
US 2001.0029573A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2001/0029573 A1

Johnson (43) Pub. Date: Oct. 11, 2001

(54) SETASSOCIATIVE CACHE-MANAGEMENT (52) U.S. Cl. .. 711/128; 711/140
METHOD WITH PARALLEL READ AND
SERIAL READ PIPELINED WITH SERIAL
WRITE (57) ABSTRACT

(76) Inventor: Mark W. Johnson, Elgin, IL (US)
A Set-associative cache-management method combines one
cycle reads and two-cycle pipelined writes. The one-cycle
reads involve accessing data from multiple Sets in parallel
before a tag match is determined. Once a tag match is

Correspondence Address:
Clifton L. Anderson
ANDERSON PATENTS
333 Cobalt Way, Suite 107
Sunnyvale, CA 94.086 (US) determined, it is used to Select the one of the accessed cache

memory locations to be coupled to the processor for the read
(21) Appl. No.: 09/835,215 operation. The two-cycle write involves finding a match in

a first cycle and performing the write in the Second cycle.
(22) Filed: Apr. 13, 2001 During the write, the first stage of the write pipeline is

available to begin another write operation. Also, the first
Stage of the pipeline can be used to begin a two-cycle read
operation-which results in a power Saving relative to the

Related U.S. Application Data

(63) Continuation of application No. 09/336,904, filed on Jun. 21, 1999. one-cycle read operation. Due to the pipeline, there is no
s time penalty involved in the two-cycle read performed after

Publication Classification the pipelined write. Also, instead of a wait, a no-op can be
executed in the first Stage of the write pipeline while the

(51) Int. Cl. .. G06F 12/08 Second Stage of the pipeline is fulfilling a write request.

AP1

a
1 READ -
2 WRITE N
3 WRITES

PROCESSOR

4 READ N
5 WAIT O

10

6.READ is

PROCESSOR INTERFACE 21

READ OUTPUT 4:1 MUX 27

SECTION S1
INDEX S2 S3 S4 INDEX is DATA sess A

T

ADP 20

CACHE
CONTROL

25 000011 TTTTTT WWWW
OOOOO TTTTTT WWWW

TTTTTTT

MEMORY INTERFACE 23

ADM-DTMs -wim
MEMORY

12

Patent Application Publication Oct. 11, 2001 US 2001/0029573 A1

fig.

AP1

M1
1 READ -
2 WRITE N
3 WRITE N
4 READ N

PROCESSOR
10

5 WAIT O
6 READ -->

PROCESSOR INTERFACE 21

READ OUTPUT 4:1 MUX 27

SECTION S1
INDEX S2 S3 S4 INDEX TAG DATA sess sa TAG

ADP 2O

N
CACHE
CONTROL

25

TTTTTTT

MEMORY INTERFACE 23

DTMN -wim
MEMORY

12

ADM

US 2001/0029573 A1

SETASSOCATIVE CACHE-MANAGEMENT
METHOD WITH PARALLEL READ AND SERIAL

READ PIPELINED WITH SERIAL WRITE

BACKGROUND OF THE INVENTION

0001. The present invention relates to computers and,
more particularly, to a method for managing a Set-associa
tive cache. A major objective of the present invention is to
reduce average cache access times.
0002 Much of modern progress is associated with the
increasing prevalence of computers. In a conventional com
puter architecture, a data processor manipulates data in
accordance with program instructions. The data and instruc
tions are read from, written to, and Stored in the computer's
“main memory. Typically, main memory is in the form of
random-access memory (RAM) modules.
0003) A processor access main memory by asserting an
address associated with a memory location. For example, a
32-bit address can select any one of up to 2 address
locations. In this example, each location holds eight bits, i.e.,
one “byte” of data, arranged in “words” of four bytes each,
arranged in “lines” of four words each. In other words, there
are 2 word locations, and 2' line locations.
0004. Accessing main memory tends to be much faster
than accessing disk and tape-based memories, nonetheless,
main memory accesses can leave a processor idling while it
waits for a request to be fulfilled. To minimize such laten
cies, cache memories intercept processor requests to main
memory and attempt to fulfill them faster than main memory
C.

0005 To fulfill processor requests to main memory,
caches must contain copies of data Stored in main memory.
In part to optimize access times, a cache is typically much
less capacious than main memory. Accordingly, it can rep
resent only a Small fraction of main memory contents at any
given time. To optimize the performance gain achievable by
a cache, this Small fraction must be carefully Selected.
0006. In the event of a cache “miss”, when a request
cannot be fulfilled by a cache, the cache fetches the entire
line of main memory including the memory location
requested by the processor. This entire line is Stored in the
cache Since a processor is relatively likely to request data
from locations that are near a location from which a recently
made request was made. Where the line is Stored depends on
the type of cache.
0007 A fully associative cache can store the fetched line
in any cache Storage location. The fully associative cache
Stores not only the data in the line, but also Stores the
line-address (the most-significant 28 bits) of the address as
a “tag” in association with the line of data. The next time the
processor asserts a main-memory address, the cache com
pares that address with all the tags Stored in the cache. If a
match is found, the requested data is provided to the
processor from the cache.
0008. There are two problems with a fully associative
cache. The first is that the tags consume a relatively large
percentage of cache capacity, which is limited to ensure
high-Speed accesses. The Second problem is that every cache
memory location must be checked to determine whether
there is a tag that matches a requested address. Such an

Oct. 11, 2001

exhaustive match checking process can be time-consuming,
making it hard to achieve the acceSS Speed gains desired of
a cache.

0009. In a direct-mapped cache, each cache storage loca
tion is given an indeX which, for example, might correspond
to the least-significant line-address bits. For example, in the
32-bit address example, a six-bit indeX might correspond to
address bits 23-28. A restriction is imposed that a line
fetched from main memory can only be Stored at the cache
location with an index that matches bits 23-28 of the
requested address. Since those six bits are known, only the
first 22 bits are needed as a tag. Thus, leSS cache capacity is
devoted to tags. Also, when the processor asserts an address,
only one cache location (the one with an index matching the
corresponding bits of the address asserted by the processor)
needs to be examined to determine whether or not the
request can be fulfilled from the cache.
0010. The problem with a direct-mapped cache is that
when a line is Stored in the cache, it must overwrite any data
stored at that location. If the data overwritten is data that
would be likely to be called in the near term, this overwriting
diminishes the effectiveness of the cache. A direct-mapped
cache does not provide the flexibility to choose which data
is to be overwritten to make room for new data.

0011. In a set-associative cache, the memory is divided
into two or more direct-mapped Sets. Each indeX is associ
ated with one memory location in each Set. Thus, in a
four-way Set associative cache, there are four cache loca
tions with the same index, and thus, four choices of locations
to overwrite when a line is stored in the cache. This allows
more optimal replacement Strategies than are available for
direct-mapped caches. Still, the number of locations that
must be checked, e.g., one per Set, to determine whether a
requested location is represented in the cache is quite
limited, and the number of bits that need to be compared is
reduced by the length of the index. Thus, Set-associative
caches provide an attractive compromise that combines
Some of the replacement Strategy flexibility of a fully
asSociative cache with much of the Speed advantage of a
direct-mapped cache.

0012. When a set-associative cache receives an address
from a processor, it determines the relevant cache locations
by Selecting the cache locations with an indeX that matches
the corresponding address bits. The tags Stored at the cache
locations corresponding to that indeX are checked for a
match. If there is a match, the least-significant address bits
are checked for the word location (or fraction thereof) within
the line Stored at the match location. The contents at that
location are then accessed and transmitted to the processor.
0013 In the case of a read operation, the cache access can
be hastened by Starting the data access before a match is
determined. While checking the relevant tags for a match,
the appropriate data locations within each Set having the
appropriate indeX are accessed. By the time a match is
determined, data from all four Sets are ready for transmis
Sion. The match is used, e.g., as the control input to a
multiplexer, to Select the data actually transmitted. If there is
no match, none of the data is transmitted.

0014. The read operation is much faster since the data is
accessed at the same time as the match operation is con
ducted rather than after. For example, a parallel "tag-and

US 2001/0029573 A1

data' read operation might consume only one memory
cycle, while a Serial "tag-then-data read operation might
require two cycles. Alternatively, if the Serial read operation
consumed only one cycle, the parallel read operation would
permit a shorter cycle, allowing for more processor opera
tions per unit of time.
0.015 The gains of the parallel tag-and-data reads are not
without Some cost. The data accesses that do not provide the
requested data consume additional power that can tax power
Sources and dissipate extra heat. The heat can fatigue,
impair, and damage the incorporating integrated circuit and
proximal components. Accordingly, larger batteries or
power Supplies and more Substantial heat removal provi
Sions may be required.
0016 Nonetheless, such provisions are generally well
Worth the Speed advantages of the parallel tag-and-data read
accesses. A comparable approach to hastening write opera
tions is desired. Unfortunately, the parallel tag-and-data
approach is not applied to write operations since parallel
data acceSS would involve overwriting data that should be
preserved. Accordingly, in the context of a System using
parallel reads, the write operations have become a more
Salient limit to performance. What is needed is a cache
management method in which write operation times more
closely match those achieved using parallel tag-and-data
reads.

SUMMARY OF THE INVENTION

0.017. The present invention provides a cache-manage
ment method using pipelined cache writes in conjunction
with parallel tag-and-data reads. Thus, the cache can accept
a Second write request while writing the data from the
previous write request. While each write operation takes
place over two cycles, a Series of write operations consumes
much less than two cycles per write on average.
0.018. There are three possible types of processor events
that can follow a pipelined write operation on the next cycle.
The first type is a write operation, in which case the
pipelining obtains the expected performance benefit. The
Second type is a "no-operation', neither a read nor a write.
In this case, the pipelining allows the no-op to be executed
during the Second Stage of a preceding write operation.
0019. The third type is a read operation. In the case a
parallel read follows a pipelined write, the read would not be
begun until the write was completed. Thus, a wait might be
inserted in the first Stage of the write pipeline during the
Second cycle of the write. In this case, the Speed advantage
of pipelining is not realized.
0020 Surprisingly, a pipelined write permits a power
Savings for an immediately following read operation.
Instead of waiting until the Second cycle of the write
operation is completed to begin a parallel read, a Serial read
can be started in the Second cycle of the write operation. The
Serial read can be completed in the first cycle after comple
tion of the write operation, i.e., by the time a one-cycle
parallel read operation would have been completed. Hence,
the power Savings associated with a Serial read are achieved
with none of the time penalty normally associated with Serial
reads. Thus, the invention provides both for faster average
write access rates and for reduced power consumption.
These and other features and advantages of the invention are
apparent from the description below with reference to the
following drawing.

Oct. 11, 2001

BRIEF DESCRIPTION OF THE FIGURE

0021 FIG. 1 is a composite schematic of the method of
the invention and a computer System in which the method is
implemented. In FIG. 1, method M1 is illustrated as a series
of six processor (read and write) request cycles. Cycles that
are completed in one cycle are indicated by a horizontal
arrow, cycles that are completed in the cycle following the
request are indicated by a downward sloping arrow.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0022. In accordance with the present invention, a com
puter System AP1 comprises a data processor 10, a memory
12, and a cache 20, as shown in FIG. 1. Data processor 10
issues requests along a processor address bus ADP, which
includes address lines, a read-write control line, and a
memory request line. Data transferS between cache 20 and
processor 10 take place along processor data bus DTP. In
addition, cache 20 can issue wait requests to processor 10
along processor wait signal line WTP. Similarly, cache 20
can issue requests to memory 12 via memory address bus
ADM. Data transfers between cache 20 and memory 12 are
along memory data bus DTM. Memory 12 can issue wait
requests to cache 20 via memory wait signal line WTM.
0023 Cache 20 comprises a processor interface 21, a
memory interface 23, a cache controller 25, a read output
multiplexer 27, and cache memory 30. Cache memory 30
includes four sets S1, S2, S3, and S4. Set S1 includes 64
memory locations, each with an associated six-bit index.
Each memory location Stores a line of data and an associated
22-bit tag. Each line of data holds four 32-bit words of data.
Cache sets S2, S3, and S4 are similar and use the same
Six-bit indexes.

0024 Method M1 of the invention is depicted as a series
of processor request cycles in FIG.1. While a specific series
of cycles is described, it encompasses the Situations most
relevant to the invention. By "processor request cycle” is
meant a version of a memory cycle phase-shifted to begin
with a processor asserting a request (assuming that one is
made).
0025. In processor request cycle 1, processor 10 asserts a
main-memory address and requests that data be read from
the corresponding main-memory location. Processor inter
face 21 of cache 20 intercepts this request and forwards it to
cache control 25, which selects an index based on bits 23-28
of the asserted address. Controller 25 compares the 22 most
Significant bits with the tags Stored at the four cache memory
locations (one in each set S1, S2, S3, and S4) sharing the
determined index. Concurrently, controller 25 access the
data at each of these locations So that they are respectively
available at the four inputs of multiplexer 27. If a tag match
is found in one of the sets, controller 25 selects the multi
plexer input corresponding to that input So that the data at
the indexed memory location of that Set is output from
multiplexer 27 to processor 10.

0026 If there is no match, no input is selected. Cache
controller 25 controls memory interface 23 so that the line
containing the requested data from main memory 12 is
fetched. The line is stored at the indexed location of one of
the four Sets. For example, the fetched line might replace the
line at the index that was least recently used and thus least

US 2001/0029573 A1

likely to be used again in the near future. Thus, the fetched
data is stored at the location selected for overwrite, while the
first 22 bits of the address used in the request are Stored as
the tag for that data.

0027) If there is no match, data must be fetched from
main memory. Thus, the read operation may consume Sev
eral cycles. However, if there is a match, the parallel
tag-and-data read is completed in one cycle. This is indi
cated by the horizontal arrow pointing to processor data bus
DTP. Processor 10 is permitted to make another request in
the next processor cycle.
0028. In processor request cycle 2, processor 10 makes a
write request. In cycle 2, cache 20 receives the address,
checks the indeX bits, and compares tags at the four cache
locations matching indeX bits. If there is no match, the data
is written directly into memory. (In this case, a conventional
“write-around” mode is employed; however, the invention is
compatible with other modes of handling write-misses.) If
there is a match, the word transmitted by the processor is
written to the location determined by the index, the set with
the matching tag, and the word positions indicated by bits 29
and 30 of the write address. This writing does not occur
during processor request cycle 2, but during Succeeding
processor cycle 3, as indicated by the downward Sloping
arrow that points both toward processor data bus DTP and
processor cycle 3.

0029. Since writes are pipelined, processor 10 can make
a Second write request during cycle 3 while data correspond
ing to the first write request is being written. During this
Same cycle, the tag portion of the address asserted in the
Second write request is compared with the tags Stored at the
four cache-Set memory locations having an indeX equal to
the index bits of the requested address. As with the first write
request, the actual writing is delayed one cycle as indicated
by a downward sloping arrow.
0030 The invention provides for further successive pipe
lined write operations. However, eventually, the write Series
ends either with a no-operation or a read operation. The
no-op just allows the previous write operation to complete.
The more interesting case in which a read request immedi
ately follows a write request is explored with respect to
processor request cycle 4.

0.031) Processor 10 makes a second read request at pro
ceSSor request cycle 4 while the write requested during cycle
3 is completed. Note that a parallel tag-and-data read is not
possible within cycle 4 because of the ongoing write opera
tion. To provide for Such a parallel read operation, a wait
would have to be inserted So that the parallel operations
would be performed at cycle 5 instead of cycle 4.

0032. In accordance with a refinement of the method of
the invention, a read immediately following a pipelined
write operation is performed Serially. Specifically, the tag
matching is performed in the same processor request cycle
that the request is made. However, data is accessed and
transmitted in the following cycle. Specifically, only data
from a Set having a tag match is provided to an input to
mulitiplexer 27. (If there is no match, no data is accessed
from cache memory 30). In this case, a match is detected
during processor request cycle 4, and data is read at cycle 5,
as indicated by the downward sloping arrow in the row
corresponding to cycle 4.

Oct. 11, 2001

0033. In addition, during request cycle 4, cache 20 issues
a wait request to processor 10 along processor wait Signal
line WTP. In response, processor 10 delays any pending
request So that no request is made during processor cycle 5.
Since no request is made during cycle 5, there is no arrow
indicating when a cycle-5 request is fulfilled. Instead, a
circle indicates that there is no fulfillment of a wait.

0034 Processor 10 makes a third read request in cycle 6.
Since there is nothing in the pipeline during cycle 6, a
parallel tag-and-data read is completed in cycle 6, as indi
cated by the horizontal arrow in the row corresponding to
cycle 6. Subsequent reads would also be one-cycle parallel
reads. The case of a write following a parallel read is
addressed in the discussion concerning cycles 1 and 2.
0035 An alternative embodiment of the invention uses
2-cycle pipelined reads to Save power whenever there is no
time penalty involved in doing SO. Thus, any read immedi
ately following a pipelined read or write operation is pipe
lined. One-cycle parallel reads are used only after other
parallel reads, no-ops, or cache misses. In this embodiment,
no wait request is issued as in cycle 4 above. Thus, in cycle
5, a third read request can be made and then completed in
cycle 6.

0036). In method M1 of FIG.1, modified in that the fourth
cycle involves execution of a no-op, the no-op can be
executed in the first-stage of the write pipeline while the
write requested in the third cycle is completed. The leSS
desirable alternative would be to issue a wait during the
fourth cycle and execute the no-op during a fifth cycle. In
general, the invention provides for withholding a “wait” that
would conventionally be associated with the Second cycle of
a write operation until there is a resource available that can
absorb it without accumulating an access latency.
0037 AS indicated above, the invention provides the
greatest performance enhancement in cases where write
operations occur frequently in Series. In a conventional
System with a single cache used for both instructions and
data, Such circumstances can be infrequent due to the
number of instructions fetches, which are all reads. How
ever, in a Harvard architecture, with Separate data and
instructions paths, the invention can be used to great advan
tage on the data cache. These and other variations upon and
modifications to the described embodiments are provided for
by the present invention, the scope of which is defined by the
following claims.

What is claimed is:
1. A cache-management method for a System including a

processor, main memory, and a set-associative cache having
plural Sets of cache locations containing copies of data
Stored in Said main memory, Said method comprising the
Steps of

during a first request cycle in which Said processor issues
a first request to read first data from a first main
memory location, providing Said first data to Said
processor from a first Set of Said plural Sets;

during a Second request cycle in which Said processor
issues a Second request to write Second data to a Second
main-memory location, and Said cache determines a
Second set of Said plural Sets in which Said Second
main-memory location is represented;

US 2001/0029573 A1

during a third request cycle during which Said processor
issues a third request to write third data to a third
main-memory location, Said cache determines a third
Set of Said plural Sets in which Said third main-memory
location is represented, and Said cache writes Said
Second data to Said Second Set, and

during a fourth request cycle in which Said processor
issues a fourth request to read fourth data from a fourth
main-memory location, during which Said cache writes
Said third data to Said third Set and determining a fourth
Set of Said plural Sets in which Said fourth main
memory localiton is represented; and

during a fifth request cycle, providing Said fourth data to
Said processor from Said fourth Set.

2. A method as recited in claim 1 wherein Said Second Set
is the same as Said first Set.

3. A method as recited in claim 1 wherein, during Said
fourth request cycle, Said processor issues a fourth request to
read fourth data from a fourth main-memory location, and
Said cache determines a fourth Set of Said plural Sets in which
Said fourth main memory location is rep-resented.

4. A method as recited in claim 3 wherein during Said
fourth cycle, Said cache issues a “wait” request to Said
processor.

5. A method as recited in claim 3 further comprising a fifth
request cycle during which Said processor does not issue a
request to read or write from a main memory location, and
Said cache provides Said fourth data to Said processor from
said fourth set.

Oct. 11, 2001

6. A method as recited in claim 5 wherein Said processor
issues a no-op during Said fifth request cycle.

7. A method as recited in claim 1 wherein, during Said first
processor cycle, Said cache accesses data in all of Said plural
Sets, Said cache not transmitting accessed data to Said
processor other than from Said first Set.

8. A cache-management method comprising:

a parallel read;
a Serial write: and

a Serial read pipelined with Said Serial write.
9. A computer System comprising:
a proceSSOr,

main memory; and
a cache, including
means for executing a parallel read;

means for executing a Serial write, and
means for executing a Serial read pipelined with Said

Serial write.
10. A method as recited in claim 8 wherein said serial

write is a Second Serial write of a pair of Serial writes, Said
pair also including a first Serial write preceding and pipe
lined with Said Second Serial write.

