PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/33216
GO6F 1/00, 12/14 Al

’ (43) International Publication Date: 12 September 1997 (12.09.97)

(21) International Application Number: PCT/CA96/00859 | (81) Designated States: CA, JP, European patent (AT, BE, CH, DE,

(22) International Filing Date: 19 December 1996 (19.12.96)

(30) Priority Data:
08/611,968 7 March 1996 (07.03.96) US
(71) Applicant: NORTHERN TELECOM LIMITED [CA/CAL

World Trade Center of Montreal, 8th floor, 380 St. Antoine
Street West, Montreal, Quebec H2Y 3Y4 (CA).

(72) Inventors: JOHNSON, Harold, Joseph; 4 Floral Place, Nepean,
Ontario K2H 6N7 (CA). GU, Yuan, Xiang; 90 Lightfoot
Place, Kanata, Ontarioc K2L 3L8 (CA). CHAN, Becky,
Laiping; 39 Depper Place, Ottawa, Ontario K1T 3L5 (CA).
CHOW, Stanley, Taihai; 3338 Carling Avenue, Nepean,
Ontario K2H 5A8 (CA).

(74) Agent: TOYOOKA, Yoshiharu; Northem Telecom Limited,
Patent Dept., P.O. Box 3511, Station "C", Ottawa, Ontario
K1Y 4H7 (CA).

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.

(54) Title: ENCODING TECHNIQUE FOR SOFTWARE AND HARDWARE

(57) Abstract

An encoding technique of the invention protects software programs
and hardware designs from being copied, tampered with, and its functions
from being exposed. The software programs and hardware designs
(collectivity called programs) thus encoded still remain executable. The
encoding technique employs the concept of complexity of programs and
produces proximity inversion in terms of functions contained in the
Various embodiments are
possible to achieve this encoding which includes, for example, cascading

programs, while preserving the behaviors.

and intertwining of blocks of the programs.

a ¢ = clock b
a ] l cl b l
Interiwining Intertwining
Function Function

(ORORIRC

&)

E 3
7
&)

4" over Intertwining

X @‘9 ¥ 1 2tevew '

Eps

X




applications under the PCT.
AM Armenia

AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

B) Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

Ci Cote d’Ivoire
CM Cameroon

CN China

cs Czechoslovakia
Ccz Czech Republic
DE Germany

DK Denmark

EE Estonia

ES Spain

FI Finland

FR France

GA Gabon

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya
Kyrgystan

Democratic People’s Republic

of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Sencgal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam




10

15

20

25

30

35

‘WO 97/33216 PCT/CA96/00859

ENCODING TECHNIQUE FOR SOFTWARE AND HARDWARE

Technical Field and Industrial Applicability
The present invention is directed generally to a construction

process for software programs or hardware designs so that the
intelligence contained therein is protected from being discovered or
tampered with. In particular, an executable program design is encoded
by the processes of cascading and intertwining in addition to periodic
checking code insertion so that the encoded program design is
protected yet remains executable.

Background Art
The need to protect information contained in software programs

and hardware designs, or to provide tamper protection, is not new.
Many mechanisms have been applied to achieve such objectives.

The article entitled “Operating System Protection Through
Program Evolution” by F. B. Cohen in Computer & Security, Vol. 12,
(1993) pp. 565-584 proposes such a mechanism. It describes attacks and
defense of a computer operating system, as follows:

“One of the major factors in the successful application of

information protection techniques is the exploitation of

computational advantage. Computational advantage shows up
historically in cryptography, where Shannon’s theory clearly
demonstrates the effect of “workload” on the complexity of
cryptanalysis, and introduces the concept of diffusion and
confusion as they relate to statistical attacks on cryptosystems.

Most modern cryptosystems exploit this as their primary

defenses. The same basic principle applies in computer virus

analysis in which evolutionary viruses drive the complexity of
detection and eradication up dramatically and in password
protection in which we tray to drive the number of guesses
required for a successful attack up by limiting the use of obvious
passwords. One of the major reasons attacks succeed is because
of the static nature of defense, and the dynamic nature of attack.”

(page 565)

“The ultimate attack against any system begins with physical

access, and proceeds to disassembly and reverse engineering of



10

15

20

25

30

35

WO 97/33216

whatever programmed defenses are in place. Even with a
cryptographic key provided by the user, an attacker can modify
the mechanism to examine and exploit the key, given ample
physical access. Eventually, the attacker can remove the defenses
by finding decision points and altering them to yield altered
decisions.” (page 565-66)

“Without physical protection, nobody has ever found a defense
against this attack, and it is unlikely that anyone ever will. The
reason is that any protection scheme other than a physical one
depends on the operation of a finite state machine, and
ultimately, any finite state machine can be examined and
modified at will, given enough time and effort. The best we can
ever do is delay attack by increasing the complexity of making
desired alterations.” (page 566)

“The ultimate defense is to drive the complexity of the ultimate
attack up so high that the cost of attack is too high to be worth
performing. This is, in effect, security through obscurity, and it
is our general conclusion that all technical information
protection in computer systems relies at some level either on
physical protection, security through obscurity, or combinations
thereof.

The goal of security through obscurity is to make the difficulty of
attack so great that in practice it is not worth performing even
though it could eventually be successful. Successful attacks
against obscurity defenses depend on the ability to guess some
key piece of information. The most obvious example is attacking
and defending passwords, and since this problem demonstrates
precisely the issues at hand, we will use it as an example. In
password protection, there are generally three aspects to making
attack difficult. One aspect is making the site of the password
space large, so that the potential number of guesses required for
an attack is enormous. The second aspect is spreading the
probability density out so that there is relatively little advantage
to searching the space selectively. This is basically the same as
Shannon's concept of diffusion. The third aspect is obscuring
the stored password information so that the attacker cannot

PCT/CA96/00859



10

15

20

25

30

35

WO 97/33216 PCT/CA96/00859
3

simply read it in stored form. This is basically the same as
Shannon’s concept of confusion.” (page 566)
The article proposes an evolutionary defense as follows:

“A more practical solution to this problem might be the use of

evolutionary defenses. To make such a defensive strategy cost

effective for numerous variations (e.g. one per computer
worldwide), we probably have to provide some sort of
automation. If the automation is to be effective, it must produce

a large search space and provide a substantial degree of

confusion, and diffusion. This then is the goal of evolutionary

defenses.

Evolution can be provided in many ways and at many different

places, ranging from a small finite number of defenses provided

by different vendors, and extending toward a defensive system
that evolves itself during each system call. With more
evolution, we get less performance, but higher cost of attack.

Thus, as in all protection functions, there is a price to pay for

increased protection. Assuming we can find reasonably efficient

mechanisms for effective evolution, we may be able to create a

great deal of diversity at practically no cost to the end-user, while

making the cost of large scale attack very high. As a very
pleasant side effect, the ultimate attack may become necessary for
each system under attack In other words, except for endemic
flaws, attackers may again be reduced to a case-by-case expert
attack and defense scenario involving physical access.”

(page 567)

A large number of patents exist which describe various ways of
protecting software and/or hardware and information contained
therein. The following are only a few examples of patents in the
related field.

According to U.S. Patent No. 4,525,599 issued on June 25, 1985 to
Curran et al. and entitled “Software Protection Methods and
Apparatus”, in order to protect copying of ROM-resident software a
protection circuit includes encryption/decryption means which is
coupled between the microprocessor and ROM memory.

According to U.S. Patent No. 4,634,807 issued on January 6, 1987
to Chorley et al. and entitled “Software Protection Device”, in order to



10

15

20

25

30

35

WO 97/33216 PCT/CA96/00859

4

prevent the unauthorized copying of software a software module of
this invention is encrypted using DES and the key is encrypted using
the public key of a public/private key algorithm.

In U.S Patent No. 4,740,890 issued on April 26, 1988 to William
and entitled “Software Protection System With Trial Period Usage
Code and Unlimited Use Unlocking Code Both Recorded on Program
Storage Media”, after the trial period, the disk becomes inoperable as
the system will prevent further use of the program until a proper
locking code is inserted.

U.S. Patent No. 4,866,769 issued on September 12, 1989 to Karp
and entitled “Hardware Assist for Protecting PC Software” describes a
copy protection technique of PC software. By this technique, a unique
ID is stored in ROM of a personal computer in which software on a
diskette is to be used. This ID is accessible to the user of the computer.
A vendor who wishes to protect his diskette-distributed software from
illegal copying or use provides a source ID on the diskette.

According to U.S. Patent No. 4,903,296 issued on February 20,
1990 to Chandra et al. and entitled “Implementing a Shared Higher
Level of Privilege on Personal Computers for Copy Protection of
Software”, the original medium is functionally unreproducible until it
is modified by the execution of a program stored in a tamperproof co-
processor which forms a part of the computing machine.

The license management system of U.S. Patent No. 4,937,863,
issued on June 26, 1990 to Robert et al. and entitled “Software Licensing
Management System”, maintains a license unit value for each licensed
program and a pointer to a table identifying an allocation unit value
associated with each use of the licensed program. In response to a
request to use a licensed program, the license management system
responds with an indication as to whether the license unit value
exceeds the allocation unit value associated with the use.

U.S. Patent No. 5,047,928 issued on September 10, 1991 to
Wiedemer and entitled “Billing System for Computer Software”
teaches a billing system in which the application program is enciphered
in accordance with an algorithm driven by a numeric key. The user’s
computer is provided with a hardware security module and a
removable billing module, both of which carry unique codes.



10

15

20

25

30

35

WO 97/33216 PCT/CA96/00859
5

The system of U.S. Patent No. 5,123,045, issued on June 16, 1992
to Ostrovsky and entitled “Comprehensive Software Protection
System”, provides pattern of access protection to memory during
execution of a program and also provides protection of the data stored
in memory. The patent describes a data processing system which
includes a plurality of “buffer” data structures for storing encrypted
software and data in unprotected memory. The software and data are
stored in accordance with pseudo-random mapping such that the
pattern of access during execution of the program reveals no
information to adversarial observers. The scheme is secure assuming
the existence of a physically shielded chip containing a constant
number of registers and the existence of any one-way function.

In U.S. Patent No. 5,212,728 issued on May 18, 1993 to Glover et
al. and entitled “Dynamic Trace Elements”, tracer circuitry connects to
the rest of the circuitry of a product but its function has nothing to do
with the actual operation of the product. One or more lines of tracer
code are embedded in lines of real code. The tracer software code
interacts with the tracer circuitry. Even though the tracer software code
does nothing with respect to the running of the real software code, it
reacts with actual hardware, i.e. the tracer circuitry. A copier who has
disassembled the program would have considerable difficulty in
determining this fact. In another embodiment, one or more lines of
tracer codes can be embedded in the real code but they interact with
lines of real code to produce results which are not related to the
operation or running of the real code.

In the protection scheme of U.S. Patent No. 5,287,407, issued on
February 15, 1994 to Holmes and entitled “Computer Software
Protection”, a master copy of a software file has within it a
predetermined block of data. When a copy of the file is made, that
block of data within the copied file is located and overwritten with data
identifying the copied file. When an unauthorized copy is found, the
data identifying the copy can be read and the source of the
unauthorized copy may be traced.

Generally speaking, protection techniques including some of
those discussed above can be understood, basically, as applying the
opposites of “clear design” principles. In engineering software or
hardware, there are certain principles which are applied to make the



10

15

20

25

30

35

WO 97/33216 PCT/CA96/00859

design clear, understandable, manageable, and well organized. In
software, such principles are called “principles of software
engineering”. Now, plainly, if application of a set of principles makes
designs easier to understand and modify, then application of their
opposites is likely to make designs harder to understand and modify.

In software, for example, the choice of mnemonic variable
names which suggest the actual uses of the variables is important to
program understanding. Hence choosing variable names which either
suggest nothing about their use, or suggest a use different from actual
uses, would make understanding and modifying the software more
difficult.

Let us call the reverse application of “clear design principles” by
the name “anti-clear design”.

The present invention is analogous in purpose and intended
effect with such approaches, that is to say, both “anti-clear design”
approaches and the present invention are intended to protect
intellectual property and frustrate (effective) tampering. However, the
basis for the instant inventive process is not in applying the opposites
of “clear design principles”. The invention differs in two profound
ways from such previous approaches.

Firstly, the previous approaches don't work against a truly
determined attack. Many kinds of obfuscation are easily penetrated in
“anti-clear design” approaches by the kinds of analysis tools found in,
for example, data flow analyzers, optimizing compilers, or program
slicing tools.

Secondly, the instant process is founded on notions from the
Kolmogorov complexity and computational graph theory, not on
reversing the rules of thumb from software engineering or the
principles of clear hardware design. Hence where the kinds of
operations employed in an “anti-clear design” process are shallow and
local, those involved in the instant process are deep and global.

The Kolmogorov complexity theory provides a way of
measuring the “essential” information content of a piece of
information (of any kind). In ordinary information theory, for
example, the information represented by sending a message consisting
of the binary encoding of the number p=3.14156... is infinite: there are
infinitely many digits and the number is non-repeating. However, the



10

15

20

25

30

35

WO 97/33216

7

essential information is not infinite: it is possible to define the string
of digits in terms of a small program which computes as many digits of
p as desired. Since the program is small, the amount of “essential”
information in p is also small. In the present disclosure, we use
analogous notation to deal with the essential complexity of a computer
program P and the essential complexity of deriving another program Q
from a program P. For an introduction to Kolmogorov complexity,
reference can be made to the “Handbook of Theoretical Computer
Science”, Elsevier/MIT Press, ISBN 0-444-88074-7 (Volume A, Chapter
4).

Extending this concept, we can measure the magnitude of the
difference between programs by what we call the Kolmogorov directed
distance between them. For any fixed program alphabet and encoding
method, the Kolmogorov directed distance from program P to program
Q is defined as the length of the smallest program which takes P as
input and yields Q as output. Although this distance will vary from
one encoding to another, the variations are sharply restricted according
to the invariance theorem of the Kolmogorov complexity theory.
Reference can also be made to “An Introduction to Kolmogorov
Complexity and its Applications” by Ming Li and Pau Vitanyi, ISBN 0-
387-94053-7: Section 2.1: “The Invariance Theorem”. Note the quote
in Example 2.2: “The Invariance Theorem in fact shows that, to express
an algorithm succinctly in a program, it does not matter which
programming language we use (up to a fixed additive constant that
depends only on the two programming languages compared)”.

A design of the kind produced by the process of the invention is
analogous to an encrypted message, where discovery of the message
without knowledge of the key is possible in principle, but is so difficult
in practice that the message is only very rarely discovered without the
key. Despite the analogy with cryptography in terms of purpose and
intended effect, however, the invention is not cryptographic. A
software program or hardware device resulting from the present
process is executable “as is”: its information does not need to be
decoded for use. The process takes information which is executable
(software which can be run on a computer or a hardware design which
can be used to produce an integrated circuit or other hardware device),

PCT/CA96/00859



10

15

20

25

30

35

WO 97/33216 PCT/CA96/00859

and transforms it into a new form which is still executable, but which
protects the content from both disclosure and tampering.

The process preserves the value of designs: there is no need for
decryption to recover the value, and no need for a key to access the
value. An encrypted message, however, has value only in connection
with its key, and its value (the information in the message) can only be
obtained by decryption. Without the key or decryption, the encrypted
message itself is of no practical value. Designs encoded according to the
invention are useful in themselves with no key: encrypted messages
are useful only with a key and only when decrypted.

Objects of the Invention

It is therefore an object of the invention to provide a process of
encoding an executable program design for security protection.

It is another object of the invention to provide a process of

encoding an executable program design for tamper protection and
concealment of information contained therein such that the encoded
program design remains executable.

It is a further object of the invention to provide a process of
encoding an executable program design for tamper protection and
concealment of information contained therein while the encoded
program design remains executable.

It is yet a further object of the invention to provide a process of
encoding an executable program design for tamper protection and
concealment of information contained therein while the encoded
program design remains executable but contains a trap which may be
activated to render the program design non-executable.

Disclosure of the Invention

Briefly stated the invention is directed to a process of encoding
an executable program design for tamper protection and concealment
of information contained therein such that the encoded program
design remains executable. According to one aspect of the invention,
the process comprises steps of providing one or more different
program designs which are each similar to the executable program
design as a whole or in part, each program design having sufficient
length and width for a desired security level. The process further



10

15

20

25

30

35

WO 97/33216 PCT/CA96/00859

9

includes a step of intertwining the executable program design and the
one or more different program designs so that outputs of the encoded
executable program design depend upon all the inputs of the executable
program design and different program designs.

According to another aspect of the invention, the process
comprises steps of generating one or more checking cascades which are
each similar to the executable program design, each checking cascade
having sufficient length and width for a desired security level. The
process includes further steps of inserting periodic checking codes
distributed over the checking cascades, the checking codes monitoring
expected output of the checking cascades at predetermined points in the
executable program design, and of intertwining the executable program
design and the checking cascades so that outputs of the encoded
executable program design depend upon all the inputs of the executable
program design and checking cascades.

According to another aspect of the invention, the process
includes further steps of generating a clocking cascade which carries a
tampering flag and a clock which is advanced at least one tick per non-
branching program step, the tampering flag to be set when the match is
not found, and intertwining the executable program design, clocking
cascade and checking cascade.

According to another aspect of the invention, the process
includes a further step of adding a history checking code.

According to yet another embodiment of the invention, the
process includes an additional step of appending a trap code to the
clocking cascade, the trap code to be executed in response to the
Boolean tampering flag and the clock.

In this application, we deal only with programs with unaliased
data accesses, that is, those representable as “pure” Data-Flow graphs.
Aggregate data can readily be handled by well known transformations
which convert aggregate data into scalar data plus conditional code.
This transformation can be performed before encoding according to the
instant invention.

Brief Description of the Drawings
Figure 1 is a schematic box of an operation node found in a
program design;




10

15

20

25

30

35

WO 97/33216 PCT/CA96/00859

10

Figure 2 is a schematic illustration of an example network of the
operation node;

Figure 3 is an example of simple program design which is
partitioned into basic blocks;

Figure 4 shows that there are many cascades which are similar to
the original program design;

Figure 5 shows a simple instance where two strands of
operations, e.g. original program design and the clock, are combined;

Figure 6 shows schematically an example of intertwining; and

Figure 7 shows schematically a similar intertwining involving
an operation of addition.

Mode(s) for Carrying Out the Invention

As stated earlier, a software program or a hardware design
(hereinafter called simply program) such as a netlist for an integrated

circuit, is pure information. As such, it can obviously be changed by
any recipient. However, there is a difference between an arbitrary
change (for example, deletion or destruction of a program is certainly a
change) and an effective change. The intent when altering a program
is normally to create a new program which is behaviorally similar to
the original, but behaviorally modified in a way useful to the modifier.
For example, a program - say, a word processor — may be provided as a
free sample to a potential customer, and may be so designed to run as a
word processor until a certain date in the near future. A useful
modification for the recipient would be to change that date into one far
in the future, thereby obtaining permanent access to the word
processor.

In this disclosure, a program is called effectively immutable if its
nature is such that performing any such behaviorally small, but non-
superficial, recipient-useful change from the design is exceedingly
difficult - difficult enough to discourage even a very determined
recipient.

The view of a program taken in this disclosure is based on a
standard view used in optimizing compilers, but modified to allow
parallel transfers of control. The “program” could as easily be netlists
for integrated circuits as a software source for software programs, or
VHDL description for hardware. It should also be noted that a



10

15

20

25

30

35

WO 97/33216 PCT/CA96/00859

11

“process” refers to the execution or operation of a program, normally
consisting of a collection of steps.

A common representation found in many optimizing compilers
for sequential languages is described in “Compilers: Principles,
Techniques and Tools” by Alfred V. Aho, Ravi Sethi, and Jeffrey D.
Ullman, ISBN 0-201-10088-6. In Section 9.4: "Basic blocks and flow
graphs", this book describes how ordinary code can be regarded as a
series of data-flow networks comprising operation nodes connected by
data links (arcs, edges). The operation nodes are nodes with one or
more in-ports and one or more out-ports. Each out-port of an
operation node may be connected to one or more in-ports of some
operation node.

Figure 1 shows an operation node in which the in-ports 1, 2 and
3 are on the inside of the box and out-ports 1 and 2 are on the outside.
In-ports and out-ports are numbered sequentially. The name of the
operation node, a description of it, or both, may appear on the inside of
the box. An operation node does nothing until it has a value on each
of its in-ports and no value on any of its out-ports. At that point, it is
enabled to “fire”, placing a value on each of its out-ports. When an
out-port is connected to one or more in-ports such that all of the in-
ports are empty, the value at the sending end (out-port) may be
transferred to the receiving end (in-port). This clears the out-port.

An operation node is connected to other operation nodes by
means of data links (arc, edges) to form data-flow networks. Figure 2
illustrates by way of example one implementation of a GateAdd
network. The network awaits a clock synchronization signal on in-port
1 and InData values, e.g. a and b, on in-ports 2 and 3. When all are
present, it fires a yielding signal on out-port 1. This network is a
synchronous (clocked) adder made up of asynchronous ones.

This view of programs which is the basis for the PROGRAM
MODEL used in this disclosure, with the addition of invocation
operations which can cause sub-programs to be executed. A
PROGRAM, then, has a standard 2-level representation as a control-
flow graph where nodes of the control-flow graph represent basic
blocks (BB’s), and embed acyclic data-flow graphs (DFG) which are the
computations performed in those basic blocks. There is a distinct
“start” basic block where execution begins and on whose in-ports the



10

15

20

25

30

35

WO 97/33216 PCT/CA96/00859

12

inputs to the program are placed. An initial state (initial values to be
placed in some of the program's entry ports before execution starts) is
also allowed.

Figure 3 depicts an example of a program which is partitioned
into BBs, each of which is shown by a box. For illustration purposes, it
includes a loop BB and an “if” statement BB to indicate that if a certain

~ condition is met, execution loops.

With the above view of BBs, a BB is a sequence of consecutive
statements in which flow of control enters at the beginning and leaves
at the end without halt or possibility of branching except at the end.
Therefore a BB represents an unconditional, non-looping code
sequence similar to a “straight-line” code sequence in sequential
languages.

BBs are connected together, that is to say, links (arcs, edges)
connect some exit ports of some BBs to some entry ports of other BBs.

An INVOCATION OPERATION copies a ROUTINE (creating a
routine “instance”), placing the values on its in-ports on the entry
ports of the instance. INVOCATION OPERATIONS comprise CALL
OPERATIONSs and FORK OPERATIONs. A CALL OPERATION, once it
initiates the execution of an instance of a routine, awaits termination
of the instance, and then places the values on the exit ports of the
instance on its corresponding out-ports. Hence a CALL OPERATION
corresponds to a procedure or function call. A FORK OPERATION
does not await termination of the instance, and when the instance
terminates, it is simply discarded. Hence a FORK OPERATION
corresponds to process/task creation.

Irrespective of the degree of parallelism in the program, it can be
considered to execute as a series of 'essentially’ sequential processes,
where a process is either the execution of the MAIN routine and the
routines it calls, or the execution of a process (routine instance)
activated by a FORK operation or the routines it calls. A process other
than the MAIN process can only be generated by use of the FORK
OPERATION. The parallelism in the program is collapsed into a single
sequential stream of processes; this is widely implemented in any of
the multi-tasking operating systems.



10

15

20

25

30

35

WO 97/33216

13

This view is suitable for many hardware designs because:

1. Extensive (but bounded) parallelism internally within each
process is allowed.

2. The grain of processes generated by FORK OPERATION can be
arbitrarily small, down to the level of a single operation node.
Many hardware designs, and programs in high-level sequential

or parallel programming languages and representing shared memory,

message passing, and distributed designs, can be encoded in the above
form, as well as programs in lower level form such as assembly
language.

A PROGRAM comprises a MAIN ROUTINE plus a set of other
routines, plus an INITIAL STATE giving values for some of the
ENTRY PORTs of the program. Execution begins with values
according to the INITIAL STATE on the specified entry ports, and the
INPUT to the program in the other ENTRY PORTSs of the program.

The encoding process according to the invention must achieve
behavior preservation and proximity inversion. Hereinafter, this
encoding of the invention is called EIS (Effectively Immutable Software
and Hardware) encoding and achieves the objects mentioned earlier.
Throughout this specification, EIS or EIS encoding is used for the sake
of brevity in place of Effectively Immutable Software and Hardware
Encoding,.

Proximity Inversion:
A program P is proximity inverting if any small change in P
must cause a large change in the behavior of P.

An EIS encoding takes an ordinary program P, and outputs a
proximity inverting program Q with the same behavior as P. In some
sense, the “clear design principles” are aiming to preserve proximity,
even to create regions (typically called modules) to limit proximity. As
discussed previously, “anti-clear” design does not guarantee proximity
inversion, it merely does not actively prevent it.

Cascade:
A cascade is an acyclic DFG such that each of the output ports
depends on all of the input ports. The intent is that changing

PCT/CA96/00859



10

15

20

25

30

35

WO 97/33216

14

any input value will change almost all of the output values,
with high probability. In other words, a cascade is a block of
computation such that each of the outputs is dependent on all of
the input. Another way is to look at the dependency graph of
the cascade: it will be one single dense graph with no
independent sub-graphs.

Cascades are primarily used as a “back-bone” of the dense
dependency graph. That is, the cascades for each basic block are
connected together using the control graph, thus forming a
program that parallels the original program, but has a dense and
complex dependency. As the only interest is in the dependency
graph, the result of the computation does not really matter. As
seen in Figure 4, it is possible to generate various cascades which
are similar to the original program, such as the clock cascade,
checking cascades C1 and C2 etc.

The original program is then intertwined with these cascades,
thereby “hiding” the original dependency graph. In other words,
the original dependency graph (which can be very regular
and/or simple) is “merged” into an artificially constructed
monstrosity. This makes it extremely difficult to recover the
original dependency graph (thus defeating one of the major
avenues of reverse engineering).

Some measures of the “goodness” of a cascade are:

- for each opnode, the number of outputs affected by it; and

- for each opnode, the number of subsequent opnodes affected
by it.

A simple way of constructing a cascade is to use a shuffle
network of the desired size, for example a Banyan network.
Replace each of the 2 X 2 switch elements with an intertwining
function of 2 inputs and 2 outputs. This resultant network will
be a cascade. Even though it is sufficient to use cascades with
regular structure, it is obviously desirable to use cascades with
irregular structure.

PCT/CA96/00859



10

15

20

25

30

35

WO 97/33216

15

Intertwining Functions:

A M->N (from M to N) intertwining function F is a function
with M inputs and N outputs. F is required to be (almost always)
invertable and each of the outputs depend on all of the inputs.
More formally: an intertwining function is a sub-DFG with
multiple inputs and outputs such that every output is a function
of more than one input, and the aggregate function from the
inputs to the outputs is invertable (i.e., preserves information)
with high probability. Such functions are used for several
purposes:

(1) to create cascades: clearly, to construct a cascade, one only needs to

connect together some intertwining function in a way that
defuses the dependencies. For example, a Banyan network or
any other shuffle network.

(2) to increase the density of interdependencies in the program: say

there are independent strands of computation (i.e., the output of
one does not depend on the input of the other); we can combine
the little dependency graphs into a big dependency graph by
intertwining the inputs to the strands. Figure 5 shows a simple
case with two strands: the original program and the clock.
Figure 6 shows the result of applying one single intertwining.

(3) to change the domain of computation: this is best explained by an

example. Consider the DFG in Figure 5. The computation is
clearly visible as “a+b”. Figure 7 shows the same program with
two instances of intertwining and how “arithmetic over
intertwining” is done. For simplicity of explanation, the clock
calculation is ignored and a single intertwining function is used:
(a,b) -> (a+b, a-c); that is, the two inputs are “a” and “b’, and the
outputs are “a+b”, and “a-b”. This operation is analogous to the
modulation function used in FM stereo broadcast to encode the
left and right channels. “a+b” is the main signal that is
receivable by mono receivers, while the “a-b” signal is used by
stereo receivers to recover the original channel signals “a” and
“b”.

PCT/CA96/00859



10

15

20

25

30

35

WO 97/33216 PCT/CA96/00859

16

First, two pairs of inputs (a,c) and (b,c) are intertwined,
producing four intermediate results labeled t,u,v,w. Note that
(t,u) encodes the values of a and ¢, and (v,w) encodes b,c. Only
the encoded values need be operated on to produce the desired
sum s=a+b. The output (x, y) then encodes the value of s and
subsequent calculation can do arithmetic in the same way, so the
actual value of a+b does not appear in the program which has
been encoded by EIS encoding (indeed, the variables “a” and “b”
never appeared together at all). The algebraic calculation can be
followed as shown below:

t = a+¢
u = a-c¢
v = b+c
w = b-c

Solving for the input variables as a function of the intermediate
variables:
a = (t+u)/2
¢ = (t-u)/2 or (v-w)/2
b = (v+w)/2
Simplifying “y”:
y = 2t+v+w
= t+w+vV+w)+(t-u
= 2*(@a+b+0)
= 2*(s+0)
Similarly, simplifying “x
X = 2u+v+w
= (t+w+v+w)-(t-u)

= 2*(@a+b-q)
= 2*(s-0)
therefore:
x+y = 2*(s+0)+2*s-0)
= 2*(2s)
= 4s
or:

s = (x+y)/4



10

15

20

25

30

35

WO 97/33216 PCT/CA96/00859

17

According to another embodiment, the process includes further
steps of adding a history checking code, which is used to detect
tampering with the execution path (for example, by using a debugger to
change the values controlling a conditional branch), and intertwining
the code with the original executable program design and other
components as disclosed herein.

History can be checked by introducing two variables: "come-
from" and "go-to". At the end of each basic block, before the jump, the
two variables would be set to the two end points of the jump. At the
beginning of each basic block, a code is inserted to check that "go-to"
indeed points to where there is actual execution and then "come-from"
is one of the legitimate precedents.

According to the invention, the EIS encoding process is
performed as described below. Steps in the process all refer to a
random bit-stream for the purpose of making decisions. They
consume this random stream as decisions are made. The random bit
stream thus functions as a “one time pad” in cryptography, except that
no decryption is normally ever required (nor is it possible in most
cases). For maximum security, a source of true randomness should be
used, but a good pseudo-random source will work reasonably well (and
be more repeatable for testing purpose).

Following is the detailed algorithm for one embodiment of the
invention.

100: Initialization:

120:  Prepare the input program by turning it into DFG (Data

Flow Graph).

140: Clock and TamperFlag strategy:
- decide if duplicate clocks are needed, etc.
- add Clock/TamperFlag initialization code to each entry BB
- generate some number of clock cascades: e.g. different
ways of incrementing, different amounts of increment,
etc.

160: Cascade strategy:
- decide on how many copies of different cascades
- decide on width and length of each cascade



10

15

20

25

30

35

WO 97/33216

200:

300:

18

180: Generate Trap code: (used to jail upon detection of
tampering)
- decide on how many different trap code loops to generate
- generate random basic blocks that are similar to the
original program (e.g., copy an original BB and perturb it a
little).

Add cascades to each BB:
220: Pick a clock cascade and make a copy for this BB
240: Generate checking cascades
- entry BB’s need to initialize the cascades (probably with
random data values)
- non-entry BB’s inherit values from predecessor BB’s and
can add random constants as well
- matched pairs of checking cascades need to have matched
input values as well
260: Replace all original constants with a randomly generated
equivalent, e.g. 37 can be replaced by 25 + 12.

Intertwine each BB
320: Insert checks and traps as needed:
- if cascades computed values different from expected, set
TamperFlag and start a timer
- if TamperFlag is set and timer has expired, go to trap code.
340: Initialize the “wavefront” of computations that are eligible
to fire (because all their input values are already computed
and all other ordering constraints are satisfied).
360: Pick a random pair of values from the ready wavefront for
intertwining:
- random decoy computation is added to ensure the
computations pair up for intertwining
- random decoy computation is also added to hide the true
dependency graph.
361: Given a pair of values:
- pick a random intertwining function
- replace the two separate computations with the single
computation of the intertwining function.

PCT/CA96/00859



WO 97/33216 PCT/CA96/00859
19

380: Update wavefront:
- if wavefront is not empty, go to step 360.



10

15

20

25

30

35

WO 97/33216

20

WHAT IS CLAIMED IS:

1. A process of encoding an executable program design for
tamper protection and concealment of information contained therein
such that the encoded program design remains executable comprising
steps of:

a) providing one or more different program designs which are
each similar to said executable program design as a whole or in part,
each program design having sufficient length and width for a desired
security level; and

b) intertwining said executable program design and said one or
more different program designs so that outputs of said encoded
executable program design depend upon all inputs of said executable
program design and different program designs.

2. A process of encoding an executable program design for
tamper protection and concealment of information contained therein
such that the encoded program design remains executable comprising
steps of:

¢) generating one or more checking cascades which are each
similar to said executable program design, each checking cascade
having sufficient length and width for a desired security level;

d) inserting periodic checking codes distributed over said
checking cascades, said checking codes for monitoring expected output
of said checking cascades at predetermined points in said executable
program design; and

e) intertwining said executable program design and said
checking cascades so that outputs of said encoded executable program
design depend upon all inputs of said executable program design and
checking cascades.

3. The process of encoding an executable program design
according to claim 2 wherein each of the one or more checking cascades
contains two or more identical copies of each checking cascade so that
the outputs of the identical copies can be checked for matching.

PCT/CA96/00859



10

15

20

25

30

35

WO 97/33216

21

4. The process of encoding an executable program design
according to claim 3 comprising further steps of:

f) generating a clocking cascade which carries a tampering flag
and a clock, which are advanced at least one tick at one or more
selected points of a selected set of branching program steps; and

g) intertwining said executable program design, clocking cascade
and checking cascade.

5. The process of encoding an executable program design
according to claim 4 comprising a further step of:

h) appending a trap code at one or more selected points of the
program design, said trap code to be executed in response to said
tampering flag and clock in that execution of said trap code is so
constructed as to cause cessation of normal execution.

6. The process of encoding an executable program design
according to claim 5 comprising a further step of:

i) appending one or more trap codes to said clocking cascade,
each trap code to be executed in response to said tampering flag and
clock; and

j) for each trap code, repeating steps d) and e) recursively so that
each trap code is also tamper protected.

7. The process of encoding an executable program design
according to claim 5 wherein execution of said trap code is so
constructed as to cause one or any of the following steps to be
performed in a predetermined order:

(1) emitting a warning message and terminating execution of
said program design;

(2) terminating abnormally execution of said program design
without a warning message; and

(3) executing a program which loops indefinitely within the said
trap code.

8. The process of encoding an executable program design
according to claim 6 wherein execution of said trap code is so

PCT/CA96/00859



10

15

20

25

30

35

WO 97/33216

22

constructed as to cause one or any of the following steps to be
performed in a predetermined order:

(1) emitting a warning message and terminating execution of
said program design;

(2) terminating abnormally execution of said program design
without a warning message; and

(3) executing a program which loops indefinitely within the said
trap code.

9. The process of encoding an executable program design
according to claim 1 comprising a further step of:

controlling the intensity of intertwining to vary the security and
performance of said encoded program design.

10. The process of encoding an executable program design
according to claim 2 comprising a further step of:

controlling the intensity of intertwining to vary the security and
performance of said encoded program design.

11. The process of encoding an executable program design
according to claim 3 comprising a further step of:

controlling the intensity of intertwining to vary the security and
performance of said encoded program design.

12. The process of encoding an executable program design
according to claim 4 comprising a further step of:

controlling the intensity of intertwining to vary the security and
performance of said encoded program design.

13. The process of encoding an executable program design
according to claim 5 comprising a further step of:

controlling the intensity of intertwining to vary the security and
performance of said encoded program design.

14. The process of encoding an executable program design
according to claim 6 comprising a further step of:

PCT/CA96/00859



10

15

20

25

30

35

WO 97/33216

23

controlling the intensity of intertwining to vary the security and
performance of said encoded program design.

15. The process of encoding an executable program design
according to claim 4 comprising a further step of:

controlling the width and multiplicity of any of said checking
and clocking cascades to vary the security and performance of said
encoded program design.

16. The process of encoding an executable program design
according to claim 5 comprising a further step of:

controlling the width and multiplicity of any of said checking
and clocking cascades to vary the security and performance of said
encoded program design.

17. The process of encoding an executable program design
according to claim 6 comprising a further step of:

controlling the width and multiplicity of any of said checking
and clocking cascades to vary the security and performance of said
encoded program design.

18. The process of encoding an executable program design
according to claim 2 comprising a further step of:

controlling the width and multiplicity of cascades of one or more
selected basic blocks which are more vulnerable to attack to vary
further the security and performance of said encoded program design.

19. The process of encoding an executable program design
according to claim 3 comprising a further step of:

controlling the width and multiplicity of cascades of one or more
selected basic blocks which are more vulnerable to attack to vary
further the security and performance of said encoded program design.

20. The process of encoding an executable program design
according to claim 4 comprising a further step of:

PCT/CA96/00859



10

15

20

25

30

35

WO 97/33216

24

controlling the width and multiplicity of cascades of one or more
selected basic blocks which are more vulnerable to attack to vary
further the security and performance of said encoded program design.

21. The process of encoding an executable program design
according to claim 5 comprising a further step of:

controlling the width and multiplicity of cascades of one or more
selected basic blocks which are more vulnerable to attack to vary
further the security and performance of said encoded program design.

22. The process of encoding an executable program design
according to claim 6 comprising a further step of:

controlling the width and multiplicity of cascades of one or more
selected basic blocks which are more vulnerable to attack to vary
further the security and performance of said encoded program design.

23. The process of encoding an executable program design
according to claim 2 comprising a further step of:

controlling the intensity of intertwining of cascades of one or
more selected basic blocks which are more vulnerable to attack to
further vary the security and performance of said encoded program
design.

24. The process of encoding an executable program design
according to claim 3 comprising a further step of:

controlling the intensity of intertwining of cascades of one or
more selected basic blocks which are more vulnerable to attack to
further vary the security and performance of said encoded program
design.

25. The process of encoding an executable program design
according to claim 4 comprising a further step of:

controlling the intensity of intertwining of cascades of one or
more selected basic blocks which are more vulnerable to attack to
further vary the security and performance of said encoded program
design.

PCT/CA96/00859



WO 97/33216 PCT/CA96/00859
' 25

26. The process of encoding an executable program design
according to claim 5 comprising a further step of:

controlling the intensity of intertwining of cascades of one or
more selected basic blocks which are more vulnerable to attack to
further vary the security and performance of said encoded program
design.

27. The process of encoding an executable program design
according to claim 6 comprising a further step of:

controlling the intensity of intertwining of cascades of one or
more selected basic blocks which are more vulnerable to attack to
further vary the security and performance of said encoded program
design.

28. The process of encoding an executable program design
according to claim 5 comprising a further step of:

inserting a clock setting and clock reading code into said
periodically inserted checking codes, with a trap code to be executed in
response to said tampering flag and the read value of said clock, thereby
introducing a variable time delay before said trap code is executed.

29. The process of encoding an executable program design
according to claim 6 comprising a further step of:

inserting a clock setting and clock reading code into said
periodically inserted checking codes, with a trap code to be executed in
response to said tampering flag and the read value of said clock, thereby
introducing a variable time delay before said trap code is executed.

30. The process of encoding an executable program design
according to claim 1 comprising a further step of:

locating security entry and exit cells of a non-branching program
step; and

controlling the width and multiplicity of said associated cascades
to increase the security of said encoded program design.

31. The process of encoding an executable program design
according to claim 2 comprising a further step of:



10

15

20

25

30

35

WO 97/33216

26

locating security entry and exit cells of a non-branching program
step; and

controlling the width and multiplicity of said associated cascades
to increase the security of said encoded program design.

32. The process of encoding an executable program design
according to claim 3 comprising a further step of:

locating security entry and exit cells of a non-branching program
step; and

controlling the width and multiplicity of said associated cascades
to increase the security of said encoded program design.

33. The process of encoding an executable program design
according to claim 4 comprising a further step of:

locating security entry and exit cells of a non-branching program
step; and

controlling the width and multiplicity of said associated cascades
to increase the security of said encoded program design.

34. The process of encoding an executable program design
according to claim 5 comprising a further step of:

locating security entry and exit cells of a non-branching program
step; and

controlling the width and multiplicity of said associated cascades
to increase the security of said encoded program design.

35. The process of encoding an executable program design
according to claim 6 comprising a further step of:

locating security entry and exit cells of a non-branching program
step; and

controlling the width and multiplicity of said associated cascades
to increase the security of said encoded program design.

36. The process of encoding an executable program design
according to claim 2 comprising a further step of:

inserting history checking codes to detect tampering of the
execution path; and

PCT/CA96/00859



WO 97/33216 PCT/CA96/00859
27

intertwining the said history checking code with the executable
program design and other cascades.



WO 97/33216 PCT/CA96/00859

1/4

clk b
1 3
I [ 1
1 2 1 2
c clk
GATE GATE
1 1
1 2
ADD
1

This network produces a
synchronous (clocked)
adder from an
asynchronous adder

Fig 2



WO 97/33216

Start

-

PCT/CA96/00859

2/4

Loop

"If' statement

—— |

<" Fig 3

Original

Clk

Check| , «°

2
Check C

C1

Fig 4



WO 97/33216 PCT/CA96/00859

3/4

a b Old clk

| Fig5

Sum New clk

a Old clk b

— Numeric
Intertwining
Function 1
+
(a, Old clk)
— | X y
Addition "over"
Intertwining
Function
(a+b)
—_ | 2Z w
l [
z w
New clk

(z, w) has enough
information to construct
a+b

Fig 6



WO 97/33216 PCT/CA96/00859

4/4
a ¢ = clock b
a c c b
Intertwining Intertwining
Function Function

"+" over Intertwining

X ‘ 2u+v+w' y< 21.,.\/9

Fig 7



INTERNATIONAL SEARCH REPORT )

Inte al Applicaton No

PCT/CA 96/00859

A. CLASSIFICATION OF SUBJECT MATTER

IPC' 6 GO6F1/00 GO6F12/14

According to fnternauonal Patent Classification (IPC) or to both nauonal classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system foltowed by classification symbols)

Documentation searched other than mintmum documentation to the extent that such documents are included in the fields searched

Electroruc data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriaie, of the relevant passages

Relevant to claim No.

-/--

Further documents are listed 1n the continuation of box C.

Patent family members are listed in annex.

° Special categories of ated documents :

"A" document defining the general state of the art which is not
considered to be of partcular relevance

"E” earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is aited to establish the publication date of another
citation or other special reason (as specified)

‘0" document referring to an oral disclosure, use, exhibition or
other means

"P” document published prior to the international filing date but
later than the priority date claimed

-

X"

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be connidered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventve step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art,

document member of the same patent family

Date of the actual completion of the international search

27 March 1997

Date of mailing of the international search report

110497

Name and mailing address of the [SA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: ( + 31-70) 340-3016

Authonized officer

Powell, D

Form PCT/ISA/210 (second sheet) {July 1992}

page 1 of 2




INTERNATIONAL SEARCH REPORT

Inte ynal Application No

PCT/CA 96/00859

C.(Contnuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category

Citation of document, with indication, where appropnate, of the relevant passages

Relevant to claim No.

A

COMPUTERS & SECURITY INTERNATIONAL JOURNAL
DEVOTED TO THE STUDY OF TECHNICAL AND
FINANCIAL ASPECTS OF COMPUTER SECURITY,
vol. 12, no. 6, 1 October 1993,

pages 565-584, XP000415701

COHEN F B: “OPERATING SYSTEM PROTECTION
THROUGH PROGRAM EVOLUTION"

cited in the application

see page 567, right-hand column, paragraph
3 - page 569, right-hand column, paragraph
3

see page 571, right-hand column, paragraph

3

see page 573, right-hand column, paragraph
3 - page 574, right-hand column, last
paragraph

see page 575, right-hand column, paragraph
3 - page 576, right-hand column, paragraph
1

US 5 123 045 A (OSTROVSKY RAFAIL ET AL)
16 June 1992

cited in the application

see the whole document

US 5 359 659 A (ROSENTHAL DOREN) 25
October 1994

US 4 864 494 A (KOBUS JR PAUL) 5 September
1989

US 5 212 728 A (GLOVER THOMAS E ET AL) 18
May 1993
cited in the application

1-36

1-36

Form PCT ISA 210 (continuation of second sheet) {July 1992)

page 2 of 2




INTERNATIONAL SEARCH REPORT

Inte mal Applicaton No

PCT/CA 96/00859

wformaton on patent family members

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5123045 A 16-06-92 NONE
US 5359659 A 25-10-94 NONE
US 4864494 A 05-09-89 NONE
US 5212728 A 18-05-93 CA 2026998 A 06-04-92

JP 5040657 A 19-02-93
JP 8012627 B 07-02-96

Form PCT1SA/210 (patent family annex) (July 1992)



	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

