A synthetic, codon-optimized Hantaan virus (HTNV) full-length M gene open reading frame that consists of a unique nucleotide sequence encoding HTNV proteins. This synthetic gene was cloned into a plasmid to form the first optimized HTNV full-length M gene that elicits neutralizing antibodies in animals when delivered in combination with a similarly optimized Puumala virus (PUUV) DNA vaccine. The invention obviates the need for an extraneous gene sequence that was previously required for expression of the non-optimized HTNV gene. The synthetic gene is engineered into a molecular vaccine system to prevent hemorrhagic fever with renal syndrome (HFRS) caused by infection with HTNV, SEOV, or DOBV. Alternatively, it can be combined with the optimized PUUV DNA vaccine to protect against HFRS caused by any hantavirus.
Open label, single center
Adults age 18-50
N = 28*

Subjects in Group 1a
HTNV Vaccine
n = 3
(ID 0001, 0003*, 0005, 0009)

Subjects in Group 1b
HTNV Vaccine
n = 6
(ID 0011, 0013, 0017, 0021, 0025, 0029)

Subjects in Group 2a
PUUV Vaccine
n = 3
(ID 0002, 0004, 0006)

Subjects in Group 2b
PUUV Vaccine
n = 6
(ID 0012, 0014, 0016, 0022, 0026, 0028)

Subjects in Group 3a
HTNV-PUUV Vaccines
n = 3
(ID 0007, 0008, 0010)

Subjects in Group 3b
HTNV-PUUV Vaccines
n = 6
(ID 0015, 0018, 0019, 0020, 0024, 0027)

Subjects Completing
HTNV-PUUV Vaccine Study
N = 27

FIG. 1
FIG. 3
FIG. 5

Volunteer (antibody response)
- □ 16 (PUUV)
- ■ 16 (HTNV)
- ◊ 22 (PUUV)
- ◈ 22 (HTNV)

PUUV Vaccine

Day

0 28 56 84 112 140 168 196

PRNT50

10 20 40 80 160 320 640 1280 2560 5120 10240
FIG. 6

Plasmid Map:

1000342-HTN-M_CO_pWRG7077_B913
7639 bp

pUC ori

HindIII(561)
PvuI(685)
Kan(R)
XhoI(1081)

NdeI(1600)

CMV promoter wt

SacI(1935)

SacI(2661)

AflII(2698)

Scal(2813)

HindIII(2904)

NotI(2911)
FIG. 7A FIG. 7B
FIG. 7C

- HTNV-M optimized without extraneous nucleotides
- HTNV-M optimized with extraneous nucleotides

Percent Positive Cells vs. ng DNA (log scale)
FIG. 7D
FIG. 8B
FIG. 9
FIG. 10
FIG. 11A
p-value < 0.0001

FIG. 11B
FIG. 12A

Cohort 1: HTNV vaccine
7 of 11 seroconverted to HTNV

FIG. 12B

Cohort 2: PUUV vaccine
6 of 8 seroconverted to PUUV
Cohort 3: Combination HTNV/PUUV vaccines - 7 of 9 seroconverted
(3 to HTNV, 7 to PUUV, 3 to both)

FIG. 12C

Cohort 3: Combination HTNV/PUUV vaccines - 7 of 9 seroconverted
(3 to HTNV, 7 to PUUV, 3 to both)

FIG. 12D
<table>
<thead>
<tr>
<th>Group #</th>
<th># of Subjects</th>
<th>Vaccine</th>
<th>Dose (mg)</th>
<th>Volume (ml)</th>
<th>Schedule (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>HTNV/PUUV</td>
<td>2.0</td>
<td>1.0</td>
<td>0, 28, 56 (180)</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>HTNV/PUUV</td>
<td>2.0</td>
<td>1.0</td>
<td>0, 56 (180)</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>HTNV/PUUV</td>
<td>1.0</td>
<td>1.0</td>
<td>0, 28, 56 (180)</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>HTNV/PUUV</td>
<td>1.0</td>
<td>1.0</td>
<td>0, 56 (180)</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>
FIG. 15A
FIG. 15D
FIG. 15E
GENE OPTIMIZED HANTAAN VIRUS M SEGMENT DNA VACCINE FOR HEMORRHAGIC FEVER WITH RENAL SYNDROME

This application is a continuation of PCT/US13/00098 filed Mar. 28, 2013.

GOVERNMENT INTEREST

The invention described herein may be manufactured, used and licensed by or for the U.S. Government.

BACKGROUND OF THE INVENTION

The invention relates to a vaccine for hemorrhagic fever with renal syndrome caused by hantavirus infections.

The Hantavirus genus of the family Bunyaviridae includes a number of rodent-borne viruses that can cause hemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). At least four hantaviruses cause HFRS: Hantaan (HTNV), Seoul (SEOV), Dobrava (DOBV), and Puumala (PUUV) viruses. HFRS presents with sudden fever, chills, nausea, headache, and backache. Early symptoms of severe HFRS often also include facial flushing, conjunctivitis, and petechial rash. Death can occur due to vascular leakage leading to low blood pressure, acute shock, and renal failure. There are no FDA-licensed vaccines for HFRS, but an inactivated, rodent-brain-derived HTNV vaccine is commercially available in Korea, and several inactivated cell culture-derived HTNV and SEOV vaccines have been developed in China [1,2].

Despite the use of these vaccines for more than a decade, HFRS remains a significant public health threat in Asia with thousands of hospitalized cases reported each year in China [3-5]. Several hundred to thousands of HFRS cases due to PUUV or DOBV infections are reported each year in Europe, Scandinavia, and Russia, with the greatest incidences observed in Finland (25,000 cases from 1979 to 2006) and western Russia (~89,000 cases from 1996 [6]). Inactivated vaccines have not been developed in Europe, in part because PUUV is difficult to grow in cell culture to high enough titers for scale-up, and rodent brain-derived vaccines are not considered desirable. Moreover, because DOBV and PUUV both cause HFRS in the same geographic region, and because there is little or no cross-protective immunity between PUUV and the other HFRS-causing hantaviruses [7,8], a comprehensive vaccine for European HFRS will need to elicit protective immunity to both viruses.

To date, two recombinant DNA vaccines for HFRS have been tested in early clinical studies. The first tested was a vaccinia virus (VACV)-vectored vaccine, developed and evaluated in Phases 1 and 2 clinical studies by USAAMRIID [9,10]. The vaccine expressed two of the three gene segments of HTNV: the M segment, which encodes the envelope glycoproteins (Gn and Gc), and the S segment, which encodes the nucleocapsid protein (N). In general, animal studies have shown that neutralizing antibodies to Gn and Gc are the best measurable correlate of protective immunity [8, 11-13]. This earlier study found that the recombinant VACV vaccine elicited neutralizing antibodies against HTNV in VACV-naive individuals, but was poorly immunogenic in VACV-immune volunteers [9]. Consequently, the vaccine developers changed strategies to a DNA vaccine platform, which was not adversely affected by preexisting vector immunity and which offered additional flexibility for producing combination vaccines. In addition to flexibility, DNA is an attractive vaccine platform in terms of ease of engineering and manufacturing as well as safety.

USAAMRIID investigators have so far conducted two Phase I clinical studies with DNA vaccines for HERS using DNA derived from HTNV and from PUUV M segments. The two-part DNA vaccine strategy was used because vaccination with the HTNV M gene-based DNA vaccine protects animals from infection with HTNV, DOBV and SEOV, but not from PUUV infection. PUUV M gene-based DNA vaccine protects against infection with PUUV [7-8].

The first two clinical studies of the HTNV and PUUV DNA vaccines were performed using a PUUV M segment vaccine that was genetically optimized (US 2010/0323024A1, incorporated herein by reference in its entirety). The HTNV component, however, was not optimized, because unlike the PUUV DNA, which required optimization for gene expression, the HTNV DNA construct showed strong gene expression without optimization. It could not be anticipated, therefore, that a similar optimization was either necessary or would offer a benefit over the non-optimized DNA for immunogenicity. Furthermore, an extraeaneous gene sequence was required for the expression of the non-optimized HTNV gene, U.S. Pat. No. 7,217,812, incorporated by reference, herein, in its entirety.

In the first clinical study of the DNA vaccines, HTNV and PUUV M segments were delivered by particle mediated epidemial delivery (PMED). The advantage of intraepidermal delivery of the vaccine is twofold. The DNA is easily taken up by cells at the site of delivery or by cells in the draining lymph nodes where the antigen encoded by those cells is reprocessed by specialized antigen-presenting cells to elicit an immune response, and this approach uses 1000-fold less DNA than needle administration.

The vaccines were given as separate administrations because of results from animal studies, which showed that if the HTNV vaccine is mixed with the PUUV vaccine, then only neutralizing antibodies to PUUV are elicited [25]. This finding was not expected, because it was possible to obtain strong responses to the individual vaccines or to both vaccines when they were delivered simultaneously, but as separate inoculations, to a single animal. In addition, it was not possible to overcome this interference by adjusting the ratio of HTNV: PUUV DNA even as high as 10:1 (FIG. 8B). Other attempts to produce modified constructs that were chimeras of both the HTNV and PUUV genes also failed to elicit antibody responses to both HTNV and PUUV (unpublished information). The outcome of the interference study is summarized in Example 1.

In a second Phase I clinical study of the same two DNA vaccines, the DNAs were given separately or as a mixture by intramuscular electroporation (IM-EP). With this delivery method, the vaccines are injected into muscles and a rapid electrical pulse is applied to facilitate uptake of the DNA into the muscle cells. Because a larger number of host cells receive the vaccines than when they are delivered by PMED, it was anticipated that there might be some response to both vaccines. As expected, however, interference was still a problem in individuals receiving the mixed vaccines, with better responses obtained to the PUUV vaccine than to the HTNV vaccine as shown in Example 2.
Delivery of the vaccine can also be by nanoparticle encapsulation of the vaccine via various methods, including aerosol delivery of the nanoparticles.

The present invention provides a combination vaccine to protect against HFRS. The invention consists of an optimized HTNV M segment vaccine, which solves the problem of interference in the bivalent vaccine. Unlike the non-optimized HTNV vaccine used in previous studies, the vaccine of the invention can be mixed with a similarly optimized PUUV-based vaccine to elicit neutralizing antibodies against both viruses. The invention provides a safe, economical, flexible and effective vaccine for the protection of humans from HFRS caused by infection with HTNV, SLEV, PUUV and/or DOBV.

SUMMARY OF THE INVENTION

The invention is a synthetic, optimized HTNV M segment DNA vaccine that is superior to the earlier non-optimized HTNV DNA vaccine and can be used by itself to prevent HFRS caused by three hantaviruses: (SLEV, SEOV or DOBV) or in combination with the optimized PUUV DNA vaccine to protect from all four hantaviruses causing hantavirus. The synthetic optimized HTNV DNA does not require extraneous, superfluous nucleotides for expression and immunogenicity and can be delivered as a mixture with other hantavirus vaccines without reduced immunogenicity or protective efficacy in animal models. To improve the vaccine component, the HTNV DNA vaccine was optimized to maximize mammalian codon availability and to remove viral elements shown to compromise expression.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a flowchart showing a Phase I clinical study design wherein all vaccinations with the non-optimized HTNV DNA vaccine and the optimized PUUV DNA vaccine were administered intradermally using the ND 10 PMED device;

FIG. 2A is a graph of neutralizing antibody titers measured in serum samples collected from subjects vaccinated with the non-optimized HTNV vaccine;

FIG. 2B is a graph of neutralizing antibody titers measured in serum samples collected from subjects vaccinated with the optimized PUUV vaccine;

FIG. 3 is a graph showing neutralizing antibodies in blood samples collected on multiple days from two subjects vaccinated with either the optimized PUUV vaccine (subject 0026) or the non-optimized HTNV vaccine (subject 0029) with each symbol representing the neutralizing antibody (PRNT50) titer for subjects listed in the legend and arrows indicating vaccination days. The graph shows that the optimized PUUV vaccine induced neutralizing antibodies to PUUV (closed squares) but not to HTNV (open squares). Likewise, the non-optimized HTNV vaccine induced antibodies to HTNV (open circles), but did not cause a rise in antibodies to PUUV (closed circles) even though the subject had low pre-existing antibodies to PUUV (dashed line).

FIG. 4A is a graph showing neutralizing antibody responses to HTNV of subjects receiving separate administrations of the non-optimized HTNV DNA vaccine and the optimized PUUV vaccine with each symbol representing the neutralizing antibody (PRNT50) titer for subjects listed in the legend and arrows indicating vaccination days, showing that separate administrations of both the HTNV and PUUV DNA vaccines to a single individual can induce antibody responses to HTNV;

FIG. 4B is a graph showing neutralizing antibody responses to PUUV of subjects receiving separate administrations of the non-optimized HTNV DNA vaccine and the optimized PUUV vaccine with each symbol representing the PRNT50 titer for subjects listed in the legend and arrows indicating vaccination days, showing that separate administrations of both the HTNV and PUUV DNA vaccines to a single individual can induce antibody responses to PUUV;

FIG. 5 is a graph showing two individuals vaccinated with the optimized PUUV DNA that developed antibodies to both HTNV and PUUV;

FIG. 6 is a plasmid map of the synthetic gene HTN-M_CO, consisting of 3415 base pairs assembled from synthetic oligonucleotides and/or PCR products into a pWRG7077 plasmid;

FIG. 7A is a digital photograph showing HTNV protein (green color) produced by the optimized HTNV M segment vaccine (HTNV M) and detected by immunofluorescent antibody staining with a monoclonal antibody to HTNV;

FIG. 7B is a digital photograph showing HTNV protein (green color) produced by the non-optimized HTNV M segment vaccine (HTNV M (x)) and detected by immunofluorescent antibody staining with a monoclonal antibody to HTNV;

FIG. 7C is a graph from a flow cytometry assay showing expression of the optimized HTNV M segment DNA synthesized to also contain the extraneous nucleotides found in the non-optimized HTNV M vaccine as compared to the same DNA synthesized without the extraneous sequences;

FIG. 7D is a graph from a flow cytometry assay showing expression of the synthetic optimized HTNV M segment DNA compared to the non-optimized DNA;

FIG. 8A is a graph showing neutralizing antibodies to PUUV of hamsters vaccinated with the optimized PUUV DNA vaccine or a 1:1 mixture of the optimized PUUV vaccine and the non-optimized HTNV using two types of IM-Ep devices or one type of intradermal (ID) Ep device, showing that HTNV DNA does not interfere with PUUV DNA immunogenicity;

FIG. 8B is a graph showing neutralizing antibodies to HTNV of hamsters vaccinated with the non-optimized HTNV DNA vaccine alone, the optimized PUUV DNA vaccine alone or 1:1, 2:1 or 10:1 mixtures of the non-optimized HTNV DNA and the optimized PUUV DNA vaccines using two types of intramuscular IM-Ep devices or one type of ID-Ep device, showing that PUUV DNA does interfere with HTNV DNA immunogenicity;

FIG. 9 is a graph showing immunogenicity (specific neutralizing antibodies) in hamsters of optimized HTNV DNA vaccine of the invention compared to the non-optimized HTNV DNA, the optimized PUUV DNA vaccine or a 1:1 mixture of both optimized DNA vaccines delivered to hamsters by ID-Ep, showing that the optimized HTNV DNA has overcome interference problems associated with the non-optimized HTNV DNA;

FIG. 10 is a graph showing the immunogenicity (neutralizing antibodies to HTNV) in hamsters vaccinated by electroporation with the optimized HTNV DNA vaccine alone, a 1:1 mixture of the optimized HTNV and PUUV DNA vaccines, and a 1:1 mixture of the optimized HTNV and PUUV DNA vaccines.
DNA vaccines, or the optimized PUUV DNA vaccine alone after each of three sequential vaccinations, indicating that the optimized HTNV vaccine and the mixture of the optimized HTNV and PUUV DNA vaccines induce neutralizing antibodies to HTNV, but that the optimized PUUV DNA vaccine alone does not elicit neutralizing antibodies to HTNV;

[0031] FIG. 11A is a graph showing neutralizing antibodies to PUUV of individual rabbits vaccinated by intramuscular electroporation with non-optimized HTNV DNA vaccine (pWRG/HTN-M(x)) as compared to the PUUV DNA vaccine (pWRG/PUU-M(s2)) or a mixture of the two vaccines (Combination) showing equivalent neutralizing antibody titers to PUUV;

[0032] FIG. 11B is a graph showing neutralizing antibodies to HTNV of individual rabbits vaccinated by IM-EP with non-optimized HTNV DNA vaccine (pWRG/HTN-M(x)) as compared to the PUUV DNA vaccine (pWRG/PUU-M(s2)) or a mixture of the two vaccines (Combination) showing evidence of interference;

[0033] FIG. 12A is a graph showing neutralizing antibody responses to HTNV of humans vaccinated with the non-optimized HTNV DNA vaccine by IM-EP;

[0034] FIG. 12B is a graph showing neutralizing antibody responses to PUUV of humans vaccinated with the optimized PUUV DNA vaccine by IM-EP;

[0035] FIG. 12C is a graph showing neutralizing antibody responses to HTNV of humans vaccinated with a 1:1 mixture of non-optimized HTNV and optimized PUUV DNA vaccines by intramuscular electroporationIM-EP; indicating reduced number of responses to HTNV and evidence of interference with HTNV immunogenicity.

[0036] FIG. 12D is a graph showing neutralizing antibody responses to PUUV of humans vaccinated with a 1:1 mixture of non-optimized HTNV and optimized PUUV DNA vaccines by intramuscular electroporationIM-EP; indicating no interference with PUUV immunogenicity.

[0037] FIG. 13 is a graph showing a hamster study showing the results of geometric mean titers of neutralizing antibodies to each of four hantaviruses known to cause hemorrhagic fever with renal syndrome in hamsters vaccinated with the optimized HTNV DNA vaccine alone, the optimized PUUV DNA vaccine alone or a mixture of the optimized HTNV and PUUV DNA vaccines indicating that the optimized HTNV vaccine induces antibodies to HTNV, SEOV, and DOBV, but not to PUUV; the optimized PUUV vaccine elicits antibodies only to PUUV, but that the mixture of the optimized HTNV and PUUV vaccines induces neutralizing antibodies to all four of the hantaviruses;

[0038] FIG. 14 is a table showing a study design for an ongoing clinical study in 120 subjects vaccinated with two doses and at two schedules by IM-EP with the mixed optimized HTNV and PUUV DNA vaccines;

[0039] FIG. 15A is a graph showing pseudovirion neutralization titers from the clinical study in individual 001 responding to both of the optimized vaccines delivered as a mixture by IM-EP;

[0040] FIG. 15B is a graph showing pseudovirion neutralization titers in individual 013 responding to both vaccines; and

[0041] FIG. 15C is a graph showing pseudovirion neutralization titers in individual 015 responding to both vaccines;[0042] FIG. 15D is a graph showing pseudovirion neutralization titers in individual 022 responding to both vaccines;

[0043] FIG. 15E is a graph showing pseudovirion neutralization titers in individual 023 responding to both vaccines;

[0044] FIG. 15F is a graph showing pseudovirion neutralization titers in individual 024 responding to both vaccines;

[0045] FIG. 16 is a graph showing neutralizing antibody responses in 26 vaccine recipients four weeks after the third vaccination with the mixed optimized HTNV and PUUV DNA vaccine by IM-EP, indicating high antibody responses to both viruses in some individuals; and

[0046] FIG. 17 is a Timeline graph of the Phase 2a study.

DETAILED DESCRIPTION

[0047] A recombinant DNA-based vaccine for HTNV and PUUV M segments constructs circumvents key issues associated with both production and formulation of combination vaccines for HFRS. The invention provides a bivalent vaccine for all HFRS-causing viruses, which includes both HTNV and PUUV M segment constructs.

[0048] The invention is a new synthetic, codon-optimized HTNV full-length M gene open reading frame (ORF) that encodes amino acids forming viral proteins. The optimization of the gene has solved a long felt need in this type of vaccine, namely major gene related interference with former vaccines, which prevented development of a comprehensive vaccine for HFRS. Determining how to optimize and produce a synthetic gene for the HTNV M segment required extensive testing.

[0049] This synthetic gene was cloned into a plasmid to form the first HTNV full-length M gene that elicits neutralizing antibodies in animals when delivered in combination with a similarly optimized PUUV DNA vaccine (U.S. patent publication US2010/0323024A1, incorporated herein by reference). In addition, the invention obviates the need for an extraneous gene sequence that was previously found to be required for expression of the non-optimized HTNV gene. The synthetic gene is engineered into a molecular vaccine system to prevent HFRS caused by infection with HTNV, SEOV, or DOBV. Alternatively, it can be combined with the optimized PUUV DNA vaccine to protect against HFRS caused by any hantavirus.

[0050] Specifically, the invention consists of a genetically modified DNA vaccine representing the open reading frame of the M genome segment of the HTNV that has been optimized to include several features known to increase mammalian expression. See SEQ ID NO. 1

[0051] The HTNV DNA vaccine expresses the envelope protein genes of HTNV that were adapted to the codon bias of Homo sapiens genes. The codon adaption index, which describes how well the codons match the codon usage preference of homo sapiens, where 1.0 is perfect, was increased for the HTNV gene from 0.67 to 0.97. In addition, regions of the very high (>80%) or very low (<30%) guanine-cytosine (GC) content were avoided in the genes where possible as either extreme results in poor expression. For the HTNV gene, the average GC content was increased from 40% to 60%, to prolong miRNA half-life. Also, negative cis-acting motifs, such as splice sites, poly(A) signals, TATA-boxes, etc. which may negatively influence expression were eliminated where possible. The optimized HTNV
gene open reading frame was then synthesized by Geneart, Inc. (Regensburg, Germany) and inserted between the NotI and BglII restriction sites of plasmid backbone pWRG7077 [30] (to create the DNA vaccine construct that comprise the invention (See FIG. 6). The pWRG7077 plasmid backbone (pWRG7077 (4326 bp) (Powderject Vaccines, Inc., Madison, Wis.) contains the human cytomegalovirus immediate early (CMV IE) promoter with its associated Iatron A, a bovine growth hormone transcription terminator and polyadenylation signal (BGH pA), a PUC19 origin of replication (ori), and a kanamycin resistance marker (KanR) shown in FIG. 6. The complete nucleotide sequence of the final HTNV DNA vaccine construct has been confirmed as shown in SEQ ID No. 1.

[0052] The optimized HTNV DNA vaccine produces HTNV protein that can be recognized in immunofluorescent antibody assays and by flow cytometry when reacted with a monoclonal antibody to a HTNV envelope glycoprotein (FIG. 7A). In addition, the HTNV gene that comprises the invention shows comparable expression in cell cultures to the previously developed, non-optimized HTNV M DNA vaccine, which has non-coding extraneous nucleotides that are required for expression (FIGS. 7B). The optimized gene in this invention does not require the extraneous nucleotides for expression, and addition of these nucleotides to the construct does not improve expression. As shown in FIG. 7C, a flow cytometry comparison of the optimized HTNV M that were synthesized with or without the extraneous nucleotides had the same expression profiles. Therefore, the invention is an improvement over the earlier DNA vaccine construct in that it does not require the presence of noncoding nucleotides to produce HTNV proteins.

[0053] In FIG. 7D, flow cytometry was performed in order to compare expression of the non-optimized (original) HTNV M DNA to the optimized (HTNV_M_CO) DNA. Two curves are shown, which represent independent analysis. The synthetic gene has a similar expression profile as that of the original gene. Conclusions were that the synthetic gene produces HTNV proteins that are recognized by antibodies to authentic HTNV and expression does not require the presence of the extraneous nucleotides that must be present for expression of the original gene.

[0054] Of primary importance for this invention, the new synthetic DNA vaccine construct solves a major gene-related interference problem, which prevented development of a comprehensive vaccine for HFRS. That is, in order to elicit protective immunity against all four hantaviruses that are able to cause HFRS, it is necessary to vaccinate with both the HTNV DNA vaccine and also with the PUUV DNA vaccine [28, 29]. However, when the native M segment HTNV DNA vaccine was delivered to test animals in combination with the PUUV M segment DNA vaccine, the animals developed antibody responses only to the PUUV component (FIGS. 8, and [31]). It was not possible to overcome this interference by increasing the ratio of HTNV to PUUV DNA in the mixture (FIG. 8B).

[0055] In FIGS. 8A and 8B, there is shown immunogenicity of HTNV DNA vaccines delivered to hamsters using two types of IM-EP devices or one type of ID-EP device. In FIG. 8A, shown are geometric mean titers (GMT) of neutralizing antibodies to PUUV measured by plaque reduction neutralization test (PRNT) of serum from hamsters vaccinated with optimized PUUV DNA or with a 1:1 mixture of non-optimized HTNV and optimized PUUV DNA. The hamsters develop neutralizing antibodies to PUUV in all groups, indicating that non-optimized HTNV DNA does not interfere with optimized PUUV DNA immunogenicity. In FIG. 8B, there is shown GMT of neutralizing antibodies to HTNV measured by PRNT of serum from hamsters vaccinated with non-optimized HTNV DNA or with 1:1, 2:1 or 10:1 mixtures of non-optimized HTNV and optimized PUUV DNA or with optimized PUUV DNA. Results show that the non-optimized HTNV vaccine elicits neutralizing antibodies to HTNV in hamsters, but that the optimized PUUV vaccine and the mixed vaccines do not, indicate in the PUUV vaccine alone cannot elicit antibody responses to HTNV in hamsters and that mixing the PUUV vaccine with the non-optimized HTNV vaccine results in interference with the immunogenicity of the non-optimized HTNV vaccine. Titers shown are the reciprocal of the dilution of sera required to reduce plaque counts of controls by 50%.

[0056] In contrast, using this invention, it is possible to obtain neutralizing antibodies against both HTNV and PUUV in animals that receive the mixed vaccine. In addition, this new optimized HTNV DNA vaccine is at least as effective or more effective than the non-optimized HTNV DNA vaccine at eliciting antibody responses against HTNV when given alone. See FIG. 9. More specifically, in FIG. 9, there is shown the immunogenicity of optimized HTNV of the invention and PUUV DNA vaccines (US 2010/0323024 A1), incorporated herein in its entirety by reference, delivered to hamsters by IM-EP Geometric mean titers (GMT) of neutralizing antibodies to homologous viruses (first three bars) were measured using sera from hamsters vaccinated with the codon-optimized HTNV DNA vaccine, the non-optimized HTNV DNA vaccine, or the codon-optimized PUUV DNA vaccine. GMT titers to HTNV (fourth bar) or to PUUV (last bar) were measured in sera from hamsters vaccinated with a 1:1 mixture of the optimized HTNV and PUUV M segment optimized DNA vaccines. Titers shown are the reciprocal of the dilution of sera required to reduce plaque counts of controls by 50%.

Delivery

[0057] To accelerate the immune response to the vaccines, the vaccine is delivered using a state-of-the art technology component, electroporation (EP). The DNA is formulated in an excipient approved for human delivery, such as sterile normal saline or other inert substance as a carrier. Both intramuscular (IM) and intradermal (ID) EP devices are available and both have been found to notably enhance the immunogenicity of the HFRS vaccines in animals. ID-EP delivery may be used, which not only capitalizes on the efficient delivery of EP, but also offers the advantages of reduced cost and logistics for mass vaccinations. This bivalent vaccine, in combination with EP delivery accelerates the immune response to the hantaviruses and reduce the number of dosings needed to achieve protective immunity as compared to delivery without EP.

[0058] Other delivery methods include jet injection and nanoparticle encapsulation.

[0059] To measure the safety of the vaccine in controlled studies under Good Laboratory Practice (GLP) conditions, rabbits are vaccinated with either IM-EP or ID-EP of the optimized vaccine given alone or in combination with the PUUV DNA vaccine. Two manufacturers’ EP devices have been tested with the hantavirus DNA vaccines (Ichor and Inovio) in hamsters and both have produced excellent
results. IM-EP has been tested more extensively in humans than ID-EP, and is currently the gold standard delivery method for DNA vaccines; however, ID-EP has been found to elicit stronger immune responses than IM-EP for some pathogens because skin is a highly immunologically active organ with numerous circulating antigen-presenting cells. In addition to possibly improving immunogenicity with ID-EP, skin vaccination is a desired delivery platform for mass vaccination with biodefense vaccines. Current clinical IM-EP delivery requires loading of DNA vaccine into the delivery device at the time of delivery, whereas the ID-EP platform consists of preloaded disposable cartridges containing the DNA vaccines, which can be administered using a re-usable EP device. The prototype ID-EP device has already been tested in a successfully completed GLP non-clinical safety study in rabbits and humans with another biodefense-related DNA vaccine for Venezuelan equine encephalitis virus.

Together the vaccine and EP delivery platform proposed offers expedient scale-up, long term stability, reduced cold-chain requirements, and mass vaccination applicability.

Safety Study

A safety study in rabbits was used to obtain approval for testing of the combined non-optimized HTNV and optimized PUUV DNA vaccines in humans. A human study was also recently completed with no serious adverse events related to the vaccines reported. Similarly, a second safety study, also to be performed in rabbits, will be used in support of a pending IM-EP vs ID-EP Phase 1 clinical study with the optimized HTNV.

DNA vaccine alone and in combination with the optimized PUUV vaccine. The rabbit study characterizes local and/or systemic adverse responses associated with optimized HTNV and/or PUUV vaccine candidates administered using the IM-EP and ID-EP devices. A summary of the repeat dose safety and toxicity study design is shown in Table 1.

TABLE 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Vaccine</th>
<th>Delivery</th>
<th>Dose</th>
<th>Injection # & Volume</th>
<th>Admin. Schedule</th>
<th>N</th>
<th>Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HTNV</td>
<td>IM-EP</td>
<td>3.0 mg</td>
<td>1 × 1000 µl</td>
<td>0, 14, 28, 56</td>
<td>20</td>
<td>5 M/5 F: Day 58</td>
</tr>
<tr>
<td>2</td>
<td>HTNV</td>
<td>ID-EP</td>
<td>1.2 mg</td>
<td>2 × 200 µl</td>
<td>0, 14, 28, 56</td>
<td>20</td>
<td>5 M/5 F: Day 58</td>
</tr>
<tr>
<td>3</td>
<td>HTNV</td>
<td>IM-EP</td>
<td>6.0 mg</td>
<td>1 × 1000 µl</td>
<td>0, 14, 28, 56</td>
<td>20</td>
<td>5 M/5 F: Day 58</td>
</tr>
<tr>
<td>4</td>
<td>HTNV</td>
<td>ID-EP</td>
<td>2.4 mg</td>
<td>2 × 200 µl</td>
<td>0, 14, 28, 56</td>
<td>20</td>
<td>5 M/5 F: Day 58</td>
</tr>
<tr>
<td>5</td>
<td>PUUV</td>
<td>IM-EP</td>
<td>1.2 mg</td>
<td>2 × 200 µl</td>
<td>0, 14, 28, 56</td>
<td>20</td>
<td>5 M/5 F: Day 58</td>
</tr>
<tr>
<td>6</td>
<td>Vehicle</td>
<td>IM-EP</td>
<td></td>
<td>1 × 1000 µl</td>
<td>0, 14, 28, 56</td>
<td>20</td>
<td>5 M/5 F: Day 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID-EP</td>
<td></td>
<td>2 × 200 µl</td>
<td>(IM)</td>
<td>10</td>
<td>5 M/5 F: Day 70</td>
</tr>
</tbody>
</table>

The invention uses cGMP manufacturing for both the safety study in rabbits and the pending clinical study. The cGMP manufacturing is conducted at a contract research organization and includes extensive release testing for potency, purity and stability, prior to use in the Phase 1 clinical trial.

Clinical Trial

To assess the safety of the optimized HTNV and PUUV DNA vaccines, 6 groups of 10 subjects each for a total of 60 subjects and 12 alternate subjects are vaccinated with the optimized HTNV vaccine, the optimized PUUV vaccine or a mixture of both vaccines. Subjects in one group receive the HTNV DNA vaccine candidate administered using the TDS-IM-EP delivery device (3.0 mg dose). Two other groups receive either the HTNV or PUUV DNA vaccines delivered by the ID-EP device (0.6 mg dose), and two groups receive the HTNV-PUUV mixed vaccine candidate administered using the IM-EP (6.0 mg total dose) or ID-EP device (1.2 mg total dose). Ten subjects receive a placebo control (5 by ID-EP, 5 by IM-EP). Note that differences in dose levels for the two routes of administration are due to the difference in volume of injection that will be administered by the respective routes (0.2 ml ID versus 1.0 ml IM).

EXAMPLE 1: (Non-Optimized HTNV Study, in Which HTNV and PUUV Vaccines are Delivered as Separate Administrations)

Candidate DNA vaccines for hemorrhagic fever with renal syndrome expressing the envelope glycoprotein genes of Hantaan (HTNV) or Puumala (PUUV) viruses were evaluated in an open-label, single-center Phase 1 study consisting of three vaccination groups of nine volunteers. The volunteers were vaccinated by particle-mediated epithelial delivery (PMED) three times at four-week intervals with the HTNV DNA vaccine, the PUUV DNA vaccine or both vaccines. At each dosing, the volunteers received 8 µg DNA/4 mg gold. There were no study-related serious adverse events, and all injection site pain was graded as mild. The most commonly reported systemic adverse events were fatigue, headache, malaise, myalgia, and lymphadenopathy. Blood samples were collected on days 0, 28, 56, 84, 140, and 180, and assayed for the presence of neutralizing antibodies. In the single vaccine groups, neutralizing anti
bodies to HTNV or PUUV were detected in 30% or 44% of individuals, respectively. In the combined vaccine group, 56% of the volunteers developed neutralizing antibodies to one or both viruses. These results demonstrate that the HTNV and PUUV DNA vaccines are safe and can be immunogenic in humans when delivered as separate administrations by IM-EP (FIGS. 1, 2A, 2B, 3, 4A, 4B, 5).

[0066] As shown in FIG. 3, neutralizing antibodies to PUUV detected in all samples of two subjects, indicating that there was a pre-existing exposure to a hantavirus prior to the start of this study; but when the person with the pre-existing antibodies to PUUV was vaccinated with the non-optimized HTNV vaccine, they had minimal response to the non-optimized HTNV vaccine, providing evidence that there is no boost in antibody response (i.e. interference in developing HTNV antibodies) even in individuals that have pre-existing antibodies to PUUV;

EXAMPLE 2: (Non-Optimized HTNV Study, in Which the HTNV and PUUV DNA Vaccines are Given as a Mixture, Resulting in Interference)

[0067] In this study, vaccines were delivered using Ichor medical System’s IM-EP device. The study included 3 randomized groups of 9 subjects, each of whom received three vaccinations at days 0, 28, and 56 with 2 mg of DNA/1 mL of the non-optimized HTNV vaccine, the optimized PUUV vaccine, or a mixture of both vaccines. Three vaccinations were given four weeks apart. No serious adverse events related to the vaccine were observed. Analysis of blinded serum samples indicated that neutralizing antibodies were elicited against both HTNV and PUUV, but that in volunteers receiving both vaccines, interference was observed, with only three subjects developing neutralizing antibodies to HTNV (FIG. 12C) as compared to seven developing neutralizing antibodies to PUUV (FIG. 12D).

EXAMPLE 3: (Non-Optimized HTNV DNA Preclinical Safety Study in Rabbits Showing that Mixed HTNV and PUUV DNA Vaccines Result in Reduced Response to HTNV in Rabbits, i.e., Interference)

[0068] In FIGS. 11A and 11B, results from a GLP safety study of non-optimized HTNV DNA vaccine and optimized PUUV DNA are shown. The vaccine delivered to rabbits by electropermeation was performed. Rabbits were vaccinated three times by IM-EP with individual or mixed vaccines (1 mg each) and neutralizing antibodies were measured. Control rabbits were vaccinated with phosphate buffered saline (PBS) using IM-EP for delivery. The data show that equivalent neutralizing antibody titers to PUUV were elicited when the PUUV vaccine, pWRG/PUUM(s2), is given alone or mixed with the non-optimized HTNV DNA vaccine, pWRG/HTNM(x) (FIG. 11A); however, greatly reduced titers to HTNV were observed with the mixed vaccines as compared to those obtained with the HTNV DNA vaccine alone (FIG. 11B).

EXAMPLE 4: (Optimized HTNV Study in Hamsters Showing that Interference has Been Overcome Using the Inventive Optimized HTNV DNA Vaccine)

[0069] FIG. 9 and FIG. 10 demonstrate the immunogenicity of the inventive optimized HTNV DNA vaccine when mixed 1:1 with PUUV DNA vaccine (US 2010/0323024 A1) delivered to hamsters by IM-EP in two separate studies. The hamsters were vaccinated three times at 3-4 week intervals by IM-EP with 100 µg of the individual DNAs or with a 1:1 mixture the optimized HTNV and PUUV DNAs (50 µg of each). Geometric mean antibody titers (GMT) for each group of six hamsters are shown as the reciprocal of the dilution of sera required to reduce plaque counts of controls by 50%. As expected, because half as much of the optimized HTNV DNA was given in the mixture as compared to in those receiving only the optimized HTNV DNA vaccine, the antibody response to HTNV was slightly reduced. Following injection of HTNV into the vaccinated hamsters, it was determined that none of the hamsters vaccinated with the mixed vaccines showed evidence of infection with HTNV (as determined by measuring antibodies to the N protein, which is not part of the vaccine, data not shown). Consequently, the mixed vaccines containing the inventive optimized HTNV DNA vaccine can elicit neutralizing antibodies against HTNV and also protect from infection by HTNV. Moreover, there was no detectable interference observed when the inventive HTNV DNA vaccine was mixed with the PUUV DNA vaccine.

EXAMPLE 5: (Non-Optimized HTNV DNA Vaccine Phase 1 Clinical Study Using IM-EP Delivery, Showing that Mixed HTNV and PUUV DNA Vaccines Result in Reduced Response to HTNV, i.e., Interference).

[0070] FIG. 12 A-D show neutralizing antibody responses of volunteers vaccinated by IM-EP with the individual or mixed non-optimized HTNV and optimized-PUUV DNA vaccines. Seven of eleven volunteers that were vaccinated with the non-optimized HTNV DNA vaccine developed neutralizing antibodies to HTNV. Six of eight volunteers vaccinated with optimized PUUV vaccine developed neutralizing antibodies to PUUV. Three of nine volunteers vaccinated with the combination vaccine developed antibodies to both HTNV and PUUV. However four additional volunteers had antibodies only to PUUV but no additional volunteers had antibodies only to HTNV. Interference, while not complete, is still a problem. These results are in line with the results in Example 2.

Preparation of Optimized DNA Vaccines

[0071] The optimized HTNV DNA vaccine was constructed by cloning cDNA representing the optimized HTNV M segment open reading frame, which encodes Gn and Ge, into the NotI and BglII-restriction sites of pWRG7077 [14] as described previously [8]. The PUUV DNA vaccine was previously constructed similarly, using cDNA that was engineered as a consensus sequence of several PUUV strains, and codon-optimized (GeneArt) [15] and (US 2010/0323024 A1). The HTNV and PUUV DNA vaccines were produced under current Good Manufacturing Practices (cGMP) by Althea Technologies, Inc. (San Diego, Calif.). A summary of the manufacturing and testing processes that Althea was contracted to perform is as follows:

[0072] Optimized HTNV DNA vaccine plasmid is manufactured under cGMP specification, to include (a) Establishment and Characterization of a Manufacturer’s Master Cell Bank (MCB) (b) Process Optimization & Non-GMP Production of a HTNV plasmid DNA vaccine lot, (c) cGMP Production and Characterization of a bulk HTNV Plasmid
DNA (2.6 g) (d) Packaging and Shipment of Cell Banks (2 SHIPMENTS), (e) 6 months Bulk Drug Product Storage. Deliverables requested from Althea are (1) a Master cell bank for HTNV, (2) a pilot lot of HTNV DNA plasmid; (3) one cGMP lot of bulk DNA plasmid stored in IPA (2.6 g); and (4) all documents (e.g., batch records, data records and reports, CoAs, BMIF letter of cross reference) as required for submission to FDA.

[0073] The following specific tasks are performed by Althea for manufacture of a bulk DNA vaccine plasmid for HTNV.

EXAMPLE 6: (Optimized HTNV Vaccine)

[0074] As shown in FIG. 13, gene modifications to overcome interference were made. As previously performed for the PUUV plasmid, the codons of the HTNV plasmid were modified to the bias of homo sapiens genes, and known motifs that reduce expression were removed. Hamsters vaccinated with the optimized vaccine of the invention by ID-EP three times at 3-week intervals developed neutralizing antibodies to all four HFRS-causing hantaviruses.

EXAMPLE 7

[0075] FIG. 14 shows a study design for 120 people that receive a mixed optimized vaccine. Two different doses are given (2 mg vs 1 mg) and 2 different schedules with each individual receiving an optional 6-month boost.

[0076] FIGS. 15a-15f show examples of pseudovirion neutralization titers in various individuals from the study of FIG. 14 responding to both optimized HTNV and PUUV vaccines. Vesicular stomatitis viruses were pseudo typed with optimized HTNV or PUUV glycoproteins and used to assess neutralizing antibody responses of Phase 2a vaccine recipients at indicated days post vaccination. The individuals of FIGS. 15a-15f are also represented in FIG. 16.

EXAMPLE 8

[0077] FIG. 16 also shows results from the study design of FIG. 14. FIG. 16 shows neutralizing antibody responses detected in sera of the first 26 vaccine recipients four weeks after the third vaccination with optimized HTNV and PUUV DNA vaccines by IM-EP. As samples are blinded until completion of this study, it is not possible to assess dose or route factors with these samples. The neutralizing antibody titers were measured using a traditional plaque reduction neutralization test (PRNT) or a vesicular stomatitis virus pseudo typed with the glycoproteins of optimized HTNV or PUUV (PsVNA). The bars show each person’s neutralizing antibodies to optimized Hantaan or Puumala viruses as measured by the two different tests. The first test uses authentic HTNV (plaque reduction neutralization test) and the second test uses a nonpathogenic virus (SVS) that is coated with HTN proteins (pseudovirion neutralization assay). This second assay can be completed quickly and at BSL2 rather than BSL3 conditions.

SUMMARY

[0078] Phase 1 study results show that DNA vaccines expressing the envelope glycoprotein genes of HTNV and PUUV are safe and immunogenic in humans when delivered by IM-EP.

[0079] Animal studies suggest that immune interference between the HTNV and PUUV plasmids can be resolved using gene-optimized plasmids. Dose and schedule studies are in progress using the optimized plasmids.

[0080] Preliminary (blinded) analysis of sera from a subset of Phase 2a time points (FIG. 17) shows that in the first 26 vaccinees, the overall seroconversion rate is 95% with 81% positive for optimized HTNV and 88% positive for PUUV at one or more time points.

Establishment of Master Cell Bank (MCB)

Includes:

[0081] Preparation of MCB batch record
[0082] Transformation
[0083] Selection, genetic stability
[0084] Growth
[0085] Dispensing/freezing (no less than 200 vials)

Characterization of MCB

Includes:

[0086] Completion of MCB testing outlined in Attachment 1
[0087] QA review of associated testing
[0088] Generation of C of A

Non-GMP Production/Process Optimization

Includes:

[0089] Evaluation of plasmid in Althea’s fermentation and purification processes
[0090] Non-GMP plasmid will be provided to USAMRIC for research use only
[0091] Appearance, size, and identity of plasmid by restriction analysis using two common enzymes
[0092] Purity by gel electrophoresis
[0093] A260/A280 1.7-2.0
[0094] Endotoxin by LAL
[0095] An optimization study must be completed prior to GMP Production

CGMP Production and Characterization of Plasmid DNA (2.6 g)

Includes:

[0096] Establishment of specifications
[0097] Preparation of customized CGMP Manufacturing Batch Records
[0098] Optimization of fermentation conditions
[0099] Fermentation
[0100] Development of large scale purification process
[0101] Cell lysis
[0102] Downstream processing and separation
[0103] Column purification
[0104] Preparation of standard bulk
[0105] In-process testing

SHIPPING

Packaging and Shipment of Cell Banks (2SHIPMENTS)

[0106] Includes the management and preparation of the cell banks
[0107] Includes verification of shipment products from Althea to a USAMRMC specified destination

[0108] Includes temperature controlled shipping containers with temperature loggers

[0109] Preparation of all required shipping documentation

Shipping on Dry Ice

Bulk Drug Product Storage (6 Months)

[0110] Includes temperature monitored storage of Bulk Drug Product.

pHRG7077HTB-M-CO
DNA of M segment and plasmid together

SEQ ID NO. 1

GCGGGGCGGGCGCTTGGAGGTTCTCCTGCTGAGAGGTGTCTGACTCT
ATACAGGTCCGCTATCCGCGCCACCCGAGAAAAGGAGGAGAGAC
CGGTGATGAGCTGCTGAGATTGTCGATGCTGAGGTATGTGAGCT
ACTCATATACACAGCAAAAAGTCGATGATTTTCAAGATATCGAC
TTGCAGCTCGCACTCGTCGACATCGAGTACATGCAGAGCGAC
GATGCGGCGAAAGCTTAGCTTCATCTGCAAGCGCGCGCCAGAC
CATCACCTGCATCTCATAAACTACATGGACCACTACAAGTATGAGA
CGATGATGCCGCTGCGAAGAAATCCAGCTCGCCTCCATCAAGAAGAC
ATTACCAAGAGATCGAAGCCGCGAGACGACGCACCAC
CAACAAATTTTCCCCATCAGCGAATATCTTCTTCTCCAATGAGCGGAAGAAC
TTTGCAGCTCCTGGACGCTCAGTAATCTTTAGCTTCTGAGAAGAC
GATGACTGCTCGTGGAGAAAGCTCTCTCCGCGCAGCGCGAGCACAC
CTGCGAGGCGCAGGCACGCCCTCCGCGACGGCGAGATCGGCAC
GAGTTGCTGGCTAGCTCCGAGCAGCAGCAGCGAGATCGGCAC
CAACAAATTTTCCCCATCAGCGAATATCTTCTTCTCCAATGAGCGGAAGAAC
TTTGCAGCTCCTGGACGCTCAGTAATCTTTAGCTTCTGAGAAGAC
GATGACTGCTCGTGGAGAAAGCTCTCTCCGCGCAGCGCGAGCACAC
-continued

References

ships among viruses in the Hantavirus genus, family Bunyaviridae. Virology 1994; 198 (January (1)):196-204.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 5
<210> SEQ ID NO 1
<211> LENGTH: 7634
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polynucleotide
<400> SEQUENCE: 1

```
gggctgctagg ttcgctctcg taagaaaagtg ttagctgact atacacgccc
tgaatccccc cccatccac ccagaaagtg agggagccac ggtgtgatg agcttgttgg
tagttgacc agtttggtat tggtaacc ctggctgaca cggaaaggtc tgggttgtcg
ggaagatccgt tggattcact atccacacta gcaaaagttc gattttatca acaaaaagcc
cgacctgtag aagtctgctg ccgtaattac ccctatattg aattttgttt
agaaaaactt atcgatgatat aatgacgatg cgcatttttt tatacagca tcttttatt
caatttttcg aaaaaaggtt ttcgctgact atacacgccc
ggatggaac atcgctgatc cggctgctc gtcgccctat cccacacatta atacacacta
ttaatcccc tccgcttaca aataagttat ccagatcag aatttaaaca
taatcctgga gttgacgttc ggatgctgctg tgggagctt ccagcttggtag gctgttggtag
tccatcctgct cttattcag cttaccctg atacatattc
gcaatgcgc gacatagagcc aagttgcgtg cttccctcca ccaggaagac ccgctggctg
tcctgtagc gcctgcgtgc gcggccgat ccaggaatg cggctgccgc
tccagcttgg cagccgcttgg atccagcctg cggaccgacac cggctttcctg
tccagccttgg aatcaggggg cggcggcggat cggccggtg ccagttgattg
tcagggcctt gcctgatcct gctgagattg tgcggcgcgt cggctgcttgg
tcggctgcc gcggggtggt gtgatgatgt gcggctgctg ccgctggcct
```

Apr. 27, 2017
tatcgccgac ccatttatac ccataaaat cagcatcctag gttgaatttt aatcgcgccc 1080
tcgacaaag cgttcccctg tcgtatatgg cctctacacc ctctgttata cgttttatgt 1140
aaggagagac aggtttgttt caattgtata tatttttatc tttgctcaatg tacaataaga 1200
gattttggga cacaacgctt ctccccccccc cccccgagg gctctgcacc gctgacaat 1260
tgctatttgg ccatgcaata cgttttatct ataatcataat atattcatttt atattggtcc 1320
agtcccaaata tgaccgcaat gttgacattg atttatgacct agtttatata atgatncaatt 1380
tacggggtca ttacttcata gcccatatat ggagttcgcg gtatcataac ttacgtaaa 1440
tggcccgctc gggtgacgct ccacagaccc cgcgcccattg acgcctaaata tgaogtatgt 1500
tcccatagta acgcctaaaa ggaattcctaa tgcgctgctg tgggtggagt attatctga 1560
aatgcgcacc cttgcaatct atcaatgtta tcctatgcac gttccgcccc ccattgcagc 1620
catgaaggt aatagggcgg cctggaatct tcgccggtac atggcctctaa ggacaccttc 1680	taactggagcg tatacctacta tattatctat gctattaccat atgtgtgtgc gttttggtca 1740
gtacaccaaat gggtgcgtgt atggcgttgta ctcaogggga ttccccacagct tcccctccct 1800
tgacgtataat gggttcgctag tttgccacca aatacgccgg gcacctcgcct cattgtgtaa 1860
taaccgcccct cgttgcagcc aatgggccc ggtagcgtgta cgggtggagg tcttatatatag 1920
cagctagcctt tattgcacgt gcagatcgc cttgacgagct cttcgcacgc gttttggtatc 1980
cctacagag caccgggcgg gaatcagcct cccgycggccg gcagctgtcga ttgaacgccc 2040
gataccggt gccaaagttg acgttggctac gctctattatc ctcatcagttc aaacocctcta 2100
ggctttttat agtcgttatac tgcctttttta tggggtccta taccacccgct ctctctctgt 2160
catatggtga ttgatactag ctgcttggta gttgccattc tggaccattc tggaccctct 2220
ccattattgg cagacttatt tccattacta atccatatac tggctctttctt cccatactat 2280
ttctatggtc tcattgcocca gccagctgcgt gcttttatattg ctgctctctat 2340
aatggggtt gtcttttgga ttgggtccta taccaccccct ctcttctctg 2400
ggccgcgtt cttttttttag ataggcttgg atogccacgtg cggcctgtgg tcgctgctt 2460
ggcatagggc tctcttgccc ttagggcggga gttctccact ccgagccccg tgtccctgoc 2520
tccgctcgtg ctagctcgtg cgcggctccc tgtgctctaa cagtggaggg cagctctagg 2580
cacaacccaa tgcacacccac cacaatgctg cgcacacagc cggcgccggtt aaggctattg 2640
ttctgaatag agtcgagaga ttggctcggc acgctgcaac cagctggaaag ctttcggcgc 2700
ggcgcaaga aagatgcgag cagctgtgtt tgtgattctt tataagcgtg agaagtaaac 2760
ccgggtgctg tgcgtgtcctt ggtggtgggtg cgtgcttcctg cgtctcgtgt 2820
ggcgccgca ccaacataaa tagctgcagct aatacacgac tggctttctttt catgtggtct 2880
ttcgcaagtc acgcctcaag ctggtgcccc accacatggg tccagcagctttgcttc 2940
tgctagct ctggtgcccc ctgctgaccc tgcggaacgct gtacgacatg aagatcgagt 3000
gccccccccgg ttggccttcg ggctgacaacct ccgtgtgctg tgtggcctag gccgccccccg 3060
tgctgcgggg gcgtgcagct cagatgtggt gccagagccg cttgacgctag gcaacacacac 3120
agatgcgacg cacatctgac gtagctggtgc gcgggtgaag gcggctgtaa 3180
ggcgacggcc ccaacacagc ctgctacagc tggctactcc ggtggaagctt agggcgatct 3240
ggccctccga gcacaaagatg gttggaagaga gtaocgggtc cagaaagagc gttacgtcct 3300
-continued

aogacctgag ctgcaacagc acctactgca agcccaacct gtcatgatac gtgeccatcc 3360
acgcctgcaaa ctgatagaaag tctctcctgtg tgcctctggc ccccactaca gttgccagtg 3420
tgtgcgcggc agatgactcg tgcaccggct ggtgattaga gggccaagtc ttctgtgccc 3480
accaggcgct ggtgtgtcatt atccacgcag ctgcctcctggt ctggacctgct 3540
tggtttttt ctgcggggttc aagggcacaac cttacaagat ttccagcag gttcaaagaa 3600
gctcgagaac caactgtaacc gacacagagc acaagtgcca ggctgactac atctgctcatg 3660
tggtgcgcca cagcccctcct aacctagtcc gcacactggg tccctctggag 3720
cottaagccag cattcttacgtg agcaggaaacc ggaaccagagc cagccggtcc gcgcagggaa 3780
tgcacactgta cttacactcg tgcgctgca aagcmaagtg gcagccagcc ggcacacgag 3840
acacgtctgc cctgaatcgc taccagcctca ctccagacgta cagacgctcg agacacgtcg 3900
cacaagcgtc caagcagccg cttccatcac atccacgctg tctggacgcg ctagtgacgat 3960
tacaagagc tgcgcaaccc tgcacgtcgtg tctggctgtgt gtccgcccct ggcagcgagt 4020
ggcgtggctc tttgcttgagg gcctatattta acatacagag ccctaaattgctg cttgggtgca 4080
agcagaaccg gtccgggtctg acgcagcacg aggtgcaactt cttgctgcag cggggtgccaa 4140
tgcagctgctg cttctgactgc agcggccagc gggcgtgtgtg cttgctctcg ccacagagcg 4200
ctggccagctg ctctcagcag atccacaggc ttcgtcagcgt gcctccaggg gcggccacac 4260
ctacgcgctgc ggaactgcctgt tgcgcgggtgc ggcacagtct gcgcagcttg 4320
tcacctctgc cttgggtctgg gtgtgctctac cggccatcatc cttcctcatct ctcacgctgc 4380
tgaaagtgttc ctgcagcactg gtcacagagc ctgcactcag cttccactcag tggggtctgc 4440
tgggacagct gtcagcaagtc ctccagcacc gcacagctcg caggtgctgc 4500
tgacagctgc ctcagcaccct gacgctctgc gacgctgtgc 4560
aatacaggtc ggacagaacta acagagggtac agggtgcctgg ggtggcacttc 4620
agtcgccctact tggccttcag cttcagagcgc actccactgct gcgccactaca 4680
aaggtgcca ggcaccctca cggcttaagg agacacgctag gaaacgcctg acacccgaca 4740
acaccccg ccgtgtacag cggccactga acctgtcccg gtacagacgc cggctgaaca 4800
ttttactcat ctgctgacgt cttggtgtgc ctgagcttcat cttggggtgc gcacagccac 4860
gccaaaacct tgcctgttgaagg gagaagcccc aacaaaggcc tgggtgtggc ccctggtc 4920
tgtacacgc cttggaaacg gactcttcgc tggggtgactgc ctcaggtgaa cttgcacgag 4980
ggagctgttc cccacccagc gggacgcctg gcagagcctgc ctcgacactc gcacagcgg 5040
aaccagacgg gcaggtgctg acctggagac gcctgacgcc ggcacaggag 5100
tgaaaaaccg cttcactgac gcgggtacct gcactaacgt cgggtacacc cgggtacccg 5160
caagtgccac tttaaggcag gactacttctc agacacatag cttggctgcg tggcgaagccg 5220
acgtcactgc ggtgccaccc gctgtgactg cttctggccct gcactgctag cgtcagcgg 5280
cggctggtgc gctgccacac cactctgactc tcctcgccag ctcgctgact 5340
tgggagaga caggtgtggt cagagcgtaag ctggttctgt gcctggacgc 5400
tgaaagttcg cctgctggcc acctgtgctg acctggagcag gggagatacc cttgctgttc 5460
ttgctctgct gcagaagggc gcagtctact ctgacgctctg tggcacaacgc acgctgcatg 5520
tggcagaccc ggccagacc cttggctgtcc gcgggtcggt cccgagttcc 5580
atgggcatct ggaagttggtc ggtcatgtgg agcctctgtg ggcctgtgct gacccctgag 60
aacggtctag cctgaagaac caaagcggct cctccagcaga aacccctgag 120
atggtctacg tggaaactgct ccgcctgccc cttggtccatg cagctctgag 180
agcagctgtca gcaggtgcaac ccaaccagac ctgaaaccaca ctcacatga caccaggttg 240
tctggccgcc gcagaacgctc tcagagccac agaagccaaac acacgctgac 300
aacccggtgct acctgaggttg cctgaagcct cagctgtgag agagagttgta 360
cagttccagac aagccgtttgc ctgctgaagtc acacgaccca ctcacgcc 420
acccggtgct acctgaggttg cctgaagcct cagctgtgag agagagttgta 480
ctggccgcc acacgctgac ctcagttctgt aaggtgcttc cagctgtgag 540
atggggtgct ctgagctgagc cccagccgctac agctgggtctgt ctgctggtta 600
ttcgatatacg ctcagttctgt acagcctgcc gcctttctgttg gcctacg 660
aacggcctgtc gggagggttg ccagagctcc cttcatgtgac atcacaag 720
agtggcaggct actacactcag cctctccgctg ctggacaagct cctcc 780
ccccaccgcc tgcagctgtgc acacgctgcgg atgctctgtgc gctggccgcc 840
ccgcctggca tggactacgct cagctggtgcg acacgctgac ggcctgccg 900
agccacagc anagccagcc ttcagcgtcag atcacaagct cctcc 960
acacgctgac ccagagaacc cggccagctg ctggccgctg ccctgggctc 1020
agccacagc anagccagcc ttcagcgtcag atcacaagct cctcc 1080
ccgcctggca tggactacgct cagctggtgcg acacgctgac ggcctgccg 1140
atgggctttcg gctgagtgcc cttactatgt cgggagcttc ccctgggctc 1200
ccgcctggca tggactacgct cagctggtgcg acacgctgac ggcctgccg 1260
acacgctgac ccagagaacc cggccagctg ctggccgctg ccctgggctc 1320
acacgctgac ccagagaacc cggccagctg ctggccgctg ccctgggctc 1380
agccacagc anagccagcc ttcagcgtcag atcacaagct cctcc 1440
ccgcctggca tggactacgct cagctggtgcg acacgctgac ggcctgccg 1500
atgggctttcg gctgagtgcc cttactatgt cgggagcttc ccctgggctc 1560
ccgcctggca tggactacgct cagctggtgcg acacgctgac ggcctgccg 1620
acacgctgac ccagagaacc cggccagctg ctggccgctg ccctgggctc 1680
acacgctgac ccagagaacc cggccagctg ctggccgctg ccctgggctc 1740
agccacagc anagccagcc ttcagcgtcag atcacaagct cctcc 1800
ccgcctggca tggactacgct cagctggtgcg acacgctgac ggcctgccg 1860
acacgctgac ccagagaacc cggccagctg ctggccgctg ccctgggctc 1920
atgggctttcg gctgagtgcc cttactatgt cgggagcttc ccctgggctc 1980
ccgcctggca tggactacgct cagctggtgcg acacgctgac ggcctgccg 2040
acacgctgac ccagagaacc cggccagctg ctggccgctg ccctgggctc 2100
atgcagctgc acatcggag cgagagcaacaga acatcggag tgcagtcacc gcggctgagga 2160
catggtccag aagcgagctc gacccagcaaa acacgcttcc actgatacg agcctgcact 2220
aagatagcag agcctgcgca caccgccacag tgcacactag aagcggagctt ccaagctcagag 2280
agcagctggt gctgtaaacc caagcactgt ccgagcggtcg gaccccggtg cagctttctg 2340
ggcctgtgacct gcagccggctt ggctcgctct accagacatc caccaccccg 2400
tacacagaca gcctgtgcgt gcacgttcggcg gacagnacata tgtcagcgcatctgacatg 2460
aagcagcctg ttggtctccgaa gcagcctgca tgcgtcactct tcgcctgctc 2520
tagcagcccg atacccctgcat gtcttcctcggag ccttcggaaaaggcgcgagctc gtgttatcaag 2580
cactgtgcgc caagacacagt tcacgttcggag ccgagcgcgct acatacggtcag cccaggacag 2640
aaggctttccg tgtcgcctccg gcgtccctcgc agcttcgcca aacagagctgc accagccaccct 2700
acccacactc gcagacagc gggacaaacttg gttgctgcgtgct caaaagagcg gcagcagcaccc 2760
atcagcagct ctcagacgcc caacccctccg acactgcag tcacccgacaag gcagcagcagct 2820
tgagagcggc gccgcgggcat ggtgcgggcat cactacaacaa tctggtgctc caagggacagc 2880
gacccagca acodgggggcc aacccctgctc aagctggccgc tcgcagccgct cagctgctggtc 2940
agggctgggg gcaagcgggct ggggtttacca ctgacgtgtgct gcctgcctcc gacgagctg 3000
ccccctccgt gcacccctgc gcaagcgcct gccagacccgtc gcgttgtacag gcggctggag 3060
ctgacccotga caagacgcggca gaaacccgctg caagctgctgc gcggacgggc aagcagctcg 3120
acacccctgag atggtgcgc aggctggcgc gcggagggaggc tcgcgacctc cgcgcggtgca 3180
ccccctccgac aaaaaatggag ccggcagccg agatggagag aactccaggt tgtacacgtg 3240
gggcgcctc agtgcggcag cagcttggcg ctgctggattt gcggagaggtg gatcagccgg 3300
actttcctgcc gnaaactgtg acgtgctgtg tgtcctgtgctgtgctgcgtgtggtctgcg 3360
ctggtctgctgaa tcccggcgcc aagccacagca aagcacctgta aagcctgcctg 3411
cctgagctag agaaataacg gatcgtgtg taaaagacaa attacaaaca ggaactgaaat 720
gcaaccgagc caggaactct gcaccgcact caacaaatat tccacgtgaa tcacagat 780
cctcaataac ctggaggtct ggtttccggg ggtggcagct ggtgagttac catgcatctat 840
caggagttcgc gataaaacgct tggattgtcc ggaaggcact aaattccgtc agccagttaa 900
gttcaactt ctcattctga acatcattgg ccaagctaac cttgcatact ttcagaacact 960
actctggggc atcogggttc ccatacaact gataagatgt gcacatctag tgcggagactat 1020
tactccggcg ccaccttaac ccataaaatat cagcatactt gttggaattt aatggcggcctc 1080
tgagccagaag cgtttccctga tgaatatgcg tcataaacct ccttgtatttt ctgtttaagt 1140
aagccagacag tttttttttt catgataataattattttatg tttgcaatag taatacagac 1200
gatggcagc cccacggcgct cttttcccccc cccgggggac tggccgagcc tcaccaaatat 1260
tggctatagc acattgcaata cttctgtatct atatacataat atgtacattt atatggctc 1320
atgtcacaat tgcaccgcacat gttgcacttg atatagatgt aatgttataat agtaaatcata 1380
tacggggtcct ttagctgcca gccctaatat ggtgtccgagc ttcacataac ttcoggttataa 1440
tgcctccgct ggtggcgcgcc ccaacgcaccc cccogccatgt acgcccaataat tgcaggttgtgct 1500
tccataagct acgccttcaat cggctcggcgg cccgtgttag cttctacatt ttaacggttata 1560
aatccgcgcc tggccacagg atcaagatgt ttgaggtata cttctagagct aatcgccctc 1620
cacgctagg aatggcggcgc cctggccattt agtgacagtc ac gcggcttggc 1680
taacgctagc tactagtttctg cattacactgt cctaggtgagc tgttggcgtat 1740
gtacccactt ggctgttgacg acoggttttaa ctaaagggggg ttcccaagtt tcccaccccatc 1800
tgccccgtgt cggcttcgccc gatcagccataa caaataaccg gcaccccttaa aatgctgtaa 1860
ataaaccgc gcctgtgagg acatgggctgg taggggtgtga cggcggagg tcacattagct 1920
cagcttcgct tgcctgagcg ctcggagcgttc cctgacagtct cttgacgctg 1980
ccacagaga cacoggggaag catcgccacct cccogcgagc gagcgggtcga ttggaaagcgc 2040
gatcctcgc gcacagagta gcagctataag ctcctagcgg cccgaccttc 2100
ggcctctaggct cagccttaaac tctaccccgcg cggcggcattt ctcctcttag 2160
ctgttggcg atgtttaag gtcatagctc tgccagtttg gttgcgggtta tggccaccctt 2220
ccctattggt gctagcatgct cttcattactt atccataaaca cttggtctttt ccaacaactat 2280
ctctatggcag ctgctggcgaa ttcgacagtct tccagagctg gacccggatc cttgatattt 2340
aatcggatgg ctcgcaatttt cttttccaa ttcacaatact caacaaactg cctggggcct 2400
gccgccgatg ttttataaatt atagctggtgg atctgcagcgc ggtcaggtcct 2460
ggcactgggggt cttttcctggac tagggcgggat gtctcagcat gtcacactttcctagg 2520
tgcagcgttt ccgtgagcttc tcggctctaa atcggtgagg cagacgtaatgg ctcgctggg 2580
caagccaaag cagcagctgg acatggtttc ctggggttcg gttgttacat cggcgtggg 2640
tttgaaatag cgttgaaaac ctcgttgcgct ccgcgtgcggt gcaggtatgtg 2700
gccgccaag cagatcggcag cagctgttaggt gttgttatctc tctagaagttg agaggtaatc 2760
cgcctggggggtg tggcggggtc gttgagttac ctcgtaatct ctgcgtggcc 2820
gccagcagca cccagcataa ctcgtagcag ctcgatagcag cttgcttcttt catgggtctt 2880
ttcgtgagct cccccctcgatttgctg cccagctacg tacgtatgat cagcctgcag 2940
tgctgctcct aagttgcagc cactgtggtg ttcgcctctc cccgctgcct ctcctgactct 3000
ghaaggtgc acoccaagtg tcttttccta ataaaaagag gaaatgatgt cgacattgtct 3060
gatgtagcgt cattcatttc tggggtttgg gttgggttcag gacagcaagg gggggagggt 3120
ghaagacact aggacggtatg cttgggtttgg gcgggggctct atggggttctgg aggggagagag 3180
aacagcttgg ggtccgacac ctcagatctata gatggcttcct ctccttttgg gcctcggctg 3240
ggtctggtct tgcagctggg cagagcgttact cagctcactaa aagggcggta atacggttag 3300
ccagacaaact acgggataac gcagagaaag gcaggtgagc aaaaaggcag caaaagggca 3360
ghaagctggtaa aaggggcggcct tggggtgtgct ttttctcaagg gtcgagccccc cctgagcagc 3420
atccacaaga tcagcaacatg ggccccagact ggcagctata taaagatcacc 3480
aggtgccccttc cccgataagc ctcctctctgt gcctcctctgt tccgcacccct cgccttaccg 3540
gatactgctgc cccctcttcct cctccgggaa gcgtgggctct tccctactgct taaagctgta 3600
ggctatccctg tctgggtgtgct gctgctccgct cccagcgggtg ctgggtgcac gcacctcccg 3660
tccagccgac cagctggtgct ttcctcgtgta actatgctct tgagttgcaac cgggtgaaac 3720
aagcttacact gcacttgccac gcaagcactgt gtaacaggtat cggacagagc cggatgtagt 3780
gccggtctacc agaggttggcc ctaactacggt ctaactacga agagaacctgt 3840
tttgtgtctc cgcctctgtct caggttcgctt aagccagttg cctttgggaa aagagttgggt aaggtcttctg 3900
cggggacac aacocgctgt gttggggtctg ttcgagcagc caggttccgt 3960
gagaaaaa aagatccttta gacttttggct gacgcttttc 4020
ggaagccagag ctaagtttggct cactagttta atcctatggt gatctatccct 4080
agatccttcttaa attaaaatgt gtagtttatct gtctactctc aagttatatat caggttattct 4140
gtgctgctgg tcagacagct ttcctcgtgta aagacgccat cccagactgt aagcttactct 4200
gtctctctac aagttgctcat ctc 4223

<210> SEQ ID NO 4
<211> LENGTH: 6
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic oligonucleotide

<400> SEQUENCE: 4

agatct

<210> SEQ ID NO 5
<211> LENGTH: 8
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic oligonucleotide

<400> SEQUENCE: 5
gcggccgc
1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)

8. A method of eliciting protective immunity against hemorrhagic fever with renal syndrome caused by HTNV, SEOV and/or DOBV viruses comprising administering a vaccine for HTNV, SEOV and DOBV comprising: SEQ ID NO: 1 in or on a carrier.

9. A method of inoculating a patient for HTNV virus and/or SEOV virus and/or DOBV virus, comprising administering an immunogenic amount of a vaccine for HTNV, SEOV and DOBV comprising: SEQ ID NO: 1 in or on a carrier.

10. The method of claim 9, wherein said administering is by intradermal or intramuscular injection, intradermal or intramuscular jet injection, intradermal or intramuscular electroporation, or particle mediated epidermal delivery.

11. A bivalent vaccine for HTNV and PUUV comprising a synthetic nucleic acid of SEQ ID NO: 1 and optimized PUUV DNA vaccine.

12. The bivalent vaccine of claim 11, wherein immunogenic amounts of said nucleic acid of SEQ ID No. 1 and said optimized PUUV DNA are administered using intramuscular or intradermal delivery devices.

13. A method of eliciting protective immunity against HTNV, SEOV, DOBV and PUUV comprising administering the bivalent vaccine of claim 11.

14. The method of claim 13, wherein said administering of said vaccine is by intradermal or intramuscular injection, intradermal or intramuscular jet injection, intramuscular or intradermal electroporation, or particle mediated epidermal delivery.

15. (canceled)
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)

25. A method of inducing a protective immune response against HTNV infection in a mammal, comprising the step of administering a vaccine of SEQ ID NO: 1

26. The method of claim 25, wherein said hantavirus is selected from the group consisting of Hantaan, Seoul, Dobrava.

27. (canceled)
28. (canceled)

29. A method of delivering a DNA vaccine for hemorrhagic fever with renal syndrome caused by Hantaan virus (HTNV); said DNA expressing codon-optimized envelope glycoprotein genes of HTNV set forth in SEQ ID NO. 1, comprising delivering said vaccine to a subject by nanoparticle encapsulation of the vaccine.

30. The method of claim 29, wherein said nanoparticle encapsulated vaccine is delivered by aerosol delivery.

31. (canceled)