Example 3 herein describes preferred methods for determining HER2 activation by gene expression profiling.

(iv) HER expression and amplification

To determine HER expression or amplification in the cancer, various diagnostic/prognostic assays are available. In one embodiment, HER overexpression may be analyzed by IHC, *e.g.* using the HERCEPTEST® (Dako). Parrafin embedded tissue sections from a tumor biopsy may be subjected to the IHC assay and accorded a HER2 protein staining intensity criteria as follows:

Score 0 no staining is observed or membrane staining is observed in less than 10% of tumor cells.

Score 1+ a faint/barely perceptible membrane staining is detected in more than 10% of the tumor cells. The cells are only stained in part of their membrane.

Score 2+ a weak to moderate complete membrane staining is observed in more than 10% of the tumor cells.

Score 3+ a moderate to strong complete membrane staining is observed in more than 10% of the tumor cells.

Those tumors with 0 or 1+ scores for HER2 overexpression assessment may be characterized as not overexpressing HER2, whereas those tumors with 2+ or 3+ scores may be characterized as overexpressing HER2.

Tumors overexpressing HER2 may be rated by immunohistochemical scores corresponding to the number of copies of HER2 molecules expressed per cell, and can been determined biochemically: 0 = 0-10,000 copies/cell,

1+ = at least about 200,000 copies/cell,

2+ = at least about 500,000 copies/cell,

5

10

20

25

30

35

3+ = at least about 2,000,000 copies/cell.

Overexpression of HER2 at the 3+ level, which leads to ligand-independent activation of the tyrosine kinase (Hudziak *et al.*, *Proc. Natl. Acad. Sci. USA*, 84:7159-7163 (1987)), occurs in approximately 30% of breast cancers, and in these patients, relapse-free survival and overall survival are diminished (Slamon *et al.*, *Science*, 244:707-712 (1989); Slamon *et al.*, *Science*, 235:177-182 (1987)).

Alternatively, or additionally, FISH assays such as the INFORMTM (sold by Ventana, Arizona) or PATHVISIONTM (Vysis, Illinois) may be carried out on formalin-fixed, paraffin-embedded tumor tissue to determine the extent (if any) of HER2 amplification in the tumor.

In one embodiment, the cancer will be one which expresses (and may overexpress) EGFR, such expression may be evaluated as for the methods for evaluating HER2 expression as noted above.

HER receptor or HER ligand overexpression or amplification may also be evaluated using an *in vivo* diagnostic assay, *e.g.* by administering a molecule (such as an antibody) which binds the molecule to be detected and is tagged with a detectable label (*e.g.* a radioactive isotope) and externally scanning the patient for localization of the label.

IV. Pharmaceutical Formulations

Therapeutic formulations of the HER dimerization inhibitors used in accordance with the present invention are prepared for storage by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (*Remington's Pharmaceutical Sciences* 16th edition, Osol, A. Ed. (1980)), generally in the form of lyophilized formulations or aqueous solutions. Antibody crystals are also contemplated (see US Pat Appln

2002/0136719). Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; saltforming counter-ions such as sodium; metal complexes (*e.g.* Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG). Lyophilized antibody formulations are described in WO 97/04801, expressly incorporated herein by reference.

10

15

20

25

30

35

The preferred pertuzumab formulation for therapeutic use comprises 30mg/mL pertuzumab in 20mM histidine acetate, 120mM sucrose, 0.02% polysorbate 20, at pH 6.0. An alternate pertuzumab formulation comprises 25 mg/mL pertuzumab, 10 mM histidine-HCl buffer, 240 mM sucrose, 0.02% polysorbate 20, pH 6.0.

The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Various drugs which can be combined with the HER dimerization inhibitor are described in the Method Section below. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in *Remington's Pharmaceutical Sciences* 16th edition, Osol, A. Ed. (1980).

Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, *e.g.* films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid.

15

20

25

30

The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

V. Treatment with HER dimerization inhibitors

Disclosed herein is a method for extending TTP or survival in a cancer patient, whose cancer displays HER activation, comprising administering a HER dimerization inhibitor to the patient in an amount which extends the patient's TTP or survival. Preferably, the HER dimerization inhibitor is a HER2 dimerization inhibitor and/or inhibits HER heterodimerization.

In one embodiment, the patient's cancer displays HER2 activation, including HER2 phosphorylation. Preferably, HER2 phosphorylation is evaluated using a phospho-ELISA assay. Alternatively, HER2 activation can be evaluated by gene expression profiling or by detecting HER dimers or heterodimers.

Examples of various cancers that can be treated with a HER dimerization inhibitor are listed in the definition section above. Preferred cancer indications include ovarian cancer; peritoneal cancer; fallopian tube cancer; breast cancer, including metastatic breast cancer (MBC); lung cancer, including non-small cell lung cancer (NSCLC); prostate cancer; and colorectal cancer. In one embodiment, the cancer which is treated is advanced, refractory, recurrent, chemotherapy-resistant, and/or platinumresistant cancer.

Therapy with the HER dimerization inhibitor extends TTP and/or survival. In one embodiment, therapy with the HER dimerization inhibitor extends TTP or survival at least about 20% more than TTP or survival achieved by administering an approved anti-tumor agent, or standard of care, for the cancer being treated.

In the preferred embodiment, the method for extending time to disease progression (TTP) or survival in a patient with ovarian, peritoneal, or fallopian tube cancer, whose cancer displays HER2 activation, comprises administering pertuzumab to the patient in an amount which extends the patient's TTP or survival. The patient may have advanced, refractory, recurrent, chemotherapy-resistant, and/or platinum-resistant ovarian, peritoneal or fallopian tube cancer. Administration of pertuzumab to the patient may, for example, extend TTP or survival at least about 20% more than TTP or survival achieved by administering topotecan or liposomal doxorubicin to such a patient.

The HER dimerization inhibitor is administered to a human patient in accord with known methods, such as intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. Intravenous administration of the antibody is preferred.

For the prevention or treatment of cancer, the dose of HER dimerization inhibitor will depend on the type of cancer to be treated, as defined above, the severity and course of the cancer, whether the

antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician.

In one embodiment, a fixed dose of HER dimerization inhibitor is administered. The fixed dose may suitably be administered to the patient at one time or over a series of treatments. Where a fixed dose is administered, preferably it is in the range from about 20mg to about 2000 mg of the HER dimerization inhibitor. For example, the fixed dose may be approximately 420mg, approximately 525mg, approximately 840mg, or approximately 1050mg of the HER dimerization inhibitor, such as pertuzumab.

5

10

15

20

25

30

35

Where a series of doses are administered, these may, for example, be administered approximately every week, approximately every 2 weeks, approximately every 3 weeks, or approximately every 4 weeks, but preferably approximately every 3 weeks. The fixed doses may, for example, continue to be administered until disease progression, adverse event, or other time as determined by the physician. For example, from about two, three, or four, up to about 17 or more fixed doses may be administered.

In one embodiment, one or more loading dose(s) of the antibody are administered, followed by one or more maintenance dose(s) of the antibody. In another embodiment, a plurality of the same dose are administered to the patient.

According to one preferred embodiment of the invention, a fixed dose of HER dimerization inhibitor (e.g. pertuzumab) of approximately 840mg (loading dose) is administered, followed by one or more doses of approximately 420mg (maintenance dose(s)) of the antibody. The maintenance doses are preferably administered about every 3 weeks, for a total of at least two doses, up to 17 or more doses.

According to another preferred embodiment of the invention, one or more fixed dose(s) of approximately 1050mg of the HER dimerization inhibitor (e.g. pertzumab) are administered, for example every 3 weeks. According to this embodiment, one, two or more of the fixed doses are administered, e.g. for up to one year (17 cycles), and longer as desired.

In another embodiment, a fixed dose of approximately 1050mg of the HER dimerization inhibitor (e.g. pertuzumab) is administered as a loading dose, followed by one or more maintenance dose(s) of approximately 525mg. About one, two or more maintenance doses may be administered to the patient every 3 weeks according to this embodiment.

While the HER dimerization inhibitor may be administered as a single anti-tumor agent, the patient is optionally treated with a combination of the HER dimerization inhibitor, and one or more chemotherapeutic agent(s). Preferably at least one of the chemotherapeutic agents is an antimetabolite chemotherapeutic agent such as gemcitabine. The combined administration includes coadministration or concurrent administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all)

active agents simultaneously exert their biological activities. Thus, the antimetabolite chemotherapeutic agent may be administered prior to, or following, administration of the HER dimerization inhibitor. In this embodiment, the timing between at least one administration of the antimetabolite chemotherapeutic agent and at least one administration of the HER dimerization inhibitor is preferably approximately 1 month or less, and most preferably approximately 2 weeks or less. Alternatively, the antimetabolite chemotherapeutic agent and the HER dimerization inhibitor are administered concurrently to the patient, in a single formulation or separate formulations. Treatment with the combination of the chemotherapeutic agent (e.g. antimetabolite chemotherapeutic agent such as gemcitabine) and the HER dimerization inhibitor (e.g. pertuzumab) may result in a synergistic, or greater than additive, therapeutic benefit to the patient.

An antimetabolite chemotherapeutic agent, if administered, is usually administered at dosages known therefor, or optionally lowered due to combined action of the drugs or negative side effects attributable to administration of the antimetabolite chemotherapeutic agent. Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturers' instructions or as determined empirically by the skilled practitioner. Where the antimetabolite chemotherapeutic agent is gemcitabine, preferably, it is administered at a dose between about 600mg/m² to 1250mg/m² (for example approximately 1000mg/m²), for instance, on days 1 and 8 of a 3-week cycle.

Aside from the HER dimerization inhibitor and antimetabolite chemotherapeutic agent, other therapeutic regimens may be combined therewith. For example, a second (third, fourth, etc) chemotherapeutic agent(s) may be administered, wherein the second chemotherapeutic agent is either another, different antimetabolite chemotherapeutic agent, or a chemotherapeutic agent that is not an antimetabolite. For example, the second chemotherapeutic agent may be a taxane (such as paclitaxel or docetaxel), capecitabine, or platinum-based chemotherapeutic agent (such as carboplatin, cisplatin, or oxaliplatin), anthracycline (such as doxorubicin, including, liposomal doxorubicin), topotecan, pemetrexed, vinca alkaloid (such as vinorelbine), and TLK 286. "Cocktails" of different chemotherapeutic agents may be administered.

Other therapeutic agents that may be combined with the HER dimerization inhibitor include any one or more of: a second, different HER dimerization inhibitor (for example, a growth inhibitory HER2 antibody such as trastuzumab, or a HER2 antibody which induces apoptosis of a HER2-overexpressing cell, such as 7C2, 7F3 or humanized variants thereof); an antibody directed against a different tumor associated antigen, such as EGFR, HER3, HER4; anti-hormonal compound, *e.g.*, an anti-estrogen compound such as tamoxifen, or an aromatase inhibitor; a cardioprotectant (to prevent or reduce any myocardial dysfunction associated with the therapy); a cytokine; an EGFR-targeted drug (such as TARCEVA®, IRESSA® or cetuximab); an anti-angiogenic agent (especially bevacizumab sold by Genentech under the trademark AVASTIN™); a tyrosine kinase inhibitor; a COX inhibitor (for instance a COX-1 or COX-2 inhibitor); non-steroidal anti-inflammatory drug, celecoxib

(CELEBREX®); farnesyl transferase inhibitor (for example, Tipifarnib/ZARNESTRA® R115777 available from Johnson and Johnson or Lonafarnib SCH66336 available from Schering-Plough); antibody that binds oncofetal protein CA 125 such as Oregovomab (MoAb B43.13); HER2 vaccine (such as HER2 AutoVac vaccine from Pharmexia, or APC8024 protein vaccine from Dendreon, or HER2 peptide vaccine from GSK/Corixa); another HER targeting therapy (e.g. trastuzumab, cetuximab, ABX-EGF, EMD7200, gefitinib, erlotinib, CP724714, CI1033, GW572016, IMC-11F8, TAK165, etc); Raf and/or ras inhibitor (see, for example, WO 2003/86467); doxorubicin HCl liposome injection (DOXIL®); topoisomerase I inhibitor such as topotecan; taxane; HER2 and EGFR dual tyrosine kinase inhibitor such as lapatinib/GW572016; TLK286 (TELCYTA®); EMD-7200; a medicament that treats nausea such as a serotonin antagonist, steroid, or benzodiazepine; a medicament that prevents or treats skin rash or standard acne therapies, including topical or oral antibiotic; a medicament that treats or prevents diarrhea; a body temperature-reducing medicament such as acetaminophen, diphenhydramine, or meperidine; hematopoietic growth factor, etc.

5

10

15

20

25

30

35

Suitable dosages for any of the above coadministered agents are those presently used and may be lowered due to the combined action (synergy) of the agent and HER dimerization inhibitor.

In addition to the above therapeutic regimes, the patient may be subjected to surgical removal of cancer cells and/or radiation therapy.

Where the inhibitor is an antibody, preferably the administered antibody is a naked antibody. However, the inhibitor administered may be conjugated with a cytotoxic agent. Preferably, the conjugated inhibitor and/or antigen to which it is bound is/are internalized by the cell, resulting in increased therapeutic efficacy of the conjugate in killing the cancer cell to which it binds. In a preferred embodiment, the cytotoxic agent targets or interferes with nucleic acid in the cancer cell. Examples of such cytotoxic agents include maytansinoids, calicheamicins, ribonucleases and DNA endonucleases.

The present application contemplates administration of the HER dimerization inhibitor by gene therapy. See, for example, WO96/07321 published March 14, 1996 concerning the use of gene therapy to generate intracellular antibodies.

There are two major approaches to getting the nucleic acid (optionally contained in a vector) into the patient's cells; *in vivo* and *ex vivo*. For *in vivo* delivery the nucleic acid is injected directly into the patient, usually at the site where the antibody is required. For *ex vivo* treatment, the patient's cells are removed, the nucleic acid is introduced into these isolated cells and the modified cells are administered to the patient either directly or, for example, encapsulated within porous membranes which are implanted into the patient (see, *e.g.* U.S. Patent Nos. 4,892,538 and 5,283,187). There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells *in vitro*, or *in vivo* in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells *in*

vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. A commonly used vector for ex vivo delivery of the gene is a retrovirus.

The currently preferred *in vivo* nucleic acid transfer techniques include transfection with viral vectors (such as adenovirus, Herpes simplex I virus, or adeno-associated virus) and lipid-based systems (useful lipids for lipid-mediated transfer of the gene are DOTMA, DOPE and DC-Chol, for example). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, *e.g.* capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, and proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor-mediated endocytosis is described, for example, by Wu *et al.*, *J. Biol. Chem.* 262:4429-4432 (1987); and Wagner *et al.*, *Proc. Natl. Acad. Sci. USA* 87:3410-3414 (1990). For review of the currently known gene marking and gene therapy protocols see Anderson *et al.*, *Science* 256:808-813 (1992). See also WO 93/25673 and the references cited therein.

VI. Deposit of Materials

5

10

15

20

30

35

The following hybridoma cell lines have been deposited with the American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA (ATCC):

	Antibody Designation	ATCC No.	Deposit Date
	7C2	ATCC HB-12215	October 17, 1996
	7F3	ATCC HB-12216	October 17, 1996
	4D5	ATCC CRL 10463	May 24, 1990
25	2C4	ATCC HB-12697	April 8, 1999

Further details of the invention are illustrated by the following non-limiting Examples. The disclosures of all citations in the specification are expressly incorporated herein by reference.

EXAMPLE 1

CLINICAL ACTIVITY OF PERTUZUMAB IN ADVANCED, REFRACTORY OR RECURRENT OVARIAN CANCER AND THE ROLE OF HER2 ACTIVATION STATUS

This example concerns a single arm, open label, multicenter phase II clinical trial of ovarian cancer patients. Patients with advanced, refractory or recurrent ovarian cancer were treated with pertuzumab, a humanized HER2 antibody. Pertuzumab represents a new class of targeted agents called HER dimerization inhibitors (HDIs) that inhibit dimerization of HER2 with EGFR, HER3 and HER4, and inhibit signaling through MAP and P13 kinase.

65

65 patients with relapsed ovarian cancer were enrolled with 61 receiving therapy with "low dose" single agent pertuzumab; pertuzumab was administered intravenously (IV) with a loading of 840mg followed by 420mg every 3 weeks.

A second cohort of patients was treated with "high dose" pertuzumab; 1050mg every 3 weeks, administered as a single agent. In this cohort, 64 subjects were enrolled, with 62 subjects being treated.

Tumor assessments were obtained after 2, 4, 6, 8, 12 and 16 cycles.

5

10

15

20

25

30

35

Response Rate (RR) by RECIST was the primary endpoint. Fresh tumor biopsies were mandatory in order to assay for HER2 phosphorylation (pHER2) status using a pHER2 enzyme-linked immunosorbent assay as described in Example 2 below. pHER2 for cohort 1 subjects was assessed. Safety and tolerability were additionally evaluated.

Secondary endpoints were TTP, duration of response, duration of survival, pharmacokinetics (PK), and FOSI (cohort 2).

Results

Baseline demographics of the patients are provided in Fig. 9. Median age was 57 years (range 35-83) and median ECOG PS was 2. The median number of prior chemotherapy regimens was 5.

Figs. 10-14 depict any adverse events in the treated patients. Pertuzumab was well tolerated. Diarrhea (grade 1-3) was experienced by 61% of patients. 5% of patients had a drop in ejection fraction to less than 50%.

Efficacy results are summarized in Fig. 15. 4% of patients had a partial response (PR). 39% of patients had stable disease (SD). As shown in Fig. 16, median TTP for patients treated with 420mg pertuzumab was 7 weeks, and, for patients treated with 1050mg pertuzumab was 6.6 weeks. Fig. 17 provides overall survival for patients treated with low dose or high dose pertuzumab. Median survival was 40 weeks. CA-125 responses are provided in Fig. 18. Pertuzumab was efficacious in reducing CA-125 levels. Such reduction is an indication of therapeutic effectiveness in ovarian cancer.

HER2 activation status of patients in cohort 1, treated with 420mg of pertuzumab, was evaluated. The results are shown in Figs. 19-23. Approximately 30% of ovarian cancer subjects were pHER2 positive (greater than 30% of tumor, ELISA performed as described in Example 2). Of the subjects evaluable for efficacy and pHER2 data, 26% were pHER2 positive. See Fig. 19.

The median TTP for pHER2+ patients was 21 weeks, compared to 6 weeks in pHER2-patients, and 9 weeks in patients with unknown pHER2 status (Figs. 20 and 22).

Fourteen of 61 patients in cohort 1 showed evidence of pertuzumab activity. The only patient with a partial response (PR) was phospho-HER2 positive. See Fig. 21.

Overall survival of patients was also evaluated. As shown in Fig. 23, overall survival of pHER2 positive patients treated with pertuzumab appears superior to survival achieved with topotecan (median survival 43 weeks) or liposomal doxorubicin (36 weeks).

Conclusions

As a single agent, pertuzumab is well tolerated. Pertuzumab toxicity and efficacy do not appear to be dose-related. Pertuzumab has activity in advanced, refractory or recurrent ovarian cancer. Subjects with positive pHER2 status displayed enhanced TTP and survival efficacy compared to subjects with negative pHER2 status. Efficacy, as measured by TTP or survival, of pertuzumab in patients displaying HER2 activation appeared superior to that achieved using topotecan or liposomal doxorubicin, agents presently used to treat patients with advanced, refractory or recurrent ovarian cancer.

10 EXAMPLE 2

5

15

20

PHOSPHO-HER2 ELISA FOR DETERMINING HER2 ACTIVATION

Example 1 above describes the clinical trial which evaluated the efficacy of pertuzumab in subjects with advanced, refractory or recurrent ovarian cancer. This example describes development of the assay used to determine HER2 activation in the patients treated in Example 1.

The phospho-HER2 ELISA was developed to measure the concentration of HER2-associated tyrosine phosphorylation (HER2/pTyr) in human ovarian tumor tissue lysates. The assay utilizes COSTARTM 96-well, half-area, microtiter plates because of limited sample volume. The coat antibody is an affinity purified goat anti-HER2 ECD and the secondary antibody is a biotinylated murine monoclonal (clone 4G10) specific for phosphotyrosine. The reference standard is a SK-BR-3 cell lysate with an assay range of 1̃32 U/mL. One unit equals the amount of phosphorylated tyrosine measured in a SK-BR-3 cell lysate containing 277 pg total HER2 as determined by the Total HER2 ELISA (Total HER2 ELISA). The ELISA uses AMDEXTM streptavidin-HRP for detection and TMB as the substrate.

Materials

- Standard Material, SK-BR-3 Cell lysate 1,056 U/mL HER2/pTyr
 - 2. Control Source, SK-BR-3 Cell lysate 1,056 U/mL
 - 3. Coat antibody, goat anti-HER2 ECD 9.6 mg/mL
 - 4. Secondary antibody, biotinylated murine anti-phosphotyrosine, clone 4G10, 971 μ g/mL (Upstate Biotech Cat #16-103)
- AMDEXTM Streptavidin conjugated to HRP (SA-HRP) (Amersham Biosciences Catalog No. RPN4401)
 - 6. Substrate, Tetramethyl Benzidine (TMB) Peroxidase Substrate (Kirkegaard & Perry Labs [KPL] Catalog No. 50-76-01)
 - 7. Coat Buffer, 0.05 M sodium carbonate buffer, pH 9.6
- 8. Assay Diluent, PBS/0.5% BSA/0.05% Polysorbate 20/0.05% PROCLIN 300™, pH 7.4

9. Lysis Buffer: Base Lysis Buffer (50 mM Tris-HCl/150 mM NaCl/5 mM EDTA/1% TRITON X-100TM)/1:10 Protease Inhibitor Cocktail/1:100 Phosphatase Inhibitor Cocktail II/ 50 mM sodium fluoride/2 mM sodium ortho-vanadate, pH 8.1

- 10. Sample, Standard, and Control Diluent: Lysis Buffer
- 5 11. MDA-468 (ATCC# HTB-132). HER2 Expression level: None. Tissue: human mammary gland, breast, adenocarcinoma
 - 12. MCF-7 (ATCC# HTB-22). HER2 Expression level: 0 (normal expression levels of HER2). Tissue: human mammary gland; breast; epithelial; metastatic site: pleural effusion adenocarcinoma
- 13. SK-BR-3 (ATCC# HTB-30, Manassas, VA). HER2 Expression level: 3 (high level HER2 overexpression). Tissue: human mammary gland; breast; metastatic site: pleural effusion adenocarcinoma
 - 14. BT-474 (ATCC# HTB-20, Manassas, VA). HER2 Expression level: 3 (high level HER2 overexpression)
- Tissue: human mammary gland; breast; duct; ductal carcinoma

25

30

15. BT-474 Tumor Lysates. Mice were inoculated with BT-474. After 2 weeks tumors were harvested. Harvest tumors were homogenized to produce tumor lysates

Preparation of Materials

- 20 Standard Material/Stock: The phospho HER2 ELISA Standard Stock is neat Standard Material. The Standard Material was prepared by collecting lysates from three 245x245 mm cell culture trays containing SK-BR-3 (SKBR3) cells, which were 80% to 90% confluent. Cell lysates clarified by centrifugation and the supernatant was collected. The supernatant is used as the Standard Material.
 - The Standard Material was assigned a concentration of 1,056 U/mL so that the lowest calibrator in the assay reporting range would be 1 U/mL. One unit is defined as the amount of phosphorylated tyrosine measured in a SK-BR-3 cell lysate containing 277 pg total HER2 as determined by the Total HER2 ELISA.
 - Cell lysate controls: Cell lysate controls were prepared from the Standard Material. Standard Material was diluted in Lysis Buffer to obtain HER2/pTyr levels that represent the low, middle, and high ranges of the assay standard curve.
 - *Tissue lysate controls:* Tissue lysate controls were prepared from the BT474 tumor lysates. BT474 tumor lysates were diluted in Lysis Buffer to obtain HER2/pTyr levels that represent the high range of the assay standard curve.
- 35 Coat source: Goat anti-HER2 ECD Stock I was prepared by diluting the source material (9.6 mg/mL) to 100 µg/mL in PBS.

Biotinylated conjugate: The biotinylated murine anti-phosphotyrosine antibody (1 μg/mL) was purchased from Upstate Biotech. The antibody is a biotinylated, protein A-purified, monoclonal IgG2b-kappa raised against phosphotyramine coupled to KLH. The biotinylated monoclonal antiphosphotyrosine antibody (clone 4G10, Cat #05-321) is specific for phosphotyrosine and does not cross-react with phosphoserine or phosphothreonine.

Specificity of goat anti-HER2 ECD: HER2 receptor activation initiates when receptor dimerization occurs with other family members. Unless signaling is strictly due to HER2 homodimerization, EGFR, HER3, and/or HER4 must be expressed within the active tumor. Each of these receptors may be present in ovarian tissue lysate samples and could interfere in accurately measuring HER2-associated tyrosine phosphorylation (HER2/pTyr) if these receptors cross-react to the coat antibody.

The specificity of the goat anti-HER2 ECD antibody was determined by surface plasmon resonance analysis (BIACORE 3000®, BIACORE® International AB, Neuchâtel, Switzerland). The goat anti-HER2 ECD antibody was immobilized onto a CM5 sensor chip using amine coupling chemistry. The sensor chip was blocked with 1 M ethanolamine-HCl, pH 8.5, and conditioned with 10 mM HCl. Specificity was determined by injecting soluble recombinant EGFR (sEGFR) (Research Diagnostics, Inc., Flanders, NJ) and recombinant human HER2 ECD/human IgG1 Fc fusion proteins over the immobilized goat anti-HER2 antibody. The fusion proteins consisted of the ECD of HER2, HER3, or HER4 fused to the carboxy-terminal 6X histidine-tagged Fc region of human IgG1 via a peptide linker (R&D Systems, Minneapolis, MN).

Reference subtracted relative responses for sEGFR, HER3-Fc, and HER4-Fc were —41 RU, 0.3 RU, and 2.5 RU, respectively. The negative relative response obtained for sEGFR was due to refractive index changes between the mobile phase (HBS-EP) and the sample excipient. The relative response for HER2-Fc was 374 RU.

25 Methods

5

10

15

20

30

35

The phospho HER2 ELISA utilizes COSTARTM half-area (A/2) plates coated with goat anti-HER2 ECD at 4 μg/mL in 0.5 M sodium carbonate buffer, pH 9.6, and incubated 18-72 hours at 2°C-8°C. The wells are blocked with approximately 150 μL/well assay diluent for 1-2 hours and then 50 μL/well of standards, controls, and samples are added. The minimum dilution for ovarian tumor tissue lysates is 1/40 in Lysis Buffer. The standards, controls, and samples are incubated 2 hours at ambient temperature with agitation. The wells are washed with PBS/0.05 TWEEN 20TM and 250 ng/mL of biotinylated anti-phosphotyrosine is added. After 2 hours, the wells are washed and AMDEXTM streptavidin-HRP is added. AMDEXTM streptavidin-HRP (SA-HRP) is a polymeric conjugate with multiple enzyme labels linked to the streptavidin. After 15 minutes the wells are washed and a tetramethyl-benzidine substrate (TMB) is added and allowed to develop for 15 minutes before being stopped with 1 M phosphoric acid. The absorbance is measured using a

SPECTRAMAXTM plate reader (Molecular Devices Corp., Sunnyvale, CA) with a 450 nm filter and a 650 nm reference filter. The sample concentrations are calculated relative to a nonlinear, four-parameter logistic fit of a seven-point standard curve (Marquardt, D. *J. Soc. Indust. Appl. Math.* 431-441 (1963)). The assay range of the ELISA is 1 to 32 U/mL. The units are arbitrary units, where 1 U equals the amount of phosphorylated tyrosine measured in a SK-BR-3 cell lysate containing 277 pg total HER2. The lower limit of the assay was set to 1 U/mL and was defined by the lower limit of detection.

Precision of the phospho HER2 ELISA was re-evaluated after the Standard Material concentration was re-assigned. Intra- and inter-assay precision were evaluated by determining the coefficient of variation (CV) of HER2/pTyr in a SKBR3 cell lysate at three different levels. The SKBR3 cell lysate was diluted to obtain HER2 levels that represent the low, middle, and high ranges of the assay standard curve. After the Standard Material concentration was re-assigned the High Control was not within the high range of the assay standard curve. Therefore, a BT474 tissue lysate control was diluted to fall within the high range. The lysates, which were run as assay controls, were analyzed in duplicate over 5 days. The control data were imported into STATVIEW for ANOVATM analysis to determine the intra- and inter-assay standard deviation.

The CVs were calculated as follows:

100 x (Standard Deviation) / (mean control value)

5

10

15

20

25

30

The intra-assay precision CVs were 4%, 4%, 3%, and 11% for the BT474, High, Mid, and Low controls, respectively. The inter-assay precision CVs were 5%, 6%, 5%, and 14% for the BT474, High, Mid, and Low controls, respectively.

During the development of the phospho HER2 ELISA, a SKBR3 cell lysate was diluted to 22.9, 6.39, and 1.71 U/mL in neat MDA468 cell lysate. The samples were diluted in Lysis buffer containing SKBR3 HER2/pTyr to maintain a constant level of HER2/pTyr throughout the entire dilution series while matrix effects are diluted out. The dilution series was analyzed in the Phospho HER2 ELISA and compared to SKBR3 HER2/pTyr without MDA468 to determine recovery.

Percent recovery was calculated as follows:

100 x SKBR3 HER2/pTyr diluted in MDA468
SKBR3 HER2/pTyr diluted in Lysis Buffer

The results for SKBR3 HER2/pTyr recovery at the three levels in the presence of MDA468 cell lysate, revealed the matrix significantly enhances recovery in sample dilutions between neat and 1/16 at the 1.71 U/mL level, with HER2/pTyr recoveries between 120% and 127%. Matrix interference was not observed at any other level. Recovery between 80% and 120% is demonstrated in

each level starting at a sample dilution of 1/16 in Lysis Buffer.

5

10

15

20

25

30

35

Ovarian and BT474 tumor lysates were serially diluted two-fold in Lysis Buffer and analyzed in the Phospho HER2 ELISA. The starting dilution for the BT474 samples, which were analyzed during development, was 1/20. The ovarian lysates were analyzed after the Standard Material concentration was re-assigned. The starting dilution for the ovarian lysates varied according to expected HER2/pTyr concentrations.

The percent difference for the dilution series, which is an indicator of sample dilution linearity, was calculated as follows:

100 x (greatest Corrected Result value – lowest Corrected Result value) (average of greatest and lowest Corrected Result values)

Percent differences for ovarian tissue lysate HF8198 were calculated starting at a dilution of either 1/80, 1/160, or 1/320. Percent differences for ovarian tissue lysate HF7945 were calculated starting at a dilution of either 1/320, 1/640, or 1/1280. Percent differences for the remaining ovarian tissue lysates were calculated starting at a dilution of either 1/20, or 1/40, to determine the minimum dilution as well as assess the linearity of dilution.

The differences for the BT474 dilution series ranged from –9% to 12%. The differences for HF7930 and HF7934 dilution series starting at a 1/10 dilution were 43% and 38%, respectively. The differences for HF8197 were 2%, 8%, and 5% for dilution series starting at 1/320, 1/160, and 1/1280, respectively. The differences for HF8198 were 72%, 34%, and 3%, for dilution series starting at 1/80, 1/160, and 1/320, respectively.

Eighteen different ovarian tissue lysates were analyzed in the phospho HER2 ELISA after the Standard Material concentration was changed. Samples were diluted two-fold starting from 1/20 to 1/160. One sample was LTR at a 1/20 dilution; 10 samples were LTR at a 1/40 dilution. Seven samples had measurable levels of HER2/pTyr at 1/20 and 1/40 dilutions and one sample had measurable levels of HER2/pTyr up to a 1/80 dilution. The differences for samples that had measurable levels of HER2/pTyr at 1/20 and 1/40 dilutions ranged from 16% to 34%, with three of seven samples with differences less than 20%. The one sample that had measurable levels of HER2/pTyr up to a 1/80 dilution, sample HF7931, had differences of 16% and 4% for dilution series starting at 1/20 and 1/40, respectively.

Pertuzimab and trastuzumab were analyzed in the phospho HER2 ELISA to determine if these therapeutics interfere. The antibodies were diluted to concentrations ranging from 1.5 to 10,000 ng/mL in heregulin stimulated MCF7 (MCF7+) cell lysates containing 98.48 U/mL HER2/pTyr.

During development, cell and tissue lysates were subjected to four cycles of freezing and thawing to determine the effects of temperature cycling. Frozen SKBR3 cell lysate and BT474 tumor lysates were thawed at ambient temperature. From each lysate $10 \, \mu L$ were removed and diluted in

Assay Diluent. The remaining lysates were flash frozen in a mixture of dry ice and methanol and thawed again. Test samples were once again removed and diluted in Assay Diluent (first freeze/thaw cycle, 1x). The flash freeze, thaw and sample collection procedure was repeated twice to obtain samples from the second and third freeze/thaw cycles (2x and 3x, respectively).

Diluted samples were assayed in the phospho HER2 ELISA to determine HER2/pTyr recovery with respect to the "fresh" sample. The "fresh" sample is the sample taken from the initial thawing.

5

10

15

20

25

30

35

Recovery of SKBR3 HER2/pTyr for 1x, 2x, and 3x samples were 104%, 109%, and 113%, respectively. Recovery of BT474 HER2/pTyr in sample 314A were 99%, 103%, and 99%, for 1x, 2x, and 3x samples, respectively. Recovery of BT474 HER2/pTyr in sample 365 were 111%, 96%, and 99%, for 1x, 2x, and 3x samples, respectively.

The Lower Limit of Quantitation (LLOQ) was set as the average concentration of the low control, 1.35 U/mL. Because the low control is included within each experiment, it is a reliable indicator of the lower limit to which samples can be accurately measured. Therefore, the minimum quantifiable concentration in the phospho HER2 ELISA is the LLOQ multiplied by the minimum sample dilution (1/40), or 54 U/mL.

Conclusions

A sensitive and accurate ELISA was developed to measure HER2-associated tyrosine phosphorylation (HER2/pTyr) in tumor tissue lysates. The phospho HER2 ELISA demonstrated sensitivity down to 1.35 U/mL with a minimum quantifiable concentration of 54 U/mL, where 1 U is equal to the amount of phosphorylated tyrosine measured in a SK-BR-3 cell lysate containing 277 pg total HER2. The phospho-HER2 ELISA demonstrated good precision at four levels. The intra-assay precision CVs were 4%, 3%, 3%, and 11%, for the BT474 tissue lysate control and the High, Mid, and Low SKBR3 cell lysate controls, respectively. The inter-assay precision CVs were 5%, 6%, 5%, and 14%, for the BT474 tissue lysate control and the High, Mid, and Low SKBR3 cell lysate controls, respectively.

The phospho HER2 ELISA demonstrated good recovery of HER2/pTyr in the presence MDA468 cell lysate. Starting at a 1/16 dilution, recoveries ranged from 88% to 120%. The ELISA demonstrated high specificity as EGFR, HER3-IgG Fc, and HER4-IgG Fc do not cross-react with the assay coat.

Human ovarian tumor and BT474 mouse xenograft tumor tissue lysates were used to analyze linearity of dilution and minimum sample dilution. The differences of dilution corrected values for the BT474 tumor lysates ranged from –9% to 12%. Out of the seven ovarian lysates that had measurable levels of HER2/pTyr at 1/20 and 1/40 dilutions, only three had differences less than 20%, while six out of seven had differences less than or equal to 23%. The one sample that had measurable levels of HER2/pTyr up to a 1/80 dilution, sample HF7931, had a difference of 4% for dilution series starting at

1/40. All of the above samples did not meet the ≤20% criteria at a minimum dilution of 1/20, therefore, the minimum sample dilution will be 1/40.

5

10

15

20

25

30

35

The BT474 tissue lysates and human ovarian tissue lysate samples HF8197 and HF8198 had high measurable levels of HER2/pTyr and required dilutions between 1/80 to 1/320 to fall within the quantitative range of the assay. The BT474 samples and sample HF8197, which had the highest measured HER2/pTyr concentration within the human ovarian tumor tissue subset, diluted linearly throughout the entire assay range. In contrast, sample HF8198 diluted nonlinearly as the corrected for dilution HER2/pTyr concentrations monotonically increased throughout the assay range and appear to plateau at a 1/320 dilution.

SKBR3 cell lysates subjected to three freeze/thaw cycles demonstrated very good recovery. HER2/pTyr recovery ranged from 104% to 113% with respect to the same freshly thawed sample.

Two BT474 tumor lysates were also subjected to three freeze/thaw cycles. BT474 phospho HER2 recovery ranged from 99% to 103%. HER2/pTyr recovery from BT474 ranged from 96% to 111%. Therefore, temperature cycling does not appear to effect phospho HER2 activity.

The phospho HER2 ELISA does not demonstrate any interference from either pertuzimab or trastuzumab.

EXAMPLE 3

GENE EXPRESSION PROFILING FOR DETERMINING HER2 ACTIVATION

This example shows how HER2 activation can be evaluated by determining gene expression profiles as an alternative to determining HER2 phosphorylation directly. This profiling may be done on fresh, frozen, or formalin-fixed, paraffin-embedded ovarian tumor specimens, but preferably the latter.

Ovarian cancer specimens treated with pertuzumab were profiled for gene expression using AFFYMETRIX® microarray analysis performed according to the manufacturer's instructions. The microarray expression data was analyzed to identify gene patterns which would be associated with HER2 phosphorylation status. Remarkably, a pattern emerged where tumors with relatively high levels of expression of EGFR, HER2, HER3, and the HER ligand betacelullin were also positive for HER2 phosphorylation. The correlation was positive in six of the six HER2 phosphorylation positive cases, and none of the HER2 phosphorylation negative cases were predicted positive using microarray expression data as the basis for the algorithm.

In a second analysis, prediction of HER2 phosphorylation status was achieved by using a single gene only, namely betacellulin. All six HER2 phosphorylation positive tumors had a betacellulin expression above the median, again using microarray expression data.

A second method for quantifying gene expression, quantitative real time polymerase chain reaction (qRT-PCR), was used to validate, and was compared with, the microarray data. qRT-PCT

would be a preferred method for measuring gene expression in the typical patient sample available in a clinical setting. Diagnostic technology platforms are already established for this method. qRT-PCR was performed as described in Cronin *et al.*, *Am. J. Pathol.* 164(1):35-42 (2004); and Ma *et al.*, *Cancer Cell* 5:607-616 (2004). RNA was extracted from frozen ovarian tumors using commercially available reagents from Qiagen, Valencia, California. Primers and probes for TAQMANTM qRT-PCR analysis were designed to give amplicon lengths of about 100 bases or less. Transcripts were quantitated by qRT-PCR using a TAQMANTM instrument (Applied BioSystems), with expression levels of the test genes normalized to those of the reference genes. The "house keeping" gene GUS was selected as the control gene because of its low variance and high expression.

5

10

15

Based on the experiments noted above an algorithm was developed based on gene expression profiling date of tumors with known HER2 phosphorylation status by ELISA. A tumor is deemed positive for a gene expression profile associated with HER2 phosphorylation that has betacellulin or amphiregulin and HER2 expression at the median or above and/or EGFR and/or HER3 expression at the median or above. Alternatively, expression of betacellulin or amphiregulin alone can be measured by qRT-PCR to identify tumors with predicted phosphorylation of HER2.

5

15

25

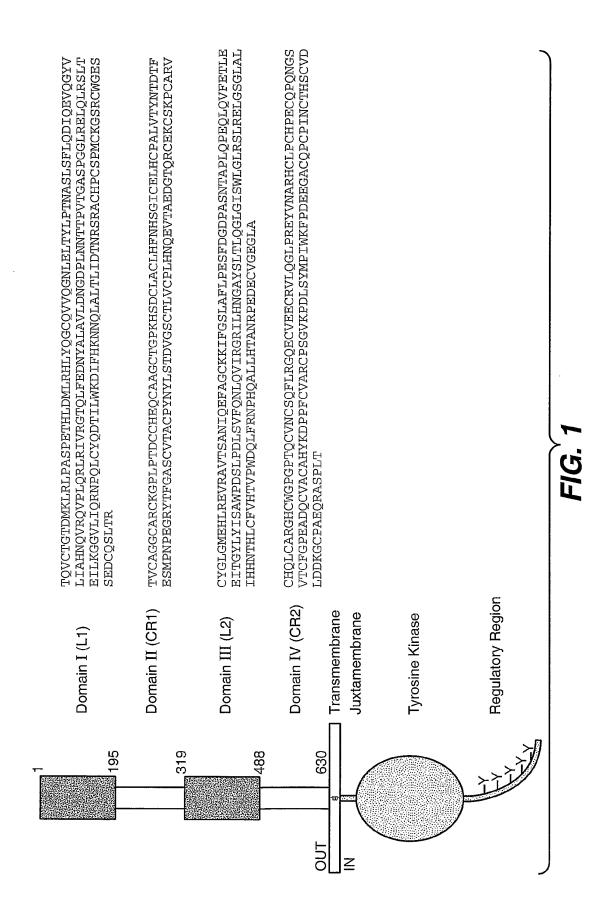
The Claims Defining the Invention Are As Follows:

- 1. A method for extending time to disease progression (TTP) or survival in a cancer patient comprising administering to the patient a HER dimerization inhibitor comprising an antibody that binds to Domain II of HER2 extracellular domain and inhibits HER2 dimerization or HER heterodimerization, and administering to the patient trastuzumab in an amount which extends TTP or survival in the patient, wherein the cancer is selected from the group consisting of gastric cancer, stomach cancer, metastatic breast cancer (MBC), non-small cell lung cancer (NSCLC), and colorectal cancer.
- 2. The method of claim 1 wherein the antibody comprises the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, respectively.
- 3. The method of claim 2 wherein the antibody is pertuzumab.
- 4. The method of any one of claims 1 to 3 wherein the antibody is a naked antibody.
- 5. The method of any one of claims 1 to 4 wherein the antibody is an intact antibody.
- 20 6. The method of any one of claims 1 to 4 wherein the antibody is an antibody fragment comprising an antigen binding region.
 - 7. The method of any one of claims 1 to 6 further comprising administering a chemotherapeutic agent.
 - 8. The method of any one of claims 1 to 7 wherein TTP is extended.
 - 9. The method of any one of claims 1 to 8 wherein survival is extended.
- 30 10. The method of any one of claims 1 to 9 wherein administering to the patient the HER dimerization inhibitor and trastuzumab extends TTP or survival at least about 20% more than TTP or survival achieved by administering an approved anti-tumor agent to the cancer patient.
- 11. Use of a HER dimerization inhibitor comprising an antibody that binds to Domain II of HER2 35 extracellular domain and inhibits HER2 dimerization or HER heterodimerization in the manufacture of

a medicament for extending TTP or survival in a cancer patient, wherein the cancer is selected from the group consisting of gastric cancer, stomach cancer, metastatic breast cancer (MBC), non-small cell lung cancer (NSCLC), and colorectal cancer, and wherein the medicament is administered to the patient with trastuzumab.

5

12. Use of a HER dimerization inhibitor comprising an antibody that binds to Domain II of HER2 extracellular domain and inhibits HER2 dimerization or HER heterodimerization and trastuzumab in the manufacture of a medicament for extending TTP or survival in a cancer patient, wherein the cancer is selected from the group consisting of gastric cancer, stomach cancer, metastatic breast cancer (MBC), non-small cell lung cancer (NSCLC), and colorectal cancer.


13. Use of an antibody comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, respectively, in the manufacture of a medicament for extending TTP or survival in a cancer patient, wherein the cancer displays HER2 activation, and wherein the medicament is administered to the patient with trastuzumab.

15

14. Use of an antibody comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, respectively, and trastuzumab in the manufacture of a medicament for extending TTP or survival in a cancer patient, wherein the cancer displays HER2 activation.

20

15. A method according to claim 1, or use according to any one of claims 11 to 14, substantially as hereinbefore described with reference to any one of the examples or figures.

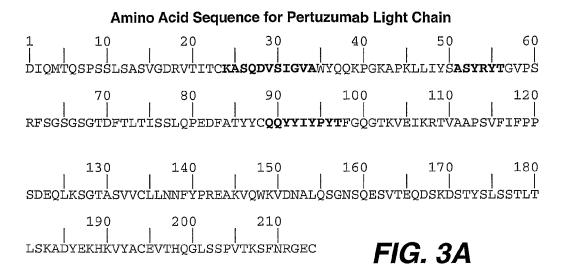

Variable Light 10 20 30 40 2C4 DTVMTQSHKIMSTSVGDRVSITC [KASQDVSIGVA] WYQQRP **** * 574 DIQMTQSPSSLSASVGDRVTITC [KASQDVSIGVA] WYQQKP hum KI DIQMTQSPSSLSASVGDRVTITC [RASQSISNYLA] WYQQKP 60 70 GQSPKLLIY [SASYRYT] GVPDRFTGSGSGTDFTFTISSVQA 2C4 * * 574 GKAPKLLIY [SASYRYT] GVPSRFSGSGSGTDFTLTISSLQP * **** GKAPKLLIY [AASSLES] GVPSRFSGSGSGTDFTLTISSLQP hum κΙ 90 100 2C4 EDLAVYYC [QQYYIYPYT] FGGGTKLEIK (SEQ ID NO:1) 574 EDFATYYC [QQYYIYPYT] FGQGTKVEIK (SEQ ID NO:3) *** * hum KI EDFATYYC [QQYNSLPWT] FGQGTKVEIK (SEQ ID NO:5)

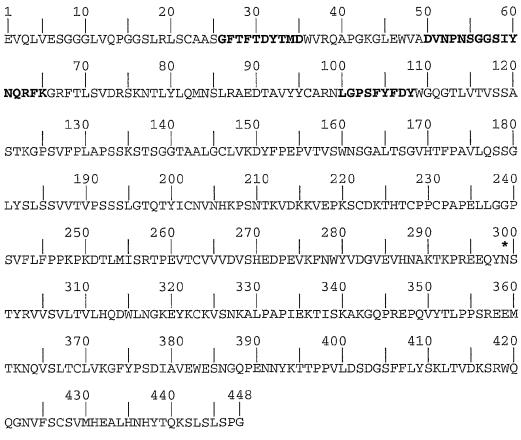
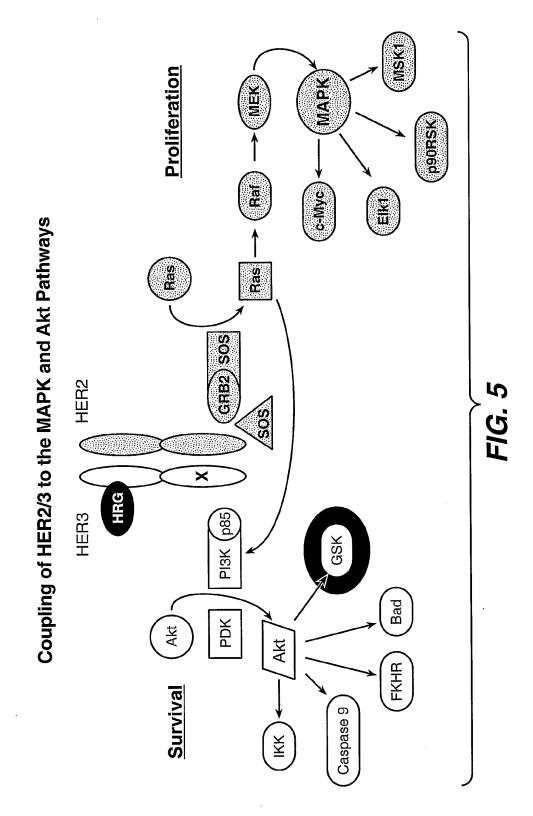
FIG. 2A

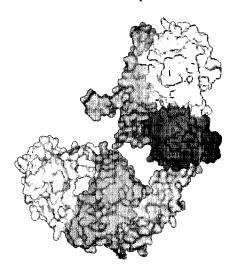
Variable Heavy

	10 20	30	40
2C4	EVQLQQSGPELVKPGTSVKISCKA: ** ** * *** *	S [GFTFTDYTMD] V	VVKQS * *
574	EVQLVESGGGLVQPGGSLRLSCAA	S [GFTFTDYTMD] N	VVRQA
hum III	EVQLVESGGGLVQPGGSLRLSCAA	S [GFTFSSYAMS] 1	VVRQA
	50 a 60	70	80
2C4	HGKSLEWIG [DVNPNSGGSIYNQ * * **	•	SRIVYM **** *
574	PGKGLEWVA [DVNPNSGGSIYNQ ***** *** **	•	KNTLYL
hum III	PGKGLEWVA [VISGDGGSTYYAD	SVKG] RFTISRDNS	KNTLYL
	abc 90 10	0ab 110	
2C4	ELRSLTFEDTAVYYCAR [NLGPS *** **	FYFDY] WGQGTTLT **	VSS (SEQ ID NO:2)
574	QMNSLRAEDTAVYYCAR [NLGPS *****		VSS (SEQ ID NO:4)
hum III	QMNSLRAEDTAVYYCAR [GRVGY	SLYDY] WGQGTLVT	VSS (SEQ ID NO:6)

FIG. 2B

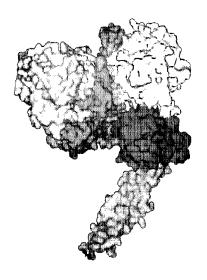
Amino Acid Sequence for Pertuzumab Heavy Chain


FIG. 3B

Ligand-activated EGFR Heterodimerizes with HER2 2C4 Binds at the Heterodimeric Binding Site 2C4 Antibody EGFR Unbound EGFR-EGF Complex EGF

4/18



Trastuzumab Herceptin

- Binds in IV near JM.
- Protects against receptor shedding
- Moderately affects receptor downmodulation
- Slight effect on HER2's role as a coreceptor

Pertuzumab Omnitarg

- Binds in II at dimerization interface
- Does not prevent receptor shedding
- Moderately affects receptor downmodulation
- Major effect on HER2's role as a coreceptor

Light Chain

90 0 180 Ø Д K U > H × \Rightarrow > ß ტ ഗ ß 4 J × Ø E S Ø [z Q ⋈ O Д ß H 囝 × S 3 Д H Ω æ Ø Ø × > Ц 团 S ø S Ω Ω ۲ ഗ ഗ Ø 165 'E (120 z н Д H > ۲ Ω Ч > [z, Ø E Н Ŋ S ы 됴 4 Д ø œ H ß ß ပ O z G Ħ Ø Z, ĸ Ø, Ŋ E S > ø > Ö H П œ K ഗ ĸ Δ [z, × Z Q V O 吖 60 S I 105 > × S æ > × 3 S G Н \circ S Ö > S Ø K Ö 回 Ŀ Ç, S ß ĸ Ø Z. S E Σ H Ø z

FIG. 7A

214 C

回

ტ

ĸ

z

Œ,

Ŋ

×

۲

>

Д

ល

ß

L

G

O

二

E

团

U

₫,

χ Λ

H K

×

回

4

×

Heavy Chain

45 L 90 D 225 D K 180 S 360 E Ö 449 ഗ a 回 А Q Ы S Ö Д × Ø C A H K ρ K S G ĸ ď ы Ø > u S Ω S Д П > П > × > Д u Ø S A. Д > E Д ß O Ħ ы Z O L J Д ĸ Σ Ŀ > H > H Д ល > Ø S ۲ × > S \Rightarrow E × 3 ᆸ Д 二 ¥ 冝 > > H ø I G Ω × > Д > Q × E٠ 4 н ĸ Ö > H ĸ Д ⋈ × ⋈ H S × H K × ш Z Ξ E z ß ۲ H S H œ Z Z A L Ω 闰 Ξ × ø Z S Д H75 × ß ß r Z Ø Д u Ø ZII Ö d, G α ഗ × K Н H z Д > Ŋ × H Ø × Ö 回 [L Z, z 耳 Ω 回 K Ξ E Z Ö S 3 回 × Σ > Z × S ß Н ы ß > д ĸ S 뙤 > Ø ß Ħ ы > Z × Д 3 $\boldsymbol{\mathsf{H}}$ K [z, G ۲ C Д × Ħ ы O œ Ø C α > Н ρ ₽ × > ß Ö G щ ⋈ [I, × 闰 Ø ſι П × 3 囝 ₽ H A, н > Н ĸ > \Rightarrow D, Ø ſτι z Д Ω z ᆸ Ŋ Ω I O Ē, H > 4 S വ Д Σ × O Ø > Д, Д Ø F Ö 4 Þ VKD 回 h Д H Ø 60 Y G Ö S > æ 3 p, œ Œ Ö Ö × Ö ĸ ß Q Ö Ħ L z ß S u Q × > × О × O Q, J > S > П G Ö Ö > ω Ω ⊁ > П Ö z G L Ħ Ω, `≥ × Ü > Ō 3 Ø, H > Z ₽ Ø C E G щ ĸ K > Д H Œ, × ч ß ⋈ S Ę × S O × S **≯**4 回 \vdash Ö C S а ß > > > æ Ö L Д 回 Ø × Ы 4 ß S O Д G H Z Ø > H ⊱ E Ω z × 271 H E 316 W L 181 G L 226 T H X S > 3 136 46 E ΗШ

FIG. 78

180 S 45 R Ü Ø Д H ø ы Ā Ŋ X H Õ [14 Ç × Õ Ø Н × \bowtie Ŋ 闰 ≥ Д П 217 C Ø Õ Ø ĸ П ഥ Ŋ \mathcal{O} S А А ರ Н Ŋ Ŋ Õ α Ŋ \vdash Д 江 z \triangleright E Д Ħ ഥ П ᄀ ഥ ಭ 165 s v 210 K S 120 I E 30 30 75 T ಭ 压 띠 ⊣ \triangleright Ø Д \triangleright Õ × ₽ Ŋ Ŋ Д \mathcal{O} \mathcal{O} Z Ŋ \boxminus Ŋ ℧ \Box Ŋ Н $\boldsymbol{\omega}$ Ø Ŋ ᄓ $\boldsymbol{\wp}$ H Ŋ \triangleright õ \geq r Õ \vdash ц 斘 Ŋ α ď Н П E ᇤ ĸ z \gt Ö 吆 Д > 团 \triangleright 闰 Ŋ Д \triangleright ¥ Ö Ŋ M 195 Y A \triangleright Ø 105 T K 150 Q W 25 60 Ö \triangleright ᆈ H ß \succ Ø ĸ X Ŋ 吆 Ö Ą Η \succ Д ഥ 闰 X Ŋ Ŋ Ħ ρź [1] Õ ø ρ_4 Ŋ \vdash ß А × Ø Ø Z × Н ᆸ \succ Z വ \Box Д Þ 口 П ß × O ᆸ H 136 V C 耳 Д õ 91 C

FIG. 8A

ď2 Γ	90 D	135 K	180 G	225 T	270 H	315 W	360 M	405 S	
ರ	ഥ	Ω	ß	×	Ω	А	压		49 R
X	Æ	Ø	മ	Ω	\triangleright	õ	ഥ	О	₽ ₽
೮	ద	വ	ŏ	ບ	А	Ħ	ద	Ŋ	Д
ρι	H	Ø	H	α	\triangleright	ᆸ	ഗ	Д	Ø
A	മ	H	\triangleright	\bowtie	\triangleright	Λ	വ	디	ц
Õ	×	വ	Ø	വ	\triangleright	드	വ	\triangleright	Ŋ
젅	×	[** 1	ρı	H	υ	니	ᆔ	വ	H
\triangleright	Õ	⊳	ഥ	\triangleright	E	\triangleright	E	വ	ഗ
M	ᆸ	ß	₽	×	\triangleright	α	⊱	₽	X
А	⊱	ᅀ	Ħ	×	Þì	Λ	\triangleright	₽	Ø
Ħ	H	ტ	Λ	Q	ਸ	\triangleright	Ø	×	H
E⊣	E	×	හ	\wedge	Ħ	껖	വ	\bowtie	\bowtie
\succ	Z	H	α	X	ద	×	闰	Ħ	Ħ
3.0 FI D	75 S K	120 A S	165 L T	210 N T	255 I S	300 S.T	345 P R	390 E N	135 H N
·, [±,	E4	ຽ	7	Ω (γ	Z Z	(*)	C)	, С	7 T
₽	А	W	೮	വ	ıП	⋈	ල	Ø	Ą
ĒΞ	\triangleright	\triangleright	മ	M	Ħ	Õ	×	ტ	闰
Ö	വ	Ħ	N	Ħ	А	团	Æ	Z	田
ഗ	ᆸ	\triangleright	M	Z	×	Œ	×	Ŋ	M
Ø	₽	니	Ω	\triangleright	ρι	껖	Ø	Ħ	\triangleright
Ø	ഥ	₽	\triangleright	Ħ	×	Ωų	Н	M	Ω
\mathcal{O}	ద	හ	H	ບ	വ	×	₽	闰	υ
Ø	හ	Q	\triangleright	Н	Д	₽	×	\triangleright	Ø
Ţ	×	വ	Δı	\succ	臼	\bowtie	压	ø	[II.
区	ഥ	M	臼	E⊣	Ľ	ď	\vdash	\mapsto	\triangleright
\Box	먾	×	ហ	Q	Œι	Z	ρ_{4}	О	N
മ	Õ	О	ľΉ	₽	\triangleright	耳	Ø	∞	ტ
\mathcal{O}	Ħ	ᅜ	_ >	ហ្	ر 20	.s >	ص 0	ان 1	Q
ე ე	¥ V	105 Y	150 D	195 L (240 P	285 E	33 L	37. Y	420 Q
$\mathbf{p}_{\mathbf{i}}$		Ĺτι	ĸ	Ø	ෆ	\triangleright	A	ſΞĄ	M
ŏ	Ø	W	\triangleright	W	ෆ	ტ	×	ტ	ద
\triangleright	හ	വ	口	Ω	니	О	Z	×	Ø
Ţ	හ	ტ	υ	Д	ᆸ	Λ	Ø	\wedge	M
ტ	Ø	H	හ	\triangleright	[12]	⊱	\triangleright	H	О
ರ	Z	N	口	H	വ	W	X	υ	\triangleright
ರ	P4	ద	A	\triangleright	A	Z	Ŋ	Ħ	H
Ŋ	Z	A	Ø	\triangleright	Д	ĪŦ	×	니	니
[±]	\triangleright	Ü	Ħ	Ω	Ŋ	X	⊱	മ	×
Λ	А	≻	ט	Ω	Рч	\triangleright	드	\triangleright	Ø
ᄀ	₹ .	≯	ტ	1	Д	闰	M	Ø	Þ
O,	>	>	Ω	Ω.	ບ	<u>с</u> ,	O	Z	Ц
∠ E	46 E W	91 T A	136 S T	181 L Y	226 H T	271 E D	316 L N	361 T K	406 F F

FIG. 8E

CHARACTERISTIC	420 mg	1050 mg	ALL
n	61	62	123
Median Age (Years)	59 (35-78)	56.5 (35-83)	57 (35-83)
ECOG PS 0 / 1 / 2-3	28 / 31 / 2	37 / 25 / 0	65 / 56 / 2
Measurable Disease	53 (87%)	59 (95%)	112 (91%)
Originally Platinum-Resistant	33 (54%)	33/61 (54%)	66 (54%)
Originally Platinum-Sensitive	28 (46%)	28/61 (46%)	56 (46%)
Median # Chemo Regimens	5.0 (1-10)	4.5 (0-13)	5.0 (0-13)
Median Duration of Ovarian Cancer (Months)	39.9 (3.3-146.7)	35.5 (10.5-443.7)	38.6 (3.3-443.7)

FIG. 9

ORGAN SYSTEM	420 mg (n=61)	1050 mg (n=62)	ALL (n=123)
- Any Adverse Events -	35 (57.4%)	33 (53.2%)	68 (55.3%)
Gastrointestinal - Diarrhea - Intestinal Obstruction	27 (44.3%) -7 (11.5%) -10 (16.4%)	16 (25.8%) -8 (12.9%) -7 (11.3%)	43 (35%) -15 (12.2%) -17 (13.8%)
Respiratory	8 (13.1%)	9 (14.5%)	17 (13.8%)
Fatigue, Asthenia	4 (6.6%)	2 (3.2%)	6 (4.9%)
Dehydration	4 (6.6%)	2 (3.2%)	6 (4.9%)
Cardiac	3 (4.9%)	2 (3.2%)	5 (4.1%)
Anorexia	2 (3.3%)	2 (3.2%)	4 (3.3%)
Infections	3 (4.9%)	0	3 (2.4%)

PREFERRED TERM	420 mg (n=61)	1050 mg (n=62)	ALL (n=123)
- Any Adverse Events -	26 (42.6%)	18 (29.0%)	44 (35.8%)
Gastrointestinal - Diarrhea - Intestinal Obstruction	15 (24.6%) -2 (3.3%) -10 (16.4%)	8 (12.9%) -0 (0.0%) -8 (12.9%)	23 (18.7%) -2 (1.6%) -18 (14.6%)
Respiratory	4 (6.6%)	3 (4.8%)	7 (5.7%)
Cardiac	2 (3.3%)	2 (3.2%)	4 (3.3%)
Renal and Urinary	1 (1.6%)	3 (4.8%)	4 (3.3%)
Dehydration	1 (1.6%)	2 (3.2%)	3 (2.4%)
Infections	3 (4.9%)	0 (0.0%)	3 (2.4%)

FIG. 11

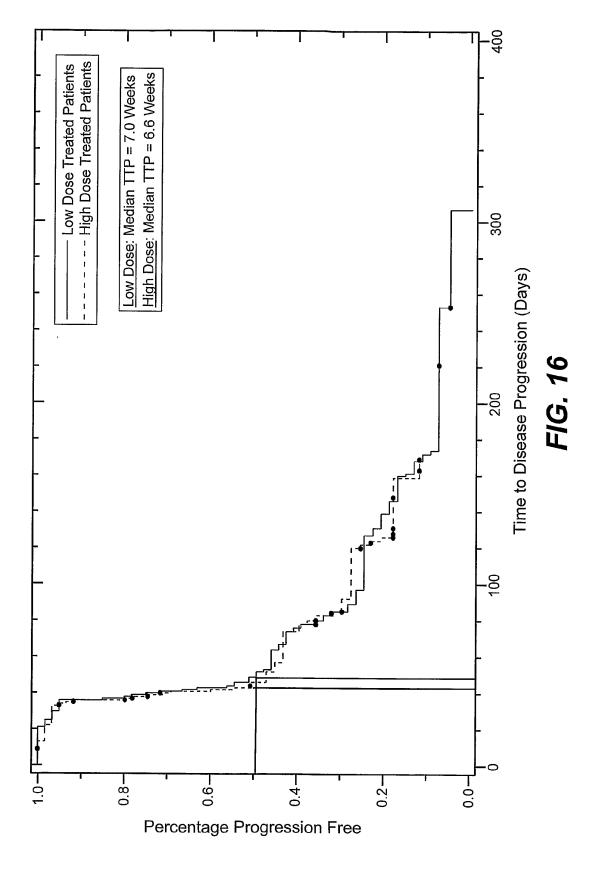
PREFERRED TERM	420 mg (n=61)	1050 mg (n=62)	ALL (n=123)
- Any Adverse Events -	4 (6.6%)	2 (3.2%)	6 (4.9%)
Diarrhea	1 (1.6%)	0	1 (0.8%)
Abdominal Pain	1 (1.6%)	0	1 (0.8%)
LVEF Decrease	0	1 (1.6%)	1 (0.8%)
Atrial Fibrillation	1 (1.6%)	0	1 (0.8%)
Pericardial Effusion	0	1 (1.6%)	1 (0.8%)
Pneumonia	1 (1.6%)	0	1 (0.8%)

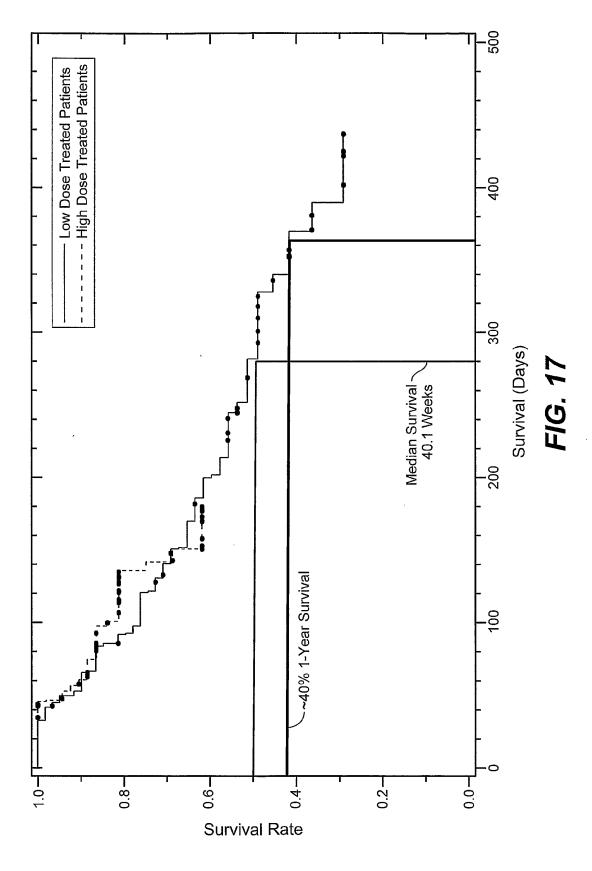
FIG. 12

EVENT	420 mg (n=61)	1050 mg (n=62)	ALL (n=123)
Diarrhea (All Grade 1-3) - Grade 3	35 (57.4%) -7 (11.5%)	40 (64.5%) -8 (12.9%)	75 (61%) -15 (12.2%)
Rash & Skin Disorders (All Grade 1-2)	26 (42.6%)	31 (50%)	57 (46.3%)
LVEF Drop ≥ 10% Points (None Confirmed by Central Read Thus Far)	10/49 (20.4%)	13/50 (26.0%)	23/99 (23%)
LVEF Drop to < 50% (None Confirmed by Central Read Thus Far)	1/50 (2%)	4/50 (8%)	5/100 (5%)

PREFERRED TERM	420 mg (n=61)	1050 mg (n=62)	ALL (n=123)
- Any Adverse Events -	13 (21.3%)	15 (24.2%)	28 (22.8%)
Ejection Fraction Decrease (>10% Points from Baseline)	10 (16.4%)	14 (22.6%)	24 (19.5%)
Ventricular Dysfunction	1 (1.6%)	0	1 (0.8%)
Atrial Fibrillation	1 (1.6%)	0	1 (0.8%)
Endocarditis Noninfective	1 (1.6%)	0	1 (0.8%)
Pericardial Effusion	0	1 (1.6%)	1 (0.8%)
Cardiac Tamponade	0	1 (1.6%)	1 (0.8%)

FIG. 14

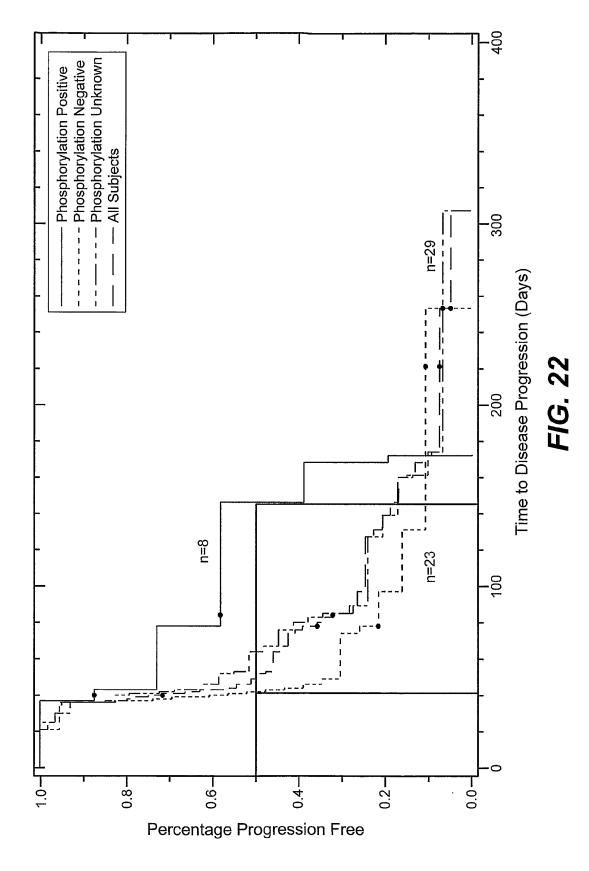

ENDPOINT	420 mg	1050 mg	TOTAL
n	60	62	122
PR	2 (3.3%)	3 (4.8%)	5 (4.1%)
SD	23 (38.3%)	24 (38.7%)	47 (38.5%)
PD	27 (45.0%)	29 (46.8%)	56 (45.9%)
Response UTD	2 (3.3%)	2 (3.2%)	4 (3.3%)
Median TTP (Weeks)	7.0	6.6	6.6
Median Survival (Weeks)	40.1		40.1


FIG. 15

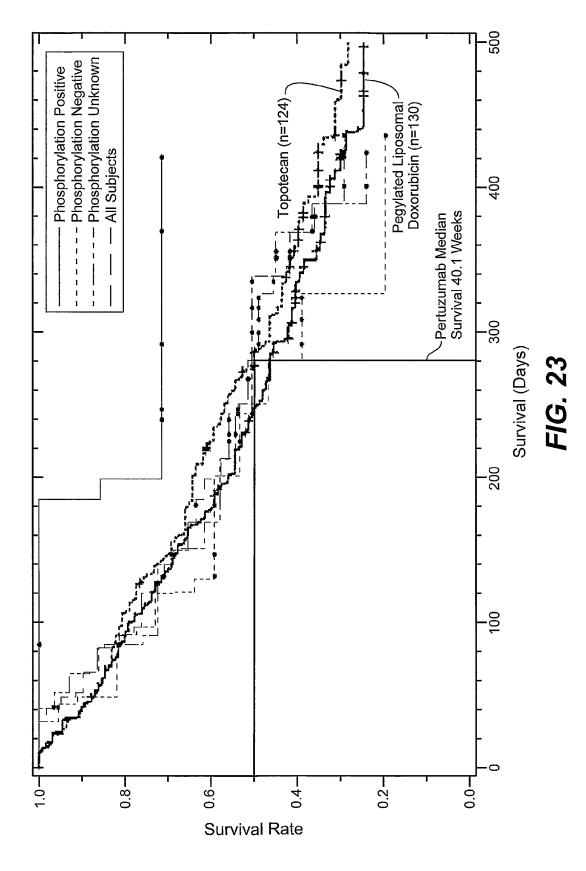
CA-125 RESPONSE	420 mg	1050 mg	ALL
>50% Reduction	7	5	12
	(1 PR, 4 SD , 2 PD)	(1 PR, 3 SD , 1 PD)	(2 PR, 7 SD , 3 PD)
>25% but <50%	3	5	8
Reduction in CA-125	(3 SD)	(3 SD , 1 PD, 1 UE)	(6 SD , 1 PD, 1 UE)
<25% Reduction	6	10	16
	(1 PR, 4 SD , 1 PD)	(1 PR, 8 SD , 1 PD)	(2 PR, 12 SD , 2 PD)
No Response	37	36	73
	(12 SD, 20 PD,	(1 PR, 1 0 SD ,	(1 PR, 22 SD ,
	1 UE, 4 None)	24 PD, 1 None)	44 PD, 1 UE, 5 None)
Total	53	56	109

Patients Treated	61
Evaluable for Efficacy	54
	ELISA (>30% Tumor)
pHER2 Data (n=65 Biopsies)	34
pHER2+	10
% pHER2+	29%
Evaluable pts and pHER2 Data	31
pHER2+	8
% pHER2+	26%

FIG. 19



	420 mg pHER2+	420 mg pHER2-	420 mg pHER2 ?
N	8	23	29
PR	1 (12.5%)	0 (0.0%)	1 (3.4%)
SD	5 (62.5%)	5 (21.7%)	13 (44.8%)
PD	2 (25.0%)	13 (56.5%)	12 (41.4%)
Response UTD	0 (0.0%)	2 (8.7%)	0 (0.0%)
Median TTP (Weeks)	20.9	6.0	9.1
Median Survival (Weeks)	_	35.9	48.4


FIG. 20

Best Response	Reduction in BSLD	Reduction in CA-125	Weeks on Treatment	pHER2 ELISA
PR	68%	54%	25	+
PR	78%	22%	23	NA
SD		33%	36	NA
SD		57%	20	NA
SD		15%	19	-
SD		60%	32	-
SD		None	21	+
SD		21%	44+	NA
SD		None	23	NA
SD		62%	24	+
SD		5%	36	-
SD		56%	18	NA
SD		None	25	NA
Mixed	30%	None	13	NA

FIG. 21

17/18

Sequence Listing

<110> GENENTECH, INC. DERYNCK, MIKA K. KELSEY, STEPHEN M.

<120> EXTENDING TIME TO DISEASE PROGRESSION OR SURVIVAL IN CANCER PATIENTS

<130> P2206R1'

<150> US 60/655,277 <151> 2005-02-23

<160> 22

<210> 1

<211> 107

<212> PRT

<213> Mus musculus

<400> 1

Asp Thr Val Met Thr Gln Ser His Lys Ile Met Ser Thr Ser Val

Gly Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Ser 20 25 30

Ile Gly Val Ala Trp Tyr Gln Gln Arg Pro Gly Gln Ser Pro Lys
40
45

Leu Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Thr Gly Val Pro Asp 50 55

Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile 65 70 75

Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln

Tyr Tyr Ile Tyr Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu 95 100

Ile Lys

<210> 2

<211> 119

<212> PRT <213> Mus musculus

<400> 2

<400> 2
Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly
10
15

Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Phe Thr Phe Thr 20 25 30

Asp Tyr Thr Met Asp Trp Val Lys Gln Ser His Gly Lys Ser Leu 35 40 45

Glu Trp Ile Gly Asp Val Asn Pro Asn Ser Gly Gly Ser Ile Tyr
50 55

Asn Gln Arg Phe Lys Gly Lys Ala Ser Leu Thr Val Asp Arg Ser 70 75

Ser Arg Ile Val Tyr Met Glu Leu Arg Ser Leu Thr Phe Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asn Leu Gly Pro Ser Phe Tyr 95 100 Pro Ser Phe Tyr 105Phe Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser <210> 3 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> sequence is synthesized Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val 1 5 10 Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Val Ser 20 25 30 Ile Gly Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Thr Gly Val Pro Ser
50 55 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile 65 70 75 Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Tyr Ile Tyr Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu 95 100 105 Ile Lys <210> 4 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> sequence is synthesized <400> 4 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly
1 10 15 Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Thr 20 25Asp Tyr Thr Met Asp Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 35 40 45 Glu Trp Val Ala Asp Val Asn Pro Asn Ser Gly Gly Ser Ile Tyr 50 55 60

2/14

Asn Gln Arg Phe Lys Gly Arg Phe Thr Leu Ser Val Asp Arg Ser 75

Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp 80 85 90

Thr Ala Val Tyr Tyr Cys Ala Arg Asn Leu Gly Pro Ser Phe Tyr 95 100 105 Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 110 115<210> 5 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> sequence is synthesized <400> 5 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys 35 40 45 Leu Leu Ile Tyr Ala Ala Ser Ser Leu Glu Ser Gly Val Pro Ser 50 55 60 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
65 70 75 Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Leu Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys <210> 6 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> sequence is synthesized <400> 6 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser 20 25 30 Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 35 40 45Glu Trp Val Ala Val Ile Ser Gly Asp Gly Gly Ser Thr Tyr Tyr
50 55 60

Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser
65 70 75

Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp 80 85 90

Thr Ala Val Tyr Tyr Cys Ala Arg Gly Arg Val Gly Tyr Ser Leu

3/14

95 100 105 Tyr Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> 7 <211> 10 <212> PRT <213> Artificial sequence <223> Sequence is synthesized. <220> <221> Xaa <222> 10 <223> Xaa is preferrably D or S Gly Phe Thr Phe Thr Asp Tyr Thr Met Xaa 5 <210> 8 <211> 17 <212> PRT <213> Artificial sequence <223> Sequence is synthesized. <400> 8 Asp Val Asn Pro Asn Ser Gly Gly Ser Ile Tyr Asn Gln Arg Phe 1 5 10 15 Lys Gly <210> 9 <211> 10 <212> PRT <213> Artificial sequence <223> Sequence is synthesized. Asn Leu Gly Pro Ser Phe Tyr Phe Asp Tyr <210> 10 <211> 11 <212> PRT <213> Artificial sequence <223> Sequence is synthesized. Lys Ala Ser Gln Asp Val Ser Ile Gly Val Ala <210> 11 <211> 7 <212> PRT <213> Artificial sequence <220> <223> sequence is synthesized

```
<220>
<221> Xaa
<222> 5
<223> Xaa
           is preferably R or L
<220>
<221> Xaa
<222> 6
<223> Xaa is preferably Y or E
<220>
<221> Xaa
<222> 7
<223> Xaa is preferably T or S
<400> 11
Ser Ala Ser Tyr Xaa Xaa Xaa
<210> 12
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Sequence is synthesized.
<400> 12
Gln Gln Tyr Tyr Ile Tyr Pro Tyr Thr
5
<210> 13
<211> 214
<212> PRT
<213> Artificial sequence
<223> Sequence is synthesized.
<400> 13
 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val
 Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Val Ser
20 25 30
 Ile Gly Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys
40
45
 Leu Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Thr Gly Val Pro Ser
50 55 60
 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
65 70 75
 Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
 Tyr Tyr Ile Tyr Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu
 Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro
 Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
```

```
Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val
140 145
Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu
155 160 165
Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr
170 175 180
Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu
185 190 195
Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn
200 205 210
Arg Gly Glu Cys
```

<210> 14

<211> 448

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly 1 5 10 Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Thr 20 25 30 Asp Tyr Thr Met Asp Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 35 40 Glu Trp Val Ala Asp Val Asn Pro Asn Ser Gly Gly Ser Ile Tyr 50 55 60 Asn Gln Arg Phe Lys Gly Arg Phe Thr Leu Ser Val Asp Arg Ser 70 75 Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp 80 85 90 Thr Ala Val Tyr Tyr Cys Ala Arg Asn Leu Gly Pro Ser Phe Tyr 95 100 105 Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala $110 \,\,$ $115 \,\,$ Thr Val Ser Ser Ala $120 \,\,$ Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 125 130 135 Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys 140 145 Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu 155 160 165 Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly
170 175 Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser 200 205 205 Page 6

```
Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr
215 220 225
 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
245 250 255
 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu
275 280 285
 Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser
290 295 300
 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
305 310
 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu
 Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
335 340 345
 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
 Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
380 385 390
 Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
                                        400
 Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
410 415 420
 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
<210> 15
<212> PRT
<213> Artificial sequence
```

<211> 214

<220>

<223> Sequence is synthesized.

<400> 15 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val 1 5 10 Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn 20 25 30 Thr Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys
40
45 Leu Leu Ile Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser

 Arg
 Phe
 Ser
 Gly
 Ser
 Arg
 Ser
 Gly
 Thr
 Asp
 Phe
 Thr
 Leu
 Thr
 Ile
 775

 Ser
 Ser
 Leu
 Gln
 Pro
 Arg
 Phe
 Ala
 Thr
 Tyr
 Tyr
 Cys
 Gln
 Gln
 90

 His
 Tyr
 Thr
 Thr
 Pro
 Pro
 Thr
 Phe
 Gly
 Gln
 Gly
 Thr
 Lys
 Val
 Gly
 Inr
 Lys
 Val
 Inr
 Pro
 Pro
 Inr
 Pro
 Inr
 Inr

<210> 16

<211> 449

<212> PRT

<213> Artificial sequence

<220>

<223> sequence is synthesized

<400> 16
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly
15
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys
30
Asp Thr Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
45
Glu Trp Val Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr
60
Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser
75
Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
90
Thr Ala Val Tyr Tyr Gys Ser Arg Trp Gly Gly Asp Gly Phe Tyr
105
Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
120

Δ	·la	Ser	Thr	Lys	Gly 125	Pro	Ser	Val	Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135
L	.ys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala	Leu 145	Gly	Cys	Leu	۷al	Lys 150
Δ	sp	Tyr	Phe	Pro	Glu 155	Pro	٧a٦	Thr	val	ser 160	Trp	Asn	Ser	GТу	А]а 165
L	.eu	Thr	Ser	GТу	Va 170	His	Thr	Phe	Pro	А]а 175	Val	Leu	Gln	Ser	Ser 180
G	ìЈу	Leu	Tyr	Ser	Leu 185	ser	Ser	٧a٦	٧a٦	Thr 190	۷al	Pro	ser	ser	Ser 195
L	.eu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	va1 205	Asn	His	Lys	Pro	Ser 210
Δ	sn	Thr	Lys	۷al	Asp 215	Lys	Lys	Val	Glu	Pro 220	Lys	Ser	Cys	Asp	Lys 225
T	hr	ніѕ	Thr	Cys	Pro 230	Pro	Cys	Pro	ΑΊа	Pro 235	Glu	Leu	Leu	GТу	Gly 240
F	ro	Ser	٧a٦	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255
1	Те	Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Va1 265	val	val.	Asp	val	Ser 270
F	lis	Glu	Asp	Pro	Glu 275	val	Lys	Phe	Asn	Trp 280	Tyr	val	Asp	Gly	Va1 285
G	ilu	val	His	Asn	Ala 290	Lys	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	Asn 300
S	er	Thr	Tyr	Arg	va1 305	٧a٦	Ser	val	Leu	Thr 310	Val	Leu	His	Gln	Asp 315
T	rp	Leu	Asn	Gly	Lys 320	Glu	Tyr	Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Ala 330
L	.eu	Pro	Ala	Pro	11e 335	Glu	Lys	Thr	Ile	Ser 340	Lys	Ala	Lys	Gly	G1n 345
F	ro	Arg	Glu	Pro	Gln 350	٧a٦	Tyr	Thr	Leu	Pro 355	Pro	Ser	Arg	Glu	G]u 360
M	let	Thr	Lys	Asn	G]n 365	val	ser	Leu	Thr	Cys 370	Leu	Val	Lys	Gly	Phe 375
				•	11e 380				-	385			-		390
G	ilu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Va1 400	Leu	Asp	Ser	Asp	G]y 405
S	er	Phe	Phe	Leu	Tyr 410	Ser	Lys	Leu	Thr	Val 415	Asp	Lys	Ser	Arg	Trp 420
G	ilη	Gln	Gly	Asn	Va1 425	Phe	Ser	Cys	Ser	Va1 430	Met	His	Glu	Ala	Leu 435
Н	lis	Asn	ніѕ	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Pro	GТу	
רכ	110-	. 17													

<210> 17 <211> 217

```
<212> PRT
<213> Artificial sequence
<223> Sequence is synthesized.
<400> 17
 Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser
 Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln 20 25 30
 Asp Val Ser Ile Gly Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys
35 40 45
 Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Thr Gly 50 60
 Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
 Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr
80 85 90
 Cys Gln Gln Tyr Tyr Ile Tyr Pro Tyr Thr Phe Gly Gln Gly Thr
95 100
 Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile
110 115
 Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val
125 130 135
 Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln
140 145
 Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser
155 160 165
 Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
170 175
 Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
185 190 195
 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr 200 205
 Ser Phe Asn Arg Gly Glu Cys
215
<210> 18
<211> 449
<212> PRT
<213> Artificial sequence
<223> Sequence is synthesized.
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Thr 20 30
Asp Tyr Thr Met Asp Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
```

35 40 45 Glu Trp Val Ala Asp Val Asn Pro Asn Ser Gly Gly Ser Ile Tyr
50 55 Asn Gln Arg Phe Lys Gly Arg Phe Thr Leu Ser Val Asp Arg Ser 65 70 75 Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp 80 85 90 Thr Ala Val Tyr Tyr Cys Ala Arg Asn Leu Gly Pro Ser Phe Tyr 95 100 105 Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala 110 115 Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 125 130 135 Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 140 145 Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu 155 160 165 Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly 170 175 Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu 185 190 195 Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn $200~\rm{205}$ Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr 215 220 225 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 260 265 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 275 280 285 Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 290 295 300 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 305 310 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 320 325 330 Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 335 340 345 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met 350 355 Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe

11/14

```
Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
 Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
                                        400
                  395
 Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
<210> 19
<211> 195
<212> PRT
<213> Homo sapiens
<400> 19
Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala
1 5 10
 Ser Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly
20 25 30
 Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr Leu Pro Thr
35 40 45
 Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val Gln Gly
 Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu Gln
65 70 75
Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr
80 85 90
 Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr
 Pro Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu
Arg Ser Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg
125 130 135
Asn Pro Gln Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile
140 145
 Phe His Lys Asn Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn
                  155
Arg Ser Arg Ala Cys His Pro Cys Ser Pro Met Cys Lys Gly Ser
170 175 180
Arg Cys Trp Glu Ser Ser Glu Asp Cys Gln Ser Leu Thr
185 190
<210> 20
<211> 124
<212> PRT
<213> Homo sapiens
<400> 20
Thr Val Cys Ala Gly Gly Cys Ala Arg Cys Lys Gly Pro Leu Pro
1 10 15
```

```
Thr Asp Cys Cys His Glu Gln Cys Ala Ala Gly Cys Thr Gly Pro
Lys His Ser Asp Cys Leu Ala Cys Leu His Phe Asn His Ser Gly 45
Ile Cys Glu Leu His Cys Pro Ala Leu Val Thr Tyr Asn Thr Asp
50
55
Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg Tyr Thr Phe Gly 65 70 75
Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu Ser Thr Asp
80 85
Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln Glu Val
Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys Pro
110 115 120
Cys Ala Arg Val
```

<210> 21 <211> 169

<212> PRT

<213> Homo sapiens

<400> 21

Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu Val Arg Ala Val 1 5 10

Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys Lys Ile Phe 20 25 30

Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp Pro Ala 35 40 45

Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe Glu
50 55 60

Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro
65 70 75

Asp Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile 80 85 90

Arg Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln
95 100

Gly Leu Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu 110 115

Gly Ser Gly Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe 125 130 135

Val His Thr Val Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln

Ala Leu Leu His Thr Ala Asn Arg Pro Glu Asp Glu Cys Val Gly 160

Glu Gly Leu Ala

<210> 22