

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2018282072 B2

(54) Title
B4GALT1 variants and uses thereof

(51) International Patent Classification(s)
C12N 9/10 (2006.01)

(21) Application No: **2018282072** (22) Date of Filing: **2018.06.04**

(87) WIPO No: **WO18/226560**

(30) Priority Data

(31) Number	(32) Date	(33) Country
62/659,344	2018.04.18	US
62/550,161	2017.08.25	US
62/515,140	2017.06.05	US

(43) Publication Date: **2018.12.13**
(44) Accepted Journal Date: **2024.06.27**

(71) Applicant(s)
Regeneron Pharmaceuticals, Inc.;University of Maryland, Baltimore

(72) Inventor(s)
MONTASSER, May;VAN HOUT, Christopher;SHULDINER, Alan;GATTA, Giusy Della;HEALY, Matthew;PUURUNEN, Marja

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
WILLER CRISTEN J ET AL: "Newly identified loci that influence lipid concentrations and risk of coronary artery disease", NATURE GENETICS, vol. 40, no. 2, 1 February 2008 (2008-02-01), pages 161 - 169, DOI: 10.1038/NG.76
DATABASE EMBL [online] 16 March 2000 (2000-03-16), "Human DNA sequence from clone RP11-326F20 on chromosome 9", XP002784508, retrieved from EBI accession no. EM_STD:AL161445 Database accession no. AL161445

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2018/226560 A1

(43) International Publication Date
13 December 2018 (13.12.2018)

(51) International Patent Classification:

C12N 9/10 (2006.01)

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(21) International Application Number:

PCT/US2018/035806

(22) International Filing Date:

04 June 2018 (04.06.2018)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/515,140	05 June 2017 (05.06.2017)	US
62/550,161	25 August 2017 (25.08.2017)	US
62/659,344	18 April 2018 (18.04.2018)	US

(71) Applicants: **REGENERON PHARMACEUTICALS, INC.** [US/US]; 777 Old Saw Mill River Road, Tarrytown, NY 10591 (US). **UNIVERSITY OF MARYLAND, BALTIMORE** [US/US]; 620 W. Lexington Street, 4th Floor, Baltimore, MD 21202 (US).

(72) Inventors: **MONTASSER, May**; 305 West Fayette Street, Apartment 1411, Baltimore, MD 21201 (US). **VAN HOUT, Christopher**; 777 Old Saw Mill River Road, Tarrytown, NY 10591 (US). **SHULDINER, Alan**; 777 Old Saw Mill River Road, Tarrytown, NY 10591 (US). **GATTA, Giusy, Della**; 777 Old Saw Mill River Road, Tarrytown, NY 10591 (US). **HEALY, Matthew**; 777 Old Saw Mill River Road, Tarrytown, NY 10591 (US). **PUURUNEN, Marja**; 777 Old Saw Mill River Road, Tarrytown, NY 10591 (US).

(74) Agent: **LEGAARD, Paul, K.**; Stradley Ronon Stevens & Young, LLP, 30 Valley Stream Parkway, Malvern, PA 19355-1481 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

WO 2018/226560 A1

(54) Title: *B4GALT1 VARIANTS AND USES THEREOF*

(57) Abstract: Variant *B4GALT1* genomic, mRNA, and cDNA nucleic acid molecules, and polypeptides, methods of detecting the presence of these molecules, methods of modulating endogenous *B4GALT1* genomic, mRNA, and cDNA nucleic acid molecules, and polypeptides, methods of ascertaining the risk of developing cardiovascular conditions by detecting the presence or absence of the variant *B4GALT1* genomic, mRNA, and cDNA nucleic acid molecules, and polypeptides, and methods of treating cardiovascular conditions are provided herein.

B4GALT1 Variants And Uses Thereof**Reference To Government Grants**

This invention was made with government support under HL121007 awarded by the
5 National Institutes of Health. The government has certain rights in the invention.

Reference to a Sequence Listing

This application includes a Sequence Listing submitted electronically as a text file
named 18923800202SEQ, created on June 4, 2018, with a size of 161 KB. The Sequence Listing
10 is incorporated by reference herein.

Field

The present disclosure provides variant *B4GALT1* genomic, mRNA, and cDNA nucleic
acid molecules, and polypeptides, methods of detecting the presence of these molecules,
15 methods of modulating endogenous *B4GALT1* genomic, mRNA, and cDNA nucleic acid
molecules, and polypeptides, methods of ascertaining the risk of developing cardiovascular
conditions by detecting the presence or absence of the variant *B4GALT1* genomic, mRNA, and
cDNA nucleic acid molecules, and polypeptides, and methods of treating cardiovascular
conditions.

20

Background

Various publications, including patents, published applications, accession numbers,
technical articles and scholarly articles are cited throughout the specification. Each cited
publication is incorporated by reference herein, in its entirety and for all purposes.

25 Beta-1,4-galactosyltransferase 1 (*B4GALT1*) is a member of the beta-1,4-
galactosyltransferase gene family which encode type II membrane-bound glycoproteins that
play a role in the biosynthesis of different glycoconjugates and saccharide structures. The
enzyme encoded by *B4GALT1* plays a critical role in the processing of N-linked oligosaccharide
moieties in glycoproteins, and protein-linked sugar chains often modulate the biological
30 functions of the glycoprotein. Thus, an impaired *B4GALT1* activity has potential to alter the
structure of all glycoproteins containing N-linked oligosaccharides. The long form of the
B4GALT1 enzyme is localized in the trans-Golgi, where it transfers galactosyl residues to N-

acetylglucosamine residues during the course of biosynthetic processing of high-mannose to complex-type N-linked oligosaccharides. Because addition of galactosyl residues is a prerequisite for addition of sialic acids, a defect in *B4GALT1* exerts an indirect effect to block addition of sialic acid residues and, therefore, may alter the half-life of plasma glycoproteins.

5 Defects in glycosylation have been reported to impair intracellular trafficking of various glycoproteins – including the LDL receptor. Further, structural abnormalities in N-linked oligosaccharides have the potential to alter protein folding, which in turn could alter the function of glycoproteins and their secretion. A large percentage of proteins contain N-linked glycosylation, including cell surface receptors (e.g., LDL receptors and insulin receptors) as well

10 as various circulating plasma proteins (e.g., apolipoprotein B and fibrinogen). There have been reports of patients with genetic disease due to homozygosity for protein-truncating mutations in the *B4GALT1* gene. One such patient had a severe phenotype characterized by a) severe neurodevelopmental abnormalities (including hydrocephalus), b) myopathy, and c) blood clotting abnormalities. As predicted, oligosaccharides derived from circulating transferrin

15 lacked galactose and sialic acid residues. Two additional patients with the same genetic defect presented with a milder phenotype, characterized by coagulation disturbances, hepatopathy, and dysmorphic features.

Cardiovascular disease is the leading cause of death in the United States and other westernized countries. Major risk factors for atherothrombotic cardiovascular diseases such as

20 stroke and myocardial infarction include increased blood cholesterol and thrombotic tendency. Many proteins that are involved in lipid metabolism and coagulation are glycosylated and, thus, subject to modulation by *B4GALT1*. Knowledge of genetic factors underlying the development and progression of cardiovascular conditions could improve risk stratification and provide the foundation for novel therapeutic strategies.

25

Summary

The present disclosure provides nucleic acid molecules comprising a nucleic acid sequence at least about 90% identical to the *B4GALT1* variant genomic sequence (that comprises the SNP designated *rs551564683*), provided that the nucleic acid sequence also

30 comprises nucleotides that encode a serine at the position corresponding to position 352 of the full length/mature *B4GALT1* polypeptide.

The present disclosure also provides nucleic acid molecules comprising a nucleic acid sequence at least about 90% identical to the *B4GALT1* variant mRNA sequence (that comprises the SNP designated *rs551564683*), provided that the nucleic acid sequence also encodes a serine at the position corresponding to position 352 of the full length/mature *B4GALT1* polypeptide.

5

The present disclosure also provides cDNA molecules encoding a *B4GALT1* polypeptide that comprise a nucleic acid sequence at least about 90% identical to the *B4GALT1* variant cDNA sequence (that comprises the SNP designated *rs551564683*), provided that the nucleic acid sequence also encodes a serine at the position corresponding to position 352 in the full 10 length/mature *B4GALT1* polypeptide.

The present disclosure also provides vectors or exogenous donor sequences comprising any one or more of these nucleic acid molecules.

The present disclosure also provides isolated polypeptides comprising an amino acid sequence at least about 90% identical to a *B4GALT1* polypeptide having a serine at the position 15 corresponding to position 352 in the full length/mature *B4GALT1* polypeptide.

The present disclosure also provides host cells comprising any one of more of these nucleic acid molecules operably linked to a heterologous promoter active in the host cell.

The present disclosure also provides methods of producing the *B4GALT1* polypeptide by culturing a host cell containing a nucleic acid molecule encoding the *B4GALT1* polypeptide, 20 wherein the nucleic acid molecule is operably linked to a heterologous promoter active in the host cell, whereby the nucleic acid molecule is expressed, and recovering the isolated polypeptide.

The present disclosure also provides compositions comprising these nucleic acid molecules, or polypeptides, and a carrier for increasing their stability.

25

The present disclosure also provides methods of detecting the presence or absence of a *B4GALT1* variant nucleic acid molecule (that comprises the SNP designated *rs551564683*) in a human subject, comprising performing an assay on a biological sample from the human subject that determines whether a nucleic acid molecule in the biological sample comprises a nucleic acid sequence that encodes a variant *B4GALT1* polypeptide having a serine at the position 30 corresponding to position 352 in the full length/mature *B4GALT1* polypeptide.

The present disclosure also provides methods of detecting the presence of a variant *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full

length/mature *B4GALT1* polypeptide in a human subject, comprising performing an assay on a biological sample from the human subject that determines the presence of the variant *B4GALT1* polypeptide.

The present disclosure also provides methods of determining a human subject's

- 5 susceptibility to developing a cardiovascular condition, comprising: a) performing an assay on a biological sample from the human subject that determines whether a nucleic acid molecule in the biological sample comprises a nucleic acid sequence that encodes a variant *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide; and b) classifying the human subject as being at
- 10 decreased risk for developing the cardiovascular condition if a nucleic acid molecule comprising a nucleic acid sequence that encodes a variant *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide is detected in the biological sample, or classifying the human subject as being at increased risk for developing the cardiovascular condition if a nucleic acid molecule comprising a nucleic acid
- 15 sequence that encodes a variant *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide is not detected in the biological sample.

The present disclosure also provides methods of determining a human subject's

- susceptibility to developing a cardiovascular condition, comprising: a) performing an assay on a
- 20 biological sample from the human subject that determines whether a *B4GALT1* polypeptide in the biological sample comprises a serine at a position corresponding to position 352; and b) classifying the human subject as being at decreased risk for developing the cardiovascular condition if a *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide is detected in the biological sample, or
- 25 classifying the human subject as being at increased risk for developing the cardiovascular condition if a *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide is not detected in the biological sample.

The present disclosure also provides guide RNA molecules effective to direct a Cas

enzyme to bind to or cleave an endogenous *B4GALT1* gene, wherein the guide RNA comprises a DNA-targeting segment that hybridizes to a guide RNA recognition sequence within the endogenous *B4GALT1* gene that includes or is proximate (for instance, within a certain number

of nucleotides, such as discussed below) to a position corresponding to positions 53575 to 53577 of the wild-type *B4GALT1* gene.

The present disclosure also provides methods of modifying an endogenous *B4GALT1* gene in a cell, comprising contacting the genome of the cell with: a) a Cas protein; and b) a guide RNA that forms a complex with the Cas protein and hybridizes to a guide RNA recognition sequence within the endogenous *B4GALT1* gene, wherein the guide RNA recognition sequence includes or is proximate (for instance, within a certain number of nucleotides, such as discussed below) to a position corresponding to positions 53575 to 53577 of the wild-type *B4GALT1* gene, wherein the Cas protein cleaves the endogenous *B4GALT1* gene.

The present disclosure also provides methods of modifying an endogenous *B4GALT1* gene in a cell, comprising contacting the genome of the cell with: a) a Cas protein; and b) a first guide RNA that forms a complex with the Cas protein and hybridizes to a first guide RNA recognition sequence within the endogenous *B4GALT1* gene, wherein the first guide RNA recognition sequence comprises the start codon for the *B4GALT1* gene or is within about 1,000 nucleotides of the start codon, wherein the Cas protein cleaves or alters expression of the endogenous *B4GALT1* gene.

The present disclosure also provides methods for modifying a cell, comprising introducing an expression vector into the cell, wherein the expression vector comprises a recombinant *B4GALT1* gene comprising a nucleotide sequence encoding a *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide.

The present disclosure also provides methods for modifying a cell, comprising introducing an expression vector into the cell, wherein the expression vector comprises a nucleic acid molecule encoding a polypeptide that is at least about 90% identical to a *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide, wherein the polypeptide also comprises a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide.

The present disclosure also provides methods for modifying a cell, comprising introducing a polypeptide, or fragment thereof, into the cell, wherein the polypeptide is at least 90% identical to a *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide, and wherein the polypeptide also

comprises a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide.

The present disclosure also provides methods of treating a subject who is not a carrier of the *B4GALT1* variant nucleic acid molecule or polypeptide (that comprises the SNP designated *rs551564683*) and has or is susceptible to developing a cardiovascular condition, comprising introducing into the subject: a) a Cas protein or a nucleic acid encoding the Cas protein; b) a guide RNA or a nucleic acid encoding the guide RNA, wherein the guide RNA forms a complex with the Cas protein and hybridizes to a guide RNA recognition sequence within an endogenous *B4GALT1* gene, wherein the guide RNA recognition sequence includes or is proximate to a position corresponding to positions 53575 to 53577 of the wild-type *B4GALT1* gene; and c) an exogenous donor sequence comprising a 5' homology arm that hybridizes to a target sequence 5' of the positions corresponding to positions 53575 to 53577 of the wild-type *B4GALT1* gene, a 3' homology arm that hybridizes to a target sequence 3' of the positions corresponding to positions 53575 to 53577 of the wild-type *B4GALT1* gene, and a nucleic acid insert comprising a nucleotide sequence encoding a *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide flanked by the 5' homology arm and the 3' homology arm, wherein the Cas protein cleaves the endogenous *B4GALT1* gene in a cell in the subject and the exogenous donor sequence recombines with the endogenous *B4GALT1* gene in the cell, wherein upon recombination of the exogenous donor sequence with the endogenous *B4GALT1* gene, the serine is inserted at nucleotides corresponding to positions 53575 to 53577 of the wild-type *B4GALT1* gene.

The present disclosure also provides methods of treating a subject who is not a carrier of the *B4GALT1* variant nucleic acid molecule or polypeptide (that comprises the SNP designated *rs551564683*) and has or is susceptible to developing a cardiovascular condition, comprising introducing into the subject: a) a Cas protein or a nucleic acid encoding the Cas protein; b) a first guide RNA or a nucleic acid encoding the first guide RNA, wherein the first guide RNA forms a complex with the Cas protein and hybridizes to a first guide RNA recognition sequence within the endogenous *B4GALT1* gene, wherein the first guide RNA recognition sequence comprises the start codon for the endogenous *B4GALT1* gene or is within about 1,000 nucleotides of the start codon; and c) an expression vector comprising a recombinant *B4GALT1* gene comprising a nucleotide sequence encoding a *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide, wherein

the Cas protein cleaves or alters expression of the endogenous *B4GALT1* gene in a cell in the subject and the expression vector expresses the recombinant *B4GALT1* gene in the cell in the subject.

The present disclosure also provides methods of treating a subject who is not a carrier 5 of the *B4GALT1* variant nucleic acid molecule or polypeptide (that comprises the SNP designated *rs551564683*) and has or is susceptible to developing a cardiovascular condition comprising introducing into the subject an antisense DNA, RNA, an siRNA, or an shRNA that hybridizes to a sequence within the endogenous *B4GALT1* gene and decreases expression of *B4GALT1* polypeptide in a cell in the subject.

10 The present disclosure also provides methods of treating a subject who is not a carrier of the *B4GALT1* variant nucleic acid molecule or polypeptide (that comprises the SNP designated *rs551564683*) and has or is susceptible to developing a cardiovascular condition comprising introducing an expression vector into the subject, wherein the expression vector comprises a recombinant *B4GALT1* gene comprising a nucleotide sequence encoding a 15 *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide, wherein the expression vector expresses the recombinant *B4GALT1* gene in a cell in the subject.

The present disclosure also provides methods of treating a subject who is not a carrier 20 of the *B4GALT1* variant nucleic acid molecule or polypeptide (that comprises the SNP designated *rs551564683*) and has or is susceptible to developing a cardiovascular condition comprising introducing an expression vector into the subject, wherein the expression vector comprises a nucleic acid molecule encoding a *B4GALT1* polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide, wherein the expression vector expresses the nucleic acid encoding the *B4GALT1* polypeptide in a cell in 25 the subject.

The present disclosure also provides methods of treating a subject who is not a carrier of the *B4GALT1* variant nucleic acid molecule or polypeptide (that comprises the SNP designated *rs551564683*) and has or is susceptible to developing a cardiovascular condition comprising introducing an mRNA into the subject, wherein the mRNA encodes a *B4GALT1* 30 polypeptide having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide, wherein the mRNA expresses the *B4GALT1* polypeptide in a cell in the subject.

The present disclosure also provides methods of treating a subject who is not a carrier of the *B4GALT1* variant nucleic acid molecule or polypeptide (that comprises the SNP designated *rs551564683*) and has or is susceptible to developing a cardiovascular condition comprising introducing a *B4GALT1* polypeptide having a serine at the position corresponding to 5 position 352 in the full length/mature *B4GALT1* polypeptide or fragment thereof into the subject.

In any of the methods described or exemplified herein, a cardiovascular condition may comprise levels of one or more serum lipids that increase atherosclerotic risk. The serum lipids comprise one or more of cholesterol, LDL, HDL, triglycerides, HDL-cholesterol, and non-HDL 10 cholesterol, or any subfraction thereof (e.g., HDL2, HDL2a, HDL2b, HDL2c, HDL3, HDL3a, HDL3b, HDL3c, HDL3d, LDL1, LDL2, LDL3, lipoprotein A, Lpa1, Lpa1, Lpa3, Lpa4, or Lpa5). A cardiovascular condition may comprise elevated levels of coronary artery calcification. A cardiovascular condition may comprise elevated levels of pericardial fat. A cardiovascular condition may comprise an atherothrombotic condition. The atherothrombotic condition may 15 comprise elevated levels of fibrinogen. The atherothrombotic condition may comprise a fibrinogen-mediated blood clot. A cardiovascular condition may comprise elevated levels of fibrinogen. A cardiovascular condition may comprise a fibrinogen-mediated blood clot. A cardiovascular condition may comprise a blood clot formed from the involvement of fibrinogen activity. A fibrinogen-mediated blood clot or blood clot formed from the involvement of 20 fibrinogen activity may be in any vein or artery in the body.

Brief Description Of the Figures

Figure 1 shows the results of a representative genome-wide association of variant *B4GALT1* with LDL.

25 Figure 2 shows the results of a representative TOPMed WGS association of variant *B4GALT1* with LDL.

Figure 3 shows the results of a representative haplotype structure of the top *B4GALT1*-associated SNPs.

30 Figure 4 shows the association of the variant *B4GALT1* gene with LDL in the Amish identified by exome sequencing.

Figure 5 shows that the frequency of the variant *B4GALT1* gene is greater than 1000-fold enriched in the Amish.

Figure 6 shows the association of *B4GALT1* Asn352Ser with decreased serum lipids.

Figure 7 shows the high degree of association of *B4GALT1* Asn352Ser with decreased serum lipids and increased AST.

Figure 8 shows the association of *B4GALT1* Asn352Ser with all lipid subfractions.

5 Figure 9 shows the association of *B4GALT1* Asn352Ser with decreased fibrinogen levels.

Figure 10 shows reduced *b4galt1* transcript in 5 days post fertilization of zebrafish larvae injected with antisense morpholino oligonucleotide at the indicated concentrations.

10 Figure 11 shows diagnostic marker of antisense morpholino oligonucleotide off-target effects in 5 days post fertilization zebrafish larvae injected with antisense morpholino oligonucleotide at the indicated concentrations.

Figure 12 shows average LDL concentration in homogenates of 100 5 days post fertilization zebrafish larvae per experiment.

15 Figure 13 shows a rescue of LDL-c phenotype by co-expression of 50 pg human *B4GALT1* mRNA in the zebrafish.

Figure 14 shows the genetic association results between *B4GALT1* N352S and LDL using targeted genotyping.

Figure 15 shows confocal microscopy images of Flag-352Asn or Flag-352Ser subcellular localization.

20 Figure 16 shows confocal microscopy images of endogenous *B4GALT1*, Flag-352Asn, and Flag-352Se sub-cellular localization in relation with the trans Golgi Network marker TGN46.

Figure 17 (Panels A and B) shows the effect of 352Ser on steady-state levels of *B4GALT1* protein; (Panel A) COS7 cells expressing either 352Asn or 352Ser Flag tag proteins fusion with free EGFP; and (Panel B) mRNA expression levels for *B4GALT1* gene determined by 25 RT-qPCR analysis.

Figure 18 (Panels A, B, and C) shows the effect of 352Ser mutation on activity; (Panels A and B) COS7 cells expressing either 352Asn or 352Ser Flag tag proteins fusion expressed in COS7 cells and analyzed by Western blot for *B4GALT1* or Flag; (Panel C) *B4GALT1* activity in the immunoprecipitates.

30 Figure 19 shows the tri-sialo/di-oligo ratio by *B4GALT1* N352S genotype group.

Figure 20 shows a representative HILIC-FLR-MS spectrum of N-Glycan analysis of Glycoprotein from a matched pair of minor (SS) and major (NN) homozygotes of *B4GALT1*

N352S.

Detailed Description

As set forth herein, sequencing studies have identified a variant of *B4GALT1* having a serine at the position corresponding to position 352 in the full length/mature *B4GALT1* polypeptide instead of an asparagine present in about 11%-12% of individuals of the Old Order Amish (OOA) (alternate allele frequency = 6%), and is extremely rare in the general population. This mutation changes the asparagine to serine in position 352 (N352S) of the 398 amino acid long human protein, or in position 311 of the short isoform. The variant *B4GALT1* has been observed to be associated with lower levels of low density lipoprotein cholesterol (LDL), total cholesterol, and fibrinogen and eGFR, increased levels of aspartate transaminase (AST) (but not alanine transaminase (ALT)) and serum levels of creatine kinase and creatinine, expression in muscle tissue (but not liver or red blood cells), and a decrease in basophils. It is believed that the N352S variant is protective against one or more cardiovascular conditions. It is further believed that *B4GALT1*, including its variant status, may be used to diagnose a patient's risk of developing cardiovascular conditions.

The phrase "corresponding to" when used in the context of the numbering of a given amino acid or polynucleotide sequence refers to the numbering of the residues of a specified reference sequence when the given amino acid or polynucleotide sequence is compared to the reference sequence (with the reference sequence herein being the polynucleotide (gDNA sequence, mRNA sequence, cDNA sequence) or polypeptide of (wild-type/full length) *B4GALT1*). In other words, the residue number or residue position of a given polymer is designated with respect to the reference sequence rather than by the actual numerical position of the residue within the given amino acid or polynucleotide sequence. For example, a given amino acid sequence can be aligned to a reference sequence by introducing gaps to optimize residue matches between the two sequences. In these cases, although the gaps are present, the numbering of the residue in the given amino acid or polynucleotide sequence is made with respect to the reference sequence to which it has been aligned.

As used herein, the singular forms of the articles "a," "an," and "the" include plural references unless the context clearly dictates otherwise.

As used herein, and unless otherwise apparent from the context, “about” encompasses values within a standard margin of error of measurement (e.g., SEM) of a stated value.

As used herein, “and/or” refers to and encompasses any and all possible combinations 5 of one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative (“or”).

As used herein, the terms “comprising” or “including” means that one or more of the recited elements may include other elements not specifically recited. For example, a composition that “comprises” or “includes” a protein may contain the protein alone or in 10 combination with other ingredients. The transitional phrase “consisting essentially of” means that the scope of a claim is to be interpreted to encompass the specified elements recited in the claim and those that do not materially affect the basic and novel characteristic(s) of the claimed subject matter. Thus, the term “consisting essentially of” when used in a claim of the present disclosure is not intended to be interpreted to be equivalent to “comprising.”

15 As used herein, “optional” or “optionally” means that the subsequently described event or circumstance may or may not occur and that the description includes instances in which the event or circumstance occurs and instances in which it does not.

As used herein, “or” refers to any one member of a particular list and also includes any combination of members of that list.

20 Designation of a range of values includes all integers within or defining the range (including the two endpoint values), and all subranges defined by integers within the range.

It should be appreciated that particular features of the disclosure, which are, for clarity, described in the context of separate embodiments, can also be provided in combination in a single embodiment. Conversely, various features of the disclosure which are, for brevity, 25 described in the context of a single embodiment, can also be provided separately or in any suitable subcombination.

The present disclosure provides isolated *B4GALT1* genomic and mRNA variants, *B4GALT1* cDNA variants, or any complement thereof, and isolated *B4GALT1* polypeptide variants. These variants are believed to be associated with a diminished risk of developing 30 various cardiovascular conditions including, but not limited to, elevated levels of serum lipids, and elevated levels fibrinogen, coronary artery calcification, coronary artery disease (CAD), and increased levels of aspartate aminotransferase (AST), but not alanine transaminase (ALT).

Without wishing to be bound by any theory, it is believed that these *B4GALT1* variants associate with expression in muscle tissue, and not liver or red blood cells, as evidenced by the experimentally-observed increased levels of AST, but not ALT. Compositions comprising *B4GALT1* genomic and mRNA variants, *B4GALT1* cDNA variants, and isolated *B4GALT1*

5 polypeptide variants are also provided herein. Nucleic acid molecules that hybridize to the *B4GALT1* genomic and mRNA variants and *B4GALT1* cDNA variants are also provided herein. The present disclosure also provides vectors and cells comprising *B4GALT1* genomic and mRNA variants, *B4GALT1* cDNA variants, and *B4GALT1* polypeptide variants.

The present disclosure also provides methods of detecting the presence of and/or 10 levels of genomic and/or mRNA variants, *B4GALT1* cDNA variants, or complement thereof, and/or *B4GALT1* polypeptide variants in a biological sample. Also provided are methods for determining a subject's susceptibility to developing a cardiovascular condition, and methods of diagnosing a subject with a cardiovascular condition or at risk for a cardiovascular condition. Also provided are methods for modifying a cell through the use of any combination of nuclease 15 agents, exogenous donor sequences, transcriptional activators, transcriptional repressors, and expression vectors for expressing a recombinant *B4GALT1* gene or a nucleic acid encoding an *B4GALT1* polypeptide. Also provided are therapeutic and prophylactic methods for treating a subject having or at risk of developing a cardiovascular condition.

The wild-type human genomic *B4GALT1* nucleic acid is approximately 56.7 kb in length, 20 includes 6 exons, and is located at chromosome 9 in the human genome. An exemplary wild-type human genomic *B4GALT1* sequence is assigned NCBI Accession No. NG_008919.1 (SEQ ID NO:1). A variant of human genomic *B4GALT1* is shown in SEQ ID NO:2, and comprises a single nucleotide polymorphism (SNP) (A to G at position 53576; referred to herein as a variant *B4GALT1*). The variant SNP results in a serine at the position corresponding to position 352 in 25 the full length/mature *B4GALT1* polypeptide of the encoded *B4GALT1* variant polypeptide, rather than the asparagine encoded by the wild-type *B4GALT1* polypeptide. The variant human genomic *B4GALT1* nucleic acid comprises, for example, three bases (e.g., "agt") encoding a serine at the positions corresponding to positions 53575 to 53577 of the wild-type human genomic *B4GALT1*, as opposed to the three bases "aat" at positions 53575 to 53577 of the wild- 30 type human genomic *B4GALT1* (comparing SEQ ID NO:2 to SEQ ID NO:1, respectively). In some embodiments, the isolated nucleic acid molecule comprises SEQ ID NO:2. In some embodiments, the isolated nucleic acid molecule consists of SEQ ID NO:2. In some

embodiments, the isolated nucleic acid molecule is a complement of any genomic *B4GALT1* nucleic acid molecule disclosed herein.

In some embodiments, the isolated nucleic acid molecules comprise or consist of a nucleic acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least 5 about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:2. In some embodiments, such nucleic acid sequence also comprises nucleotides corresponding to positions 53575 to 53577 of SEQ ID NO:2. In some embodiments, the isolated nucleic acid molecules comprise or consist of a nucleic acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least 10 about 97%, at least about 98%, at least about 99%, or 100% identical to a portion of SEQ ID NO:2 that comprises exons 1 to 6 of the *B4GALT1* gene. In some embodiments, such nucleic acid sequence also comprises nucleotides corresponding to positions 53575 to 53577 of SEQ ID NO:2. In some embodiments, the isolated nucleic acid molecules comprise or consist of a nucleic acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a portion of SEQ ID NO:2 comprising 15 exon 5. In some embodiments, such nucleic acid sequence also comprises nucleotides corresponding to positions 53575 to 53577 of SEQ ID NO:2. In some embodiments, the isolated nucleic acid molecule comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:2, provided that the nucleic acid sequence comprises nucleotides corresponding to 20 positions 53575 to 53577 of SEQ ID NO:2.

Percent complementarity between particular stretches of nucleic acid sequences within nucleic acids can be determined routinely using BLAST programs (basic local alignment 25 search tools) and PowerBLAST programs (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656) or by using the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489).

30 In some embodiments, the isolated nucleic acid molecules comprise less than the entire genomic sequence. In some embodiments, the isolated nucleic acid molecules comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least

about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, at least about 1000, at least about 2000, at least about 3000, at least 5 about about 4000, at least about 5000, at least about 6000, at least about 7000, at least about 8000, at least about 9000, at least about 10000, at least about 11000, at least about 12000, at least about 13000, at least about 14000, at least about 15000, at least about 16000, at least about 17000, at least about 18000, at least about 19000, or at least about 20000 contiguous 10 nucleotides of SEQ ID NO:2. In some embodiments, such isolated nucleic acid molecules also comprise nucleotides corresponding to positions 53575 to 53577 of SEQ ID NO:2. In some embodiments, the isolated nucleic acid molecules comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, or at least about 1000 contiguous nucleotides of SEQ ID NO:2. In some embodiments, such isolated 15 nucleic acid molecules also comprise nucleotides corresponding to positions 53575 to 53577 of SEQ ID NO:2. In some embodiments, the isolated nucleic acid molecules comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, or at least about 1000 contiguous nucleotides of exon 5 of SEQ ID NO:2. In some 20 embodiments, such isolated nucleic acid molecules also comprise nucleotides corresponding to positions 53575 to 53577 of SEQ ID NO:2.

25 For example, in some embodiments, the isolated nucleic acid molecule comprises at least 15 contiguous nucleotides of SEQ ID NO:2, wherein the contiguous nucleotides include nucleotides 53575 to 53577 of SEQ ID NO:2. In some such embodiments, the isolated nucleic acid molecule comprises at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:2. In some embodiments, the isolated nucleic acid molecule comprises between 15 and 50 contiguous nucleotides of SEQ ID NO:2, wherein the contiguous nucleotides include nucleotides

53575 to 53577 of SEQ ID NO:2. In some such embodiments, the isolated nucleic acid molecule comprises at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:2.

In some embodiments, the disclosure provides an isolated nucleic acid that comprises a nucleic acid sequence that is at least 90% identical to a portion of SEQ ID NO:2, wherein the portion of SEQ ID NO:2 comprises nucleotides 53575 to 53577 of SEQ ID NO:2 and wherein the portion of SEQ ID NO:2 is at least 15 nucleotides in length. In some such embodiments, the portion of SEQ ID NO:2 is at least 20, at least 25, or at least 30 nucleotides in length. In some embodiments, the disclosure provides an isolated nucleic acid that comprises a nucleic acid sequence that is at least 90% identical to a portion of SEQ ID NO:2, wherein the portion of SEQ ID NO:2 comprises nucleotides 53575 to 53577 of SEQ ID NO:2 and wherein the portion of SEQ ID NO:2 is between 15 and 50 nucleotides in length. In some such embodiments, the portion of SEQ ID NO:2 is at least 20, at least 25, or at least 30 nucleotides in length.

In some embodiments, the disclosure provides an isolated nucleic acid that comprises a nucleic acid sequence that is at least 95% identical to a portion of SEQ ID NO:2, wherein the portion of SEQ ID NO:2 comprises nucleotides 53575 to 53577 of SEQ ID NO:2 and wherein the portion of SEQ ID NO:2 is at least 15 nucleotides in length. In some such embodiments, the portion of SEQ ID NO:2 is at least 20, at least 25, or at least 30 nucleotides in length. In some embodiments, the disclosure provides an isolated nucleic acid that comprises a nucleic acid sequence that is at least 95% identical to a portion of SEQ ID NO:2, wherein the portion of SEQ ID NO:2 comprises nucleotides 53575 to 53577 of SEQ ID NO:2 and wherein the portion of SEQ ID NO:2 is between 15 and 50 nucleotides in length. In some such embodiments, the portion of SEQ ID NO:2 is at least 20, at least 25, or at least 30 nucleotides in length.

Such isolated nucleic acid molecules can be used, for example, to express variant *B4GALT1* mRNAs and proteins or as exogenous donor sequences. It is understood that gene sequences within a population can vary due to polymorphisms, such as SNPs. The examples provided herein are only exemplary sequences, and other sequences are also possible.

In some embodiments, the isolated nucleic acid molecules comprise a variant *B4GALT1* minigene, in which one or more nonessential segments of SEQ ID NO:2 have been deleted with respect to a corresponding wild-type *B4GALT1* gene. In some embodiments, the deleted nonessential segments comprise one or more intron sequences. In some embodiments, the *B4GALT1* minigenes can comprise, for example, exons corresponding to any one or more of exons 1 to 6, or any combination of such exons, from variant *B4GALT1* (SEQ ID NO:2). In some

embodiments, the minigene comprises or consists of exon 5 of SEQ ID NO:2. In some embodiments, the *B4GALT1* minigene is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a portion of SEQ ID NO:2 comprising any one or more of exons 1 to 6, or any combination of such exons. In some embodiments, the *B4GALT1* minigene is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to a portion of SEQ ID NO:2 comprising any one or more of exons 1 to 6, or any combination of such exons and comprise nucleotides corresponding to positions 53575 to 53577 of SEQ ID NO:2. In some embodiments, the *B4GALT1* minigene is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a portion of SEQ ID NO:2 comprising exon 5.

The present disclosure also provides isolated nucleic acid molecules that hybridize to a variant *B4GALT1* genomic sequence or a variant *B4GALT1* minigene. In some embodiments, such isolated nucleic acid molecules comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, at least about 1000, at least about 2000, at least about 3000, at least about 4000, at least about 5000, at least about 6000, at least about 7000, at least about 8000, at least about 9000, at least about 10000, at least about 11000, at least about 12000, at least about 13000, at least about 14000, at least about 15000, at least about 16000, at least about 17000, at least about 18000, at least about 19000, or at least about 20000 nucleotides. In some embodiments, such isolated nucleic acid molecules also hybridize to positions 53575 to 53577 of SEQ ID NO:2. In some embodiments, the isolated nucleic acid molecules hybridize to a portion of variant *B4GALT1* genome or minigene at a segment that includes or is within about 1000, within about 500, within about 400, within about 300, within about 200, within about 100, within about 50, within about 45, within about 40, within about 35, within about 30, within about 25, within about 20, within about 15, within about 10, or within about 5 nucleotides of positions 53575 to 53577 of SEQ ID NO:2. In some embodiments, the isolated nucleic acid molecules hybridize to at least about 15

contiguous nucleotides of a nucleic acid molecule that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to variant *B4GALT1* genomic DNA or minigene. In some embodiments, such isolated nucleic acid

5 molecules also hybridize to positions 53575 to 53577 of SEQ ID NO:2. In some embodiments, the isolated nucleic acid molecules comprise or consist of from about 15 to about 100 nucleotides, or from about 15 to about 35 nucleotides.

For example, in some embodiments, the disclosure provides an isolated nucleic acid molecule that comprises at least 15 nucleotides, wherein the isolated nucleic acid molecule 10 hybridizes to a nucleic acid comprising the sequence of SEQ ID NO:2, wherein the isolated nucleic acid molecule hybridizes to a portion of SEQ ID NO:2, and wherein the portion of SEQ ID NO:2 comprises nucleotides 53575 to 53577 of SEQ ID NO:2. In some such embodiments, the isolated nucleic acid molecule comprises at least 20, at least 25, or at least 30 nucleotides. In some embodiments, the disclosure provides an isolated nucleic acid molecule that comprises 15 15 to 50 nucleotides, wherein the isolated nucleic acid molecule hybridizes to a nucleic acid comprising the sequence of SEQ ID NO:2, wherein the isolated nucleic acid molecule hybridizes to a portion of SEQ ID NO:2, and wherein the portion of SEQ ID NO:2 comprises nucleotides 53575 to 53577 of SEQ ID NO:2. In some such embodiments, the isolated nucleic acid molecule comprises at least 20, at least 25, or at least 30 nucleotides.

20 In some embodiments, the isolated nucleic acid molecules hybridize to at least 15 contiguous nucleotides of a nucleic acid, wherein the contiguous nucleotides are at least 90% identical to a portion of SEQ ID NO:2, wherein the contiguous nucleotides comprise nucleotides 53575 to 53577 of SEQ ID NO:2 at positions that correspond to positions 53757 to 53577 of SEQ ID NO:2. In some such embodiments, the contiguous nucleotides are at least 20, at least 25, or 25 at least 30 nucleotides in length. In some embodiments, the isolated nucleic acid molecules hybridize to at least 15 contiguous nucleotides of a nucleic acid, wherein the contiguous nucleotides are at least 95% identical to a portion of SEQ ID NO:2, wherein the contiguous nucleotides comprise nucleotides 53575 to 53577 of SEQ ID NO:2 at positions that correspond to positions 53757 to 53577 of SEQ ID NO:2. In some such embodiments, the contiguous nucleotides are at least 20, at least 25, or at least 30 nucleotides in length. In some 30 embodiments, the isolated nucleic acid molecules hybridize to at least 15 contiguous nucleotides of a nucleic acid, wherein the contiguous nucleotides are at least 100% identical to

a portion of SEQ ID NO:2, wherein the contiguous nucleotides comprise nucleotides 53575 to 53577 of SEQ ID NO:2 at positions that correspond to positions 53757 to 53577 of SEQ ID NO:2. In some such embodiments, the contiguous nucleotides are at least 20, at least 25, or at least 30 nucleotides in length.

5 In some embodiments, the isolated nucleic acid molecules hybridize to 15 to 50 contiguous nucleotides of a nucleic acid, wherein the contiguous nucleotides are at least 90% identical to a portion of SEQ ID NO:2, wherein the contiguous nucleotides comprise nucleotides 53575 to 53577 of SEQ ID NO:2 at positions that correspond to positions 53757 to 53577 of SEQ ID NO:2. In some such embodiments, the contiguous nucleotides are at least 20, at least 25, or
10 at least 30 nucleotides in length. In some embodiments, the isolated nucleic acid molecules hybridize to 15 to 50 contiguous nucleotides of a nucleic acid, wherein the contiguous nucleotides are at least 95% identical to a portion of SEQ ID NO:2, wherein the contiguous nucleotides comprise nucleotides 53575 to 53577 of SEQ ID NO:2 at positions that correspond to positions 53757 to 53577 of SEQ ID NO:2. In some such embodiments, the contiguous
15 nucleotides are at least 20, at least 25, or at least 30 nucleotides in length. In some embodiments, the isolated nucleic acid molecules hybridize to 15 to 50 contiguous nucleotides of a nucleic acid, wherein the contiguous nucleotides are at least 100% identical to a portion of SEQ ID NO:2, wherein the contiguous nucleotides comprise nucleotides 53575 to 53577 of SEQ ID NO:2 at positions that correspond to positions 53757 to 53577 of SEQ ID NO:2. In some such
20 embodiments, the contiguous nucleotides are at least 20, at least 25, or at least 30 nucleotides in length.

Such isolated nucleic acid molecules can be used, for example, as guide RNAs, primers, probes, or exogenous donor sequences.

25 A representative wild-type *B4GALT1* genomic sequence is recited in SEQ ID NO:1. A representative variant *B4GALT1* genomic sequence variant is recited in SEQ ID NO:2.

The present disclosure also provides isolated nucleic acid molecules comprising a variant of *B4GALT1* mRNA. An exemplary wild-type human *B4GALT1* mRNA is assigned NCBI Accession NM_001497 (SEQ ID NO:3), and consists of 4214 nucleotide bases. A variant of human *B4GALT1* mRNA is shown in SEQ ID NO:4, and comprises the SNP (A to G at position
30 1244; referred to herein as a variant *B4GALT1*), which results in a serine at the position corresponding to position 352 of the encoded *B4GALT1* variant polypeptide. The variant human *B4GALT1* mRNA comprises, for example, the three bases “agu” encoding a serine at positions

corresponding to positions 1243 to 1245 of the wild-type human *B4GALT1* mRNA, as opposed to the three bases “aau” at positions 1243 to 1245 of the wild-type human *B4GALT1* mRNA (comparing SEQ ID NO:4 to SEQ ID NO:3, respectively). In some embodiments, the isolated nucleic acid molecule comprises SEQ ID NO:4. In some embodiments, the isolated nucleic acid

5 molecule consists of SEQ ID NO:4.

In some embodiments, the isolated nucleic acid molecules comprise or consist of a nucleic acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:4. In some embodiments, such nucleic acid sequences also comprise nucleotides corresponding to positions 1243 to 1245 of SEQ ID NO:4. In some embodiments, the isolated nucleic acid molecules comprise or consist of a nucleotide sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a portion of SEQ ID NO:4

10 comprising exons 1 to 6. In some embodiments, such nucleic acid sequences also comprise nucleotides corresponding to positions 1243 to 1245 of SEQ ID NO:4. In some embodiments, the isolated nucleic acid molecule is a complement of any *B4GALT1* mRNA molecule disclosed herein.

15

In some embodiments, the isolated nucleic acid molecules comprises less than the entire mRNA sequence. In some embodiments, the isolated nucleic acid molecules comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, at least about 1000, at least about 2000, at least about 3000, or at least about 4000 contiguous nucleotides of SEQ ID NO:4. In some embodiments, such isolated nucleic acid molecules also comprise nucleotides corresponding to positions 1243 to 1245 of SEQ ID NO:4. In some embodiments, the isolated nucleic acid molecules comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, or at

20

25

30

least about 1000 contiguous nucleotides of SEQ ID NO:4. In some embodiments, such isolated nucleic acid molecules also comprises nucleotides corresponding to positions 1243 to 1245 of SEQ ID NO:4. In some embodiments, the isolated nucleic acid molecules comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at 5 least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, or at least about 1000 contiguous nucleotides of exons 1 to 6 of SEQ ID NO:4. In some embodiments, such isolated nucleic acid molecules also comprise nucleotides 10 corresponding to positions 1243 to 1245 of SEQ ID NO:4.

In some embodiments, the disclosure provides an isolated nucleic acid molecule that comprises a nucleic acid sequence that is at least 90% identical to a portion of SEQ ID NO:4, wherein the portion of SEQ ID NO:4 comprises nucleotides 1243 to 1245 of SEQ ID NO:4 and wherein the portion of SEQ ID NO:4 comprises at least 15 nucleotides of SEQ ID NO:4. In some 15 such embodiments, the portion of SEQ ID NO:4 is at least 20, at least 25 or at least 30 nucleotides of SEQ ID NO:4. In some embodiments, the disclosure provides an isolated nucleic acid molecule that comprises a nucleic acid sequence that is at least 95% identical to a portion of SEQ ID NO:4, wherein the portion of SEQ ID NO:4 comprises nucleotides 1243 to 1245 of SEQ ID NO:4 and wherein the portion of SEQ ID NO:4 comprises at least 15 nucleotides of SEQ ID 20 NO:4. In some such embodiments, the portion of SEQ ID NO:4 is at least 20, at least 25 or at least 30 nucleotides of SEQ ID NO:4. In some embodiments, the disclosure provides an isolated nucleic acid molecule that comprises a nucleic acid sequence that is 100% identical to a portion of SEQ ID NO:4, wherein the portion of SEQ ID NO:4 comprises nucleotides 1243 to 1245 of SEQ ID NO:4 and wherein the portion of SEQ ID NO:4 comprises at least 15 nucleotides of SEQ ID 25 NO:4. In some such embodiments, the portion of SEQ ID NO:4 is at least 20, at least 25 or at least 30 nucleotides of SEQ ID NO:4. In some embodiments, the disclosure provides an isolated nucleic acid molecule that comprises a nucleic acid sequence that is at least 90% identical to a portion of SEQ ID NO:4, wherein the portion of SEQ ID NO:4 comprises nucleotides 1243 to 1245 of SEQ ID NO:4 and wherein the portion of SEQ ID NO:4 comprises 15 to 50 nucleotides of 30 SEQ ID NO:4. In some such embodiments, the portion of SEQ ID NO:4 is at least 20, at least 25 or at least 30 nucleotides of SEQ ID NO:4. In some embodiments, the disclosure provides an isolated nucleic acid molecule that comprises a nucleic acid sequence that is at least 95%

identical to a portion of SEQ ID NO:4, wherein the portion of SEQ ID NO:4 comprises nucleotides 1243 to 1245 of SEQ ID NO:4 and wherein the portion of SEQ ID NO:4 comprises 15 to 50 nucleotides of SEQ ID NO:4. In some such embodiments, the portion of SEQ ID NO:4 is at least 20, at least 25 or at least 30 nucleotides of SEQ ID NO:4. In some embodiments, the

5 disclosure provides an isolated nucleic acid molecule that comprises a nucleic acid sequence that is 100% identical to a portion of SEQ ID NO:4, wherein the portion of SEQ ID NO:4 comprises nucleotides 1243 to 1245 of SEQ ID NO:4 and wherein the portion of SEQ ID NO:4 comprises 15 to 50 nucleotides of SEQ ID NO:4. In some such embodiments, the portion of SEQ ID NO:4 is at least 20, at least 25 or at least 30 nucleotides of SEQ ID NO:4.

10 Such isolated nucleic acid molecules can be used, for example, to express *B4GALT1* variant polypeptides or as exogenous donor sequences. It is understood that gene sequences within a population can vary due to polymorphisms such as SNPs. The examples provided herein are only exemplary sequences, and other sequences are also possible.

15 In some embodiments, the isolated nucleic acid molecules comprise or consist of a nucleic acid sequence encoding a polypeptide at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to the variant Asn352Ser *B4GALT1* polypeptide (SEQ ID NO:8), provided that the polypeptide comprises a serine at the position corresponding to position 352. In some embodiments, the isolated nucleic acid molecules comprise or consist of a nucleic acid sequence encoding a polypeptide at least about 90%, identical to SEQ ID NO:8, provided that the polypeptide comprises a serine at the position corresponding to position 352. In some embodiments, the isolated nucleic acid molecules comprise or consist of a nucleic acid sequence encoding a polypeptide at least about 95%, identical to SEQ ID NO:8, provided that the polypeptide comprises a serine at the position corresponding to position 352.

20

25

For example, in some embodiments, the isolated nucleic acid molecule comprises a nucleic acid sequence encoding a polypeptide that has an amino acid sequence that is at least 10 amino acids long, wherein the amino acid sequence is 90% identical to a portion of the amino acid sequence of SEQ ID NO:8, wherein the portion comprises a serine at the position corresponding to position 352 of SEQ ID NO:8. In some such embodiments, the nucleic acid sequence encodes a polypeptide that has an amino acid sequence that is at least 15, at least 20 or at least 25 amino acids long. In some embodiments, the isolated nucleic acid molecule

comprises a nucleic acid sequence encoding a polypeptide that has an amino acid sequence that is at least 10 amino acids long, wherein the amino acid sequence is 95% identical to a portion of the amino acid sequence of SEQ ID NO:8, wherein the portion comprises a serine at the position corresponding to position 352 of SEQ ID NO:8. In some such embodiments, the 5 nucleic acid sequence encodes a polypeptide that has an amino acid sequence that is at least 15, at least 20 or at least 25 amino acids long. In some embodiments, the isolated nucleic acid molecule comprises a nucleic acid sequence encoding a polypeptide that has an amino acid sequence that is 10 to 50 amino acids long, wherein the amino acid sequence is 90% identical to a portion of the amino acid sequence of SEQ ID NO:8, wherein the portion comprises a serine 10 at the position corresponding to position 352 of SEQ ID NO:8. In some such embodiments, the nucleic acid sequence encodes a polypeptide that has an amino acid sequence that is at least 15, at least 20 or at least 25 amino acids long. In some embodiments, the isolated nucleic acid molecule comprises a nucleic acid sequence encoding a polypeptide that has an amino acid sequence that is 10 to 50 amino acids long, wherein the amino acid sequence is 95% identical 15 to a portion of the amino acid sequence of SEQ ID NO:8, wherein the portion comprises a serine at the position corresponding to position 352 of SEQ ID NO:8. In some such embodiments, the nucleic acid sequence encodes a polypeptide that has an amino acid sequence that is at least 15, at least 20 or at least 25 amino acids long. In some embodiments, the isolated nucleic acid molecules comprise or consist of a nucleic acid sequence encoding a polypeptide identical to 20 SEQ ID NO:8.

The present disclosure also provides isolated nucleic acid molecules that hybridize to a variant *B4GALT1* mRNA sequence. In some embodiments, such isolated nucleic acid molecules comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at 25 least about 70, at least about 80, at least about 90, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, at least about 1000, at least about 2000, at least about 3000, or at least about 4000 nucleotides. In some embodiments, such isolated nucleic acid molecules also hybridize to positions 1243 to 1245 of SEQ ID NO:4. In some embodiments, the 30 isolated nucleic acid molecules hybridize to a portion of a variant *B4GALT1* mRNA at a segment that includes or is within about 1000, within about 500, within about 400, within about 300, within about 200, within about 100, within about 50, within about 45, within about 40, within

about 35, within about 30, within about 25, within about 20, within about 15, within about 10, or within about 5 nucleotides of positions 1243 to 1245 of SEQ ID NO:4.

In some embodiments, the isolated nucleic acid molecules comprise or consist of at least 15 nucleotides and hybridize to a portion of a variant *B4GALT1* mRNA (for example, SEQ ID NO:4) at a segment that includes or is within 5 nucleotides of positions 1243 to 1245 of SEQ ID NO:4. In some such embodiments, the isolated nucleic acid molecules comprise at least 20, at least 25 or at least 30 nucleotides. In some embodiments, the isolated nucleic acid molecules comprise or consist of at least 15 nucleotides, hybridize to a portion of a variant *B4GALT1* mRNA (for example, SEQ ID NO:4) at a segment that includes or is within 5 nucleotides of positions 1243 to 1245 of SEQ ID NO:4 and hybridize to positions 1243 to 1245 of SEQ ID NO:4. In some such embodiments, the isolated nucleic acid molecules comprise at least 20, at least 25 or at least 30 nucleotides. In some embodiments, the isolated nucleic acid molecules comprise 15 to 50 nucleotides and hybridize to a portion of a variant *B4GALT1* mRNA (for example, SEQ ID NO:4) at a segment that includes positions 1243 to 1245 of SEQ ID NO:4 and hybridize to positions 1243 to 1245 of SEQ ID NO:4. In some such embodiments, the isolated nucleic acid molecules comprise at least 20, at least 25 or at least 30 nucleotides.

In some embodiments, the isolated nucleic acid molecules hybridize to at least about 15 contiguous nucleotides of a nucleic acid molecule that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a variant *B4GALT1* mRNA (such as, for example, SEQ ID NO:4). In some embodiments, the isolated nucleic acid molecules also hybridize to positions 1243 to 1245 of SEQ ID NO:4. In some embodiments, the isolated nucleic acid molecules comprise or consist of from about 15 to about 100 nucleotides, or from about 15 to about 35 nucleotides.

In some embodiments, the isolated nucleic acid molecules comprise or consist of at least 15 nucleotides and hybridize to a portion of a variant *B4GALT1* mRNA at a segment that includes or is within 5 nucleotides of positions 1243 to 1245 of SEQ ID NO:4, wherein the variant *B4GALT1* mRNA is at least 90% identical to a variant *B4GALT1* mRNA (such as, for example, SEQ ID NO:4). In some such embodiments, the isolated nucleic acid molecules comprise at least 20, at least 25 or at least 30 nucleotides. In some embodiments, the isolated nucleic acid molecules comprise or consist of at least 15 nucleotides and hybridize to a portion of a variant *B4GALT1* mRNA at a segment that includes or is within 5 nucleotides of positions

1243 to 1245 of SEQ ID NO:4, wherein the variant *B4GALT1* mRNA is at least 95% identical to a variant *B4GALT1* mRNA (such as, for example, SEQ ID NO:4). In some such embodiments, the isolated nucleic acid molecules comprise at least 20, at least 25 or at least 30 nucleotides. In some embodiments, the isolated nucleic acid molecules comprise or consist of at least 15

5 nucleotides, hybridize to a portion of a variant *B4GALT1* mRNA at a segment that includes or is within 5 nucleotides of positions 1243 to 1245 of SEQ ID NO:4 and hybridize to positions 1243 to 1245 of SEQ ID NO:4, wherein the variant *B4GALT1* mRNA is at least 90% identical to a variant *B4GALT1* mRNA (such as, for example, SEQ ID NO:4). In some such embodiments, the isolated nucleic acid molecules comprise at least 20, at least 25 or at least 30 nucleotides. In

10 some embodiments, the isolated nucleic acid molecules comprise or consist of at least 15 nucleotides, hybridize to a portion of a variant *B4GALT1* mRNA at a segment that includes or is within 5 nucleotides of positions 1243 to 1245 of SEQ ID NO:4 and hybridize to positions 1243 to 1245 of SEQ ID NO:4, wherein the variant *B4GALT1* mRNA is at least 95% identical to a variant *B4GALT1* mRNA (such as, for example, SEQ ID NO:4). In some such embodiments, the

15 isolated nucleic acid molecules comprise at least 20, at least 25 or at least 30 nucleotides. In some embodiments, the isolated nucleic acid molecules comprise or consist of from 15 to 100 nucleotides, or from 15 to 35 nucleotides.

Such isolated nucleic acid molecules can be used, for example, as guide RNAs, primers, probes, or exogenous donor sequences.

20 A representative wild-type *B4GALT1* mRNA sequence is recited in SEQ ID NO:3. A representative variant *B4GALT1* mRNA sequence is recited in SEQ ID NO:4.

The present disclosure also provides nucleic acid molecules comprising a variant of *B4GALT1* cDNA encoding all or part of a *B4GALT1* variant polypeptide. An exemplary wild-type human *B4GALT1* cDNA (e.g., coding region of mRNA written as DNA) consists of 1197

25 nucleotide bases (SEQ ID NO:5). A variant of human *B4GALT1* cDNA is shown in SEQ ID NO:6, and comprises the SNP (A to G at position 1055; referred to herein as a variant *B4GALT1*), which results in a serine at the position corresponding to position 352 of the encoded *B4GALT1* variant polypeptide. The variant human *B4GALT1* cDNA comprises, for example, “agt” encoding a serine at positions corresponding to positions 1054 to 1056 of the full length/mature wild-

30 type human *B4GALT1* cDNA, as opposed to the three bases “aat” of the wild-type human *B4GALT1* cDNA at positions 1054 to 1056 (comparing SEQ ID NO:6 to SEQ ID NO:5, respectively). In some embodiments, the nucleic acid molecule comprises SEQ ID NO:6. In some

embodiments, the nucleic acid molecule consists of SEQ ID NO:6. In some embodiments, the cDNA molecules are isolated.

In some embodiments, the cDNA molecules comprise or consist of a nucleic acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:6. In some embodiments, the cDNA molecules also comprise nucleotides corresponding to positions 1054 to 1056 of SEQ ID NO:6. In some embodiments, the isolated nucleic acid molecule is a complement of any *B4GALT1* cDNA molecule disclosed herein.

10 In some embodiments, the cDNA molecules comprise less than the entire cDNA sequence. In some embodiments, the cDNA molecules comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, at least about 1000, or at least about 1100 contiguous nucleotides of SEQ ID NO:6. In some embodiments, such cDNA molecules also comprise nucleotides corresponding to positions 1054 to 1056 of SEQ ID NO:6. In some embodiments, the cDNA molecules comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 200, at least about 300, at least about 400, or at least about 500 contiguous nucleotides of SEQ ID NO:6. In some embodiments, such cDNA molecules also comprise nucleotides corresponding to positions 1054 to 1056 of SEQ ID NO:6.

25 For example, in some embodiments, the cDNA molecule comprises at least 15 contiguous nucleotides of SEQ ID NO:6, wherein the contiguous nucleotides include nucleotides 1054 to 1056 of SEQ ID NO:6. In some such embodiments, the isolated nucleic acid molecule comprises at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:6. In some embodiments, the cDNA molecule comprises 15 to 50 contiguous nucleotides of SEQ ID NO:6, wherein the contiguous nucleotides include nucleotides 1054 to 1056 of SEQ ID NO:6. In some such embodiments, the isolated nucleic acid molecule comprises at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:6. In some embodiments, the disclosure provides

a cDNA molecule that comprises a nucleic acid sequence that is at least 90% identical to a portion of SEQ ID NO:6, wherein the portion of SEQ ID NO:6 comprises nucleotides 1054 to 1056 of SEQ ID NO:6 and wherein the portion of SEQ ID NO:6 comprises at least 15 contiguous nucleotides nucleotides of SEQ ID NO:6. In some such embodiments, the portion of SEQ ID NO:6 is at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:6. In some embodiments, the disclosure provides a cDNA molecule that comprises a nucleic acid sequence that is at least 95% identical to a portion of SEQ ID NO:6, wherein the portion of SEQ ID NO:6 comprises nucleotides 1054 to 1056 of SEQ ID NO:6 and wherein the portion of SEQ ID NO:6 comprises at least 15 contiguous nucleotides nucleotides of SEQ ID NO:6. In some such 5 embodiments, the portion of SEQ ID NO:6 is at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:6. In some embodiments, the disclosure provides a cDNA molecule that comprises a nucleic acid sequence that is at least 90% identical to a portion of SEQ ID NO:6, wherein the portion of SEQ ID NO:6 comprises nucleotides 1054 to 1056 of SEQ ID NO:6 and wherein the portion of SEQ ID NO:6 comprises 15 to 50 contiguous nucleotides nucleotides 10 10 of SEQ ID NO:6. In some such embodiments, the portion of SEQ ID NO:6 is at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:6. In some embodiments, the disclosure provides a cDNA molecule that comprises a nucleic acid sequence that is at least 95% identical to a portion of SEQ ID NO:6, wherein the portion of SEQ ID NO:6 comprises nucleotides 1054 to 1056 of SEQ ID NO:6 and wherein the portion of SEQ ID NO:6 comprises 15 to 50 contiguous nucleotides nucleotides 15 15 of SEQ ID NO:6. In some such embodiments, the portion of SEQ ID NO:6 is at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:6. In some embodiments, the disclosure provides a cDNA molecule that comprises a nucleic acid sequence that is at least 95% identical to a portion of SEQ ID NO:6, wherein the portion of SEQ ID NO:6 comprises nucleotides 1054 to 1056 of SEQ ID NO:6 and wherein the portion of SEQ ID NO:6 comprises 15 to 50 contiguous nucleotides nucleotides 20 20 of SEQ ID NO:6. In some such embodiments, the portion of SEQ ID NO:6 is at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:6. In some embodiments, the disclosure provides a cDNA molecule that comprises nucleotides 1054 to 1056 of SEQ ID NO:6 at positions corresponding to nucleotides 1054 to 1056 of SEQ ID NO:6, wherein the cDNA molecule comprises a nucleic acid sequence that is at least 90% identical to a portion of SEQ ID NO:6, wherein the portion of SEQ ID NO:6 comprises nucleotides 1054 to 25 25 1056 of SEQ ID NO:6 and wherein the portion of SEQ ID NO:6 comprises at least 15 contiguous nucleotides nucleotides of SEQ ID NO:6. In some such embodiments, the portion of SEQ ID NO:6 is at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:6. In some embodiments, the disclosure provides a cDNA molecule that comprises nucleotides 1054 to 1056 of SEQ ID NO:6 at positions corresponding to nucleotides 1054 to 1056 of SEQ ID NO:6, wherein the cDNA molecule comprises a nucleic acid sequence that is at least 95% identical to a portion of SEQ ID NO:6, wherein the portion of SEQ ID NO:6 comprises nucleotides 1054 to 30 30 1056 of SEQ ID NO:6 and wherein the portion of SEQ ID NO:6 comprises nucleotides 1054 to 1056 of SEQ ID NO:6.

1056 of SEQ ID NO:6 and wherein the portion of SEQ ID NO:6 comprises at least 15 contiguous nucleotides nucleotides of SEQ ID NO:6. In some such embodiments, the portion of SEQ ID

NO:6 is at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:6. In some embodiments, the disclosure provides a cDNA molecule that comprises nucleotides 1054 to

5 1056 of SEQ ID NO:6 at positions corresponding to nucleotides 1054 to 1056 of SEQ ID NO:6, wherein the cDNA molecule comprises a nucleic acid sequence that is at least 90% identical to a portion of SEQ ID NO:6, wherein the portion of SEQ ID NO:6 comprises nucleotides 1054 to 1056 of SEQ ID NO:6 and wherein the portion of SEQ ID NO:6 comprises 15 to 50 contiguous nucleotides nucleotides of SEQ ID NO:6. In some such embodiments, the portion of SEQ ID

10 NO:6 is at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:6. In some embodiments, the disclosure provides a cDNA molecule that comprises nucleotides 1054 to 1056 of SEQ ID NO:6 at positions corresponding to nucleotides 1054 to 1056 of SEQ ID NO:6, wherein the cDNA molecule comprises a nucleic acid sequence that is at least 95% identical to a portion of SEQ ID NO:6, wherein the portion of SEQ ID NO:6 comprises nucleotides 1054 to

15 1056 of SEQ ID NO:6 and wherein the portion of SEQ ID NO:6 comprises 15 to 50 contiguous nucleotides nucleotides of SEQ ID NO:6. In some such embodiments, the portion of SEQ ID NO:6 is at least 20, at least 25 or at least 30 contiguous nucleotides of SEQ ID NO:6.

Such cDNA molecules can be used, for example, to express *B4GALT1* variant proteins or as exogenous donor sequences. It is understood that gene sequences within a population can vary due to polymorphisms such as SNPs. The examples provided herein are only exemplary sequences, and other sequences are also possible.

In some embodiments, the cDNA molecules comprise or consist of a nucleic acid sequence encoding a polypeptide at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%,

25 at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to the variant Asn352Ser *B4GALT1* polypeptide (SEQ ID NO:8), provided that the polypeptide comprises a serine at the position corresponding to position 352. In some embodiments, the cDNA molecules comprise or consist of a nucleic acid sequence encoding a polypeptide at least about 90%, identical to SEQ ID NO:8, provided that the polypeptide

30 comprises a serine at the position corresponding to position 352. In some embodiments, the cDNA molecules comprise or consist of a nucleic acid sequence encoding a polypeptide at least about 95%, identical to SEQ ID NO:8, provided that the polypeptide comprises a serine at the

position corresponding to position 352. In some embodiments, the cDNA molecule comprises or consists of a nucleic acid sequence encoding a polypeptide identical to SEQ ID NO:8.

The present disclosure also provides isolated nucleic acid molecules that hybridize to a variant *B4GALT1* cDNA sequence. In some embodiments, such isolated nucleic acid molecules comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, at least about 1000, or at least about 1100 nucleotides. In some embodiments, such isolated nucleic acid molecules also hybridize to positions 1054 to 1056 of SEQ ID NO:6. In some embodiments, such isolated nucleic acid molecules hybridize to a portion of a variant *B4GALT1* cDNA at a segment that includes or is within about 600, within about 500, within about 400, within about 300, within about 200, within about 100, within about 50, within about 45, within about 40, within about 35, within about 30, within about 25, within about 20, within about 15, within about 10, or within about 5 nucleotides of positions 1054 to 1056 of SEQ ID NO:6. In some embodiments, the isolated nucleic acid molecules hybridize to at least about 15 contiguous nucleotides of a cDNA molecule that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a variant *B4GALT1* cDNA (such as, for example, SEQ ID NO:6). In some embodiments, the isolated nucleic acid molecules also hybridize to positions 1054 to 1056 of SEQ ID NO:6. In some embodiments, the isolated nucleic acid molecules comprise or consist of from about 15 to about 100 nucleotides, or from about 15 to about 35 nucleotides.

In some embodiments, the isolated nucleic acid molecules comprise or consist of at least 15 nucleotides and hybridize to a portion of a variant *B4GALT1* cDNA at a segment that includes or is within 5 nucleotides of positions 1054 to 1056 of SEQ ID NO:6, wherein the variant *B4GALT1* cDNA is at least 90% identical to a variant *B4GALT1* cDNA (such as, for example, SEQ ID NO:6). In some embodiments, the isolated nucleic acid molecules comprise or consist of at least 15 nucleotides and hybridize to a portion of a variant *B4GALT1* cDNA at a segment that includes or is within 5 nucleotides of positions 1054 to 1056 of SEQ ID NO:6, wherein the variant *B4GALT1* cDNA is at least 95% identical to a variant *B4GALT1* cDNA (such as, for example, SEQ ID NO:6). In some embodiments, the isolated nucleic acid molecules

comprise or consist of at least 15 nucleotides and hybridize to a portion of a variant *B4GALT1* cDNA at a segment that includes or is within 5 nucleotides of positions 1054 to 1056 of SEQ ID NO:6, wherein the variant *B4GALT1* cDNA is 100% identical to a variant *B4GALT1* cDNA (such as, for example, SEQ ID NO:6). In some embodiments, the isolated nucleic acid molecules comprise

5 or consist of at least 15 nucleotides, hybridize to a portion of a variant *B4GALT1* cDNA at a segment that includes or is within 5 nucleotides of positions 1054 to 1056 of SEQ ID NO:6 and hybridize to positions 1054 to 1056 of SEQ ID NO:6, wherein the variant *B4GALT1* cDNA is at least 90% identical to a variant *B4GALT1* cDNA (such as, for example, SEQ ID NO:6). In some embodiments, the isolated nucleic acid molecules comprise or consist of at least 15

10 nucleotides, hybridize to a portion of a variant *B4GALT1* cDNA at a segment that includes or is within 5 nucleotides of positions 1054 to 1056 of SEQ ID NO:6 and hybridize to positions 1054 to 1056 of SEQ ID NO:6, wherein the variant *B4GALT1* cDNA is at least 95% identical to a variant *B4GALT1* cDNA (such as, for example, SEQ ID NO:6). In some embodiments, the isolated nucleic acid molecules comprise or consist of at least 15 nucleotides, hybridize to a portion of a variant

15 *B4GALT1* cDNA at a segment that includes or is within 5 nucleotides of positions 1054 to 1056 of SEQ ID NO:6 and hybridize to positions 1054 to 1056 of SEQ ID NO:6, wherein the variant *B4GALT1* cDNA is 100% identical to a variant *B4GALT1* cDNA (such as, for example, SEQ ID NO:6). In some embodiments, the isolated nucleic acid molecules comprise or consist of from 15 to 100 nucleotides, or from 15 to 35 nucleotides.

20 Such isolated nucleic acid molecules can be used, for example, as guide RNAs, primers, probes, exogenous donor sequences, antisense RNAs, siRNAs, or shRNAs.

A representative wild-type *B4GALT1* cDNA sequence is recited in SEQ ID NO:5. A representative variant *B4GALT1* cDNA sequence is recited in SEQ ID NO:6.

25 The nucleic acid molecules disclosed herein can comprise a nucleic acid sequence of a naturally occurring *B4GALT1* gene or mRNA transcript, or can comprise a non-naturally occurring sequence. In some embodiments, the naturally occurring sequence can differ from the non-naturally occurring sequence due to synonymous mutations or mutations that do not affect the encoded *B4GALT1* polypeptide. For example, the sequence can be identical with the exception of synonymous mutations or mutations that do not affect the encoded *B4GALT1* polypeptide. A synonymous mutation or substitution is the substitution of one nucleotide for another in an exon of a gene coding for a protein such that the produced amino acid sequence is not modified. This is possible because of the degeneracy of the genetic code, with some

amino acids being coded for by more than one three-base pair codon. Synonymous substitutions are used, for example, in the process of codon optimization. The nucleic acid molecules disclosed herein can be codon optimized.

Also provided herein are functional polynucleotides that can interact with the

5 disclosed nucleic acid molecules. Functional polynucleotides are nucleic acid molecules that have a specific function, such as binding a target molecule or catalyzing a specific reaction. Examples of functional polynucleotides include, but are not limited to, antisense molecules, aptamers, ribozymes, triplex forming molecules, and external guide sequences. The functional polynucleotides can act as effectors, inhibitors, modulators, and stimulators of a specific
10 activity possessed by a target molecule, or the functional polynucleotides can possess a *de novo* activity independent of any other molecules.

Antisense molecules are designed to interact with a target nucleic acid molecule through either canonical or non-canonical base pairing. The interaction of the antisense molecule and the target molecule is designed to promote the destruction of the target
15 molecule through, for example, RNase-H-mediated RNA-DNA hybrid degradation. Alternately, the antisense molecule is designed to interrupt a processing function that normally would take place on the target molecule, such as transcription or replication. Antisense molecules can be designed based on the sequence of the target molecule. Numerous methods for optimization of antisense efficiency by identifying the most accessible regions of the target molecule exist.

20 Exemplary methods include, but are not limited to, *in vitro* selection experiments and DNA modification studies using DMS and DEPC. Antisense molecules generally bind the target molecule with a dissociation constant (k_d) less than or equal to about 10^{-6} , less than or equal to about 10^{-8} , less than or equal to about 10^{-10} , or less than or equal to about 10^{-12} . A representative sample of methods and techniques which aid in the design and use of antisense
25 molecules can be found in the following non-limiting list of U.S. Patents: 5,135,917; 5,294,533; 5,627,158; 5,641,754; 5,691,317; 5,780,607; 5,786,138; 5,849,903; 5,856,103; 5,919,772; 5,955,590; 5,990,088; 5,994,320; 5,998,602; 6,005,095; 6,007,995; 6,013,522; 6,017,898; 6,018,042; 6,025,198; 6,033,910; 6,040,296; 6,046,004; 6,046,319; and 6,057,437. Examples of antisense molecules include, but are not limited to, antisense RNAs, small interfering RNAs
30 (siRNAs), and short hairpin RNAs (shRNAs).

The isolated nucleic acid molecules disclosed herein can comprise RNA, DNA, or both RNA and DNA. The isolated nucleic acid molecules can also be linked or fused to a heterologous

nucleic acid sequence, such as in a vector, or a heterologous label. For example, the isolated nucleic acid molecules disclosed herein can be in a vector or exogenous donor sequence comprising the isolated nucleic acid molecule and a heterologous nucleic acid sequence. The isolated nucleic acid molecules can also be linked or fused to a heterologous label, such as a

5 fluorescent label. Other examples of labels are disclosed elsewhere herein.

The label can be directly detectable (e.g., fluorophore) or indirectly detectable (e.g., haptens, enzyme, or fluorophore quencher). Such labels can be detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. Such labels include, for example, radiolabels that can be measured with radiation-counting devices; pigments, dyes or

10 other chromogens that can be visually observed or measured with a spectrophotometer; spin labels that can be measured with a spin label analyzer; and fluorescent labels (e.g.,

fluorophores), where the output signal is generated by the excitation of a suitable molecular adduct and that can be visualized by excitation with light that is absorbed by the dye or can be measured with standard fluorometers or imaging systems. The label can also be, for example, a

15 chemiluminescent substance, where the output signal is generated by chemical modification of the signal compound; a metal-containing substance; or an enzyme, where there occurs an enzyme-dependent secondary generation of signal, such as the formation of a colored product from a colorless substrate. The term “label” can also refer to a “tag” or hapten that can bind

selectively to a conjugated molecule such that the conjugated molecule, when added

20 subsequently along with a substrate, is used to generate a detectable signal. For example, one can use biotin as a tag and then use an avidin or streptavidin conjugate of horseradish peroxidase (HRP) to bind to the tag, and then use a calorimetric substrate (e.g.,

tetramethylbenzidine (TMB)) or a fluorogenic substrate to detect the presence of HRP.

Exemplary labels that can be used as tags to facilitate purification include, but are not limited

25 to, myc, HA, FLAG or 3XFLAG, 6XHis or polyhistidine, glutathione-S-transferase (GST), maltose binding protein, an epitope tag, or the Fc portion of immunoglobulin. Numerous labels are known and include, for example, particles, fluorophores, haptens, enzymes and their calorimetric, fluorogenic and chemiluminescent substrates and other labels.

The disclosed nucleic acid molecules can be made up of, for example, nucleotides or

30 non-natural or modified nucleotides, such as nucleotide analogs or nucleotide substitutes. Such nucleotides include a nucleotide that contains a modified base, sugar, or phosphate group, or that incorporates a non-natural moiety in its structure. Examples of non-natural nucleotides

include, but are not limited to, dideoxynucleotides, biotinylated, aminated, deaminated, alkylated, benzylated, and fluorophor-labeled nucleotides.

The nucleic acid molecules disclosed herein can also comprise one or more nucleotide analogs or substitutions. A nucleotide analog is a nucleotide which contains a modification to either the base, sugar, or phosphate moieties. Modifications to the base moiety include, but are not limited to, natural and synthetic modifications of A, C, G, and T/U, as well as different purine or pyrimidine bases such as, for example, pseudouridine, uracil-5-yl, hypoxanthin-9-yl (I), and 2-aminoadenin-9-yl. Modified bases include, but are not limited to, 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Certain nucleotide analogs such as, for example, 5-substituted pyrimidines, 6-azapyrimidines, and N-2, N-6 and O-6 substituted purines including, but not limited to, 2-aminopropyladenine, 5-propynyluracil, 5-propynylcytosine, and 5-methylcytosine can increase the stability of duplex formation. Often, base modifications can be combined with, for example, a sugar modification, such as 2'-O-methoxyethyl, to achieve unique properties such as increased duplex stability.

Nucleotide analogs can also include modifications of the sugar moiety. Modifications to the sugar moiety include, but are not limited to, natural modifications of the ribose and deoxy ribose as well as synthetic modifications. Sugar modifications include, but are not limited to, the following modifications at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl, and alkynyl may be substituted or unsubstituted C₁₋₁₀alkyl or C₂₋₁₀alkenyl, and C₂₋₁₀alkynyl. Exemplary 2' sugar modifications also include, but are not limited to, -O[(CH₂)_nO]_mCH₃, -O(CH₂)_nOCH₃, -O(CH₂)_nNH₂, -O(CH₂)_nCH₃, -O(CH₂)_n-ONH₂, and -O(CH₂)_nON[(CH₂)_nCH₃]₂, where n and m are from 1 to about 10.

Other modifications at the 2' position include, but are not limited to, C₁₋₁₀alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH₃, OCN, Cl, Br, CN, CF₃, OCF₃, SOCH₃, SO₂CH₃, ONO₂, NO₂, N₃, NH₂, heterocycloalkyl, heterocycloalkaryl,

aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. Similar modifications may also be made at other

5 positions on the sugar, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Modified sugars can also include those that contain modifications at the bridging ring oxygen, such as CH₂ and S. Nucleotide sugar analogs can also have sugar mimetics, such as cyclobutyl moieties in place of the pentofuranosyl sugar.

10 Nucleotide analogs can also be modified at the phosphate moiety. Modified phosphate moieties include, but are not limited to, those that can be modified so that the linkage between two nucleotides contains a phosphorothioate, chiral phosphorothioate, phosphorodithioate, phosphotriester, aminoalkylphosphotriester, methyl and other alkyl phosphonates including 3'-alkylene phosphonate and chiral phosphonates, phosphinates, phosphoramidates including 15 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates. These phosphate or modified phosphate linkage between two nucleotides can be through a 3'-5' linkage or a 2'-5' linkage, and the linkage can contain inverted polarity such as 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts, and free acid forms are also included.

20 Nucleotide substitutes include molecules having similar functional properties to nucleotides, but which do not contain a phosphate moiety, such as peptide nucleic acid (PNA). Nucleotide substitutes include molecules that will recognize nucleic acids in a Watson-Crick or Hoogsteen manner, but which are linked together through a moiety other than a phosphate moiety. Nucleotide substitutes are able to conform to a double helix type structure when 25 interacting with the appropriate target nucleic acid.

Nucleotide substitutes also include nucleotides or nucleotide analogs that have had the phosphate moiety or sugar moieties replaced. In some embodiments, nucleotide substitutes may not contain a standard phosphorus atom. Substitutes for the phosphate can be, for example, short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and 30 alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and

sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S, and CH₂ component parts.

5 It is also understood in a nucleotide substitute that both the sugar and the phosphate moieties of the nucleotide can be replaced by, for example, an amide type linkage (aminoethylglycine) (PNA).

It is also possible to link other types of molecules (conjugates) to nucleotides or nucleotide analogs to enhance, for example, cellular uptake. Conjugates can be chemically linked to the nucleotide or nucleotide analogs. Such conjugates include, for example, lipid moieties such as a cholesterol moiety, cholic acid, a thioether such as hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain such as dodecandiol or undecyl residues, a phospholipid such as di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, adamantane acetic acid, a palmitoyl moiety, or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety.

The present disclosure also provides vectors comprising any one or more of the nucleic acid molecules disclosed herein. In some embodiments, the vectors comprise any one or more of the nucleic acid molecules disclosed herein and a heterologous nucleic acid. The vectors can be viral or nonviral vectors capable of transporting a nucleic acid molecule. In some 20 embodiments, the vector is a plasmid or cosmid (e.g., a circular double-stranded DNA into which additional DNA segments can be ligated). In some embodiments, the vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. In some embodiments, the vector can autonomously replicate in a host cell into which it is introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian 25 vectors). In some embodiments, the vector (e.g., non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell and thereby are replicated along with the host genome. Moreover, particular vectors can direct the expression of genes to which they are operatively linked. Such vectors are referred to herein as “recombinant expression vectors” or “expression vectors.” Such vectors can also be targeting 30 vectors (i.e., exogenous donor sequences).

In some embodiments, the proteins encoded by the various genetic variants disclosed herein are expressed by inserting nucleic acid molecules encoding the disclosed genetic variants

into expression vectors, such that the genes are operatively linked to expression control sequences, such as transcriptional and translational control sequences. Expression vectors include, but are not limited to, plasmids, cosmids, retroviruses, adenoviruses, adeno-associated viruses (AAV), plant viruses such as cauliflower mosaic virus and tobacco mosaic virus, yeast 5 artificial chromosomes (YACs), Epstein-Barr (EBV)-derived episomes, and the like. In some embodiments, nucleic acid molecules comprising the disclosed genetic variants can be ligated into a vector such that transcriptional and translational control sequences within the vector serve their intended function of regulating the transcription and translation of the genetic variant. The expression vector and expression control sequences are chosen to be compatible 10 with the expression host cell used. Nucleic acid sequences comprising the disclosed genetic variants can be inserted into separate vectors or into the same expression vector as the variant genetic information. A nucleic acid sequence comprising the disclosed genetic variants can be inserted into the expression vector by standard methods (e.g., ligation of complementary restriction sites on the nucleic acid comprising the disclosed genetic variants and vector, or 15 blunt end ligation if no restriction sites are present).

In addition to a nucleic acid sequence comprising the disclosed genetic variants, the recombinant expression vectors can carry regulatory sequences that control the expression of the genetic variant in a host cell. The design of the expression vector, including the selection of regulatory sequences can depend on such factors as the choice of the host cell to be 20 transformed, the level of expression of protein desired, and so forth. Desired regulatory sequences for mammalian host cell expression can include, for example, viral elements that direct high levels of protein expression in mammalian cells, such as promoters and/or enhancers derived from retroviral LTRs, cytomegalovirus (CMV) (such as the CMV promoter/enhancer), Simian Virus 40 (SV40) (such as the SV40 promoter/enhancer), 25 adenovirus, (e.g., the adenovirus major late promoter (AdMLP)), polyoma and strong mammalian promoters such as native immunoglobulin and actin promoters. Methods of expressing polypeptides in bacterial cells or fungal cells (e.g., yeast cells) are also well known.

A promoter can be, for example, a constitutively active promoter, a conditional promoter, an inducible promoter, a temporally restricted promoter (e.g., a developmentally 30 regulated promoter), or a spatially restricted promoter (e.g., a cell-specific or tissue-specific promoter). Examples of promoters can be found, for example, in WO 2013/176772.

Examples of inducible promoters include, for example, chemically regulated promoters and physically-regulated promoters. Chemically regulated promoters include, for example, alcohol-regulated promoters (e.g., an alcohol dehydrogenase (alcA) gene promoter), tetracycline-regulated promoters (e.g., a tetracycline-responsive promoter, a tetracycline 5 operator sequence (tetO), a tet-On promoter, or a tet-Off promoter), steroid regulated promoters (e.g., a rat glucocorticoid receptor, a promoter of an estrogen receptor, or a promoter of an ecdysone receptor), or metal-regulated promoters (e.g., a metalloprotein promoter). Physically regulated promoters include, for example temperature-regulated promoters (e.g., a heat shock promoter) and light-regulated promoters (e.g., a light-inducible 10 promoter or a light-repressible promoter).

Tissue-specific promoters can be, for example, neuron-specific promoters, glia-specific promoters, muscle cell-specific promoters, heart cell-specific promoters, kidney cell-specific promoters, bone cell-specific promoters, endothelial cell-specific promoters, or immune cell-specific promoters (e.g., a B cell promoter or a T cell promoter).

15 Developmentally regulated promoters include, for example, promoters active only during an embryonic stage of development, or only in an adult cell.

In addition to a nucleic acid sequence comprising the disclosed genetic variants and 20 regulatory sequences, the recombinant expression vectors can carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes. A selectable marker gene can facilitate selection of host cells into which the vector has been introduced (see e.g., U.S. Patents 4,399,216; 4,634,665; and 5,179,017). For example, a selectable marker gene can confer resistance to drugs, such as 25 G418, hygromycin, or methotrexate, on a host cell into which the vector has been introduced. Exemplary selectable marker genes include, but are not limited to, the dihydrofolate reductase (DHFR) gene (for use in dhfr-host cells with methotrexate selection/amplification), the neo gene (for G418 selection), and the glutamate synthetase (GS) gene.

The present disclosure also provides isolated polypeptides comprising a variant 30 *B4GALT1* polypeptide (Asn352Ser). An exemplary wild-type human *B4GALT1* polypeptide is assigned UniProt Accession No. P15291 (SEQ ID NO:7), and consists of 398 amino acids. A human variant *B4GALT1* polypeptide comprises a serine at the position corresponding to position 352 of the full length/mature *B4GALT1* polypeptide (SEQ ID NO:8), as opposed to an asparagine at the same position in the wild-type human *B4GALT1* (comparing SEQ ID NO:8 to

SEQ ID NO:7, respectively). In some embodiments, the isolated polypeptide comprises SEQ ID NO:8. In some embodiments, the isolated polypeptide consists of SEQ ID NO:8.

In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise a serine at the position corresponding to position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise a serine at the position corresponding to position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 90% identical to SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 90% identical to SEQ ID NO:8 and comprise a serine at the position corresponding to position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 90% identical to SEQ ID NO:8, provided that the isolated polypeptides comprise a serine at the position corresponding to position 352 of SEQ ID NO:8.

In some embodiments, the isolated polypeptides comprise a serine at the position corresponding to position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 95% identical to SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 95% identical to SEQ ID NO:8 and comprise a serine at the position corresponding to position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 95% identical to SEQ ID NO:8, provided that the isolated polypeptides comprise a serine at the position corresponding to position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 95% identical to SEQ ID NO:8, provided that the isolated polypeptides comprise a serine at the position corresponding to position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 98% identical to SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 98% identical to SEQ ID NO:8 and comprise a serine at the position corresponding to position 352 of SEQ ID NO:8. In

some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 98% identical to SEQ ID NO:8, provided that the isolated polypeptides comprise a serine at the position corresponding to position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise a serine at the position corresponding to 5 position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 99% identical to SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence that is at least about 99% identical to SEQ ID NO:8 and comprise a serine at the position corresponding to position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or 10 consist of an amino acid sequence that is at least about 99% identical to SEQ ID NO:8, provided that the isolated polypeptides comprise a serine at the position corresponding to position 352 of SEQ ID NO:8.

In some embodiments, the isolated polypeptides comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at 15 least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, or at least about 350 contiguous amino acids of SEQ ID NO:8. In some embodiments, the isolated polypeptides also comprise a serine at a position corresponding to position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino 20 acid sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to at least about 8, at least about 10, at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at 25 least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, or at least about 350 contiguous amino acids of SEQ ID NO:8. In some embodiments, the isolated polypeptides also comprise a serine at a position corresponding to position 352 of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid 30 sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to at least about 8, at least about 10, at least about 15, at

least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, or at least about 350 contiguous amino acids of SEQ ID NO:8. In some embodiments, the isolated polypeptides also comprise a serine at a position corresponding to position 352 of SEQ ID NO:8.

5 In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence at least 90% identical to at least 300 contiguous amino acids of SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence at least 10 90% identical to at least 300 contiguous amino acids of SEQ ID NO:8 and the isolated polypeptides also comprise a serine at a position corresponding to position 352 of SEQ ID NO:8.

In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence at least 95% identical to at least 300 contiguous amino acids of SEQ ID NO:8. In some 15 embodiments, the isolated polypeptides comprise or consist of an amino acid sequence at least 95% identical to at least 300 contiguous amino acids of SEQ ID NO:8 and the isolated polypeptides also comprise a serine at a position corresponding to position 352 of SEQ ID NO:8.

In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence at least 98% identical to at least 300 contiguous amino acids of SEQ ID NO:8. In some 20 embodiments, the isolated polypeptides comprise or consist of an amino acid sequence at least 98% identical to at least 300 contiguous amino acids of SEQ ID NO:8 and the isolated polypeptides also comprise a serine at a position corresponding to position 352 of SEQ ID NO:8.

In some embodiments, the isolated polypeptides comprise or consist of an amino acid sequence at least 99% identical to at least 300 contiguous amino acids of SEQ ID NO:8. In some 25 embodiments, the isolated polypeptides comprise or consist of an amino acid sequence at least 99% identical to at least 300 contiguous amino acids of SEQ ID NO:8 and the isolated polypeptides also comprise a serine at a position corresponding to position 352 of SEQ ID NO:8.

In some embodiments, the isolated polypeptides comprise or consist of at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, or at least about 100 contiguous amino acids of SEQ ID NO:8. In some embodiments, the isolated polypeptides also comprise a serine at a position corresponding to position 352 of 30 SEQ ID NO:8. In some embodiments, the isolated polypeptides comprise or consist of an amino

acid sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to at least about 8, at least about 10, at least about 15, at least about

5 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, or at least about 100 contiguous amino acids of SEQ ID NO:8. In some embodiments, the isolated polypeptides also comprise a serine at a position corresponding to position 352 of SEQ ID NO:8.

In some embodiments, the isolated polypeptides comprise or consist of an amino acid

10 sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to at least about 8, at least about 10, at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about

15 90, or at least about 100 contiguous amino acids of SEQ ID NO:8. In some embodiments, the isolated polypeptides also comprise a serine at a position corresponding to position 352 of SEQ ID NO:8.

A representative wild-type *B4GALT1* polypeptide sequence is recited in SEQ ID NO:7. A representative *B4GALT1* variant polypeptide sequence is recited in SEQ ID NO:8.

20 The isolated polypeptides disclosed herein can comprise an amino acid sequence of a naturally occurring *B4GALT1* polypeptide, or can comprise a non-naturally occurring sequence. In some embodiments, the naturally occurring sequence can differ from the non-naturally occurring sequence due to conservative amino acid substitutions. For example, the sequence can be identical with the exception of conservative amino acid substitutions.

25 In some embodiments, the isolated polypeptides disclosed herein are linked or fused to heterologous polypeptides or heterologous molecules or labels, numerous examples of which are disclosed elsewhere herein. For example, the proteins can be fused to a heterologous polypeptide providing increased or decreased stability. The fused domain or heterologous polypeptide can be located at the N-terminus, the C-terminus, or internally within the 30 polypeptide. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant polypeptide. Certain fusion partners are both

immunological and expression enhancing fusion partners. Other fusion partners may be selected to increase the solubility of the polypeptide or to facilitate targeting the polypeptide to desired intracellular compartments. Some fusion partners include affinity tags, which facilitate purification of the polypeptide.

5 In some embodiments, a fusion protein is directly fused to the heterologous molecule or is linked to the heterologous molecule via a linker, such as a peptide linker. Suitable peptide linker sequences may be chosen, for example, based on the following factors: 1) the ability to adopt a flexible extended conformation; 2) the resistance to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and 3) the lack of
10 hydrophobic or charged residues that might react with the polypeptide functional epitopes. For example, peptide linker sequences may contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in, for example, Maratea et al., *Gene*, 1985, 40, 39-46; Murphy et al., *Proc. Natl. Acad. Sci. USA*, 1986, 83, 8258-
15 8262; and U.S. Patents 4,935,233 and 4,751,180. A linker sequence may generally be, for example, from 1 to about 50 amino acids in length. Linker sequences are generally not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

20 In some embodiments, the polypeptides are operably linked to a cell-penetrating domain. For example, the cell-penetrating domain can be derived from the HIV-1 TAT protein, the TLM cell-penetrating motif from human hepatitis B virus, MPG, Pep-1, VP22, a cell-penetrating peptide from Herpes simplex virus, or a polyarginine peptide sequence. *See, e.g.*, WO 2014/089290. The cell-penetrating domain can be located at the N-terminus, the C-terminus, or anywhere within the protein.

25 In some embodiments, the polypeptides are operably linked to a heterologous polypeptide for ease of tracking or purification, such as a fluorescent protein, a purification tag, or an epitope tag. Examples of fluorescent proteins include, but are not limited to, green fluorescent proteins (e.g., GFP, GFP-2, tagGFP, turboGFP, eGFP, Emerald, Azami Green, Monomeric Azami Green, CopGFP, AceGFP, ZsGreen1), yellow fluorescent proteins (e.g., YFP, eYFP, Citrine, Venus, YPet, PhiYFP, ZsYellow1), blue fluorescent proteins (e.g. eBFP, eBFP2, Azurite, mKalamal, GFPuv, Sapphire, T-sapphire), cyan fluorescent proteins (e.g. eCFP, Cerulean, CyPet, AmCyan1, Midoriishi-Cyan), red fluorescent proteins (mKate, mKate2, mPlum,

DsRed monomer, mCherry, mRFP1, DsRed-Express, DsRed2, DsRed-Monomer, HcRed-Tandem, HcRedI, AsRed2, eqFP611, mRaspberry, mStrawberry, Jred), orange fluorescent proteins (mOrange, mKO, Kusabira-Orange, Monomeric Kusabira-Orange, mTangerine, tdTomato), and any other suitable fluorescent protein. Examples of tags include, but are not limited to,

5 glutathione-S-transferase (GST), chitin binding protein (CBP), maltose binding protein, thioredoxin (TRX), poly(NANP), tandem affinity purification (TAP) tag, myc, AcV5, AU1, AU5, E, ECS, E2, FLAG, hemagglutinin (HA), nus, Softag 1, Softag 3, Strep, SBP, Glu-Glu, HSV, KT3, S, S1, T7, V5, VSV-G, histidine (His), biotin carboxyl carrier protein (BCCP), and calmodulin. In some embodiments, the heterologous molecule is an immunoglobulin Fc domain, a peptide tag, a 10 transduction domain, poly(ethylene glycol), polysialic acid, or glycolic acid.

In some embodiments, the isolated polypeptides comprise non-natural or modified amino acids or peptide analogs. For example, there are numerous D-amino acids or amino acids which have a different functional substituent than the naturally occurring amino acids. The opposite stereo isomers of naturally occurring peptides are disclosed, as well as the stereo 15 isomers of peptide analogs. These amino acids can readily be incorporated into polypeptide chains by charging tRNA molecules with the amino acid of choice and engineering genetic constructs that utilize, for example, amber codons, to insert the analog amino acid into a peptide chain in a site-specific way.

In some embodiments, the isolated polypeptides are peptide mimetics, which can be 20 produced to resemble peptides, but which are not connected via a natural peptide linkage. For example, linkages for amino acids or amino acid analogs include, but are not limited to, -CH₂NH-, -CH₂S-, -CH₂-, -CH=CH- (cis and trans), -COCH₂-, -CH(OH)CH₂-, and -CHH₂SO-. Peptide analogs can have more than one atom between the bond atoms, such as b-alanine, gaminobutyric acid, and the like. Amino acid analogs and peptide analogs often have enhanced 25 or desirable properties, such as, more economical production, greater chemical stability, enhanced pharmacological properties (half-life, absorption, potency, efficacy, and so forth), altered specificity (e.g., a broad-spectrum of biological activities), reduced antigenicity, and others desirable properties.

In some embodiments, the isolated polypeptides comprise D-amino acids, which can 30 be used to generate more stable peptides because D amino acids are not recognized by peptidases. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) can be used to generate more

stable peptides. Cysteine residues can be used to cyclize or attach two or more peptides together. This can be beneficial to constrain peptides into particular conformations (see, e.g., Rizo and Giersch, *Ann. Rev. Biochem.*, 1992, 61, 387).

The present disclosure also provides nucleic acid molecules encoding any of the 5 polypeptides disclosed herein. This includes all degenerate sequences related to a specific polypeptide sequence (i.e., all nucleic acids having a sequence that encodes one particular polypeptide sequence as well as all nucleic acids, including degenerate nucleic acids, encoding the disclosed variants and derivatives of the protein sequences). Thus, while each particular nucleic acid sequence may not be written out herein, each and every sequence is in fact 10 disclosed and described herein through the disclosed polypeptide sequences.

The present disclosure also provides compositions comprising any one or more of the nucleic acid molecules and/or any one or more of the polypeptides disclosed herein. In some embodiments, the compositions comprise a carrier. In some embodiments, the carrier increases the stability of the nucleic acid molecule and/or polypeptide (e.g., prolonging the 15 period under given conditions of storage (e.g., -20°C, 4°C, or ambient temperature) for which degradation products remain below a threshold, such as below 0.5% by weight of the starting nucleic acid or protein; or increasing the stability *in vivo*). Examples of carriers include, but are not limited to, poly(lactic acid) (PLA) microspheres, poly(D,L-lactic-coglycolic-acid) (PLGA) microspheres, liposomes, micelles, inverse micelles, lipid cochleates, and lipid microtubules.

20 The present disclosure also provides methods of producing any of the *B4GALT1* polypeptides or fragments thereof disclosed herein. Such *B4GALT1* polypeptides or fragments thereof can be produced by any suitable method. For example, *B4GALT1* polypeptides or fragments thereof can be produced from host cells comprising nucleic acid molecules (e.g., recombinant expression vectors) encoding such *B4GALT1* polypeptides or fragments thereof. 25 Such methods can comprise culturing a host cell comprising a nucleic acid molecule (e.g., recombinant expression vector) encoding an *B4GALT1* polypeptide or fragment thereof under conditions sufficient to produce the *B4GALT1* polypeptide or fragment thereof, thereby producing the *B4GALT1* polypeptide or fragment thereof. The nucleic acid can be operably linked to a promoter active in the host cell, and the culturing can be carried out under 30 conditions whereby the nucleic acid is expressed. Such methods can further comprise recovering the expressed *B4GALT1* polypeptide or fragment thereof. The recovering can further comprise purifying the *B4GALT1* polypeptide or fragment thereof.

Examples of suitable systems for protein expression include host cells such as, for example: bacterial cell expression systems (e.g., *Escherichia coli*, *Lactococcus lactis*), yeast cell expression systems (e.g., *Saccharomyces cerevisiae*, *Pichia pastoris*), insect cell expression systems (e.g., baculovirus-mediated protein expression), and mammalian cell expression

5 systems.

Examples of nucleic acid molecules encoding *B4GALT1* polypeptides or fragments thereof are disclosed in more detail elsewhere herein. In some embodiments, the nucleic acid molecules are codon optimized for expression in the host cell. In some embodiments, the nucleic acid molecules are operably linked to a promoter active in the host cell. The promoter

10 can be a heterologous promoter (i.e., a promoter than is not a naturally occurring *B4GALT1* promoter). Examples of promoters suitable for *Escherichia coli* include, but are not limited to, arabinose, *lac*, *tac*, and T7 promoters. Examples of promoters suitable for *Lactococcus lactis* include, but are not limited to, P170 and nisin promoters. Examples of promoters suitable for *Saccharomyces cerevisiae* include, but are not limited to, constitutive promoters such as alcohol

15 dehydrogenase (ADH1) or enolase (ENO) promoters or inducible promoters such as PHO, CUP1, GAL1, and G10. Examples of promoters suitable for *Pichia pastoris* include, but are not limited to, the alcohol oxidase I (AOX I) promoter, the glyceraldehyde 3 phosphate dehydrogenase (GAP) promoter, and the glutathione dependent formaldehyde dehydrogenase (FLDI) promoter. An example of a promoter suitable for a baculovirus-mediated system is the late viral

20 strong polyhedrin promoter.

In some embodiments, the nucleic acid molecules encode a tag in frame with the *B4GALT1* polypeptide or fragment thereof to facilitate protein purification. Examples of tags are disclosed elsewhere herein. Such tags can, for example, bind to a partner ligand (e.g., immobilized on a resin) such that the tagged protein can be isolated from all other proteins

25 (e.g., host cell proteins). Affinity chromatography, high performance liquid chromatography (HPLC), and size exclusion chromatography (SEC) are examples of methods that can be used to improve the purity of the expressed protein.

Other methods can also be used to produce *B4GALT1* polypeptides or fragments thereof. For example, two or more peptides or polypeptides can be linked together by protein

30 chemistry techniques. For example, peptides or polypeptides can be chemically synthesized using either Fmoc (9-fluorenylmethyloxycarbonyl) or Boc (*tert*-butyloxycarbonyl) chemistry. Such peptides or polypeptides can be synthesized by standard chemical reactions. For example,

a peptide or polypeptide can be synthesized and not cleaved from its synthesis resin, whereas the other fragment of a peptide or protein can be synthesized and subsequently cleaved from the resin, thereby exposing a terminal group which is functionally blocked on the other fragment. By peptide condensation reactions, these two fragments can be covalently joined via a peptide bond at their carboxyl and amino termini, respectively. Alternately, the peptide or polypeptide can be independently synthesized *in vivo* as described herein. Once isolated, these independent peptides or polypeptides may be linked to form a peptide or fragment thereof via similar peptide condensation reactions.

In some embodiments, enzymatic ligation of cloned or synthetic peptide segments allow relatively short peptide fragments to be joined to produce larger peptide fragments, polypeptides, or whole protein domains (Abrahmsen et al., *Biochemistry*, 1991, 30, 4151). Alternately, native chemical ligation of synthetic peptides can be utilized to synthetically construct large peptides or polypeptides from shorter peptide fragments. This method can consist of a two-step chemical reaction (see, Dawson et al., *Science*, 1994, 266, 776-779). The first step can be the chemoselective reaction of an unprotected synthetic peptide-thioester with another unprotected peptide segment containing an amino-terminal Cys residue to give a thioester-linked intermediate as the initial covalent product. Without a change in the reaction conditions, this intermediate can undergo spontaneous, rapid intramolecular reaction to form a native peptide bond at the ligation site.

In some embodiments, unprotected peptide segments can be chemically linked where the bond formed between the peptide segments as a result of the chemical ligation is an unnatural (non-peptide) bond (see, Schnolzer et al., *Science*, 1992, 256, 221).

The present disclosure also provides cells (e.g., recombinant host cells) comprising any one or more of the nucleic acid molecules and/or any one or more of the polypeptides disclosed herein. The cells can be *in vitro*, *ex vivo*, or *in vivo*. Nucleic acid molecules can be linked to a promoter and other regulatory sequences so they are expressed to produce an encoded protein.

In some embodiments, the cell is a totipotent cell or a pluripotent cell (e.g., an embryonic stem (ES) cell such as a rodent ES cell, a mouse ES cell, or a rat ES cell). Totipotent cells include undifferentiated cells that can give rise to any cell type, and pluripotent cells include undifferentiated cells that possess the ability to develop into more than one differentiated cell types. Such pluripotent and/or totipotent cells can be, for example, ES cells

or ES-like cells, such as an induced pluripotent stem (iPS) cells. ES cells include embryo-derived totipotent or pluripotent cells that are capable of contributing to any tissue of the developing embryo upon introduction into an embryo. ES cells can be derived from the inner cell mass of a blastocyst and are capable of differentiating into cells of any of the three vertebrate germ

5 layers (endoderm, ectoderm, and mesoderm).

In some embodiments, the cell is a primary somatic cell, or a cell that is not a primary somatic cell. Somatic cells can include any cell that is not a gamete, germ cell, gametocyte, or undifferentiated stem cell. In some embodiments, the cell can also be a primary cell. Primary cells include cells or cultures of cells that have been isolated directly from an organism, organ, 10 or tissue. Primary cells include cells that are neither transformed nor immortal. Primary cells include any cell obtained from an organism, organ, or tissue which was not previously passed in tissue culture or has been previously passed in tissue culture but is incapable of being indefinitely passed in tissue culture. Such cells can be isolated by conventional techniques and include, for example, somatic cells, hematopoietic cells, endothelial cells, epithelial cells, 15 fibroblasts, mesenchymal cells, keratinocytes, melanocytes, monocytes, mononuclear cells, adipocytes, preadipocytes, neurons, glial cells, hepatocytes, skeletal myoblasts, and smooth muscle cells. For example, primary cells can be derived from connective tissues, muscle tissues, nervous system tissues, or epithelial tissues.

In some embodiments, the cells may normally not proliferate indefinitely but, due to 20 mutation or alteration, have evaded normal cellular senescence and instead can keep undergoing division. Such mutations or alterations can occur naturally or be intentionally induced. Examples of immortalized cells include, but are not limited to, Chinese hamster ovary (CHO) cells, human embryonic kidney cells (e.g., HEK 293 cells), and mouse embryonic fibroblast cells (e.g., 3T3 cells). Numerous types of immortalized cells are well known. 25 Immortalized or primary cells include cells that are typically used for culturing or for expressing recombinant genes or proteins. In some embodiments, the cell is a differentiated cell, such as a liver cell (e.g., a human liver cell).

The cell can be from any source. For example, the cell can be a eukaryotic cell, an 30 animal cell, a plant cell, or a fungal (e.g., yeast) cell. Such cells can be fish cells or bird cells, or such cells can be mammalian cells, such as human cells, non-human mammalian cells, rodent cells, mouse cells or rat cells. Mammals include, but are not limited to, humans, non-human primates, monkeys, apes, cats dogs, horses, bulls, deer, bison, sheep, rodents (e.g., mice, rats,

hamsters, guinea pigs), livestock (e.g., bovine species such as cows, steer, etc.; ovine species such as sheep, goats, etc.; and porcine species such as pigs and boars). Birds include, but are not limited to, chickens, turkeys, ostrich, geese, ducks, etc. Domesticated animals and agricultural animals are also included. The term “non-human animal” excludes humans.

5 The present disclosure also provides methods for detecting the presence of a *B4GALT1* variant gene, mRNA, cDNA, and/or polypeptide in a biological sample from a subject human. It is understood that gene sequences within a population and mRNAs and proteins encoded by such genes can vary due to polymorphisms such as single-nucleotide polymorphisms. The sequences provided herein for the *B4GALT1* gene, mRNA, cDNA, and polypeptide are only 10 exemplary sequences. Other sequences for the *B4GALT1* gene, mRNA, cDNA, and polypeptide are also possible.

The biological sample can be derived from any cell, tissue, or biological fluid from the subject. The sample may comprise any clinically relevant tissue, such as a bone marrow sample, a tumor biopsy, a fine needle aspirate, or a sample of bodily fluid, such as blood, plasma, 15 serum, lymph, ascitic fluid, cystic fluid, or urine. In some cases, the sample comprises a buccal swab. The sample used in the methods disclosed herein will vary based on the assay format, nature of the detection method, and the tissues, cells, or extracts that are used as the sample. A biological sample can be processed differently depending on the assay being employed. For example, when detecting a variant *B4GALT1* nucleic acid molecule, preliminary processing 20 designed to isolate or enrich the sample for the genomic DNA can be employed. A variety of known techniques may be used for this purpose. When detecting the level of *B4GALT1* mRNA, different techniques can be used enrich the biological sample with mRNA. Various methods to detect the presence or level of a mRNA or the presence of a particular variant genomic DNA locus can be used.

25 In some embodiments, the disclosure provides methods of detecting the presence or absence of a variant *B4GALT1* nucleic acid molecule comprising sequencing at least a portion of a nucleic acid in a biological sample to determine whether the nucleic acid comprises nucleotides 53757 to 53577 of SEQ ID NO:2 at positions that correspond to positions 53757 to 53577 of SEQ ID NO:2.

30 In some embodiments, the disclosure provides methods of detecting the presence or absence of a variant *B4GALT1* nucleic acid molecule comprising sequencing at least a portion of a nucleic acid in a biological sample to determine whether the nucleic acid comprises

nucleotides 1243 to 1245 of SEQ ID NO:4 at positions that correspond to positions 1243 to 1245 of SEQ ID NO:4.

In some embodiments, the disclosure provides methods of detecting the presence or absence of a variant *B4GALT1* nucleic acid molecule comprising sequencing at least a portion of 5 a nucleic acid in a biological sample to determine whether the nucleic acid comprises nucleotides 1054 to 1056 of SEQ ID NO:6 at positions that correspond to positions 1054 to 1056 of SEQ ID NO:6.

In some embodiments, the methods of detecting the presence or absence of a variant *B4GALT1* nucleic acid molecule (e.g., gene, mRNA, or cDNA) in a human subject, comprise:

10 performing an assay on a biological sample from the human subject that determines whether a nucleic acid molecule in the biological sample comprises a nucleic acid sequence that encodes a serine at position 352 of SEQ ID NO:8. In some embodiments, the biological sample comprises a cell or cell lysate. Such methods can comprise, for example, obtaining a biological sample from the subject comprising a *B4GALT1* gene, mRNA, or cDNA and performing an assay on the 15 biological sample that determines that a position of the *B4GALT1* gene, mRNA, or cDNA corresponding to positions 53575 to 53577 of SEQ ID NO:2 (gene), positions 1243 to 1245 of SEQ ID NO:4 (mRNA), or positions 1054 to 1056 of SEQ ID NO:6 (cDNA) encodes a serine instead of an asparagine at a position corresponding to position 352 of the variant *B4GALT1* 20 polypeptide. Such assays can comprise, for example determining the identity of these positions of the particular *B4GALT1* nucleic acid molecule.

In some embodiments, the assay comprises: sequencing a portion of the *B4GALT1* genomic sequence of a nucleic acid molecule in the biological sample from the human subject, wherein the portion sequenced includes positions corresponding to positions 53575 to 53577 of SEQ ID NO:2; sequencing a portion of the *B4GALT1* mRNA sequence of a nucleic acid

25 molecule in the biological sample from the human subject, wherein the portion sequenced includes positions corresponding to positions 1243 to 1245 of SEQ ID NO:4; or sequencing a portion of the *B4GALT1* cDNA sequence of a nucleic acid molecule in the biological sample from the human subject, wherein the portion sequenced includes positions corresponding to positions 1054 to 1056 of SEQ ID NO:6.

30 In some embodiments, the assay comprises: a) contacting the biological sample with a primer hybridizing to: i) a portion of the *B4GALT1* genomic sequence that is proximate to a position of the *B4GALT1* genomic sequence corresponding to positions 53575 to 53577 of SEQ

ID NO:2; ii) a portion of the *B4GALT1* mRNA sequence that is proximate to a position of the *B4GALT1* mRNA corresponding to positions 1243 to 1245 of SEQ ID NO:4; or iii) a portion of the *B4GALT1* cDNA sequence that is proximate to a position of the *B4GALT1* cDNA corresponding to positions 1054 to 1056 of SEQ ID NO:6; b) extending the primer at least through: i) the position 5 of the *B4GALT1* genomic sequence corresponding to positions 53575 to 53577; ii) the position of the *B4GALT1* mRNA corresponding to positions 1243 to 1245; or iii) the position of the *B4GALT1* cDNA corresponding to positions 1054 to 1056; and c) determining whether the extension product of the primer comprises nucleotides at positions: i) corresponding to positions 53575 to 53577 of the *B4GALT1* genomic sequence; ii) corresponding to positions 10 1243 to 1245 of the *B4GALT1* mRNA; or iii) corresponding to positions 1054 to 1056 of the *B4GALT1* cDNA; that encode a serine at position 352 of SEQ ID NO:8. In some embodiments, only *B4GALT1* genomic DNA is analyzed. In some embodiments, only *B4GALT1* mRNA is analyzed. In some embodiments, only *B4GALT1* cDNA is analyzed.

In some embodiments, the assay comprises contacting the biological sample with a 15 primer or probe that specifically hybridizes to a variant *B4GALT1* genomic sequence, mRNA sequence, or cDNA sequence and not the corresponding wild-type *B4GALT1* sequence under stringent conditions, and determining whether hybridization has occurred.

In some embodiments, the assays described above comprise RNA sequencing (RNA- 20 Seq). In some embodiments, the assays also comprise reverse transcription polymerase chain reaction (RT-PCR).

In some embodiments, the methods utilize probes and primers of sufficient nucleotide length to bind to the target nucleic acid sequence and specifically detect and/or identify a polynucleotide comprising a variant *B4GALT1* gene, mRNA, or cDNA. The hybridization conditions or reaction conditions can be determined by the operator to achieve this result. This 25 length may be any length that is sufficient to be useful in a detection method of choice. Generally, for example, about 8, about 11, about 14, about 16, about 18, about 20, about 22, about 24, about 26, about 28, about 30, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, or about 700 nucleotides, or more, or from about 11 to about 20, from about 20 to about 30, from about 30 to about 40, from about 40 to about 30 30 50, from about 50 to about 100, from about 100 to about 200, from about 200 to about 300, from about 300 to about 400, from about 400 to about 500, from about 500 to about 600, from about 600 to about 700, or from about 700 to about 800, or more nucleotides in length are

used. Such probes and primers can hybridize specifically to a target sequence under high stringency hybridization conditions. Probes and primers may have complete nucleic acid sequence identity of contiguous nucleotides with the target sequence, although probes differing from the target nucleic acid sequence and that retain the ability to specifically detect

5 and/or identify a target nucleic acid sequence may be designed by conventional methods.

Accordingly, probes and primers can share about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100% sequence identity or complementarity to the target nucleic acid molecule.

In some embodiments, specific primers can be used to amplify the variant *B4GALT1* locus and/or *B4GALT1* variant mRNA or cDNA to produce an amplicon that can be used as a specific probe or can itself be detected for identifying the variant *B4GALT1* locus or for determining the level of specific *B4GALT1* mRNA or cDNA in a biological sample. The *B4GALT1* variant locus can be used to denote a genomic nucleic acid sequence including a position corresponding to positions 53575 to 53577 in SEQ ID NO:2. When the probe is hybridized with a nucleic acid molecule in a biological sample under conditions that allow for the binding of the probe to the nucleic acid molecule, this binding can be detected and allow for an indication of the presence of the variant *B4GALT1* locus or the presence or the level of variant *B4GALT1* mRNA or cDNA in the biological sample. Such identification of a bound probe has been described. The specific probe may comprise a sequence of at least about 80%, from about 80% to about 85%, from about 85% to about 90%, from about 90% to about 95%, and from about 95% to about 100% identical (or complementary) to a specific region of a variant *B4GALT1* gene. The specific probe may comprise a sequence of at least about 80%, from about 80% to about 85%, from about 85% to about 90%, from about 90% to about 95%, and from about 95% to about 100% identical (or complementary) to a specific region of a variant *B4GALT1* mRNA.

10 The specific probe may comprise a sequence of at least about 80%, from about 80% to about 85%, from about 85% to about 90%, from about 90% to about 95%, and from about 95% to about 100% identical (or complementary) to a specific region of a variant *B4GALT1* cDNA.

15

20

25

In some embodiments, to determine whether the nucleic acid complement of a biological sample comprises the serine encoding nucleotides at positions 53575 to 53577 in the variant *B4GALT1* gene locus (SEQ ID NO:2), the biological sample may be subjected to a nucleic acid amplification method using a primer pair that includes a first primer derived from the 5' flanking sequence adjacent to positions 53575 to 53577 and a second primer derived from the

3' flanking sequence adjacent to positions 53575 to 53577 to produce an amplicon that is diagnostic for the presence of the SNP at positions 53575 to 53577 in the variant *B4GALT1* gene locus (SEQ ID NO:2). In some embodiments, the amplicon may range in length from the combined length of the primer pairs plus one nucleotide base pair to any length of amplicon producible by a DNA amplification protocol. This distance can range from one nucleotide base pair up to the limits of the amplification reaction, or about twenty thousand nucleotide base pairs. Optionally, the primer pair flanks a region including positions 53575 to 53577 and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more nucleotides on each side of positions 53575 to 53577. Similar amplicons can be generated from the mRNA and/or cDNA sequences.

10 Representative methods for preparing and using probes and primers are described, for example, in *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Vol. 1-3, ed. Sambrook et al., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1989 (hereinafter, "Sambrook et al., 1989"); *Current Protocols in Molecular Biology*, ed. Ausubel et al., Greene Publishing and Wiley-Interscience, New York, 1992 (with periodic updates) (hereinafter, "Ausubel et al., 1992"); and Innis et al., *PCR Protocols: A Guide to Methods and Applications*, Academic Press: San Diego, 1990). PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose, such as the PCR primer analysis tool in Vector NTI version 10 (Informatix Inc., Bethesda Md.); PrimerSelect (DNASTAR Inc., Madison, Wis.); and Primer3 (Version 0.4.0.COPYRGT., 1991, Whitehead Institute for Biomedical Research, Cambridge, Mass.). Additionally, the sequence can be visually scanned and primers manually identified using known guidelines.

20 As described in further detail below, any conventional nucleic acid hybridization or amplification or sequencing method can be used to specifically detect the presence of the variant *B4GALT1* gene locus and/or the level of variant *B4GALT1* mRNA or cDNA. In some embodiments, the nucleic acid molecule can be used either as a primer to amplify a region of the *B4GALT1* nucleic acid or the nucleic acid molecule can be used as a probe that hybridizes under stringent conditions to a nucleic acid molecule comprising the variant *B4GALT1* gene locus or a nucleic acid molecule comprising a variant *B4GALT1* mRNA or cDNA.

25 A variety of nucleic acid techniques are known, including, for example, nucleic acid sequencing, nucleic acid hybridization, and nucleic acid amplification. Illustrative examples of nucleic acid sequencing techniques include, but are not limited to, chain terminator (Sanger) sequencing and dye terminator sequencing.

Other methods involve nucleic acid hybridization methods other than sequencing, including using labeled primers or probes directed against purified DNA, amplified DNA, and fixed cell preparations (fluorescence *in situ* hybridization). In some methods, a target nucleic acid may be amplified prior to or simultaneous with detection. Illustrative examples of nucleic acid amplification techniques include, but are not limited to, polymerase chain reaction (PCR), ligase chain reaction (LCR), strand displacement amplification (SDA), and nucleic acid sequence based amplification (NASBA). Other methods include, but are not limited to, ligase chain reaction, strand displacement amplification, and thermophilic SDA (tSDA).

Any method can be used for detecting either the non-amplified or amplified polynucleotides including, for example, Hybridization Protection Assay (HPA), quantitative evaluation of the amplification process in real-time, and determining the quantity of target sequence initially present in a sample, but which is not based on a real-time amplification.

Also provided are methods for identifying nucleic acids which do not necessarily require sequence amplification and are based on, for example, the known methods of Southern (DNA:DNA) blot hybridizations, *in situ* hybridization (ISH), and fluorescence *in situ* hybridization (FISH) of chromosomal material, using appropriate probes. Southern blotting can be used to detect specific nucleic acid sequences. In such methods, nucleic acid that is extracted from a sample is fragmented, electrophoretically separated on a matrix gel, and transferred to a membrane filter. The filter bound nucleic acid is subject to hybridization with a labeled probe complementary to the sequence of interest. Hybridized probe bound to the filter is detected.

In hybridization techniques, stringent conditions can be employed such that a probe or primer will specifically hybridize to its target. In some embodiments, a polynucleotide primer or probe under stringent conditions will hybridize to its target sequence (e.g., the variant *B4GALT1* gene locus, mRNA, or cDNA) to a detectably greater degree than to other sequences (e.g., the corresponding wild-type *B4GALT1* locus, mRNA, or cDNA), such as at least 2-fold over background or 10-fold over background. Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternately, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of identity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length or less than about 500 nucleotides in length.

Appropriate stringency conditions which promote DNA hybridization, for example, 6X sodium chloride/sodium citrate (SSC) at about 45°C., followed by a wash of 2X SSC at 50°C., are known or can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y.

(1989), 6.3.1-6.3.6. Typically, stringent conditions for hybridization and detection will be those

5 in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for longer probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include

10 hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulfate) at 37°C, and a wash in 1X to 2X SSC (20X SSC = 3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55°C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37°C, and a wash in 0.5X to 1X SSC at 55 to 60°C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37°C,

15 and a wash in 0.1X SSC at 60 to 65°C. Optionally, wash buffers may comprise about 0.1% to about 1% SDS. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours. The duration of the wash time will be at least a length of time sufficient to reach equilibrium.

In hybridization reactions, specificity is typically the function of post-hybridization

20 washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T_m can be approximated from the equation of Meinkoth and Wahl, *Anal. Biochem.*, 1984, 138, 267-284: $T_m = 81.5^\circ\text{C} + 16.6 (\log M) + 0.41 (\% \text{GC}) - 0.61 (\% \text{form}) - 500/L$; where M is the molarity of monovalent cations, %GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization

25 solution, and L is the length of the hybrid in base pairs. The T_m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T_m is reduced by about 1°C for each 1% of mismatching; thus, T_m , hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with ≥90% identity are sought, the T_m can be decreased

30 10°C. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1°C, 2°C,

3°C, or 4°C lower than the thermal melting point (T_m); moderately stringent conditions can utilize a hybridization and/or wash at 6°C, 7°C, 8°C, 9°C, or 10°C lower than the thermal melting point (T_m); low stringency conditions can utilize a hybridization and/or wash at 11°C, 12°C, 13°C, 14°C, 15°C, or 20°C lower than the thermal melting point (T_m). Using the equation, hybridization 5 and wash compositions, and desired T_m , those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T_m of less than 45°C (aqueous solution) or 32°C (formamide solution), it is optimal to increase the SSC concentration so that a higher temperature can be used.

10 Also provided are methods for detecting the presence or levels of variant *B4GALT1* polypeptide in a biological sample, including, for example, protein sequencing and immunoassays. In some embodiments, the method of detecting the presence of *B4GALT1* Asn352Ser in a human subject, comprises performing an assay on a biological sample from the human subject that determines the presence of *B4GALT1* Asn352Ser in the biological sample.

15 Illustrative non-limiting examples of protein sequencing techniques include, but are not limited to, mass spectrometry and Edman degradation. Illustrative examples of immunoassays include, but are not limited to, immunoprecipitation, Western blot, immunohistochemistry, ELISA, immunocytochemistry, flow cytometry, and immuno-PCR. Polyclonal or monoclonal antibodies detectably labeled using various known techniques (e.g., 20 calorimetric, fluorescent, chemiluminescent, or radioactive) are suitable for use in the immunoassays.

The present disclosure also provides methods for determining a subject's susceptibility to developing a cardiovascular condition or risk of developing a cardiovascular condition. The subject can be any organism, including, for example, a human, a non-human mammal, a rodent, 25 a mouse, or a rat. In some embodiments, the methods comprise detecting the presence of the variant *B4GALT1* genomic DNA, mRNA, or cDNA in a biological sample from the subject. It is understood that gene sequences within a population and mRNAs encoded by such genes can vary due to polymorphisms such as SNPs. The sequences provided herein for the *B4GALT1* gene, mRNA, cDNA, and polypeptide are only exemplary sequences and other such sequences 30 are also possible.

Non-limiting examples of a cardiovascular condition include an elevated level of one or more serum lipids. The serum lipids comprise one or more of cholesterol, LDL, HDL,

triglycerides, HDL-cholesterol, and non-HDL cholesterol, or any subfraction thereof (e.g., HDL2, HDL2a, HDL2b, HDL2c, HDL3, HDL3a, HDL3b, HDL3c, HDL3d, LDL1, LDL2, LDL3, lipoprotein A, Lpa1, Lpa1, Lpa3, Lpa4, or Lpa5). A cardiovascular condition may comprise elevated levels of coronary artery calcification. A cardiovascular condition may comprise Type II^d glycosylation

5 (CDG-II^d). A cardiovascular condition may comprise elevated levels of pericardial fat. A cardiovascular condition may also comprise coronary artery disease (CAD), myocardial infarction (MI), peripheral artery disease (PAD), stroke, pulmonary embolism, deep vein thrombosis (DVT), and bleeding diatheses and coagulopathies. A cardiovascular condition may comprise an atherothrombotic condition. The atherothrombotic condition may comprise
10 elevated levels of fibrinogen. The atherothrombotic condition may comprises a fibrinogen-mediated blood clot. A cardiovascular condition may comprise elevated levels of fibrinogen. A cardiovascular condition may comprise a fibrinogen-mediated blood clot. A cardiovascular condition may comprise a blood clot formed from the involvement of fibrinogen activity. A fibrinogen-mediated blood clot or blood clot formed from the involvement of fibrinogen
15 activity may be in any vein or artery in the body.

In some embodiments, the methods of determining a human subject's susceptibility to developing a cardiovascular condition, comprise: a) performing an assay on a biological sample from the human subject that determines whether a nucleic acid molecule in the biological sample comprises a nucleic acid sequence that encodes a serine at the position corresponding to position 352 of the full length/mature variant *B4GALT1* Asn352Ser polypeptide; and b) classifying the human subject as being at decreased risk for developing the cardiovascular condition if a nucleic acid molecule comprising a nucleic acid sequence that encodes a serine at position 352 of the full length/mature variant *B4GALT1* Asn352Ser polypeptide is detected in the biological sample, or classifying the human subject as being at increased risk for developing
20 the cardiovascular condition if a nucleic acid molecule comprising a nucleic acid sequence that encodes a serine at position 352 of the full length/mature variant *B4GALT1* Asn352Ser polypeptide is not detected in the biological sample. In some embodiments, the variant
25 *B4GALT1* Asn352Ser polypeptide comprises SEQ ID NO:8. In some embodiments, the nucleic acid molecule in the biological sample is genomic DNA, mRNA, or cDNA.

30 In some embodiments, the disclosure provides methods of determining a human subject's susceptibility to developing a cardiovascular condition, comprising: a) performing an assay on a biological sample from the human subject that determines whether a nucleic acid

molecule in the biological sample comprises nucleotides 53757 to 53577 of SEQ ID NO:2 at positions that correspond to positions 53757 to 53577 of SEQ ID NO:2; and b) classifying the human subject as being at decreased risk for developing the cardiovascular condition if a nucleic acid molecule comprising nucleotides 53757 to 53577 of SEQ ID NO:2 at positions that correspond to positions 53757 to 53577 of SEQ ID NO:2 is detected in the biological sample, or classifying the human subject as being at increased risk for developing the cardiovascular condition if a nucleic acid molecule comprising nucleotides 53757 to 53577 of SEQ ID NO:2 at positions that correspond to positions 53757 to 53577 of SEQ ID NO:2 is not detected in the biological sample.

10 In some embodiments, the disclosure provides methods of determining a human subject's susceptibility to developing a cardiovascular condition, comprising: a) performing an assay on a biological sample from the human subject that determines whether a nucleic acid molecule in the biological sample comprises nucleotides 1243 to 1245 of SEQ ID NO:4 at positions that correspond to positions 1243 to 1245 of SEQ ID NO:4; and b) classifying the

15 human subject as being at decreased risk for developing the cardiovascular condition if a nucleic acid molecule comprising nucleotides 1243 to 1245 of SEQ ID NO:4 at positions that correspond to positions 1243 to 1245 of SEQ ID NO:4 is detected in the biological sample, or classifying the human subject as being at increased risk for developing the cardiovascular condition if a nucleic acid molecule comprising nucleotides 1243 to 1245 of SEQ ID NO:4 at

20 positions that correspond to positions 1243 to 1245 of SEQ ID NO:4 is not detected in the biological sample.

In some embodiments, the disclosure provides methods of determining a human subject's susceptibility to developing a cardiovascular condition, comprising: a) performing an assay on a biological sample from the human subject that determines whether a nucleic acid

25 molecule in the biological sample comprises nucleotides 1054 to 1056 of SEQ ID NO:6 at positions that correspond to positions 1054 to 1056 of SEQ ID NO:6; and b) classifying the human subject as being at decreased risk for developing the cardiovascular condition if a nucleic acid molecule comprising nucleotides 1054 to 1056 of SEQ ID NO:6 at positions that correspond to positions 1054 to 1056 of SEQ ID NO:6 is detected in the biological sample, or

30 classifying the human subject as being at increased risk for developing the cardiovascular condition if a nucleic acid molecule comprising nucleotides 1054 to 1056 of SEQ ID NO:6 at

positions that correspond to positions 1054 to 1056 of SEQ ID NO:6 is not detected in the biological sample.

In some embodiments, the methods comprise detecting the presence of a variant *B4GALT1* genomic DNA in a biological sample. In some embodiments, such methods comprise determining a subject's susceptibility to developing a cardiovascular condition or risk of developing a cardiovascular condition, comprising: a) obtaining a biological sample from the subject that comprises genomic DNA; b) performing an assay on the genomic DNA that determines the identity of the nucleotides in the DNA occupying positions corresponding to positions 53575 to 53577 of the variant *B4GALT1* gene (see, for example, SEQ ID NO:2); and c) classifying the subject as being at decreased risk for developing the cardiovascular condition if the positions in the genomic DNA corresponding to positions 53575 to 53577 of the variant *B4GALT1* gene encodes a serine rather than an asparagine. Alternately, the subject can be classified as being at increased risk for developing the cardiovascular condition if the positions in the genomic DNA corresponding to positions 53575 to 53577 of the variant *B4GALT1* gene do not encode a serine rather than an asparagine.

In some embodiments, such methods comprise diagnosing a subject with cardiovascular condition, comprising: a) obtaining a biological sample from the subject that comprises genomic DNA; b) performing an assay on the genomic DNA that determines the identity of the nucleotides in the DNA occupying positions corresponding to positions 53575 to 53577 of the variant *B4GALT1* gene (see, for example, SEQ ID NO:2); and c) classifying the subject as having a cardiovascular condition if the positions in the genomic DNA corresponding to positions 53575 to 53577 of the variant *B4GALT1* gene encodes a serine rather than an asparagine. Alternately, the subject can be classified as not having a cardiovascular condition if the positions in the genomic DNA corresponding to positions 53575 to 53577 of the variant *B4GALT1* gene do not encode a serine rather than an asparagine.

In some embodiments, the methods comprise detecting the presence of a variant *B4GALT1* mRNA in a biological sample. In some embodiments, such methods comprise determining a subject's susceptibility to developing a cardiovascular condition or risk of developing a cardiovascular condition, comprising: a) obtaining a biological sample from the subject that comprises mRNA; b) performing an assay on the mRNA that determines the identity of the nucleotides in the mRNA occupying positions corresponding to positions 1243 to 1245 of the variant *B4GALT1* mRNA (see, for example, SEQ ID NO:4); and c) classifying the

subject as being at decreased risk for developing the cardiovascular condition if the positions in the mRNA corresponding to positions 1243 to 1245 of the variant *B4GALT1* mRNA encodes a serine rather than an asparagine. Alternately, the subject can be classified as being at increased risk for developing the cardiovascular condition if the positions in the mRNA corresponding to

5 positions 1243 to 1245 of the variant *B4GALT1* mRNA do not encode a serine rather than an asparagine.

In some embodiments, such methods comprise diagnosing a subject with cardiovascular condition, comprising: a) obtaining a biological sample from the subject that comprises mRNA; b) performing an assay on the mRNA that determines the identity of the 10 nucleotides in the mRNA occupying positions corresponding to positions 1243 to 1245 of the variant *B4GALT1* mRNA (see, for example, SEQ ID NO:4); and c) classifying the subject as having a cardiovascular condition if the positions in the mRNA corresponding to positions 1243 to 1245 of the variant *B4GALT1* mRNA encodes a serine rather than an asparagine. Alternately, the subject can be classified as not having a cardiovascular condition if the positions in the mRNA 15 corresponding to positions 1243 to 1245 of the variant *B4GALT1* mRNA do not encode a serine rather than an asparagine.

In some embodiments, the methods comprise detecting the presence of a variant *B4GALT1* cDNA in a biological sample. In some embodiments, such methods comprise determining a subject's susceptibility to developing a cardiovascular condition or risk of 20 developing a cardiovascular condition, comprising: a) obtaining a biological sample from the subject that comprises cDNA; b) performing an assay on the cDNA that determines the identity of the nucleotides in the cDNA occupying positions corresponding to positions 1054 to 1056 of the variant *B4GALT1* cDNA (see, for example, SEQ ID NO:6); and c) classifying the subject as being at decreased risk for developing the cardiovascular condition if the positions in the cDNA 25 corresponding to positions 1054 to 1056 of the variant *B4GALT1* cDNA encodes a serine rather than an asparagine. Alternately, the subject can be classified as being at increased risk for developing the cardiovascular condition if the positions in the cDNA corresponding to positions 1054 to 1056 of the variant *B4GALT1* cDNA do not encode a serine rather than an asparagine.

In some embodiments, such methods comprise diagnosing a subject with 30 cardiovascular condition, comprising: a) obtaining a biological sample from the subject that comprises cDNA; b) performing an assay on the cDNA that determines the identity of the nucleotides in the cDNA occupying positions corresponding to positions 1054 to 1056 of the

variant *B4GALT1* cDNA (see, for example, SEQ ID NO:6); and c) classifying the subject as having a cardiovascular condition if the positions in the cDNA corresponding to positions 1054 to 1056 of the variant *B4GALT1* cDNA encodes a serine rather than an asparagine. Alternately, the subject can be classified as not having a cardiovascular condition if the positions in the cDNA corresponding to positions 1054 to 1056 of the variant *B4GALT1* cDNA do not encode a serine rather than an asparagine.

5 In some embodiments, the assay comprises: sequencing a portion of the *B4GALT1* genomic sequence of a nucleic acid molecule in the biological sample from the human subject, wherein the portion sequenced includes positions corresponding to positions 53575 to 53577 of SEQ ID NO:2; sequencing a portion of the *B4GALT1* mRNA sequence of a nucleic acid molecule in the biological sample from the human subject, wherein the portion sequenced includes positions corresponding to positions 1243 to 1245 of SEQ ID NO:4; or sequencing a portion of the *B4GALT1* cDNA sequence of a nucleic acid molecule in the biological sample from the human subject, wherein the portion sequenced includes positions corresponding to 10

15 positions 1054 to 1056 of SEQ ID NO:6.

In some embodiments, the assay comprises: a) contacting the biological sample with a primer hybridizing to: i) a portion of the *B4GALT1* genomic sequence that is proximate to a position of the *B4GALT1* genomic sequence corresponding to positions 53575 to 53577 of SEQ ID NO:2; ii) a portion of the *B4GALT1* mRNA sequence that is proximate to a position of the 20 *B4GALT1* mRNA corresponding to positions 1243 to 1245 of SEQ ID NO:4; or iii) a portion of the *B4GALT1* cDNA sequence that is proximate to a position of the *B4GALT1* cDNA corresponding to positions 1054 to 1056 of SEQ ID NO:6; b) extending the primer at least through: i) the position of the *B4GALT1* genomic sequence corresponding to positions 53575 to 53577; ii) the position of the *B4GALT1* mRNA corresponding to positions 1243 to 1245; or iii) the position of the 25 *B4GALT1* cDNA corresponding to positions 1054 to 1056; and c) determining whether the extension product of the primer comprises nucleotides at positions: i) corresponding to positions 53575 to 53577 of the *B4GALT1* genomic sequence; ii) corresponding to positions 1243 to 1245 of the *B4GALT1* mRNA; or iii) corresponding to positions 1054 to 1056 of the *B4GALT1* cDNA; that encode a serine at position 352 of SEQ ID NO:8.

30 In some embodiments, the assay comprises contacting the biological sample with a primer or probe that specifically hybridizes to the variant *B4GALT1* genomic sequence, mRNA sequence, or cDNA sequence and not the corresponding wild-type *B4GALT1* sequence under

stringent conditions, and determining whether hybridization has occurred. In some embodiments, the primer or probe specifically hybridizes to positions within the genomic DNA in the biological sample that corresponds to positions 53575 to 53577 of SEQ ID NO:2. In some embodiments, the primer or probe specifically hybridizes to positions within the mRNA in the 5 biological sample that corresponds to positions 1243 to 1245 of SEQ ID NO:4. In some embodiments, the primer or probe specifically hybridizes to positions within the cDNA in the biological sample that corresponds to positions 1054 to 1056 of SEQ ID NO:6.

Other assays that can be used in the methods disclosed herein include, for example, reverse transcription polymerase chain reaction (RT-PCR) or quantitative RT-PCR (qRT-PCR). Yet 10 other assays that can be used in the methods disclosed herein include, for example, RNA sequencing (RNA-Seq) followed by determination of the presence and quantity of variant mRNA or cDNA in the biological sample.

The present disclosure also provides methods of determining a human subject's susceptibility to developing a cardiovascular condition or diagnosing a subject with 15 cardiovascular condition, comprising: a) performing an assay on a biological sample from the human subject that determines whether a *B4GALT1* polypeptide in the biological sample comprises a serine at a position corresponding to position 352 of SEQ ID NO:8; and b) classifying the human subject as being at decreased risk for developing the cardiovascular condition if a *B4GALT1* polypeptide comprising a serine at a position corresponding to position 20 352 of SEQ ID NO:8 is detected in the biological sample, or classifying the human subject as being at increased risk for developing the cardiovascular condition if a *B4GALT1* polypeptide comprising a serine at a position corresponding to position 352 of SEQ ID NO:8 is not detected in the biological sample. In some embodiments, the methods further comprise obtaining a biological sample from the subject.

25 In some embodiments, where a subject has been diagnosed with a cardiovascular condition or as having an increased risk for developing a cardiovascular condition, a therapeutic or prophylactic agent that treats or prevents the cardiovascular condition is administered to the subject. Alternately, the method can further comprise administering a therapeutic agent tailored to prevent or alleviate one or more symptoms associated with progression to more 30 clinically advanced stages of cardiovascular condition, particularly in patients with increased LDL levels and/or those patients who have had or are at increased risk of thrombotic events.

The present disclosure also provides methods for modifying a cell through use of any combination of nuclease agents, exogenous donor sequences, transcriptional activators, transcriptional repressors, antisense molecules such as antisense RNA, siRNA, and shRNA, *B4GALT1* polypeptides or fragments thereof, and expression vectors for expressing a recombinant *B4GALT1* gene or a nucleic acid encoding an *B4GALT1* polypeptide. The methods can occur *in vitro*, *ex vivo*, or *in vivo*. The nuclease agents, exogenous donor sequences, transcriptional activators, transcriptional repressors, antisense molecules such as antisense RNA, siRNA, and shRNA, *B4GALT1* polypeptides or fragments thereof, and expression vectors can be introduced into the cell in any form and by any means as described elsewhere herein, and all or some can be introduced simultaneously or sequentially in any combination. Some methods involve only altering an endogenous *B4GALT1* gene in a cell. Some methods involve only altering expression of an endogenous *B4GALT1* gene through use of transcriptional activators or repressors or through use of antisense molecules such as antisense RNA, siRNA, and shRNA. Some methods involve only introducing a recombinant *B4GALT1* gene or nucleic acid encoding a *B4GALT1* polypeptide or fragment thereof into a cell. Some methods involve only introducing a *B4GALT1* polypeptide or fragment thereof into a cell (e.g., any one of or any combination of the *B4GALT1* polypeptides or fragments thereof disclosed herein). Other methods involve both altering an endogenous *B4GALT1* gene in a cell and introducing a *B4GALT1* polypeptide or fragment thereof or recombinant *B4GALT1* gene or nucleic acid encoding a *B4GALT1* polypeptide or fragment thereof into the cell. Other methods involve both altering expression of an endogenous *B4GALT1* gene in a cell and introducing a *B4GALT1* polypeptide or fragment thereof or recombinant *B4GALT1* gene or nucleic acid encoding a *B4GALT1* polypeptide or fragment thereof into the cell.

The present disclosure provides methods for modifying an endogenous *B4GALT1* gene in a genome within a cell (e.g., a pluripotent cell or a differentiated cell) through use of nuclease agents and/or exogenous donor sequences. The methods can occur *in vitro*, *ex vivo*, or *in vivo*. The nuclease agent can be used alone or in combination with an exogenous donor sequence. Alternately, the exogenous donor sequence can be used alone or in combination with a nuclease agent.

Repair in response to double-strand breaks (DSBs) occurs principally through two conserved DNA repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR) (see, Kasperek & Humphrey, *Seminars in Cell & Dev. Biol.*, 2011, 22, 886-

897). Repair of a target nucleic acid (e.g., an endogenous *B4GALT1* gene) mediated by an exogenous donor sequence can include any process of exchange of genetic information between the two polynucleotides. For example, NHEJ can also result in the targeted integration of an exogenous donor sequence through direct ligation of the break ends with the ends of the
5 exogenous donor sequence (i.e., NHEJ-based capture). Repair can also occur via homology directed repair (HDR) or homologous recombination (HR). HDR or HR includes a form of nucleic acid repair that can require nucleotide sequence homology, uses a “donor” molecule as a template for repair of a “target” molecule (i.e., the one that experienced the double-strand break), and leads to transfer of genetic information from the donor to target.

10 Targeted genetic modifications to an endogenous *B4GALT1* gene in a genome can be generated by contacting a cell with an exogenous donor sequence comprising a 5' homology arm that hybridizes to a 5' target sequence at a target genomic locus within the endogenous *B4GALT1* gene and a 3' homology arm that hybridizes to a 3' target sequence at the target genomic locus within the endogenous *B4GALT1* gene. The exogenous donor sequence can

15 recombine with the target genomic locus to generate the targeted genetic modification to the endogenous *B4GALT1* gene. As one example, the 5' homology arm can hybridize to a target sequence 5' of the position corresponding to positions 53575 to 53577 of SEQ ID NO:1, and the 3' homology arm can hybridize to a target sequence 3' of the position corresponding to positions 53575 to 53577 of SEQ ID NO:1. Such methods can result, for example, in a *B4GALT1*

20 gene which contains a nucleotide sequence that encodes a serine at the position corresponding to position 352 of the full length/mature polypeptide produced therefrom. Examples of exogenous donor sequences are disclosed elsewhere herein.

For example, targeted genetic modifications to an endogenous *B4GALT1* gene in a genome can be generated by contacting a cell or the genome of a cell with a Cas protein and
25 one or more guide RNAs that hybridize to one or more guide RNA recognition sequences within a target genomic locus in the endogenous *B4GALT1* gene. For example, such methods can comprise contacting a cell with a Cas protein and a guide RNA that hybridizes to a guide RNA recognition sequence within the endogenous *B4GALT1* gene. In some embodiments, the guide RNA recognition sequence is located within a region corresponding to exon 5 of SEQ ID NO:1. In

30 some embodiments, the guide RNA recognition sequence can include or is proximate to a position corresponding to positions 53575 to 53577 of SEQ ID NO:1. For example, the guide RNA recognition sequence can be within about 1000, within about 500, within about 400,

within about 300, within about 200, within about 100, within about 50, within about 45, within about 40, within about 35, within about 30, within about 25, within about 20, within about 15, within about 10, or within about 5 nucleotides of the position corresponding to positions 53575 to 53577 of SEQ ID NO:1. As yet another example, the guide RNA recognition sequence can

5 include or be proximate to the start codon of an endogenous *B4GALT1* gene or the stop codon of an endogenous *B4GALT1* gene. For example, the guide RNA recognition sequence can be within about 10, within about 20, within about 30, within about 40, within about 50, within about 100, within about 200, within about 300, within about 400, within about 500, or within about 1,000 nucleotides of the start codon or the stop codon. The Cas protein and the guide

10 RNA form a complex, and the Cas protein cleaves the guide RNA recognition sequence.

Cleavage by the Cas protein can create a double-strand break or a single-strand break (e.g., if the Cas protein is a nickase). Such methods can result, for example, in an endogenous *B4GALT1* gene in which the region corresponding to exon 5 of SEQ ID NO:1 is disrupted, the start codon is disrupted, the stop codon is disrupted, or the coding sequence is deleted. Examples and

15 variations of Cas (e.g., Cas9) proteins and guide RNAs that can be used in the methods are described elsewhere herein.

In some embodiments, two or more nuclease agents can be used. For example, two nuclease agents can be used, each targeting a nuclease recognition sequence within a region corresponding to exon 5 of SEQ ID NO:1, or including or proximate to a position corresponding

20 to positions 53575 to 53577 of SEQ ID NO:1 (e.g., within about 1000, within about 500, within about 400, within about 300, within about 200, within about 100, within about 50, within about 45, within about 40, within about 35, within about 30, within about 25, within about 20, within about 15, within about 10, or within about 5 nucleotides of the positions corresponding to positions 53575 to 53577 of SEQ ID NO:1). As another example, two or more nuclease agents

25 can be used, each targeting a nuclease recognition sequence including or proximate to the start codon. As another example, two nuclease agents can be used, one targeting a nuclease recognition sequence including or proximate to the start codon, and one targeting a nuclease recognition sequence including or proximate to the stop codon, wherein cleavage by the nuclease agents can result in deletion of the coding region between the two nuclease

30 recognition sequences. As yet another example, three or more nuclease agents can be used, with one or more (e.g., two) targeting nuclease recognition sequences including or proximate to the start codon, and one or more (e.g., two) targeting nuclease recognition sequences

including or proximate to the stop codon, wherein cleavage by the nuclease agents can result in deletion of the coding region between the nuclease recognition sequences including or proximate to the start codon and the nuclease recognition sequence including or proximate to the stop codon.

5 In some embodiments, the cell can be further contacted with one or more additional guide RNAs that hybridize to additional guide RNA recognition sequences within the target genomic locus in the endogenous *B4GALT1* gene. By contacting the cell with one or more additional guide RNAs (e.g., a second guide RNA that hybridizes to a second guide RNA recognition sequence), cleavage by the Cas protein can create two or more double-strand 10 breaks or two or more single-strand breaks (e.g., if the Cas protein is a nickase).

In some embodiments, the cell can additionally be contacted with one or more exogenous donor sequences which recombine with the target genomic locus in the endogenous *B4GALT1* gene to generate a targeted genetic modification. Examples and variations of exogenous donor sequences that can be used in the methods are disclosed elsewhere herein.

15 The Cas protein, guide RNA(s), and exogenous donor sequence(s) can be introduced into the cell in any form and by any means as described elsewhere herein, and all or some of the Cas protein, guide RNA(s), and exogenous donor sequence(s) can be introduced simultaneously or sequentially in any combination.

20 In some embodiments, the repair of the target nucleic acid (e.g., the endogenous *B4GALT1* gene) by the exogenous donor sequence occurs via homology-directed repair (HDR). Homology-directed repair can occur when the Cas protein cleaves both strands of DNA in the endogenous *B4GALT1* gene to create a double-strand break, when the Cas protein is a nickase that cleaves one strand of DNA in the target nucleic acid to create a single-strand break, or when Cas nickases are used to create a double-strand break formed by two offset nicks. In such 25 methods, the exogenous donor sequence comprises 5' and 3' homology arms corresponding to 5' and 3' target sequences. The guide RNA recognition sequence(s) or cleavage site(s) can be adjacent to the 5' target sequence, adjacent to the 3' target sequence, adjacent to both the 5' target sequence and the 3' target sequence, or adjacent to neither the 5' target sequence nor the 3' target sequence. In some embodiments, the exogenous donor sequence can further 30 comprise a nucleic acid insert flanked by the 5' and 3' homology arms, and the nucleic acid insert is inserted between the 5' and 3' target sequences. If no nucleic acid insert is present, the exogenous donor sequence can function to delete the genomic sequence between the 5' and 3'

target sequences. Examples of exogenous donor sequences are disclosed elsewhere herein.

Alternately, the repair of the endogenous *B4GALT1* gene mediated by the exogenous donor sequence can occur via non-homologous end joining (NHEJ)-mediated ligation. In such methods, at least one end of the exogenous donor sequence comprises a short single-stranded region that is complementary to at least one overhang created by Cas-mediated cleavage in the endogenous *B4GALT1* gene. The complementary end in the exogenous donor sequence can flank a nucleic acid insert. For example, each end of the exogenous donor sequence can comprise a short single-stranded region that is complementary to an overhang created by Cas-mediated cleavage in the endogenous *B4GALT1* gene, and these complementary regions in the exogenous donor sequence can flank a nucleic acid insert.

Overhangs (i.e., staggered ends) can be created by resection of the blunt ends of a double-strand break created by Cas-mediated cleavage. Such resection can generate the regions of microhomology needed for fragment joining, but this can create unwanted or uncontrollable alterations in the *B4GALT1* gene. Alternately, such overhangs can be created by using paired Cas nickases. For example, the cell can be contacted with first and second nickases that cleave opposite strands of DNA, whereby the genome is modified through double nicking. This can be accomplished by contacting a cell with a first Cas protein nickase, a first guide RNA that hybridizes to a first guide RNA recognition sequence within the target genomic locus in the endogenous *B4GALT1* gene, a second Cas protein nickase, and a second guide RNA that hybridizes to a second guide RNA recognition sequence within target genomic locus in the endogenous *B4GALT1* gene. The first Cas protein and the first guide RNA form a first complex, and the second Cas protein and the second guide RNA form a second complex. The first Cas protein nickase cleaves a first strand of genomic DNA within the first guide RNA recognition sequence, the second Cas protein nickase cleaves a second strand of genomic DNA within the second guide RNA recognition sequence, and optionally the exogenous donor sequence recombines with the target genomic locus in the endogenous *B4GALT1* gene to generate the targeted genetic modification.

The first nickase can cleave a first strand of genomic DNA (i.e., the complementary strand), and the second nickase can cleave a second strand of genomic DNA (i.e., the non-complementary strand). The first and second nickases can be created, for example, by mutating a catalytic residue in the RuvC domain (e.g., the D10A mutation described elsewhere herein) of Cas9 or mutating a catalytic residue in the HNH domain (e.g., the H840A mutation described

elsewhere herein) of Cas9. In such methods, the double nicking can be employed to create a double-strand break having staggered ends (i.e., overhangs). The first and second guide RNA recognition sequences can be positioned to create a cleavage site such that the nicks created by the first and second nickases on the first and second strands of DNA create a double-strand
5 break. Overhangs are created when the nicks within the first and second CRISPR RNA recognition sequences are offset. The offset window can be, for example, at least about 5 bp, at least about 10 bp, at least about 20 bp, at least about 30 bp, at least about 40 bp, at least about 50 bp, at least about 60 bp, at least about 70 bp, at least about 80 bp, at least about 90 bp, at least about 100 bp, or more. *See, e.g.,* Ran *et al.*, *Cell*, 2013, 154, 1380-1389; Mali *et al.*, *Nat. Biotech.*, 2013, 31, 833-838; and Shen *et al.*, *Nat. Methods*, 2014, 11, 399-404.

Various types of targeted genetic modifications can be introduced using the methods described herein. Such targeted modifications can include, for example, additions of one or more nucleotides, deletions of one or more nucleotides, substitutions of one or more nucleotides, a point mutation, or a combination thereof. For example, at least 1, at least 2, at
15 least 3, at least 4, at least 5, at least 7, at least 8, at least 9, or at least 10, or more nucleotides can be changed (e.g., deleted, inserted, or substituted) to form the targeted genomic modification.

Such targeted genetic modifications can result in disruption of a target genomic locus. Disruption can include alteration of a regulatory element (e.g., promoter or enhancer), a
20 missense mutation, a nonsense mutation, a frame-shift mutation, a truncation mutation, a null mutation, or an insertion or deletion of small number of nucleotides (e.g., causing a frameshift mutation), and it can result in inactivation (i.e., loss of function) or loss of an allele. For example, a targeted modification can comprise disruption of the start codon of an endogenous *B4GALT1* gene such that the start codon is no longer functional.

25 In some embodiments, a targeted modification can comprise a deletion between the first and second guide RNA recognition sequences or Cas cleavage sites. If an exogenous donor sequence (e.g., repair template or targeting vector) is used, the modification can comprise a deletion between the first and second guide RNA recognition sequences or Cas cleavage sites as well as an insertion of a nucleic acid insert between the 5' and 3' target sequences.

30 In some embodiments, if an exogenous donor sequence is used, alone or in combination with a nuclease agent, the modification can comprise a deletion between the 5' and 3' target sequences as well as an insertion of a nucleic acid insert between the 5' and 3'

target sequences in the pair of first and second homologous chromosomes, thereby resulting in a homozygous modified genome. Alternately, if the exogenous donor sequence comprises 5' and 3' homology arms with no nucleic acid insert, the modification can comprise a deletion between the 5' and 3' target sequences.

5 The deletion between the first and second guide RNA recognition sequences or the deletion between the 5' and 3' target sequences can be a precise deletion wherein the deleted nucleic acid consists of only the nucleic acid sequence between the first and second nuclease cleavage sites or only the nucleic acid sequence between the 5' and 3' target sequences such that there are no additional deletions or insertions at the modified genomic target locus. The
10 deletion between the first and second guide RNA recognition sequences can also be an imprecise deletion extending beyond the first and second nuclease cleavage sites, consistent with imprecise repair by non-homologous end joining (NHEJ), resulting in additional deletions and/or insertions at the modified genomic locus. For example, the deletion can extend about 1 bp, about 2 bp, about 3 bp, about 4 bp, about 5 bp, about 10 bp, about 20 bp, about 30 bp,
15 about 40 bp, about 50 bp, about 100 bp, about 200 bp, about 300 bp, about 400 bp, about 500 bp, or more beyond the first and second Cas protein cleavage sites. Likewise, the modified genomic locus can comprise additional insertions consistent with imprecise repair by NHEJ, such as insertions of about 1 bp, about 2 bp, about 3 bp, about 4 bp, about 5 bp, about 10 bp, about 20 bp, about 30 bp, about 40 bp, about 50 bp, about 100 bp, about 200 bp, about 300
20 bp, about 400 bp, about 500 bp, or more.

The targeted genetic modification can be, for example, a biallelic modification or a monoallelic modification. Biallelic modifications include events in which the same modification is made to the same locus on corresponding homologous chromosomes (e.g., in a diploid cell), or in which different modifications are made to the same locus on corresponding homologous
25 chromosomes. In some embodiments, the targeted genetic modification is a monoallelic modification. A monoallelic modification includes events in which a modification is made to only one allele (i.e., a modification to the endogenous *B4GALT1* gene in only one of the two homologous chromosomes). Homologous chromosomes include chromosomes that have the same genes at the same loci but possibly different alleles (e.g., chromosomes that are paired
30 during meiosis).

A monoallelic mutation can result in a cell that is heterozygous for the targeted *B4GALT1* modification. Heterozygosity includes situation in which only one allele of the

B4GALT1 gene (i.e., corresponding alleles on both homologous chromosomes) have the targeted modification.

A biallelic modification can result in homozygosity for a targeted modification.

Homozygosity includes situations in which both alleles of the *B4GALT1* gene (i.e., corresponding

5 alleles on both homologous chromosomes) have the targeted modification. Alternately, a biallelic modification can result in compound heterozygosity (e.g., hemizygosity) for the targeted modification. Compound heterozygosity includes situations in which both alleles of the target locus (i.e., the alleles on both homologous chromosomes) have been modified, but they have been modified in different ways (e.g., a targeted modification in one allele and 10 inactivation or disruption of the other allele).

The methods disclosed herein can further comprise identifying a cell having a modified *B4GALT1* gene. Various methods can be used to identify cells having a targeted genetic modification, such as a deletion or an insertion. Such methods can comprise identifying one cell having the targeted genetic modification in the *B4GALT1* gene. Screening can be performed to 15 identify such cells with modified genomic loci. The screening step can comprise a quantitative assay for assessing modification of allele (MOA) (e.g., loss-of-allele (LOA) and/or gain-of-allele (GOA) assays) of a parental chromosome.

Other examples of suitable quantitative assays include fluorescence-mediated *in situ* hybridization (FISH), comparative genomic hybridization, isothermal DNA amplification,

20 quantitative hybridization to an immobilized probe(s), INVADER[®] Probes, TAKMAN[®] Molecular Beacon probes, or ECLIPSE[™] probe technology. Conventional assays for screening for targeted modifications, such as long-range PCR, Southern blotting, or Sanger sequencing, can also be used. Such assays typically are used to obtain evidence for a linkage between the inserted targeting vector and the targeted genomic locus. For example, for a long-range PCR assay, one 25 primer can recognize a sequence within the inserted DNA while the other recognizes a target genomic locus sequence beyond the ends of the targeting vector's homology arms.

Next generation sequencing (NGS) can also be used for screening. Next-generation sequencing can also be referred to as "NGS" or "massively parallel sequencing" or "high throughput sequencing." In some embodiments, it is not necessary to screen for targeted cells 30 using selection markers. For example, the MOA and NGS assays described herein can be relied on without using selection cassettes.

The present disclosure also provides methods for altering expression of nucleic acids encoding *B4GALT1* polypeptides. In some embodiments, expression is altered through cleavage with a nuclease agent to cause disruption of the nucleic acid encoding the endogenous *B4GALT1* polypeptide, as described in further detail elsewhere herein. In some embodiments, 5 expression is altered through use of a DNA-binding protein fused or linked to a transcription activation domain or a transcription repression domain. In some embodiments, expression is altered through use of RNA interference compositions, such as antisense RNA, shRNA, or siRNA.

In some embodiments, expression of an endogenous *B4GALT1* gene or a nucleic acid encoding a *B4GALT1* polypeptide can be modified by contacting a cell or the genome within a 10 cell with a nuclease agent that induces one or more nicks or double-strand breaks at a recognition sequence at a target genomic locus within the endogenous *B4GALT1* gene or nucleic acid encoding a *B4GALT1* polypeptide. Such cleavage can result in disruption of expression of the endogenous *B4GALT1* gene or nucleic acid encoding a *B4GALT1* polypeptide.

For example, the nuclease recognition sequence can include or be proximate to the start codon 15 of the endogenous *B4GALT1* gene. For example, the recognition sequence can be within about 10, within about 20, within about 30, within about 40, within about 50, within about 100, within about 200, within about 300, within about 400, within about 500, or within about 1,000 nucleotides of the start codon, and cleavage by the nuclease agent can disrupt the start codon.

In some embodiments, two or more nuclease agents can be used, each targeting a nuclease 20 recognition sequence including or proximate to the start codon. In some embodiments, two nuclease agents can be used, one targeting a nuclease recognition sequence including or proximate to the start codon, and one targeting a nuclease recognition sequence including or proximate to the stop codon, wherein cleavage by the nuclease agents can result in deletion of the coding region between the two nuclease recognition sequences. In some embodiments,

25 three or more nuclease agents can be used, with one or more (e.g., two) targeting nuclease recognition sequences including or proximate to the start codon, and one or more (e.g., two) targeting nuclease recognition sequences including or proximate to the stop codon, wherein cleavage by the nuclease agents can result in deletion of the coding region between the nuclease recognition sequences including or proximate to the start codon and the nuclease 30 recognition sequence including or proximate to the stop codon. Other examples of modifying an endogenous *B4GALT1* gene or a nucleic acid encoding a *B4GALT1* polypeptide are disclosed elsewhere herein.

In some embodiments, expression of an endogenous *B4GALT1* gene or a nucleic acid encoding a *B4GALT1* polypeptide can be modified by contacting a cell or the genome within a cell with a DNA-binding protein that binds to a target genomic locus within the endogenous *B4GALT1* gene. The DNA-binding protein can be, for example, a nuclease-inactive Cas protein 5 fused to a transcriptional activator domain or a transcriptional repressor domain. Other examples of DNA-binding proteins include zinc finger proteins fused to a transcriptional activator domain or a transcriptional repressor domain, or Transcription Activator-Like Effector (TALE) proteins fused to a transcriptional activator domain or a transcriptional repressor domain. Examples of such proteins are disclosed elsewhere herein.

10 The recognition sequence (e.g., guide RNA recognition sequence) for the DNA-binding protein can be anywhere within the endogenous *B4GALT1* gene or a nucleic acid encoding a *B4GALT1* polypeptide suitable for altering expression. In some embodiments, the recognition sequence can be within a regulatory element, such as an enhancer or promoter, or can be in proximity to a regulatory element. For example, the recognition sequence can include or be 15 proximate to the start codon of an endogenous *B4GALT1* gene. In some embodiments, the recognition sequence can be within about 10, within about 20, within about 30, within about 40, within about 50, within about 100, within about 200, within about 300, within about 400, within about 500, or within about 1,000 nucleotides of the start codon.

20 In some embodiments, antisense molecules can be used to alter expression of an endogenous *B4GALT1* gene or a nucleic acid encoding a *B4GALT1* polypeptide. Examples of antisense molecules include, but are not limited to, antisense RNAs, siRNAs, and shRNAs. Such antisense RNAs, siRNAs, or shRNAs can be designed to target any region of an mRNA. For example, the antisense RNAs, siRNAs, or shRNAs can be designed to target a region unique of the *B4GALT1* mRNA.

25 The nucleic acids and proteins disclosed herein can be introduced into a cell by any means. In some embodiments, the introducing can be accomplished by any means, and one or more of the components (e.g., two of the components, or all of the components) can be introduced into the cell simultaneously or sequentially in any combination. For example, an exogenous donor sequence can be introduced prior to the introduction of a nuclease agent, or 30 it can be introduced following introduction of nuclease agent (e.g., the exogenous donor sequence can be administered about 1, about 2, about 3, about 4, about 8, about 12, about 24, about 36, about 48, or about 72 hours before or after introduction of the nuclease agent).

Contacting the genome of a cell with a nuclease agent or exogenous donor sequence can comprise introducing one or more nuclease agents or nucleic acids encoding nuclease agents (e.g., one or more Cas proteins or nucleic acids encoding one or more Cas proteins, and one or more guide RNAs or nucleic acids encoding one or more guide RNAs (i.e., one or more CRISPR

5 RNAs and one or more tracrRNAs)) and/or one or more exogenous donor sequences into the cell. Contacting the genome of cell (i.e., contacting a cell) can comprise introducing only one of the above components, one or more of the components, or all of the components into the cell.

A nuclease agent can be introduced into the cell in the form of a protein or in the form of a nucleic acid encoding the nuclease agent, such as an RNA (e.g., messenger RNA (mRNA)) or 10 DNA. When introduced in the form of a DNA, the DNA can be operably linked to a promoter active in the cell. Such DNAs can be in one or more expression constructs.

In some embodiments, a Cas protein can be introduced into the cell in the form of a protein, such as a Cas protein complexed with a gRNA, or in the form of a nucleic acid encoding 15 the Cas protein, such as an RNA (e.g., messenger RNA (mRNA)) or DNA. A guide RNA can be introduced into the cell in the form of an RNA or in the form of a DNA encoding the guide RNA.

When introduced in the form of a DNA, the DNA encoding the Cas protein and/or the guide RNA can be operably linked to a promoter active in the cell. Such DNAs can be in one or more expression constructs. For example, such expression constructs can be components of a single 20 nucleic acid molecule. Alternately, they can be separated in any combination among two or more nucleic acid molecules (i.e., DNAs encoding one or more CRISPR RNAs, DNAs encoding one or more tracrRNAs, and DNA encoding a Cas protein can be components of separate nucleic acid molecules).

In some embodiments, DNA encoding a nuclease agent (e.g., a Cas protein and a guide RNA) and/or DNA encoding an exogenous donor sequence can be introduced into a cell via DNA 25 minicircles. DNA minicircles are supercoiled DNA molecules that can be used for non-viral gene transfer that have neither an origin of replication nor an antibiotic selection marker. Thus, DNA minicircles are typically smaller in size than plasmid vector. These DNAs are devoid of bacterial DNA, and thus lack the unmethylated CpG motifs found in bacterial DNA.

The methods described herein do not depend on a particular method for introducing a 30 nucleic acid or protein into the cell, only that the nucleic acid or protein gains access to the interior of a least one cell. Methods for introducing nucleic acids and proteins into various cell types are known and include, but are not limited to, stable transfection methods, transient

transfection methods, and virus-mediated methods.

Transfection protocols as well as protocols for introducing nucleic acids or proteins into cells may vary. Non-limiting transfection methods include chemical-based transfection methods using liposomes, nanoparticles, calcium, dendrimers, and cationic polymers such as DEAE-dextran or polyethylenimine. Non-chemical methods include electroporation, sono-
5 poration, and optical transfection. Particle-based transfection includes the use of a gene gun, or magnet-assisted transfection. Viral methods can also be used for transfection.

Introduction of nucleic acids or proteins into a cell can also be mediated by electroporation, by intracytoplasmic injection, by viral infection, by adenovirus, by adeno-
10 associated virus, by lentivirus, by retrovirus, by transfection, by lipid-mediated transfection, or by nucleofection. Nucleofection is an improved electroporation technology that enables nucleic acid substrates to be delivered not only to the cytoplasm but also through the nuclear membrane and into the nucleus. In addition, use of nucleofection in the methods disclosed herein typically requires much fewer cells than regular electroporation (e.g., only about 2 million compared with 7 million by regular electroporation). In some embodiments, 15 nucleofection is performed using the LONZA® NUCLEOFECTOR™ system.

Introduction of nucleic acids or proteins into a cell can also be accomplished by microinjection. Microinjection of an mRNA is usually into the cytoplasm (e.g., to deliver mRNA directly to the translation machinery), while microinjection of a protein or a DNA encoding a 20 DNA encoding a Cas protein is usually into the nucleus. Alternately, microinjection can be carried out by injection into both the nucleus and the cytoplasm: a needle can first be introduced into the nucleus and a first amount can be injected, and while removing the needle from the cell a second amount can be injected into the cytoplasm. If a nuclease agent protein is injected into the cytoplasm, the protein may comprise a nuclear localization signal to ensure 25 delivery to the nucleus/pronucleus.

Other methods for introducing nucleic acid or proteins into a cell can include, for example, vector delivery, particle-mediated delivery, exosome-mediated delivery, lipid-
30 nanoparticle-mediated delivery, cell-penetrating-peptide-mediated delivery, or implantable-device-mediated delivery. Methods of administering nucleic acids or proteins to a subject to modify cells *in vivo* are disclosed elsewhere herein. Introduction of nucleic acids and proteins into cells can also be accomplished by hydrodynamic delivery (HDD).

Other methods for introducing nucleic acid or proteins into a cell can include, for

example, vector delivery, particle-mediated delivery, exosome-mediated delivery, lipid-nanoparticle-mediated delivery, cell-penetrating-peptide-mediated delivery, or implantable-device-mediated delivery. In some embodiments, a nucleic acid or protein can be introduced into a cell in a carrier such as a poly(lactic acid) (PLA) microsphere, a poly(D,L-lactic-coglycolic-acid) (PLGA) microsphere, a liposome, a micelle, an inverse micelle, a lipid cochleate, or a lipid microtubule.

The introduction of nucleic acids or proteins into the cell can be performed one time or multiple times over a period of time. In some embodiments, the introduction can be performed at least two times over a period of time, at least three times over a period of time, at least four times over a period of time, at least five times over a period of time, at least six times over a period of time, at least seven times over a period of time, at least eight times over a period of time, at least nine times over a period of time, at least ten times over a period of time, at least eleven times, at least twelve times over a period of time, at least thirteen times over a period of time, at least fourteen times over a period of time, at least fifteen times over a period of time, at least sixteen times over a period of time, at least seventeen times over a period of time, at least eighteen times over a period of time, at least nineteen times over a period of time, or at least twenty times over a period of time.

In some embodiments, the cells employed in the methods and compositions have a DNA construct stably incorporated into their genome. In such cases, the contacting can comprise providing a cell with the construct already stably incorporated into its genome. In some embodiments, a cell employed in the methods disclosed herein may have a preexisting Cas-encoding gene stably incorporated into its genome (i.e., a Cas-ready cell). In some embodiments, the polynucleotide integrates into the genome of the cell and is capable of being inherited by progeny thereof. Any protocol may be used for the stable incorporation of the DNA constructs or the various components of the targeted genomic integration system.

Any nuclease agent that induces a nick or double-strand break into a desired recognition sequence or any DNA-binding protein that binds to a desired recognition sequence can be used in the methods and compositions disclosed herein. A naturally occurring or native nuclease agent can be employed so long as the nuclease agent induces a nick or double-strand break in a desired recognition sequence. Likewise, a naturally occurring or native DNA-binding protein can be employed so long as the DNA-binding protein binds to the desired recognition sequence. Alternately, a modified or engineered nuclease agent or DNA-binding protein can be

employed. An engineered nuclease agent or DNA-binding protein can be derived from a native, naturally occurring nuclease agent or DNA-binding protein or it can be artificially created or synthesized. The engineered nuclease agent or DNA-binding protein can recognize a recognition sequence, for example, wherein the recognition sequence is not a sequence that 5 would have been recognized by a native (non-engineered or non-modified) nuclease agent or DNA-binding protein. The modification of the nuclease agent or DNA-binding protein can be as few as one amino acid in a protein cleavage agent or one nucleotide in a nucleic acid cleavage agent.

Recognition sequences for a nuclease agent includes a DNA sequence at which a nick 10 or double-strand break is induced by a nuclease agent. Likewise, recognition sequences for a DNA-binding protein include a DNA sequence to which a DNA-binding protein will bind. The recognition sequence can be endogenous (or native) to the cell or the recognition sequence can be exogenous to the cell. The recognition sequence can also be exogenous to the polynucleotides of interest that one desires to be positioned at the target locus. In some embodiments, the 15 recognition sequence is present only once in the genome of the host cell.

Active variants and fragments of the exemplified recognition sequences are also provided. Such active variants can comprise at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the 20 given recognition sequence, wherein the active variants retain biological activity and are capable of being recognized and cleaved by a nuclease agent in a sequence-specific manner. Assays to measure the double-strand break of a recognition sequence by a nuclease agent are known (e.g., TAQMAN® qPCR assay, Frendewey et al., *Methods in Enzymology*, 2010, 476, 295-307).

25 The length of the recognition sequence can vary, and includes, for example, recognition sequences that are from about 30 to about 36 bp for a zinc finger protein or zinc finger nuclease (ZFN) pair (i.e., from about 15 to about 18 bp for each ZFN), about 36 bp for a TALE protein or Transcription Activator-Like Effector Nuclease (TALEN), or about 20 bp for a CRISPR/Cas9 guide RNA.

30 The recognition sequence of the DNA-binding protein or nuclease agent can be positioned anywhere in or near the target genomic locus. The recognition sequence can be located within a coding region of a gene (e.g., the *B4GALT1* gene), or within regulatory regions

that influence the expression of the gene. A recognition sequence of the DNA-binding protein or nuclease agent can be located in an intron, an exon, a promoter, an enhancer, a regulatory region, or any non-protein coding region.

One type of DNA-binding protein that can be employed in the various methods and compositions disclosed herein is a TALE. A TALE can be fused or linked to, for example, an epigenetic modification domain, a transcriptional activation domain, or a transcriptional repressor domain. Examples of such domains are described with respect to Cas proteins, below, and can also be found, for example, in PCT Publication WO 2011/145121. Correspondingly, one type of nuclease agent that can be employed in the various methods and compositions disclosed herein is a TALEN. Transcription activator-like (TAL) effector nucleases are a class of sequence-specific nucleases that can be used to make double-strand breaks at specific target sequences in the genome of a prokaryotic or eukaryotic organism. TAL effector nucleases are created by fusing a native or engineered TAL effector, or functional part thereof, to the catalytic domain of an endonuclease such as *FokI*. The unique, modular TAL effector DNA binding domain allows for the design of proteins with potentially any given DNA recognition specificity. Thus, the DNA binding domains of the TAL effector nucleases can be engineered to recognize specific DNA target sites and thus, used to make double-strand breaks at desired target sequences. Examples of suitable TAL nucleases, and methods for preparing suitable TAL nucleases, are disclosed, for example, in U.S. Patent Application Publications 2011/0239315; 2011/0269234; 2011/0145940; 2003/0232410; 2005/0208489; 2005/0026157; 2005/0064474; 2006/0188987; and 2006/0063231.

In some TALENs, each monomer of the TALEN comprises from about 33 to about 35 TAL repeats that recognize a single base pair via two hypervariable residues. In some TALENs, the nuclease agent is a chimeric protein comprising a TAL-repeat-based DNA binding domain operably linked to an independent nuclease such as a *FokI* endonuclease. For example, the nuclease agent can comprise a first TAL-repeat-based DNA binding domain and a second TAL-repeat-based DNA binding domain, wherein each of the first and the second TAL-repeat-based DNA binding domains is operably linked to a *FokI* nuclease, wherein the first and the second TAL-repeat-based DNA binding domain recognize two contiguous target DNA sequences in each strand of the target DNA sequence separated by a spacer sequence of varying length (from about 12 to about 20 bp), and wherein the *FokI* nuclease subunits dimerize to create an active nuclease that makes a double strand break at a target sequence.

Another example of a DNA-binding protein is a zinc finger protein. Such zinc finger proteins can be linked or fused to, for example, an epigenetic modification domain, a transcriptional activation domain, or a transcriptional repressor domain. Examples of such domains are described with respect to Cas proteins, below, and can also be found, for example,

5 in PCT Publication WO 2011/145121. Correspondingly, another example of a nuclease agent that can be employed in the various methods and compositions disclosed herein is a ZFN. In some ZFNs, each monomer of the ZFN comprises three or more zinc finger-based DNA binding domains, wherein each zinc finger-based DNA binding domain binds to a 3 bp subsite. In other ZFNs, the ZFN is a chimeric protein comprising a zinc finger-based DNA binding domain

10 operably linked to an independent nuclease such as a FokI endonuclease. For example, the nuclease agent can comprise a first ZFN and a second ZFN, wherein each of the first ZFN and the second ZFN is operably linked to a FokI nuclease subunit, wherein the first and the second ZFN recognize two contiguous target DNA sequences in each strand of the target DNA sequence separated by about 5 to about 7 bp spacer, and wherein the FokI nuclease subunits dimerize to

15 create an active nuclease that makes a double strand break.

Other suitable DNA-binding proteins and nuclease agents for use in the methods and compositions described herein include CRISPR-Cas systems, which are described elsewhere herein.

The DNA-binding protein or nuclease agent may be introduced into the cell by any known means. A polypeptide encoding the DNA-binding protein or nuclease agent may be directly introduced into the cell. Alternately, a polynucleotide encoding the DNA-binding protein or nuclease agent can be introduced into the cell. When a polynucleotide encoding the DNA-binding protein or nuclease agent is introduced into the cell, the DNA-binding protein or nuclease agent can be transiently, conditionally, or constitutively expressed within the cell. For example, the polynucleotide encoding the DNA-binding protein or nuclease agent can be contained in an expression cassette and be operably linked to a conditional promoter, an inducible promoter, a constitutive promoter, or a tissue-specific promoter. Such promoters are discussed in further detail elsewhere herein. In some embodiments, the DNA-binding protein or nuclease agent can be introduced into the cell as an mRNA encoding a DNA-binding protein or a

25 nuclease agent.

30

A polynucleotide encoding a DNA-binding protein or nuclease agent can be stably integrated in the genome of the cell and operably linked to a promoter active in the cell.

Alternately, a polynucleotide encoding a DNA-binding protein or nuclease agent can be in a targeting vector or in a vector or a plasmid that is separate from the targeting vector comprising the insert polynucleotide.

When the DNA-binding protein or nuclease agent is provided to the cell through the

5 introduction of a polynucleotide encoding the DNA-binding protein or nuclease agent, such a polynucleotide encoding a DNA-binding protein or nuclease agent can be modified to substitute codons having a higher frequency of usage in the cell of interest, as compared to the naturally occurring polynucleotide sequence encoding the DNA-binding protein or nuclease agent. In some embodiments, the polynucleotide encoding the DNA-binding protein or nuclease agent 10 can be modified to substitute codons having a higher frequency of usage in a given prokaryotic or eukaryotic cell of interest, including a bacterial cell, a yeast cell, a human cell, a non-human cell, a mammalian cell, a rodent cell, a mouse cell, a rat cell or any other host cell of interest, as compared to the naturally occurring polynucleotide sequence.

The methods disclosed herein can utilize Clustered Regularly Interspersed Short

15 Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) systems or components of such systems to modify a genome within a cell. CRISPR-Cas systems include transcripts and other elements involved in the expression of, or directing the activity of, Cas genes. A CRISPR-Cas system can be a type I, a type II, or a type III system. Alternately a CRISPR/Cas system can be, for example, a type V system (e.g., subtype V-A or subtype V-B). The methods and compositions disclosed 20 herein can employ CRISPR-Cas systems by utilizing CRISPR complexes (comprising a guide RNA (gRNA) complexed with a Cas protein) for site-directed cleavage of nucleic acids.

The CRISPR-Cas systems used in the methods disclosed herein are non-naturally occurring. For example, some CRISPR-Cas systems employ non-naturally occurring CRISPR complexes comprising a gRNA and a Cas protein that do not naturally occur together.

25 Cas proteins generally comprise at least one RNA recognition or binding domain that can interact with guide RNAs (gRNAs, described in more detail below). Cas proteins can also comprise nuclease domains (e.g., DNase or RNase domains), DNA binding domains, helicase domains, protein-protein interaction domains, dimerization domains, and other domains. A nuclease domain possesses catalytic activity for nucleic acid cleavage, which includes the 30 breakage of the covalent bonds of a nucleic acid molecule. Cleavage can produce blunt ends or staggered ends, and it can be single-stranded or double-stranded. A wild-type Cas9 protein will typically create a blunt cleavage product. Alternately, a wild-type Cpf1 protein (e.g., FnCpf1)

can result in a cleavage product with a 5-nucleotide 5' overhang, with the cleavage occurring after the 18th base pair from the PAM sequence on the non-targeted strand and after the 23rd base on the targeted strand. A Cas protein can have full cleavage activity to create a double-strand break in the endogenous *B4GALT1* gene (e.g., a double-strand break with blunt ends), or

5 it can be a nickase that creates a single-strand break in the endogenous *B4GALT1* gene.

Examples of Cas proteins include, but are not limited to, Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas5e (CasD), Cas6, Cas6e, Cas6f, Cas7, Cas8a1, Cas8a2, Cas8b, Cas8c, Cas9 (Csn1 or Csx12), Cas10, Cas10d, CasF, CasG, CasH, Csy1, Csy2, Csy3, Cse1 (CasA), Cse2 (CasB), Cse3 (CasE), Cse4 (CasC), Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, 10 Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, and Cu1966, and homologs or modified versions thereof.

In some embodiments, the Cas protein is a Cas9 protein or is derived from a Cas9 protein from a type II CRISPR-Cas system. Cas9 proteins are from a type II CRISPR-Cas system and typically share four key motifs with a conserved architecture. Motifs 1, 2, and 4 are

15 RuvC-like motifs, and motif 3 is an HNH motif. Exemplary Cas9 proteins include, but are not limited to, those are from *Streptococcus pyogenes*, *Streptococcus thermophilus*, *Streptococcus* sp., *Staphylococcus aureus*, *Nocardiopsis dassonvillei*, *Streptomyces pristinaespiralis*, *Streptomyces viridochromogenes*, *Streptomyces viridochromogenes*, *Streptosporangium roseum*, *Streptosporangium roseum*, *Alicyclobacillus acidocaldarius*, *Bacillus pseudomycoides*, 20 *Bacillus selenitireducens*, *Exiguobacterium sibiricum*, *Lactobacillus delbrueckii*, *Lactobacillus salivarius*, *Microscilla marina*, *Burkholderiales bacterium*, *Polaromonas naphthalenivorans*, *Polaromonas* sp., *Crocospaera watsonii*, *Cyanothece* sp., *Microcystis aeruginosa*, *Synechococcus* sp., *Acetohalobium arabaticum*, *Ammonifex degensii*, *Caldicelulosiruptor becscii*, *Candidatus Desulforudis*, *Clostridium botulinum*, *Clostridium difficile*, *Finegoldia magna*, 25 *Natranaerobius thermophilus*, *Pelotomaculum thermopropionicum*, *Acidithiobacillus caldus*, *Acidithiobacillus ferrooxidans*, *Allochromatium vinosum*, *Marinobacter* sp., *Nitrosococcus halophilus*, *Nitrosococcus watsoni*, *Pseudoalteromonas haloplanktis*, *Ktedonobacter racemifer*, *Methanohalobium evestigatum*, *Anabaena variabilis*, *Nodularia spumigena*, *Nostoc* sp., *Arthrosira maxima*, *Arthrosira platensis*, *Arthrosira* sp., *Lyngbya* sp., *Microcoleus chthonoplastes*, *Oscillatoria* sp., *Petrotoga mobilis*, *Thermosiphon africanus*, or *Acaryochloris marina*. Additional examples of the Cas9 family members are described in PCT Publication WO 30 2014/131833. Cas9 from *S. pyogenes* (assigned SwissProt accession number Q99ZW2) is an

exemplary enzyme. Cas9 from *S. aureus* (assigned UniProt accession number J7RUA5) is another exemplary enzyme.

Another example of a Cas protein is a Cpf1 (CRISPR from *Prevotella* and *Francisella* 1) protein. Cpf1 is a large protein (about 1300 amino acids) that contains a RuvC-like nuclease domain homologous to the corresponding domain of Cas9 along with a counterpart to the characteristic arginine-rich cluster of Cas9. However, Cpf1 lacks the HNH nuclease domain that is present in Cas9 proteins, and the RuvC-like domain is contiguous in the Cpf1 sequence, in contrast to Cas9 where it contains long inserts including the HNH domain. Exemplary Cpf1 proteins include, but are not limited to, those from *Francisella tularensis* 1, *Francisella tularensis* subsp. *novicida*, *Prevotella albensis*, *Lachnospiraceae bacterium* MC2017 1, *Butyrivibrio proteoclasticus*, *Peregrinibacteria bacterium* GW2011_GWA2_33_10, *Parcubacteria bacterium* GW2011_GWC2_44_17, *Smithella* sp. SCADC, *Acidaminococcus* sp. BV3L6, *Lachnospiraceae bacterium* MA2020, *Candidatus Methanoplasma termitum*, *Eubacterium eligens*, *Moraxella bovoculi* 237, *Leptospira inadai*, *Lachnospiraceae bacterium* ND2006, *Porphyromonas crevioricanis* 3, *Prevotella disiens*, and *Porphyromonas macacae*. Cpf1 from *Francisella novicida* U112 (FnCpf1; assigned UniProt accession number A0Q7Q2) is an exemplary enzyme.

Cas proteins can be wild-type proteins (i.e., those that occur in nature), modified Cas proteins (i.e., Cas protein variants), or fragments of wild-type or modified Cas proteins. Cas proteins can also be active variants or fragments of wild-type or modified Cas proteins. Active variants or fragments can comprise at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the wild-type or modified Cas protein or a portion thereof, wherein the active variants retain the ability to cut at a desired cleavage site and hence retain nick-inducing or double-strand-break-inducing activity. Assays for nick-inducing or double-strand-break-inducing activity are known and generally measure the overall activity and specificity of the Cas protein on DNA substrates containing the cleavage site.

Cas proteins can comprise at least one nuclease domain, such as a DNase domain. For example, a wild-type Cpf1 protein generally comprises a RuvC-like domain that cleaves both strands of target DNA, perhaps in a dimeric configuration. Cas proteins can comprise at least two nuclease domains, such as DNase domains. For example, a wild-type Cas9 protein generally comprises a RuvC-like nuclease domain and an HNH-like nuclease domain. The RuvC and HNH

domains can each cut a different strand of double-stranded DNA to make a double-stranded break in the DNA.

Cas proteins (e.g., nuclease-active Cas proteins or nuclease-inactive Cas proteins) can also be operably linked to heterologous polypeptides as fusion proteins. For example, a Cas 5 protein can be fused to a cleavage domain, an epigenetic modification domain, a transcriptional activation domain, or a transcriptional repressor domain. Examples of transcriptional activation domains include a herpes simplex virus VP16 activation domain, VP64 (which is a tetrameric derivative of VP16), a NF κ B p65 activation domain, p53 activation domains 1 and 2, a CREB (cAMP response element binding protein) activation domain, an E2A activation domain, and an 10 NFAT (nuclear factor of activated T-cells) activation domain. Other examples include, but are not limited to, activation domains from Oct1, Oct-2A, SP1, AP-2, CTF1, P300, CBP, PCAF, SRC1, PvALF, ERF-2, OsGAI, HALF-1, C1, AP1, ARF-5, ARF-6, ARF-7, ARF-8, CPRF1, CPRF4, MYC-RP/GP, TRAB1PC4, and HSF1. *See, e.g.*, U.S. Patent Application Publication 2016/0237456, European Patent EP3045537, and PCT Publication WO 2011/145121.

15 In some embodiments, a transcriptional activation system can be used comprising a dCas9-VP64 fusion protein paired with MS2-p65-HSF1. Guide RNAs in such systems can be designed with aptamer sequences appended to sgRNA tetraloop and stem-loop 2 designed to bind dimerized MS2 bacteriophage coat proteins. *See, e.g.*, Konermann et al., *Nature*, 2015, 517, 583-588. Examples of transcriptional repressor domains include inducible cAMP early 20 repressor (ICER) domains, Kruppel-associated box A (KRAB-A) repressor domains, YY1 glycine rich repressor domains, Sp1-like repressors, E(spl) repressors, I κ B repressor, and MeCP2. Other examples include, but are not limited to, transcriptional repressor domains from A/B, KOX, TGF-beta-inducible early gene (TIEG), v-erbA, SID, SID4X, MBD2, MBD3, DNMT1, DNMG3A, DNMT3B, Rb, ROM2, *See, e.g.*, European Patent EP3045537 and PCT Publication WO 25 2011/145121. Cas proteins can also be fused to a heterologous polypeptide providing increased or decreased stability. The fused domain or heterologous polypeptide can be located at the N-terminus, the C-terminus, or internally within the Cas protein.

An example of a Cas fusion protein is a Cas protein fused to a heterologous 30 polypeptide that provides for subcellular localization. Such heterologous polypeptides can include, for example, one or more nuclear localization signals (NLS) such as the SV40 NLS for targeting to the nucleus, a mitochondrial localization signal for targeting to the mitochondria, an ER retention signal, and the like. Such subcellular localization signals can be located at the N-

terminus, the C-terminus, or anywhere within the Cas protein. An NLS can comprise a stretch of basic amino acids, and can be a monopartite sequence or a bipartite sequence.

Cas proteins can also be operably linked to a cell-penetrating domain. For example, the cell-penetrating domain can be derived from the HIV-1 TAT protein, the TLM cell-penetrating motif from human hepatitis B virus, MPG, Pep-1, VP22, a cell penetrating peptide from Herpes simplex virus, or a polyarginine peptide sequence. The cell-penetrating domain can be located at the N-terminus, the C-terminus, or anywhere within the Cas protein.

Cas proteins can also be operably linked to a heterologous polypeptide for ease of tracking or purification, such as a fluorescent protein, a purification tag, or an epitope tag.

10 Examples of fluorescent proteins include green fluorescent proteins (e.g., GFP, GFP-2, tagGFP, turboGFP, eGFP, Emerald, Azami Green, Monomeric Azami Green, CopGFP, AceGFP, ZsGreenI), yellow fluorescent proteins (e.g., YFP, eYFP, Citrine, Venus, YPet, PhiYFP, ZsYellowI), blue fluorescent proteins (e.g. eBFP, eBFP2, Azurite, mKalamal, GFPuv, Sapphire, T-sapphire), cyan fluorescent proteins (e.g. eCFP, Cerulean, CyPet, AmCyanI, Midoriishi-Cyan), red fluorescent 15 proteins (mKate, mKate2, mPlum, DsRed monomer, mCherry, mRFP1, DsRed-Express, DsRed2, DsRed-Monomer, HcRed-Tandem, HcRedI, AsRed2, eqFP611, mRaspberry, mStrawberry, Jred), orange fluorescent proteins (mOrange, mKO, Kusabira-Orange, Monomeric Kusabira-Orange, mTangerine, tdTomato), and any other suitable fluorescent protein. Examples of tags include glutathione-S-transferase (GST), chitin binding protein (CBP), maltose binding protein, 20 thioredoxin (TRX), poly(NANP), tandem affinity purification (TAP) tag, myc, AcV5, AU1, AU5, E, ECS, E2, FLAG, hemagglutinin (HA), nus, Softag 1, Softag 3, Strep, SBP, Glu-Glu, HSV, KT3, S, S1, T7, V5, VSV-G, histidine (His), biotin carboxyl carrier protein (BCCP), and calmodulin.

Cas9 proteins can also be tethered to exogenous donor sequences or labeled nucleic acids. Such tethering (i.e., physical linking) can be achieved through covalent interactions or 25 noncovalent interactions, and the tethering can be direct (e.g., through direct fusion or chemical conjugation, which can be achieved by modification of cysteine or lysine residues on the protein or intein modification), or can be achieved through one or more intervening linkers or adapter molecules such as streptavidin or aptamers. Noncovalent strategies for synthesizing protein-nucleic acid conjugates include biotin-streptavidin and nickel-histidine methods.

30 Covalent protein-nucleic acid conjugates can be synthesized by connecting appropriately functionalized nucleic acids and proteins using a wide variety of chemistries. Some of these chemistries involve direct attachment of the oligonucleotide to an amino acid residue on the

protein surface (e.g., a lysine amine or a cysteine thiol), while other more complex schemes require post-translational modification of the protein or the involvement of a catalytic or reactive protein domain. Methods for covalent attachment of proteins to nucleic acids can include, for example, chemical cross-linking of oligonucleotides to protein lysine or cysteine residues, expressed protein-ligation, chemoenzymatic methods, and the use of photoaptamers.

5 The exogenous donor sequence or labeled nucleic acid can be tethered to the C-terminus, the N-terminus, or to an internal region within the Cas9 protein. In some embodiments, the exogenous donor sequence or labeled nucleic acid is tethered to the C-terminus or the N-terminus of the Cas9 protein. Likewise, the Cas9 protein can be tethered to the 5' end, the 3' end, or to an internal region within the exogenous donor sequence or labeled nucleic acid. In 10 some embodiments, the Cas9 protein is tethered to the 5' end or the 3' end of the exogenous donor sequence or labeled nucleic acid.

Cas proteins can be provided in any form. For example, a Cas protein can be provided in the form of a protein, such as a Cas protein complexed with a gRNA. Alternately, a Cas 15 protein can be provided in the form of a nucleic acid encoding the Cas protein, such as an RNA (e.g., messenger RNA (mRNA)) or DNA. In some embodiments, the nucleic acid encoding the Cas protein can be codon optimized for efficient translation into protein in a particular cell or organism. For example, the nucleic acid encoding the Cas protein can be modified to substitute codons having a higher frequency of usage in a bacterial cell, a yeast cell, a human cell, a non- 20 human cell, a mammalian cell, a rodent cell, a mouse cell, a rat cell, or any other host cell of interest, as compared to the naturally occurring polynucleotide sequence. When a nucleic acid encoding the Cas protein is introduced into the cell, the Cas protein can be transiently, conditionally, or constitutively expressed in the cell.

Nucleic acids encoding Cas proteins can be stably integrated in the genome of the cell 25 and operably linked to a promoter active in the cell. Alternately, nucleic acids encoding Cas proteins can be operably linked to a promoter in an expression construct. Expression constructs include any nucleic acid constructs capable of directing expression of a gene or other nucleic acid sequence of interest (e.g., a Cas gene) and which can transfer such a nucleic acid sequence of interest to a target cell. For example, the nucleic acid encoding the Cas protein can be in a targeting vector comprising a nucleic acid insert and/or a vector comprising a DNA encoding a 30 gRNA. Alternately, it can be in a vector or plasmid that is separate from the targeting vector comprising the nucleic acid insert and/or separate from the vector comprising the DNA.

encoding the gRNA. Promoters that can be used in an expression construct include promoters active, for example, in one or more of a eukaryotic cell, a human cell, a non-human cell, a mammalian cell, a non-human mammalian cell, a rodent cell, a mouse cell, a rat cell, a hamster cell, a rabbit cell, a pluripotent cell, an embryonic stem (ES) cell, or a zygote. Such promoters 5 can be, for example, conditional promoters, inducible promoters, constitutive promoters, or tissue-specific promoters. In some embodiments, the promoter can be a bidirectional promoter driving expression of both a Cas protein in one direction and a guide RNA in the other direction. Such bidirectional promoters can consist of: 1) a complete, conventional, unidirectional Pol III promoter that contains 3 external control elements: a distal sequence element (DSE), a 10 proximal sequence element (PSE), and a TATA box; and 2) a second basic Pol III promoter that includes a PSE and a TATA box fused to the 5' terminus of the DSE in reverse orientation. For example, in the H1 promoter, the DSE is adjacent to the PSE and the TATA box, and the promoter can be rendered bidirectional by creating a hybrid promoter in which transcription in the reverse direction is controlled by appending a PSE and TATA box derived from the U6 15 promoter. Use of a bidirectional promoter to express genes encoding a Cas protein and a guide RNA simultaneously allow for the generation of compact expression cassettes to facilitate delivery.

The present disclosure also provides guide RNA (gRNA) that binds to a Cas protein (e.g., Cas9 protein) and targets the Cas protein to a specific location within a target DNA (e.g., 20 the *B4GALT1* gene). In some embodiments, the guide RNA is effective to direct a Cas enzyme to bind to or cleave an endogenous *B4GALT1* gene, wherein the guide RNA comprises a DNA-targeting a segment that hybridizes to a guide RNA recognition sequence within the endogenous *B4GALT1* gene that includes or is proximate to, for example, positions 53575 to 53577 of SEQ ID NO:1. For example, the guide RNA recognition sequence can be within about 5, 25 within about 10, within about 15, within about 20, within about 25, within about 30, within about 35, within about 40, within about 45, within about 50, within about 100, within about 200, within about 300, within about 400, within about 500, or within about 1,000 nucleotides of positions 53575 to 53577 of SEQ ID NO:1. Other exemplary guide RNAs comprise a DNA-targeting segment that hybridizes to a guide RNA recognition sequence within the endogenous 30 *B4GALT1* gene that is within a region corresponding to exon 5 of SEQ ID NO:1. Other exemplary guide RNAs comprise a DNA-targeting segment that hybridizes to a guide RNA recognition sequence within the endogenous *B4GALT1* gene that includes or is proximate to the start codon

of the endogenous *B4GALT1* gene or includes or is proximate to the stop codon of the endogenous *B4GALT1* gene. For example, the guide RNA recognition sequence can be within about 5, within about 10, within about 15, within about 20, within about 25, within about 30, within about 35, within about 40, within about 45, within about 50, within about 100, within 5 about 200, within about 300, within about 400, within about 500, or within about 1,000 nucleotides of the start codon or within about 5, within about 10, within about 15, within about 20, within about 25, within about 30, within about 35, within about 40, within about 45, within about 50, within about 100, within about 200, within about 300, within about 400, within about 500, or within about 1,000 nucleotides of the stop codon. The endogenous *B4GALT1* gene can 10 be a *B4GALT1* gene from any organism. For example, the *B4GALT1* gene can be a human *B4GALT1* gene or an ortholog from another organism, such as a non-human mammal, a rodent, a mouse, or a rat.

In some embodiments, guide RNA recognition sequences are present at the 5' end of the human *B4GALT1* gene. In some embodiments, guide RNA recognition sequences are 15 adjacent to the transcription start site (TSS) of the human *B4GALT1* gene. In some embodiments, guide RNA recognition sequences are present at the 3' end of the human *B4GALT1* gene. In some embodiments, guide RNA recognition sequences are proximate to positions 53575 to 53577 of SEQ ID NO:1. Exemplary guide RNA recognition sequences proximate to positions 53575 to 53577 of SEQ ID NO:1 include, but are not limited to, 20 ATTAGTTTTAGAGGCATGT (SEQ ID NO:9) and GGCTCTCAGGCCAAGTGTAT (SEQ ID NO:10) (both 5' to positions 53575 to 53577 of SEQ ID NO:1) and TACTCCTCCCCCTTAGGA (SEQ ID NO:11) and GTCCGAGGCTCTGGGCCTAG (SEQID NO:12) (both 3' to positions 53575 to 53577 of SEQ ID NO:1).

Guide RNAs can comprise two segments: a DNA-targeting segment and a protein- 25 binding segment. Some gRNAs comprise two separate RNA molecules: an activator-RNA (e.g., tracrRNA) and a targeter-RNA (e.g., CRISPR RNA or crRNA). Other gRNAs are a single RNA molecule (single RNA polynucleotide; single-molecule gRNA, single-guide RNA, or sgRNA). For Cas9, for example, a single-guide RNA can comprise a crRNA fused to a tracrRNA (e.g., via a linker). For Cpf1, for example, only a crRNA is needed to achieve cleavage. gRNAs include both 30 double-molecule (i.e., modular) gRNAs and single-molecule gRNAs.

The DNA-targeting segment (crRNA) of a given gRNA comprises a nucleotide sequence that is complementary to a sequence (i.e., the guide RNA recognition sequence) in a target

DNA. The DNA-targeting segment of a gRNA interacts with a target DNA (e.g., the *B4GALT1* gene) in a sequence-specific manner via hybridization (i.e., base pairing). As such, the nucleotide sequence of the DNA-targeting segment may vary and determines the location within the target DNA with which the gRNA and the target DNA will interact. The DNA-targeting 5 segment of a subject gRNA can be modified to hybridize to any desired sequence within a target DNA. Naturally occurring crRNAs differ depending on the CRISPR-Cas system and organism but often contain a targeting segment from about 21 to about 72 nucleotides length, flanked by two direct repeats (DR) of a length from about 21 to about 46 nucleotides. In the case of *S. pyogenes*, the DRs are 36 nucleotides long and the targeting segment is 30 10 nucleotides long. The 3' located DR is complementary to and hybridizes with the corresponding tracrRNA, which in turn binds to the Cas protein.

The DNA-targeting segment can have a length of at least about 12 nucleotides, at least about 15 nucleotides, at least about 17 nucleotides, at least about 18 nucleotides, at least about 19 nucleotides, at least about 20 nucleotides, at least about 25 nucleotides, at least 15 about 30 nucleotides, at least about 35 nucleotides, or at least about 40 nucleotides. Such DNA-targeting segments can have a length from about 12 nucleotides to about 100 nucleotides, from about 12 nucleotides to about 80 nucleotides, from about 12 nucleotides to about 50 nucleotides, from about 12 nucleotides to about 40 nucleotides, from about 12 nucleotides to about 30 nucleotides, from about 12 nucleotides to about 25 nucleotides, or from about 12 20 nucleotides to about 20 nucleotides. For example, the DNA targeting segment can be from about 15 nucleotides to about 25 nucleotides (e.g., from about 17 nucleotides to about 20 nucleotides, or about 17 nucleotides, about 18 nucleotides, about 19 nucleotides, or about 20 nucleotides). *See, e.g.*, U.S. Application Publication 2016/0024523. For Cas9 from *S. pyogenes*, a typical DNA-targeting segment is from about 16 to about 20 nucleotides in length or from 25 about 17 to about 20 nucleotides in length. For Cas9 from *S. aureus*, a typical DNA-targeting segment is from about 21 to about 23 nucleotides in length. For Cpf1, a typical DNA-targeting segment is at least about 16 nucleotides in length or at least about 18 nucleotides in length.

The percent complementarity between the DNA-targeting sequence and the guide RNA recognition sequence within the target DNA can be at least about 60%, at least about 65%, 30 at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, at least about 99%, or 100%). The percent complementarity between the DNA-targeting sequence and the guide RNA

recognition sequence within the target DNA can be at least about 60% over about 20 contiguous nucleotides. As an example, the percent complementarity between the DNA-targeting sequence and the guide RNA recognition sequence within the target DNA is about 100% over about 14 contiguous nucleotides at the 5' end of the guide RNA recognition

5 sequence within the complementary strand of the target DNA and as low as about 0% over the remainder. In such a case, the DNA-targeting sequence can be considered to be about 14 nucleotides in length. As another example, the percent complementarity between the DNA-targeting sequence and the guide RNA recognition sequence within the target DNA is about 100% over the seven contiguous nucleotides at the 5' end of the guide RNA recognition

10 sequence within the complementary strand of the target DNA and as low as about 0% over the remainder. In such a case, the DNA-targeting sequence can be considered to be about 7 nucleotides in length. In some guide RNAs, at least about 17 nucleotides within the DNA-target sequence are complementary to the target DNA. For example, the DNA-targeting sequence can be about 20 nucleotides in length and can comprise 1, 2, or 3 mismatches with the target DNA

15 (the guide RNA recognition sequence). In some embodiments, the mismatches are not adjacent to a protospacer adjacent motif (PAM) sequence (e.g., the mismatches are in the 5' end of the DNA-targeting sequence, or the mismatches are at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 base pairs away from the PAM

20 sequence).

Guide RNAs can include modifications or sequences that provide for additional desirable features (e.g., modified or regulated stability; subcellular targeting; tracking with a fluorescent label; a binding site for a protein or protein complex; and the like). Examples of such modifications include, for example, a 5' cap (e.g., a 7-methylguanylate cap (m7G)); a 3' polyadenylated tail (i.e., a 3' poly(A) tail); a riboswitch sequence (e.g., to allow for regulated stability and/or regulated accessibility by proteins and/or protein complexes); a stability control sequence; a sequence that forms a dsRNA duplex (i.e., a hairpin); a modification or sequence that targets the RNA to a subcellular location (e.g., nucleus, mitochondria, chloroplasts, and the like); a modification or sequence that provides for tracking (e.g., direct conjugation to a fluorescent molecule, conjugation to a moiety that facilitates fluorescent detection, a sequence that allows for fluorescent detection, and so forth); a modification or sequence that provides a binding site for proteins (e.g., proteins that act on DNA, including transcriptional activators,

transcriptional repressors, DNA methyltransferases, DNA demethylases, histone acetyltransferases, histone deacetylases, and the like); and combinations thereof.

Guide RNAs can be provided in any form. For example, the gRNA can be provided in the form of RNA, either as two molecules (separate crRNA and tracrRNA) or as one molecule (sgRNA), and optionally in the form of a complex with a Cas protein. For example, gRNAs can be prepared by *in vitro* transcription using, for example, T7 RNA polymerase. Guide RNAs can also be prepared by chemical synthesis.

The gRNA can also be provided in the form of DNA encoding the gRNA. The DNA encoding the gRNA can encode a single RNA molecule (sgRNA) or separate RNA molecules (e.g., separate crRNA and tracrRNA). In the latter case, the DNA encoding the gRNA can be provided as one DNA molecule or as separate DNA molecules encoding the crRNA and tracrRNA, respectively. When a gRNA is provided in the form of DNA, the gRNA can be transiently, conditionally, or constitutively expressed in the cell. DNAs encoding gRNAs can be stably integrated into the genome of the cell and operably linked to a promoter active in the cell.

Alternately, DNAs encoding gRNAs can be operably linked to a promoter in an expression construct. For example, the DNA encoding the gRNA can be in a vector comprising a heterologous nucleic acid. The vector can further comprise an exogenous donor sequence and/or the vector can further comprise a nucleic acid encoding a Cas protein. Alternately, the DNA encoding the gRNA can be in a vector or a plasmid that is separate from the vector comprising an exogenous donor sequence and/or the vector comprising the nucleic acid encoding the Cas protein. Promoters that can be used in such expression constructs include promoters active, for example, in one or more of a eukaryotic cell, a human cell, a non-human cell, a mammalian cell, a non-human mammalian cell, a rodent cell, a mouse cell, a rat cell, a hamster cell, a rabbit cell, a pluripotent cell, an embryonic stem cell, or a zygote. Such promoters can be, for example, conditional promoters, inducible promoters, constitutive promoters, or tissue-specific promoters. Such promoters can also be, for example, bidirectional promoters. Specific examples of suitable promoters include an RNA polymerase III promoter, such as a human U6 promoter, a rat U6 polymerase III promoter, or a mouse U6 polymerase III promoter.

The present disclosure also provides compositions comprising one or more guide RNAs (e.g., 1, 2, 3, 4, or more guide RNAs) disclosed herein and a carrier increasing the stability of the isolated nucleic acid or protein (e.g., prolonging the period under given conditions of storage

(e.g., -20°C, 4°C, or ambient temperature) for which degradation products remain below a threshold, such below 0.5% by weight of the starting nucleic acid or protein; or increasing the stability *in vivo*). Examples of such carriers include, but are not limited to, poly(lactic acid) (PLA) microspheres, poly(D,L-lactic-coglycolic-acid) (PLGA) microspheres, liposomes, micelles, inverse micelles, lipid cochleates, and lipid microtubules. Such compositions can further comprise a Cas protein, such as a Cas9 protein, or a nucleic acid encoding a Cas protein. Such compositions can further comprise one or more (e.g., 1, 2, 3, 4, or more) exogenous donor sequences and/or one or more (e.g., 1, 2, 3, 4, or more) targeting vectors and/or one or more (e.g., 1, 2, 3, 4, or more) expression vectors as disclosed elsewhere herein.

10 Guide RNA recognition sequences include nucleic acid sequences present in a target DNA (e.g., the *B4GALT1* gene) to which a DNA-targeting segment of a gRNA will bind, provided sufficient conditions for binding exist. For example, guide RNA recognition sequences include sequences to which a guide RNA is designed to have complementarity, where hybridization between a guide RNA recognition sequence and a DNA targeting sequence promotes the

15 formation of a CRISPR complex. Full complementarity is not necessarily required, provided that there is sufficient complementarity to cause hybridization and promote formation of a CRISPR complex. Guide RNA recognition sequences also include cleavage sites for Cas proteins, described in more detail below. A guide RNA recognition sequence can comprise any polynucleotide, which can be located, for example, in the nucleus or cytoplasm of a cell or

20 within an organelle of a cell, such as a mitochondrion or chloroplast.

The guide RNA recognition sequence within a target DNA can be targeted by (i.e., be bound by, or hybridize with, or be complementary to) a Cas protein or a gRNA. Suitable DNA/RNA binding conditions include physiological conditions normally present in a cell. Other suitable DNA/RNA binding conditions are known.

25 The Cas protein can cleave the nucleic acid at a site within or outside of the nucleic acid sequence present in the target DNA to which the DNA-targeting segment of a gRNA will bind. The “cleavage site” includes the position of a nucleic acid at which a Cas protein produces a single-strand break or a double-strand break. For example, formation of a CRISPR complex (comprising a gRNA hybridized to a guide RNA recognition sequence and complexed with a Cas 30 protein) can result in cleavage of one or both strands in or near (e.g., within 1, within 2, within 3, within 4, within 5, within 6, within 7, within 8, within 9, within 10, within 20, or within 50, or more base pairs from) the nucleic acid sequence present in a target DNA to which a DNA-

targeting segment of a gRNA will bind. The cleavage site can be on only one strand or on both strands of a nucleic acid. Cleavage sites can be at the same position on both strands of the nucleic acid (producing blunt ends) or can be at different sites on each strand (producing staggered ends (i.e., overhangs)). In some embodiments, the guide RNA recognition sequence of the nickase on the first strand is separated from the guide RNA recognition sequence of the nickase on the second strand by at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, at least 75, at least 100, at least 250, at least 500, or at least 1,000 base pairs.

Site-specific cleavage of target DNA by Cas proteins can occur at locations determined by both i) base-pairing complementarity between the gRNA and the target DNA and ii) a short motif, called the protospacer adjacent motif (PAM), in the target DNA. The PAM can flank the guide RNA recognition sequence. In some embodiments, the guide RNA recognition sequence can be flanked on the 3' end by the PAM. Alternately, the guide RNA recognition sequence can be flanked on the 5' end by the PAM. For example, the cleavage site of Cas proteins can be about 1 to about 10, or about 2 to about 5 base pairs (e.g., 3 base pairs) upstream or downstream of the PAM sequence. In some cases (e.g., when Cas9 from *S. pyogenes* or a closely related Cas9 is used), the PAM sequence of the non-complementary strand can be 5'-N₁GG-3', where N₁ is any DNA nucleotide and is immediately 3' of the guide RNA recognition sequence of the non-complementary strand of the target DNA. As such, the PAM sequence of the complementary strand would be 5'-CCN₂-3', where N₂ is any DNA nucleotide and is immediately 5' of the guide RNA recognition sequence of the complementary strand of the target DNA. In some such cases, N₁ and N₂ can be complementary and the N₁-N₂ base pair can be any base pair (e.g., N₁=C and N₂=G; N₁=G and N₂=C; N₁=A and N₂=T; or N₁=T, and N₂=A). In the case of Cas9 from *S. aureus*, the PAM can be NNGRRT (SEQ ID NO:13) or NNGRR (SEQ ID NO:14) where N can A, G, C, or T, and R can be G or A. In some cases (e.g., for FnCpf1), the PAM sequence can be upstream of the 5' end and have the sequence 5'-TTN-3'.

Examples of guide RNA recognition sequences include a DNA sequence complementary to the DNA-targeting segment of a gRNA, or such a DNA sequence in addition to a PAM sequence. For example, the target motif can be a 20-nucleotide DNA sequence immediately preceding an NGG motif recognized by a Cas9 protein, such as GN₁₉NGG (SEQ ID NO:15) or N₂₀NGG (SEQ ID NO:16) (see, e.g., PCT Publication WO 2014/165825). The guanine at the 5' end can facilitate transcription by RNA polymerase in cells. Other examples of guide RNA

recognition sequences can include two guanine nucleotides at the 5' end (e.g., GGN₂₀NGG; SEQ ID NO:17) to facilitate efficient transcription by T7 polymerase *in vitro*. See, e.g., PCT Publication WO 2014/065596. Other guide RNA recognition sequences can have from about 4 to about 22 nucleotides in length, including the 5' G or GG and the 3' GG or NGG. In some embodiments, 5 the guide RNA recognition sequences can have from about 14 to about 20 nucleotides in length.

The guide RNA recognition sequence can be any nucleic acid sequence endogenous or exogenous to a cell. The guide RNA recognition sequence can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory sequence) or can include 10 both.

In some embodiments, the guide RNA recognition sequence can be within a region corresponding to exon 5 of SEQ ID NO:1. In some embodiments, the guide RNA recognition sequence can include or is proximate to positions 53575 to 53577 of SEQ ID NO:1. For example, the guide RNA recognition sequence can be within about 1000, within about 500, 15 within about 400, within about 300, within about 200, within about 100, within about 50, within about 45, within about 40, within about 35, within about 30, within about 25, within about 20, within about 15, within about 10, or within about 5 nucleotides of the position corresponding to positions 53575 to 53577 of SEQ ID NO:1. In some embodiments, the guide RNA recognition sequence can include or be proximate to the start codon of an endogenous 20 B4GALT1 gene or the stop codon of an endogenous B4GALT1 gene. For example, the guide RNA recognition sequence can be within about 10, within about 20, within about 30, within about 40, within about 50, within about 100, within about 200, within about 300, within about 400, within about 500, or within about 1,000 nucleotides of the start codon or the stop codon.

The methods and compositions disclosed herein can utilize exogenous donor 25 sequences (e.g., targeting vectors or repair templates) to modify an endogenous B4GALT1 gene, either without cleavage of the endogenous B4GALT1 gene or following cleavage of the endogenous B4GALT1 gene with a nuclease agent. An exogenous donor sequence refers to any nucleic acid or vector that includes the elements that are required to enable site-specific recombination with a target sequence. Using exogenous donor sequences in combination with 30 nuclease agents may result in more precise modifications within the endogenous B4GALT1 gene by promoting homology-directed repair.

In such methods, the nuclease agent cleaves the endogenous *B4GALT1* gene to create a single-strand break (nick) or double-strand break, and the exogenous donor sequence recombines with the endogenous *B4GALT1* gene via non-homologous end joining (NHEJ)-mediated ligation or through a homology-directed repair event. Repair with the exogenous 5 donor sequence may remove or disrupt the nuclease cleavage site so that alleles that have been targeted cannot be re-targeted by the nuclease agent.

Exogenous donor sequences can comprise deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), they can be single-stranded or double-stranded, and they can be in linear or circular form. For example, an exogenous donor sequence can be a single-stranded

10 oligodeoxynucleotide (ssODN). An exemplary exogenous donor sequence is from about 50 nucleotides to about 5 kb in length, from about 50 nucleotides to about 3 kb in length, or from about 50 to about 1,000 nucleotides in length. Other exemplary exogenous donor sequences are from about 40 to about 200 nucleotides in length. For example, an exogenous donor sequence can be from about 50 to about 60, from about 60 to about 70, from about 70 to 15 about 80, from about 80 to about 90, from about 90 to about 100, from about 100 to about 110, from about 110 to about 120, from about 120 to about 130, from about 130 to about 140, from about 140 to about 150, from about 150 to about 160, from about 160 to about 170, from about 170 to about 180, from about 180 to about 190, or from about 190 to about 200 nucleotides in length. Alternately, an exogenous donor sequence can be from about 50 to

20 about 100, from about 100 to about 200, from about 200 to about 300, from about 300 to about 400, from about 400 to about 500, from about 500 to about 600, from about 600 to about 700, from about 700 to about 800, from about 800 to about 900, or from about 900 to about 1,000 nucleotides in length. Alternately, an exogenous donor sequence can be from about 1 kb to about 1.5 kb, from about 1.5 kb to about 2 kb, from about 2 kb to about 2.5 kb,

25 from about 2.5 kb to about 3 kb, from about 3 kb to about 3.5 kb, from about 3.5 kb to about 4 kb, from about 4 kb to about 4.5 kb, or from about 4.5 kb to about 5 kb in length. Alternately,

an exogenous donor sequence can be, for example, no more than about 5 kb, no more than about 4.5 kb, no more than about 4 kb, no more than about 3.5 kb, no more than about 3 kb, no more than about 2.5 kb, no more than about 2 kb, no more than about 1.5 kb, no more than

30 about 1 kb, no more than about 900 nucleotides, no more than about 800 nucleotides, no more than about 700 nucleotides, no more than about 600 nucleotides, no more than about 500 nucleotides, no more than about 400 nucleotides, no more than about 300 nucleotides, no

more than about 200 nucleotides, no more than about 100 nucleotides, or no more than about 50 nucleotides in length.

In some embodiments, an exogenous donor sequence is a ssODN that is from about 80 nucleotides to about 200 nucleotides in length (e.g., about 120 nucleotides in length). In

5 another example, an exogenous donor sequences is a ssODN that is from about 80 nucleotides to about 3 kb in length. Such an ssODN can have homology arms, for example, that are each from about 40 nucleotides to about 60 nucleotides in length. Such a ssODN can also have homology arms, for example, that are each from about 30 nucleotides to 100 nucleotides in length. The homology arms can be symmetrical (e.g., each about 40 nucleotides or each about 10 60 nucleotides in length), or they can be asymmetrical (e.g., one homology arm that is about 36 nucleotides in length, and one homology arm that is about 91 nucleotides in length).

Exogenous donor sequences can include modifications or sequences that provide for additional desirable features (e.g., modified or regulated stability; tracking or detecting with a fluorescent label; a binding site for a protein or protein complex; and so forth). Exogenous

15 donor sequences can comprise one or more fluorescent labels, purification tags, epitope tags, or a combination thereof. For example, an exogenous donor sequence can comprise one or more fluorescent labels (e.g., fluorescent proteins or other fluorophores or dyes), such as at least 1, at least 2, at least 3, at least 4, or at least 5 fluorescent labels. Exemplary fluorescent labels include fluorophores such as fluorescein (e.g., 6-carboxyfluorescein (6-FAM)), Texas Red, 20 HEX, Cy3, Cy5, Cy5.5, Pacific Blue, 5-(and-6)-carboxytetramethylrhodamine (TAMRA), and Cy7. A wide range of fluorescent dyes are available commercially for labeling oligonucleotides (e.g., from Integrated DNA Technologies). Such fluorescent labels (e.g., internal fluorescent labels) can be used, for example, to detect an exogenous donor sequence that has been directly integrated into a cleaved endogenous *B4GALT1* gene having protruding ends compatible with 25 the ends of the exogenous donor sequence. The label or tag can be at the 5' end, the 3' end, or internally within the exogenous donor sequence. For example, an exogenous donor sequence can be conjugated at 5' end with the IR700 fluorophore from Integrated DNA Technologies (5'IRDYE[®] 700).

Exogenous donor sequences can also comprise nucleic acid inserts including segments 30 of DNA to be integrated into the endogenous *B4GALT1* gene. Integration of a nucleic acid insert in the endogenous *B4GALT1* gene can result in addition of a nucleic acid sequence of interest in the endogenous *B4GALT1* gene, deletion of a nucleic acid sequence of interest in the

endogenous *B4GALT1* gene, or replacement of a nucleic acid sequence of interest in the endogenous *B4GALT1* gene (i.e., deletion and insertion). Some exogenous donor sequences are designed for insertion of a nucleic acid insert in the endogenous *B4GALT1* gene without any corresponding deletion in the endogenous *B4GALT1* gene. Other exogenous donor sequences are designed to delete a nucleic acid sequence of interest in the endogenous *B4GALT1* gene without any corresponding insertion of a nucleic acid insert. Other exogenous donor sequences are designed to delete a nucleic acid sequence of interest in the endogenous *B4GALT1* gene and replace it with a nucleic acid insert.

The nucleic acid insert and the corresponding nucleic acid in the endogenous *B4GALT1* gene being deleted and/or replaced can be various lengths. An exemplary nucleic acid insert or corresponding nucleic acid in the endogenous *B4GALT1* gene being deleted and/or replaced is from about 1 nucleotide to about 5 kb in length or is from about 1 nucleotide to about 1,000 nucleotides in length. For example, a nucleic acid insert or a corresponding nucleic acid in the endogenous *B4GALT1* gene being deleted and/or replaced can be from about 1 to about 10, from about 10 to about 20, from about 20 to about 30, from about 30 to about 40, from about 40 to about 50, from about 50 to about 60, from about 60 to about 70, from about 70 to about 80, from about 80 to about 90, from about 90 to about 100, from about 100 to about 110, from about 110 to about 120, from about 120 to about 130, from about 130 to about 140, from about 140 to about 150, from about 150 to about 160, from about 160 to about 170, from about 170 to about 180, from about 180 to about 190, or from about 190 to about 200 nucleotides in length. Likewise, a nucleic acid insert or a corresponding nucleic acid in the endogenous *B4GALT1* gene being deleted and/or replaced can be from about 1 to about 100, from about 100 to about 200, from about 200 to about 300, from about 300 to about 400, from about 400 to about 500, from about 500 to about 600, from about 600 to about 700, from about 700 to about 800, from about 800 to about 900, or from about 900 to about 1,000 nucleotides in length. Likewise, a nucleic acid insert or a corresponding nucleic acid in the endogenous *B4GALT1* gene being deleted and/or replaced can be from about 1 kb to about 1.5 kb, from about 1.5 kb to about 2 kb, from about 2 kb to about 2.5 kb, from about 2.5 kb to about 3 kb, from about 3 kb to about 3.5 kb, from about 3.5 kb to about 4 kb, from about 4 kb to about 4.5 kb, or from about 4.5 kb to about 5 kb in length.

The nucleic acid insert can comprise genomic DNA or any other type of DNA. For example, the nucleic acid insert can comprise cDNA.

The nucleic acid insert can comprise a sequence that is homologous to all or part of the endogenous *B4GALT1* gene (e.g., a portion of the gene encoding a particular motif or region of a *B4GALT1* polypeptide). For example, the nucleic acid insert can comprise a sequence that comprises one or more point mutations (e.g., 1, 2, 3, 4, 5, or more) or one or more nucleotide 5 insertions or deletions compared with a sequence targeted for replacement in the endogenous *B4GALT1* gene.

The nucleic acid insert or the corresponding nucleic acid in the endogenous *B4GALT1* gene being deleted and/or replaced can be a coding region such as an exon; a non-coding region such as an intron, an untranslated region, or a regulatory region (e.g., a promoter, an 10 enhancer, or a transcriptional repressor-binding element); or any combination thereof.

Nucleic acid inserts can also comprise a polynucleotide encoding a selection marker. Alternately, the nucleic acid inserts can lack a polynucleotide encoding a selection marker. The selection marker can be contained in a selection cassette. In some embodiments, the selection cassette can be a self-deleting cassette. As an example, the self-deleting cassette can comprise 15 a Cre gene (comprises two exons encoding a Cre recombinase, which are separated by an intron) operably linked to a mouse *Prm1* promoter and a neomycin resistance gene operably linked to a human ubiquitin promoter. Exemplary selection markers include neomycin phosphotransferase (neo^r), hygromycin B phosphotransferase (hyg^r), puromycin-N- 20 acetyltransferase (puro^r), blasticidin S deaminase (bsr^r), xanthine/guanine phosphoribosyl transferase (gpt), or herpes simplex virus thymidine kinase (HSV-k), or a combination thereof.

The polynucleotide encoding the selection marker can be operably linked to a promoter active in a cell being targeted. Examples of promoters are described elsewhere herein.

The nucleic acid insert can also comprise a reporter gene. Exemplary reporter genes include those encoding luciferase, β -galactosidase, green fluorescent protein (GFP), enhanced 25 green fluorescent protein (eGFP), cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), enhanced yellow fluorescent protein (eYFP), blue fluorescent protein (BFP), enhanced blue fluorescent protein (eBFP), DsRed, ZsGreen, MmGFP, mPlum, mCherry, tdTomato, mStrawberry, J-Red, mOrange, mKO, mCitrine, Venus, YPet, Emerald, CyPet, Cerulean, T-Sapphire, and alkaline phosphatase. Such reporter genes can be operably linked to a 30 promoter active in a cell being targeted. Examples of promoters are described elsewhere herein.

The nucleic acid insert can also comprise one or more expression cassettes or deletion cassettes. A particular cassette can comprise one or more of a nucleotide sequence of interest, a polynucleotide encoding a selection marker, and a reporter gene, along with various regulatory components that influence expression. Examples of selectable markers and reporter

5 genes that can be included are discussed in detail elsewhere herein.

The nucleic acid insert can comprise a nucleic acid flanked with site-specific recombination target sequences. Alternately, the nucleic acid insert can comprise one or more site-specific recombination target sequences. Although the entire nucleic acid insert can be flanked by such site-specific recombination target sequences, any region or individual

10 polynucleotide of interest within the nucleic acid insert can also be flanked by such sites.

Site-specific recombination target sequences, which can flank the nucleic acid insert or any polynucleotide of interest in the nucleic acid insert can include, for example, loxP, lox511, lox2272, lox66, lox71, loxM2, lox5171, FRT, FRT11, FRT71, attP, att, FRT, rox, or a combination thereof. In some embodiments, the site-specific recombination sites flank a polynucleotide

15 encoding a selection marker and/or a reporter gene contained within the nucleic acid insert.

Following integration of the nucleic acid insert into the endogenous *B4GALT1* gene, the sequences between the site-specific recombination sites can be removed. In some embodiments, two exogenous donor sequences can be used, each with a nucleic acid insert comprising a site-specific recombination site. The exogenous donor sequences can be targeted to 5' and 3' regions flanking a nucleic acid of interest. Following integration of the two nucleic acid inserts into the target genomic locus, the nucleic acid of interest between the two inserted site-specific recombination sites can be removed.

20

Nucleic acid inserts can also comprise one or more restriction sites for restriction endonucleases (i.e., restriction enzymes), which include Type I, Type II, Type III, and Type IV endonucleases. Type I and Type III restriction endonucleases recognize specific recognition sequences, but typically cleave at a variable position from the nuclease binding site, which can be hundreds of base pairs away from the cleavage site (recognition sequence). In Type II systems the restriction activity is independent of any methylase activity, and cleavage typically occurs at specific sites within or near to the binding site. Most Type II enzymes cut palindromic sequences, however Type IIa enzymes recognize non-palindromic recognition sequences and cleave outside of the recognition sequence, Type IIb enzymes cut sequences twice with both sites outside of the recognition sequence, and Type IIc enzymes recognize an asymmetric

25

30

recognition sequence and cleave on one side and at a defined distance of about 1 to about 20 nucleotides from the recognition sequence. Type IV restriction enzymes target methylated DNA.

In some embodiments, the exogenous donor sequences have short single-stranded regions at the 5' end and/or the 3' end that are complementary to one or more overhangs created by nuclease-mediated or Cas-protein-mediated cleavage at the target genomic locus (e.g., in the *B4GALT1* gene). These overhangs can also be referred to as 5' and 3' homology arms. For example, some exogenous donor sequences have short single-stranded regions at the 5' end and/or the 3' end that are complementary to one or more overhangs created by Cas-protein-mediated cleavage at 5' and/or 3' target sequences at the target genomic locus. In some embodiments, such exogenous donor sequences have a complementary region only at the 5' end or only at the 3' end. For example, some such exogenous donor sequences have a complementary region only at the 5' end complementary to an overhang created at a 5' target sequence at the target genomic locus or only at the 3' end complementary to an overhang created at a 3' target sequence at the target genomic locus. Other such exogenous donor sequences have complementary regions at both the 5' and 3' ends. For example, other such exogenous donor sequences have complementary regions at both the 5' and 3' ends e.g., complementary to first and second overhangs, respectively, generated by Cas-mediated cleavage at the target genomic locus. For example, if the exogenous donor sequence is double-stranded, the single-stranded complementary regions can extend from the 5' end of the top strand of the donor sequence and the 5' end of the bottom strand of the donor sequence, creating 5' overhangs on each end. Alternately, the single-stranded complementary region can extend from the 3' end of the top strand of the donor sequence and from the 3' end of the bottom strand of the template, creating 3' overhangs.

The complementary regions can be of any length sufficient to promote ligation between the exogenous donor sequence and the endogenous *B4GALT1* gene. Exemplary complementary regions are from about 1 to about 5 nucleotides in length, from about 1 to about 25 nucleotides in length, or from about 5 to about 150 nucleotides in length. For example, a complementary region can be at least about 1, at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, at least about 11, at least about 12, at least about 13, at least about 14, at least about 15, at least about 16, at least about 17, at least about 18, at least about 19, at least

about 20, at least about 21, at least about 22, at least about 23, at least about 24, or at least about 25 nucleotides in length. Alternately, the complementary region can be about 5 to about 10, about 10 to about 20, about 20 to about 30, about 30 to about 40, about 40 to about 50, about 50 to about 60, about 60 to about 70, about 70 to about 80, about 80 to about 90, about 90 to about 100, about 100 to about 110, about 110 to about 120, about 120 to about 130, about 130 to about 140, about 140 to about 150 nucleotides in length, or longer.

Such complementary regions can be complementary to overhangs created by two pairs of nickases. Two double-strand breaks with staggered ends can be created by using first and second nickases that cleave opposite strands of DNA to create a first double-strand break, and third and fourth nickases that cleave opposite strands of DNA to create a second double-strand break. For example, a Cas protein can be used to nick first, second, third, and fourth guide RNA recognition sequences corresponding with first, second, third, and fourth guide RNAs. The first and second guide RNA recognition sequences can be positioned to create a first cleavage site such that the nicks created by the first and second nickases on the first and second strands of DNA create a double-strand break (i.e., the first cleavage site comprises the nicks within the first and second guide RNA recognition sequences). Likewise, the third and fourth guide RNA recognition sequences can be positioned to create a second cleavage site such that the nicks created by the third and fourth nickases on the first and second strands of DNA create a double-strand break (i.e., the second cleavage site comprises the nicks within the third and fourth guide RNA recognition sequences). In some embodiments, the nicks within the first and second guide RNA recognition sequences and/or the third and fourth guide RNA recognition sequences can be off-set nicks that create overhangs. The offset window can be, for example, at least about 5 bp, at least about 10 bp, at least about 20 bp, at least about 30 bp, at least about 40 bp, at least about 50 bp, at least about 60 bp, at least about 70 bp, at least about 80 bp, at least about 90 bp, or at least about 100 bp or more. In such embodiments, a double-stranded exogenous donor sequence can be designed with single-stranded complementary regions that are complementary to the overhangs created by the nicks within the first and second guide RNA recognition sequences and by the nicks within the third and fourth guide RNA recognition sequences. Such an exogenous donor sequence can then be inserted by non-homologous-end-joining-mediated ligation.

In some embodiments, the exogenous donor sequences (i.e., targeting vectors) comprise homology arms. If the exogenous donor sequence also comprises a nucleic acid

insert, the homology arms can flank the nucleic acid insert. For ease of reference, the homology arms are referred to herein as 5' and 3' (i.e., upstream and downstream) homology arms. This terminology relates to the relative position of the homology arms to the nucleic acid insert within the exogenous donor sequence.

5 A homology arm and a target sequence correspond to one another when the two regions share a sufficient level of sequence identity to one another to act as substrates for a homologous recombination reaction. The sequence identity between a particular target sequence and the corresponding homology arm found in the exogenous donor sequence can be any degree of sequence identity that allows for homologous recombination to occur. For
10 example, the amount of sequence identity shared by the homology arm of the exogenous donor sequence (or a fragment thereof) and the target sequence (or a fragment thereof) can be at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at
15 least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity, such that the sequences undergo homologous recombination. Moreover, a corresponding region of homology between the homology arm and the corresponding target sequence can be of any length that is sufficient to promote homologous recombination. Exemplary homology arms are from about 25 nucleotides to about 2.5 kb in length, from about 25 nucleotides to about 1.5 kb in length, or from about 25 to about 500 nucleotides in length. For example, a
20 given homology arm (or each of the homology arms) and/or corresponding target sequence can comprise corresponding regions of homology that are from about 25 to about 30, from about 30 to about 40, from about 40 to about 50, from about 50 to about 60, from about 60 to about 70, from about 70 to about 80, from about 80 to about 90, from about 90 to about 100, from
25 about 100 to about 150, from about 150 to about 200, from about 200 to about 250, from about 250 to about 300, from about 300 to about 350, from about 350 to about 400, from about 400 to about 450, or from about 450 to about 500 nucleotides in length, such that the homology arms have sufficient homology to undergo homologous recombination with the corresponding target sequences within the endogenous *B4GALT1* gene. Alternately, a particular
30 homology arm (or each homology arm) and/or corresponding target sequence can comprise corresponding regions of homology that are from about 0.5 kb to about 1 kb, from about 1 kb to about 1.5 kb, from about 1.5 kb to about 2 kb, or from about 2 kb to about 2.5 kb in length.

For example, the homology arms can each be about 750 nucleotides in length. The homology arms can be symmetrical (each about the same size in length), or they can be asymmetrical (one longer than the other).

The homology arms can correspond to a locus that is native to a cell (e.g., the targeted 5 locus). Alternately, they can correspond to a region of a heterologous or exogenous segment of DNA that was integrated into the genome of the cell, including, for example, transgenes, 10 expression cassettes, or heterologous or exogenous regions of DNA. In some embodiments, the homology arms of the targeting vector can correspond to a region of a yeast artificial chromosome (YAC), a bacterial artificial chromosome (BAC), a human artificial chromosome, or 15 any other engineered region contained in an appropriate host cell. In some embodiments, the homology arms of the targeting vector can correspond to or be derived from a region of a BAC library, a cosmid library, or a P1 phage library, or can be derived from synthetic DNA.

When a nuclease agent is used in combination with an exogenous donor sequence, the 5' and 3' target sequences are generally located in sufficient proximity to the nuclease cleavage 15 site so as to promote the occurrence of a homologous recombination event between the target sequences and the homology arms upon a single-strand break (nick) or double-strand break at the nuclease cleavage site. Nuclease cleavage sites include a DNA sequence at which a nick or 20 double-strand break is created by a nuclease agent (e.g., a Cas9 protein complexed with a guide RNA). The target sequences within the endogenous *B4GALT1* gene that correspond to the 5' and 3' homology arms of the exogenous donor sequence are “located in sufficient proximity” to 25 a nuclease cleavage site if the distance is such as to promote the occurrence of a homologous recombination event between the 5' and 3' target sequences and the homology arms upon a single-strand break or double-strand break at the nuclease cleavage site. Thus, the target sequences corresponding to the 5' and/or 3' homology arms of the exogenous donor sequence can be, for example, within at least 1 nucleotide of a given nuclease cleavage site or within at 30 least 10 nucleotides to about 1,000 nucleotides of a particular nuclease cleavage site. In some embodiments, the nuclease cleavage site can be immediately adjacent to at least one or both of the target sequences.

The spatial relationship of the target sequences that correspond to the homology arms 30 of the exogenous donor sequence and the nuclease cleavage site can vary. In some embodiments, the target sequences can be located 5' to the nuclease cleavage site, target

sequences can be located 3' to the nuclease cleavage site, or the target sequences can flank the nuclease cleavage site.

The present disclosure also provides therapeutic methods and methods of treatment or prophylaxis of a cardiovascular condition in a subject having or at risk of having the disease using the methods disclosed herein for modifying or altering expression of an endogenous *B4GALT1* gene. The present disclosure also provides therapeutic methods and methods of treatment or prophylaxis of a cardiovascular condition in a subject having or at risk for the disease using methods for decreasing expression of endogenous *B4GALT1* mRNA or using methods for providing recombinant nucleic acids encoding *B4GALT1* polypeptides, providing mRNAs encoding *B4GALT1* polypeptides, or providing *B4GALT1* polypeptides to the subject. The methods can comprise introducing one or more nucleic acid molecules or proteins into the subject, into an organ of the subject, or into a cell of the subject (e.g., *in vivo* or *ex vivo*).

In some embodiments, the disclosure provides mRNAs encoding *B4GALT1* polypeptides (e.g. polynucleotides as discussed herein, for example an mRNA that comprises the sequence of SEQ ID NO:4) for use in therapy. In some such embodiments, the therapy is treating or preventing a cardiovascular condition.

In some embodiments, the disclosure provides *B4GALT1* polypeptides (e.g. polypeptides as discussed herein, for example polypeptides that comprise the sequence of SEQ ID NO:8) for use in therapy. In some such embodiments the therapy is treating or preventing a cardiovascular condition.

Subjects include human and other mammalian subjects (e.g., feline, canine, rodent, mouse, or rat) or non-mammalian subjects (e.g., poultry) that receive either prophylactic or therapeutic treatment. Such subjects can be, for example, a subject (e.g., a human) who is not a carrier of the variant *B4GALT1* (or is only a heterozygous carrier of the variant *B4GALT1*) and has or is susceptible to developing a cardiovascular condition.

Non-limiting examples of a cardiovascular condition include an elevated level of one or more serum lipids. The serum lipids comprise one or more of cholesterol, LDL, HDL, triglycerides, HDL-cholesterol, and non-HDL cholesterol, or any subfraction thereof (e.g., HDL2, HDL2a, HDL2b, HDL2c, HDL3, HDL3a, HDL3b, HDL3c, HDL3d, LDL1, LDL2, LDL3, lipoprotein A, Lpa1, Lpa1, Lpa3, Lpa4, or Lpa5). A cardiovascular condition may comprise elevated levels of coronary artery calcification. A cardiovascular condition may comprise Type II^d glycosylation (CDG-II^d). A cardiovascular condition may comprise elevated levels of pericardial fat. A

cardiovascular condition may comprise an atherothrombotic condition. The atherothrombotic condition may comprise elevated levels of fibrinogen. The atherothrombotic condition may comprises a fibrinogen-mediated blood clot. A cardiovascular condition may comprise elevated levels of fibrinogen. A cardiovascular condition may comprise a fibrinogen-mediated blood clot. A cardiovascular condition may comprise a blood clot formed from the involvement of fibrinogen activity. A fibrinogen-mediated blood clot or blood clot formed from the involvement of fibrinogen activity may be in any vein or artery in the body.

Such methods can comprise genome editing or gene therapy. For example, an endogenous *B4GALT1* gene that is not the variant *B4GALT1* can be modified to comprise the variation associated with the variant *B4GALT1* (i.e., replacement of asparagine with a serine at the position corresponding to position 352 of the full length/mature *B4GALT1* polypeptide). As another example, an endogenous *B4GALT1* gene that is not the variant *B4GALT1* can be knocked out or inactivated. Likewise, an endogenous *B4GALT1* gene that is not the variant *B4GALT1* can be knocked out or inactivated, and an *B4GALT1* gene comprising the modification associated with the variant *B4GALT1* (e.g., the complete variant *B4GALT1* or a minigene comprising the modification) can be introduced and expressed. Similarly, an endogenous *B4GALT1* gene that is not the variant *B4GALT1* can be knocked out or inactivated, and a recombinant DNA encoding the *B4GALT1* variant polypeptide can be introduced and expressed, an mRNA encoding the *B4GALT1* variant polypeptide can be introduced and expressed (e.g., intracellular protein replacement therapy), and/or a variant *B4GALT1* polypeptide can be introduced (e.g., protein replacement therapy).

In some embodiments, the methods comprise introducing and expressing a recombinant *B4GALT1* gene comprising the modification associated with the *B4GALT1* rs551564683 variant (e.g., the complete variant *B4GALT1* or a minigene comprising the modification), introducing and expressing recombinant nucleic acids (e.g., DNA) encoding the variant *B4GALT1* polypeptide or fragments thereof, introducing and expressing one or more mRNAs encoding the variant *B4GALT1* polypeptide or fragments thereof (e.g., intracellular protein replacement therapy), or introducing the variant *B4GALT1* polypeptide or fragments thereof (e.g., protein replacement therapy) without knocking out or inactivating an endogenous *B4GALT1* gene that is not the variant *B4GALT1*. In some embodiments, such methods can also be carried out in combination with methods in which endogenous *B4GALT1* mRNA that is not the variant *B4GALT1* is targeted for reduced expression, such as through use of antisense RNA,

siRNA, or shRNA.

A *B4GALT1* gene or minigene or a DNA encoding the variant *B4GALT1* polypeptide or fragments thereof can be introduced and expressed in the form of an expression vector that does not modify the genome, it can be introduced in the form of a targeting vector such that it 5 genomically integrates into an endogenous *B4GALT1* locus, or it can be introduced such that it genomically integrates into a locus other than the endogenous *B4GALT1* locus, such as a safe harbor locus. The genomically integrated *B4GALT1* gene can be operably linked to a *B4GALT1* promoter or to another promoter, such as an endogenous promoter at the site of integration. Safe harbor loci are chromosomal sites where transgenes can be stably and reliably expressed 10 in all tissues of interest without adversely affecting gene structure or expression. Safe harbor loci can have, for example, one or more or all of the following characteristics: 1) a distance of greater than about 50 kb from the 5' end of any gene; a distance of greater than about 300 kb from any cancer-related gene; a distance of greater than about 300 kb from any microRNA; outside a gene transcription unit, and outside of ultra-conserved regions. Examples of suitable 15 safe harbor loci include, but are not limited to, adeno-associated virus site 1 (AAVS1), the chemokine (CC motif) receptor 5 (CCR5) gene locus, and the human orthologue of mouse ROSA26 locus.

In some embodiments, the methods comprise a method of treating a subject who is not a carrier of the variant *B4GALT1* (or is only a heterozygous carrier of the variant *B4GALT1*) 20 and has or is susceptible to developing a cardiovascular condition, comprising introducing into the subject or introducing into a cell in the subject: a) a nuclease agent (or nucleic acid encoding) that binds to a nuclease recognition sequence within an endogenous *B4GALT1* gene, wherein the nuclease recognition sequence includes or is proximate to positions 53575 to 53577 of SEQ ID NO:1; and b) an exogenous donor sequence comprising a 5' homology arm 25 that hybridizes to a target sequence 5' of positions 53575 to 53577 of SEQ ID NO:1, and a nucleic acid insert comprising a nucleic acid sequence encoding a serine flanked by the 5' homology arm and the 3' homology arm. The nuclease agent can cleave the endogenous *B4GALT1* gene in a cell in the subject, and the exogenous donor sequence can recombine with 30 the endogenous *B4GALT1* gene in the cell, wherein upon recombination of the exogenous donor sequence with the endogenous *B4GALT1* gene, the nucleic acid sequence encoding a serine is inserted at nucleotides corresponding to positions 53575 to 53577 of SEQ ID NO:1. Examples of nuclease agents (e.g., a Cas9 protein and a guide RNA) that can be used in such

methods are disclosed elsewhere herein.

In some embodiments, the methods comprise a method of treating a subject who is not a carrier of the variant *B4GALT1* (or is only a heterozygous carrier of the variant *B4GALT1*) and has or is susceptible to developing a cardiovascular condition, comprising introducing into 5 the subject or introducing into a cell in the subject an exogenous donor sequence comprising a 5' homology arm that hybridizes to a target sequence 5' of the position corresponding to positions 53575 to 53577 of SEQ ID NO:1, a 3' homology arm that hybridizes to a target sequence 3' of positions 53575 to 53577 of SEQ ID NO:1, and a nucleic acid insert comprising a nucleotide sequence encoding a serine flanked by the 5' homology arm and the 3' homology 10 arm. The exogenous donor sequence can recombine with the endogenous *B4GALT1* gene in the cell, wherein upon recombination of the exogenous donor sequence with the endogenous *B4GALT1* gene, the nucleotide sequence encoding a serine is inserted at nucleotides corresponding to positions 53575 to 53577 of SEQ ID NO:1.

Some such methods comprise a method of treating a subject who is not a carrier of the 15 variant *B4GALT1* (or is only a heterozygous carrier of the variant *B4GALT1*) and has or is susceptible to developing a cardiovascular condition, comprising introducing into the subject or introducing into a cell in the subject: a) a nuclease agent (or nucleic acid encoding) that binds to a nuclease recognition sequence within an endogenous *B4GALT1* gene, wherein the nuclease 20 recognition sequence comprises the start codon for the endogenous *B4GALT1* gene or is within about 10, about 20, about 30, about 40, about 50, about 100, about 200, about 300, about 400, about 500, or about 1,000 nucleotides of the start codon or is selected from SEQ ID NOS:9-12. The nuclease agent can cleave and disrupt expression of the endogenous *B4GALT1* gene in a cell in the subject.

In some embodiments, the methods comprise a method of treating a subject who is 25 not a carrier of the variant *B4GALT1* (or is only a heterozygous carrier of the variant *B4GALT1*) and has or is susceptible to developing a cardiovascular condition, comprising introducing into the subject or introducing into a cell in the subject: a) a nuclease agent (or nucleic acid encoding) that binds to a nuclease recognition sequence within an endogenous *B4GALT1* gene, wherein the nuclease 30 recognition sequence comprises the start codon for the endogenous *B4GALT1* gene or is within about 10, within about 20, within about 30, within about 40, within about 50, within about 100, within about 200, within about 300, within about 400, within about 500, or within about 1,000 nucleotides of the start codon or is selected from SEQ ID NOS:9-12;

and b) an expression vector comprising a recombinant *B4GALT1* gene comprising a nucleotide sequence at positions 53575 to 53577 encoding a serine at the position corresponding to position 352 of the full length/mature *B4GALT1* polypeptide. The expression vector can be one that does not genomically integrate. Alternately, a targeting vector (i.e., exogenous donor sequence) can be introduced comprising a recombinant *B4GALT1* gene comprising a nucleotide sequence at positions 53575 to 53577 encoding a serine at the position corresponding to position 352 of the full length/mature *B4GALT1* polypeptide. The nuclease agent can cleave and disrupt expression of the within *B4GALT1* gene in a cell in the subject, and the expression vector can express the recombinant *B4GALT1* gene in the cell in the subject. Alternately, the 5 genomically integrated, recombinant *B4GALT1* gene can be expressed in the cell in the subject. Examples of nuclease agents (e.g., a nuclease-active Cas9 protein and guide RNA) that can be used in such methods are disclosed elsewhere herein. Examples of suitable guide RNAs and 10 guide RNA recognition sequences are also disclosed elsewhere herein. Step b) can alternately comprise introducing an expression vector or targeting vector comprising a nucleic acid (e.g., DNA) encoding a *B4GALT1* polypeptide that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* Asn352Ser 15 polypeptide or a fragment thereof and/or comprising a sequence that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* mRNA or a fragment thereof. Likewise, step b) can also comprise introducing an 20 mRNA encoding a *B4GALT1* Asn352Ser polypeptide that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* Asn352Ser polypeptide or a fragment thereof and/or having a complementary DNA (or a 25 portion thereof) that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* mRNA or a fragment thereof. Likewise, step b) can also comprise introducing a protein comprising an amino acid sequence that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* Asn352Ser polypeptide or a fragment thereof.

In some embodiments, a second nuclease agent is also introduced into the subject or 30 into the cell in the subject, wherein the second nuclease agent binds to a second nuclease recognition sequence within the endogenous *B4GALT1* gene, wherein the second nuclease recognition sequence comprises the stop codon for the endogenous *B4GALT1* gene or is within about 10, within about 20, within about 30, within about 40, within about 50, within about 100,

within about 200, within about 300, within about 400, within about 500, or within about 1,000 nucleotides of the stop codon or is selected from SEQ ID NOS:9-12, wherein the nuclease agent cleaves the endogenous *B4GALT1* gene in the cell within both the first nuclease recognition sequence and the second nuclease recognition sequence, wherein the cell is modified to

5 comprise a deletion between the first nuclease recognition sequence and the second nuclease recognition sequence. In some embodiments, the second nuclease agent can be a Cas9 protein and a guide RNA. Suitable guide RNAs and guide RNA recognition sequences in proximity to the stop codon are disclosed elsewhere herein.

In some embodiments, the methods can also comprise a method of treating a subject 10 who is not a carrier of the variant *B4GALT1* (or is only a heterozygous carrier of the variant *B4GALT1*) and has or is susceptible to developing a cardiovascular condition, comprising introducing into the subject or introducing into a cell in the subject: an antisense RNA, an siRNA, or an shRNA that hybridizes to a sequence within a region of within endogenous *B4GALT1* mRNA. For example, the antisense RNA, siRNA, or shRNA can hybridize to sequence 15 within a region in exon 5 of SEQ ID NO:3 (*B4GALT1* mRNA) and decrease expression of *B4GALT1* mRNA in a cell in the subject. In some embodiments, such methods can further comprise introducing into the subject an expression vector comprising a recombinant *B4GALT1* gene comprising a nucleotide sequence encoding a serine inserted at positions 53575 to 53577 of SEQ ID NO:2. The expression vector can be one that does not genetically integrate.

20 Alternately, a targeting vector (i.e., exogenous donor sequence) can be introduced comprising a recombinant *B4GALT1* gene comprising nucleic acid sequence encoding a serine at positions corresponding to positions 53575 to 53577 of SEQ ID NO:2. In methods in which an expression vector is used, the expression vector can express the recombinant *B4GALT1* gene in the cell in the subject. Alternately, in methods in which a recombinant *B4GALT1* gene is genetically 25 integrated, the recombinant *B4GALT1* gene can express in the cell in the subject.

In some embodiments, such methods can alternately comprise introducing an 30 expression vector or targeting vector comprising a nucleic acid (e.g., DNA) encoding a *B4GALT1* polypeptide that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* Asn352Ser polypeptide or a fragment thereof and/or comprising a sequence that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to variant *B4GALT1* mRNA or a fragment thereof. Likewise, such methods can alternately comprise introducing an mRNA encoding a polypeptide

that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* Asn352Ser polypeptide or a fragment thereof and/or having a complementary DNA (or a portion thereof) that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* mRNA or a

5 fragment thereof. Likewise, such methods can alternately comprise introducing a polypeptide comprising a sequence that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* Asn352Ser polypeptide or a fragment thereof.

In some embodiments, such methods can comprise methods of treating a subject who
10 is not a carrier of the variant *B4GALT1* (or is only a heterozygous carrier of the variant *B4GALT1*) and has or is susceptible to developing a cardiovascular condition, comprising introducing into the subject or introducing into a cell in the subject an expression vector, wherein the expression vector comprises a recombinant *B4GALT1* gene comprising a nucleotide sequence at positions 53575 to 53577 that encode a serine at the position corresponding to position 352 of
15 the full length/mature *B4GALT1* polypeptide, wherein the expression vector expresses the recombinant *B4GALT1* gene in a cell in the subject. The expression vector can be one that does not genomically integrate. Alternately, a targeting vector (i.e., exogenous donor sequence) can be introduced comprising a recombinant *B4GALT1* gene comprising a nucleotide sequence at positions 53575 to 53577 of SEQ ID NO:2 that encode a serine at the position corresponding to
20 position 352 of the full length/mature *B4GALT1* polypeptide. In methods in which an expression vector is used, the expression vector can express the recombinant *B4GALT1* gene in the cell in the subject. Alternately, in methods in which a recombinant *B4GALT1* gene is genomically integrated, the recombinant *B4GALT1* gene can express in the cell in the subject.

Such methods can alternately comprise introducing an expression vector or targeting
25 vector comprising a nucleic acid (e.g., DNA) encoding a *B4GALT1* polypeptide that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* Asn352Ser polypeptide or a fragment thereof and/or comprising a sequence that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* mRNA or a fragment thereof. Likewise, such methods can
30 alternately comprise introducing an mRNA encoding a polypeptide that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* polypeptide or a fragment thereof and/or having a complementary DNA (or a portion

thereof) that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant *B4GALT1* mRNA or a fragment thereof. Likewise, such methods can alternately comprise introducing a protein comprising a sequence that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the variant

5 *B4GALT1* Asn352Ser polypeptide or a fragment thereof.

Suitable expression vectors and recombinant *B4GALT1* genes for use in any of the above methods are disclosed elsewhere herein. For example, the recombinant *B4GALT1* gene can be the complete *B4GALT1* variant gene or can be a *B4GALT1* minigene in which one or more nonessential segments of the gene have been deleted with respect to a corresponding 10 wild-type *B4GALT1* gene. As an example, the deleted segments can comprise one or more intronic sequences, and the minigene can comprise exons 1 through 6. An example of a complete *B4GALT1* variant gene is one that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to SEQ ID NO:2.

In some embodiments, such methods comprise a method of modifying a cell in a 15 subject having or susceptible to developing a cardiovascular condition. In such methods, the nuclease agents and/or exogenous donor sequences and/or recombinant expression vectors can be introduced into the cell via administration in an effective regime meaning a dosage, route of administration and frequency of administration that delays the onset, reduces the severity, inhibits further deterioration, and/or ameliorates at least one sign or symptom of a 20 cardiovascular condition being treated. The term "symptom" refers to a subjective evidence of a disease as perceived by the subject, and a "sign" refers to objective evidence of a disease as observed by a physician. If a subject is already suffering from a disease, the regime can be referred to as a therapeutically effective regime. If the subject is at elevated risk of the disease 25 relative to the general population but is not yet experiencing symptoms, the regime can be referred to as a prophylactically effective regime. In some instances, therapeutic or prophylactic efficacy can be observed in an individual patient relative to historical controls or past experience in the same subject. In other instances, therapeutic or prophylactic efficacy can be demonstrated in a preclinical or clinical trial in a population of treated subjects relative to a control population of untreated subjects.

30 Delivery can be any suitable method, as disclosed elsewhere herein. For example, the nuclease agents or exogenous donor sequences or recombinant expression vectors can be delivered by, for example, vector delivery, viral delivery, particle-mediated delivery,

nanoparticle-mediated delivery, liposome-mediated delivery, exosome-mediated delivery, lipid-mediated delivery, lipid-nanoparticle-mediated delivery, cell-penetrating-peptide-mediated delivery, or implantable-device-mediated delivery. Specific examples include hydrodynamic delivery, virus-mediated delivery, and lipid-nanoparticle-mediated delivery.

5 Administration can be by any suitable route including, but not limited to, parenteral, intravenous, oral, subcutaneous, intra-arterial, intracranial, intrathecal, intraperitoneal, topical, intranasal, or intramuscular. A specific example which is often used, for example, for protein replacement therapies is intravenous infusion. The frequency of administration and the number of dosages can depend on the half-life of the nuclease agents or exogenous donor sequences or
10 recombinant expression vectors, the condition of the subject, and the route of administration among other factors. Pharmaceutical compositions for administration are desirably sterile and substantially isotonic and manufactured under GMP conditions. Pharmaceutical compositions can be provided in unit dosage form (i.e., the dosage for a single administration).
15 Pharmaceutical compositions can be formulated using one or more physiologically and pharmaceutically acceptable carriers, diluents, excipients or auxiliaries. The formulation depends on the route of administration chosen. The term “pharmaceutically acceptable” means that the carrier, diluent, excipient, or auxiliary is compatible with the other ingredients of the formulation and not substantially deleterious to the recipient thereof.

20 Other such methods comprise an *ex vivo* method in a cell from a subject having or susceptible to developing a cardiovascular condition. The cell with the targeted genetic modification can then be transplanted back into the subject.

25 The present disclosure provides methods of decreasing LDL in a subject in need thereof, by reducing expression of endogenous wild-type *B4GALT1* or increasing expression of *B4GALT1* Asn352Ser, by any of the methods described herein. The present disclosure provides methods of decreasing total cholesterol in a subject in need thereof, by reducing expression of endogenous wild-type *B4GALT1* or increasing expression of *B4GALT1* Asn352Ser, by any of the methods described herein. The present disclosure provides methods of decreasing fibrinogen in a subject in need thereof, by reducing expression of endogenous wild-type *B4GALT1* or increasing expression of *B4GALT1* Asn352Ser, by any of the methods described herein. The
30 present disclosure provides methods of decreasing eGFR in a subject in need thereof, by reducing expression of endogenous wild-type *B4GALT1* or increasing expression of *B4GALT1* Asn352Ser, by any of the methods described herein. The present disclosure provides methods

of increasing AST, but not ALT, in a subject in need thereof, by reducing expression of endogenous wild-type *B4GALT1* or increasing expression of *B4GALT1* Asn352Ser, by any of the methods described herein. The present disclosure provides methods of increasing creatinine in a subject in need thereof, by reducing expression of endogenous wild-type *B4GALT1* or

5 increasing expression of *B4GALT1* Asn352Ser, by any of the methods described herein.

The present disclosure also provides methods of diagnosing the risk of developing a cardiovascular condition, or diagnosing the risk of developing a cardiovascular condition and treating the same in a subject in need thereof, comprising: requesting a test providing the results of an analysis of a sample from the subject for the presence or absence of variant

10 *B4GALT1* gene, mRNA, cDNA, or polypeptide, as described herein; and, in those subjects not having the variant *B4GALT1* gene, mRNA, cDNA, or polypeptide, administering a therapeutic agent, such as described herein, to the subject. Any of the tests described herein whereby the presence or absence of variant *B4GALT1* gene, mRNA, cDNA, or polypeptide is determined can be used.

15 The present disclosure also provides uses of any of the variant *B4GALT1* genes, mRNAs, cDNAs, polypeptides, and hybridizing nucleic acid molecules disclosed herein in the manufacture of a medicament for decreasing LDL, decreasing total cholesterol, decreasing fibrinogen, decreasing eGFR, increasing AST (but not ALT), and increasing creatinine in a subject in need thereof. The present disclosure also provides uses of any of the variant *B4GALT1* genes, 20 mRNAs, cDNAs, polypeptides, and hybridizing nucleic acid molecules in the manufacture of a medicament for treating coronary artery disease, coronary artery calcification, and related disorders.

The present disclosure also provides uses of any of the variant *B4GALT1* genes, mRNAs, cDNAs, polypeptides, and hybridizing nucleic acid molecules disclosed herein for decreasing 25 LDL, decreasing total cholesterol, decreasing fibrinogen, decreasing eGFR, increasing AST (but not ALT), and increasing creatinine in a subject in need thereof.

The present disclosure also provides uses of any of the variant *B4GALT1* genes, mRNAs, cDNAs, polypeptides, and hybridizing nucleic acid molecules for treating coronary artery disease, coronary artery calcification, Type IId glycosylation (CDG-IId), and related disorders.

30 The present disclosure also provides uses of any of the variant *B4GALT1* genes, mRNAs, cDNAs, polypeptides, and hybridizing nucleic acid molecules disclosed herein for modifying a *B4GALT1* gene in a cell in a subject in need thereof.

The present disclosure also provides uses of any of the variant *B4GALT1* genes, mRNAs, cDNAs, polypeptides, and hybridizing nucleic acid molecules disclosed herein for altering expression of a *B4GALT1* gene in a cell in a subject in need thereof.

The present disclosure also provides uses of any of the variant *B4GALT1* genes, mRNAs, 5 cDNAs, polypeptides, and hybridizing nucleic acid molecules disclosed herein for diagnosing the risk of developing any of the cardiovascular conditions disclosed herein.

The present disclosure also provides uses of any of the variant *B4GALT1* genes, mRNAs, cDNAs, polypeptides, and hybridizing nucleic acid molecules disclosed herein for diagnosing a subject of having any of the cardiovascular conditions disclosed herein.

10 All patent documents, websites, other publications, accession numbers and the like cited above or below are incorporated by reference in their entirety for all purposes to the same extent as if each individual item were specifically and individually indicated to be so incorporated by reference. If different versions of a sequence are associated with an accession number at different times, the version associated with the accession number at the effective 15 filing date of this application is meant. The effective filing date means the earlier of the actual filing date or filing date of a priority application referring to the accession number if applicable. Likewise, if different versions of a publication, website or the like are published at different times, the version most recently published at the effective filing date of the application is meant unless otherwise indicated. Any feature, step, element, embodiment, or aspect of the 20 present disclosure can be used in combination with any other feature, step, element, embodiment, or aspect unless specifically indicated otherwise. Although the present disclosure has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims.

25 The nucleotide and amino acid sequences recited herein are shown using standard letter abbreviations for nucleotide bases, and one-letter code for amino acids. The nucleotide sequences follow the standard convention of beginning at the 5' end of the sequence and proceeding forward (i.e., from left to right in each line) to the 3' end. Only one strand of each nucleotide sequence is shown, but the complementary strand is understood to be included by 30 any reference to the displayed strand. The amino acid sequences follow the standard convention of beginning at the amino terminus of the sequence and proceeding forward (i.e., from left to right in each line) to the carboxy terminus.

U.S. Application No. 62/659,344, filed April 18, 2018, U.S. Application No. 62/550,161, filed August 25, 2017, and U.S. Application No. 62/515,140, filed June 5, 2017, are each incorporated herein by reference in its entirety.

The following examples are provided to describe the embodiments in greater detail.

5 They are intended to illustrate, not to limit, the claimed embodiments.

EXAMPLES

Example 1: Determination of a Novel Locus on Chromosome 9p.21 Associated with Serum Lipid Traits at Genome-Wide Statistical Significance

10 *Materials and Methods:*

Chip genotyping and QC: Genomic DNA was extracted from whole blood from individuals of the OOA, and quantitated using picogreen. Genome-wide genotyping was performed with Affymetrix 500K and 6.0 chips at the University of Maryland Biopolymer Core Facility. The BRLMM algorithm was used for genotype calling. Samples with call rate <0.93, high 15 level of Mendelian error, or gender mismatch were excluded. SNPs with call rate <0.95, HWEpval < 1.0E-6, or MAF <0.01 were excluded. SNPs on chromosomes X and Y, and the mitochondrial genome were also excluded.

WGS and QC: Library preparation and whole genome sequencing was performed by the Broad Institute of MIT and Harvard. The NHLBI Informatics Resource Core at the University 20 of Michigan performed alignment, base calling, and sequence quality scoring of all TOPMed samples and delivered bcf files for all variants passing all quality filters with read depth at least 10, which was used for the analysis. Further QC applied to this files including removing all sites in LCR, or X chromosomes. Variants with > 5% missing rates, HWE p-value < 1.0E-09 and MAF <0.1% were also removed. Sample QC was performed to remove samples with > 5% missing 25 rates, high level of Mendelian error (in some instances), or identical (MZ) twins (one of each pair).

WES and QC: Exome capturing and sequencing was performed at the Regeneron Genetics Center (RGC) as described below in more detail. Briefly, the captured libraries were sequenced on the Illumina HiSeq 2500 platform with v4 chemistry using paired-end 75 bp 30 reads. Paired-end sequencing of the captured bases was performed so that >85% of the bases were covered at 20x or greater, which is sufficient for calling heterozygous variants across most of the targeted bases. Read alignment and variant calling were performed using BWA-MEM and

GATK as implemented in the RGC DNAseq analysis pipeline. Samples with call rate <0.90, high level of Mendelian errors, identical (MZ) twins (one of each pair), or gender mismatch were excluded. SNPs with call rate <0.90, and monomorphic SNPs were also excluded. SNPs in chromosomes X and Y, and the mitochondrial genome were also excluded.

5 *Association analysis:* Fasting blood samples were collected and used for lipid analysis. LDL was calculated using the Friedewald formula, and in some analyses with subjects on lipid lowering medication adjusted by dividing their LDL levels by 0.7. The genetic association analysis was performed using linear mixed models to account for familial correlation using the pedigree based kinship matrix and/or familial correction that estimates kinship from WES. The 10 analysis was also adjusted for age, age squared, sex, cohort, and APOB R3527Q genotype. APOB R3527Q is enriched in the Amish and was previously identified to have a strong effect on LDL levels (58 mg/dl) (Shen et al., Arch Intern. Med., 2010, 170, 1850-1855), and, therefore, the effect of this variant in the LDL analysis was taken into consideration. Genome-wide corrected p-value of 5.0E-08 was used as the significance threshold.

15 *Identifying the association between chromosome 9p region and LDL using Genome Wide Association Study (GWAS):*

To identify causative variants in novel genes associated with cardiovascular risk factors, a genome-wide association analysis was performed using 1852 Old Order Amish subjects genotyped with Affymetrix 500K and 6.0 chips. The basic characteristics of these 20 participants are shown in Table 1.

Table 1: Basic characteristics of the study populations

	GWAS Discovery	WGS Fine mapping	WES Confirmation
N	1852	1083	4565
Male (%)	48	50	43
Age (years)	51.1 ± 16.3	50.4 ± 16.8	41.7 ± 15.2
BMI (kg/m ²)	27.4 ± 5.0	26.9 ± 4.5	26.6 ± 4.9
SBP (mmHg)	121.1 ± 16.0	120.9 ± 15.6	115.1 ± 16.1
DBP (mmHg)	73.6 ± 9.4	74.4 ± 9.6	71.6 ± 9.6
Cholesterol (mg/dl)	210.6 ± 46.3	211.8 ± 46.9	208.2 ± 49.2
HDL (mg/dl)	56.1 ± 14.8	55.9 ± 15.6	60.9 ± 16.4

LDL (mg/dl)	138.2 ± 42.1	140.4 ± 43.2	132.7 ± 44.9
Triglycerides (mg/dl)	80.4 ± 53.0	77.7 ± 48.8	72.1 ± 45.6
Cholesterol lowering med. (%)	2.4	3.2	1.9
Diabetes (%)	2.6	2.4	2.2

Almost all of WGS fine mapping samples (96%) were included in GWAS discovery samples.

Only 30% of WES samples were included in GWAS or WGS samples.

As shown in Figure 1, a strong novel association signal between LDL and a locus on

5 chromosome 9p was discovered. The lead associated SNP was rs855453 (p=2.2E-08) and had a frequency of 15% in the Amish and 25% in the general population. The minor 'T' allele was associated with a 10 mg/dl lower LDL level. Thus, this GWAS SNP is common in both Amish and non-Amish and has large effect size, but has never been identified in any of the large GWAS meta analyses. These characteristics match those of previous studies (*APOC3* and *Lipe*), and 10 based on that it was concluded that this GWAS SNP was not the causal/functional variant in this region but rather in linkage disequilibrium (LD) with another variant that is rare in the general population but common in the Amish population. Furthermore, multiple studies based on 5 independent crosses of multiple strains also found the syntenic region of the rat genome, located on rat chromosome 5, harbors a QTL for serum cholesterol and triglyceride level (The 15 Rat Genome Database(RGD). Scl12.26. 35. 44, 54 and Stl 28).

Confirmation using Whole Exome Sequencing (WES):

High quality QC'd WES for 4,565 Amish individuals, the basic characteristics of which are shown in Table 1, were subsequently used. The results of a mixed model exome wide analysis of LDL identified the *B4GALT1* rs551564683 missense variant as the most significant 20 association with a p-value of 3.3E-18 and effect size of 14.7 mg/dl lower LDL. The rs551564683 variant had a MAF of 6% in the Amish while extremely rare in the general population. The variant is in dbSNP without frequency or population information, does not exist in the ExAC database (60,000 samples), and only one copy was found in the WGS from 15,387 non-Amish in the NHLBI Trans-Omics for Precision Medicine (TOPMed) dataset. Moreover, in a collective data 25 set of other population cohorts available to the investigators – totaling 125,401 individuals – only 79 heterozygotes and 5 homozygotes of this variant were found (showing over one thousand-fold enrichment in the Amish population). This missense variant is 500 Kb away

from the GWAS variant with an r^2 estimate of LD of 0.5. There are no perfectly correlated variants with rs551564683; in fact, the next most significant SNP is rs149557496 with p-value E-14. Thus, not only does the strength of the rs551564683 association confirm that the chromosome 9 GWAS locus is real, but rs551564683 has all the characteristics expected of the

5 casual variant.

Fine-mapping the chromosome 9p region using Whole Genome sequencing(WGS):

WGS available on a smaller sample was used to fill in the gaps in the exome sequencing to provide further evidence that rs551564683 is causal. WGS data for 1083 OOA was generated as part of the TOPMed program. Basic characteristics of the WGS samples are

10 shown in Table 1. WGS captures all the SNPs and Indels (insertion/deletion) – both coding and non-coding – that might be correlated with the top variants in the region of interest. Since the top variants are ~6% frequency, it is very unlikely there would be insufficient sequence reads to cause the variant caller to miss a variant. However, there may be variants excluded during the QC procedure. By investigating the variants that did not pass QC, 2 additional variants were

15 added in the analysis. The association analysis identified the missense SNP (N352S) rs551564683 in the *B4GALT1* gene as the most significantly associated variant with LDL in this region with p-value of 2.9E-06 and effect size of -16.4 mg/dl (see, Table 2).

Table 2: Mean (n) LDL levels (mg/dl) by rs551564683-containing genotype in the OOA

Cohort	TT	TC	CC	p-value
WES Confirmation (n = 4,565)	135 (n= 4025)	118 (n= 529)	103 (n= 12)	3.3×10^{-18}
WGS Fine mapping (n = 1,083)	144 (n= 952)	128 (n= 130)	87 (n= 1)	2.9×10^{-6}

20 The TOPMed WGS data set provided 20 variants associated with LDL with p-values from 2.9E-06 to 2.5E-05, and highly, but not perfectly, correlated with the top hit rs551564683 (r^2 = 0.83-0.94) (see, red in Figure 2). Conditional analysis adjusting for rs551564683 completely abolished the association signal of the 20 variants and did not reveal any other signal in this region, strongly implicating a single causal variant.

25 By carefully investigating these 20 variants (see, red in Figure 2) the variants were split into 2 groups: 7 red variants inside the shaded triangle and 13 unshaded red variants. The 7 red variants in the shaded triangle were almost fully correlated with each other and had r^2 of 0.83 with the top hit rs551564683. These 7 variants were safely excluded as causal/functional based

on three reasons: 1) they are relatively common outside the OOA (maf > 1%), 2) they did not show any association with LDL in 3877 samples from Framingham Heart Study (FHS) within TOPMed, and 3) one of these 7 variants had an LDL association p-value of 6.3E-14 vs 3.3E-18 for the top hit rs551564683 in the WES data of 4,565 OOA subjects.

5 Another group of variants in the shaded rectangle in Figure 2 also had association p-values only of about 10E-6 and were fully correlated with each other and had r² of 0.68 with the top hit rs551564683. This group was also excluded as causal/functional because they are common outside the OOA (maf ~ 4%), and did not show any association with LDL in 3877 samples from FHS within TOPMed.

10 The top hit rs551564683 and 13 unshaded red variants in Figure 2, which extend over 4 Mb on the short arm of chromosome 9 from 31.5 Mb to 35.5 Mb, remained. As described above, these 13 variants were almost fully correlated with each other and had r² of 0.91-0.94 with the top hit rs551564683. Among these variants, the top hit rs551564683 was the only coding variant, and it was classified as damaging or deleterious by 5 out of 9 algorithms that 15 predict the effect of a variant on protein function. The top hit rs551564683 and these 13 variants had maf of 6% in the OOA while being almost not existent in the general population.

Haplotype analysis:

10 Imperfect r² between distinct loci is a result of recombination events. A detailed analysis of the primary 14-SNP haplotypes was undertaken. Figure 3 shows 3 main haplotypes 20 in this 4 Mb region. There are 115 subjects (1 homozygote, and 114 heterozygotes) with Haplotype A, which had identical genotypes at the 14 SNPs, provided no information as to which SNP might be causal. Six subjects had haplotype B, which contained heterozygote genotypes at rs551564683 plus 4 upstream SNPs, and 7 subjects had haplotype C, which contained heterozygote genotypes at rs551564683 plus 9 downstream SNPs. The recombinant 25 haplotypes B and C clustered in related subjects, providing evidence they are not artifacts of genotyping error. Table 3 shows the p-values of rs551564683 after adding individuals with haplotypes B and C into a single group compared to individuals with haplotype A.

30

Table 3: Haplotype analysis results

	A	B	C	B + C
Carriers	115	7	6	13
Total N	1063	1070	1069	1076
rs551564683	3.43E-05	1.40E-05	1.18E-05	4.82E-06

Adding each of haplotypes B and C individually improved the p-value and adding both of them improved the p-value even more. The improved p-values indicated that both haplotypes B and C carry the causal allele. The only SNP in common between B and C was rs551564683, which

5 was considered to be the causal variant.

B4GALT1 Congenital Disorder of Glycosylation supports rs551564683 functional role:

A phenotype-wide association study (PheWAS) was performed to test the association of rs551564683 with all traits in the Amish database. The strongest association after LDL (p= 3.3E-18) and total cholesterol (p= 3.0E-18) was found with aspartate transaminase (AST) (p= 10 3.0E-8) where the minor allele homozygotes had a two-fold increase in AST levels over wild-type homozygotes. Higher AST was previously reported in a Congenital Disorder of Glycosylation (CDG) case caused by a frame shift insertion in the *B4GALT1* that resulted in a truncated dysfunctional protein. Moreover, a strong association was observed with fibrinogen levels (p= 5.0E-4) where the minor homozygote level was about 20% lower than the wild-type, 15 consistent with a blood clotting defect in the same CDG patient. Moreover, in a small experiment, a 50% increase (p=0.02) in creatine kinase serum levels was found in 13 minor allele homozygotes compared to 13 wild-type homozygotes. This consistency in the phenotype associated with the missense SNP and those caused by a truncating insertion in *B4GALT1* further strengthen the evidence that *B4GALT1* rs551564683 SNP is the causal/functional gene 20 and variant in this region.

The association between lipid subfractions and rs551564683 was examined in a subset of 759 Amish individuals, and an association with lower levels of almost all subfractions with significant or non significant p-values was found, as shown in Table 4.

Coronary calcification score, aortic calcification score, and pericardial fat showed trend 25 of association with lower levels, but with no significant p-values.

PheWAS also found rs551564683 to be associated with higher creatinine and lower eGFR, as well as higher hematocrit and lower basophils.

Table 4: Association between rs551564683 and lipid subfractions in 759 OOA individuals

TRAIT	effect size	p-value
Chol	-1.66E+01	3.79E-04
HDL	-4.16E+00	8.72E-03
HDL2	-1.51E+00	4.53E-02
HDL2a	-9.26E-01	9.93E-02
HDL2b	-1.94E-01	2.96E-01
HDL2c	-2.64E-01	2.14E-01
HDL3	-2.64E+00	3.98E-03
HDL3a	-1.51E+00	2.00E-02
HDL3b	-1.68E-01	4.16E-01
HDL3c	-5.93E-01	1.47E-02
HDL3d	-4.44E-01	2.48E-02
IDL	-7.31E-01	4.92E-01
IDL1	-1.19E-02	9.73E-01
IDL2	-7.65E-01	3.37E-01
LDL	-1.23E+01	2.37E-03
LDL1	-2.22E+00	7.20E-02
LDL2	-5.64E+00	3.99E-02
LDL3	-3.81E+00	1.32E-01
LDL4	-3.96E-02	9.65E-01
LDLReal	-1.12E+01	9.53E-04
Lpa	-2.15E-01	6.34E-01
Lpa1	-2.91E-01	3.00E-01
Lpa2	4.67E-02	8.27E-01
Lpa3	2.31E-01	5.04E-01
Lpa4	-2.91E-02	9.19E-01
Lpa5	-2.48E-01	3.11E-01
RemnantLipoprotein	-7.23E-01	5.97E-01
TCHDLRatio	-3.29E-02	7.68E-01
TotalNonHDL	-1.24E+01	3.97E-03
TotalVLDL	-1.03E-01	8.70E-01

Triglyceride	2.19E+00	6.46E-01
VLDL1Plus2	-4.10E-02	8.86E-01
VLDL3	6.15E-03	9.86E-01
VLDL3a	2.28E-02	8.97E-01
VLDL3b	-6.57E-02	7.30E-01

Example 2: Sample Preparation and Sequencing

Genomic DNA sample concentrations were obtained from the Amish subjects, and then transferred to an in-house facility and stored at -80°C (LiCONiC TubeStore) until sequence analysis. Sample quantity was determined by fluorescence (Life Technologies) and quality was assessed by running 100 ng of sample on a 2% pre-cast agarose gel (Life Technologies).

DNA samples were normalized and a sample of each was sheared to an average fragment length of 150 base pairs using focused acoustic energy (Covaris LE220). The sheared genomic DNA was prepared for exome capture with a custom reagent kit from Kapa Biosystems using a fully-automated approach developed in house. A unique 6 base pair barcode was added to each DNA fragment during library preparation to facilitate multiplexed exome capture and sequencing. Equal amounts of sample were pooled prior to exome capture on the xGen design available from IDT with some modifications. The multiplexed samples were sequenced using 75 bp paired-end sequencing on an Illumina v4 HiSeq 2500.

Raw sequence data generated on the Illumina Hiseq 2500 platform was uploaded to the high-performance computing resource in DNAexus (DNAexus Inc., Mountain View, CA), and automated workflows processed the raw .bcl files into annotated variant calls. Raw reads were assigned to appropriate samples for analysis based on sample specific barcodes using CASAVA software (Illumina Inc., San Diego, CA).

The sample specific reads were then aligned to the reference sequence using BWA-mem (Li and Durbin, Bioinformatics, 2009, 25, 1754-1760). This produced a binary alignment file (BAM) for each sample with all of a particular sample's reads and the genomic coordinates to which each read mapped. Once aligned, a sample's reads were evaluated to identify and flag duplicate reads with the Picard MarkDuplicates tool (picard.sourceforge.net), producing an alignment file with each duplicate read marked (duplicatesMarked.BAM).

The Genome Analysis Toolkit (GATK) (Van der Auwera, Cur. Protocols in Bioinformatics, 2013, 11, 11-33; McKenna, Genome Res., 2010, 20, 1297-1303) was then used to conduct local

realignment of the aligned and duplicate-marked reads of each sample. The GATK HaplotypeCaller was then used to process the realigned, duplicate-marked reads and to identify all exonic positions at which the sample varies from the genome reference, including single nucleotide variations and INDELs, and the zygosity of the variant within a sample at any 5 position where that particular sample differs from the reference.

Associated metrics, including read counts assigned to both reference and alternate allele, genotype quality representing the confidence of the genotype call, and the overall quality of the variant call at that position were output at every variant site. Variant Quality Score Recalibration (VQSR) from GATK was then employed to evaluate the overall quality score 10 of a sample's variants using training datasets to assess and recalculate this score to increase specificity. Metric statistics were captured for each sample to evaluate capture performance, alignment performance, and variant calling. Following completion of cohort sequencing, a project-level VCF was generated by joint-genotyping using GATK to produce genotype and the 15 associated metric information for all samples at any site where any sample in the cohort carries a variant from the reference genome. It was this project-level VCF that was used for downstream statistical analyses. In addition to VQSR, variants were annotated with the Quality By Depth (QD) metric using GATK, and bi-allelic variants with QD > 2.0, missingness rates < 1%, and with Hardy-Weinberg equilibrium p-values > 1.0×10^{-6} were retained for further analysis.

Prior to downstream sequence data analysis, samples with reported gender that was 20 discordant with genetically determined gender, samples with high rates of heterozygosity, low sequence coverage (defined as 20X coverage of less than 75% of targeted bases), or unusually high degree of cryptic relatedness, and genetically identified sample duplicates were excluded.

Sequence variants were annotated using an annotation pipeline that uses ANNOVAR (Wang et al., Nuc. Acids Res., 2010, 38, e164) and other customized algorithms for annotation 25 and analysis. Variants were classified according to their potential functional effects, and subsequently filtered by their observed frequencies in publicly available population control databases, and databases in order to filter out common polymorphisms and high frequency, likely benign variants. Algorithms for bioinformatic prediction of functional effects of variants along with conservation scores based on multiple species alignments were incorporated as part 30 of the annotation process of variants and used to inform on the potential deleteriousness of identified candidate variants.

Example 3: *B4GALT1* rs551564683 N352S Frequency is Enriched in the Amish

Through exome sequencing and association analysis in ~4700 Amish subjects, rs551564683 on chromosome 9 was found to be highly associated with total cholesterol levels (p=1.3E-10)(see, Figure 4). RS551564683 encodes a missense variant in which serine is changed to asparagine at position 352 in the *B4GALT1* protein. The next most highly LDL-associated variant in the region was rs149557496 with a p-value of only 10^{-5} suggesting the N352S variant as being the most likely causative variant. Referring specifically to Figure 4, in exome sequence data, the variant in highest LD with Asn352Ser *B4GALT1* was rs149557496 in HRCT1, 2.8Mb distant, R^2 0.78, P-value with LDL in Amish of 10^{-5} . Whole genome sequence data in the Amish (TOPMED) failed to identify a variant more highly associated with LDL-C in this region.

Further analysis revealed that the *B4GALT1* N352S variant frequency was over one thousand-fold enriched in the Amish population (see, Figure 5). The data showed that in the cohort of 4725 Amish, 548 heterozygous carriers for the rs551564683-containing allele were identified, and 13 carriers were homozygous for the allele (see, Figure 5). In comparison, a collective data set of other population cohorts available to the investigators – totaling 125,401 individuals – was analyzed, and only 79 heterozygotes and 5 homozygotes were identified in this collective data set. The allele frequency in the Amish cohort was estimated to be about 0.06, compared to about 0.0025 in the collective date set (see, Figure 5). It is believed that genetic drift may account for the higher frequency of this allele in the Amish.

20

Example 4: *B4GALT1* N352S Associates with Decreased Serum Lipids and Increased AST

Association of the *B4GALT1* N352S variation with various phenotypes, including serum lipids, coronary artery disease (CAD), and liver traits was assessed. The associations were carried out based on the Amish cohort, with individuals who were homozygous for the reference allele, who were heterozygous for the alternate allele, and who were homozygous for the alternate allele. The genotypic means for the lipid and liver traits and risk of CAD were determined, with the effect measures adjusted by removing the effects of subject age and age squared, subject sex, and study (since the phenotype data were collected from several studies over a period of years). In the case of pericardial fat, the genotypic means were further adjusted for BMI. The effect sizes of the variation on the measured phenotypes were measured at the 95% confidence interval. The traits and the results are presented in Figure 6, Figure 7, and Figure 8.

As shown in Figure 6, the presence of the N352S variation generally correlated with decreased serum lipids, particularly for total cholesterol (p-value 1.3×10^{-10}) and LDL (p-value 1.8×10^{-9}) levels, which achieved strong statistical significance. Individuals heterozygous and homozygous for this alteration showed 17.3 mg/dL and 31.2 mg/dL reduction, respectively, for 5 LDL levels. There was a trend between the variant and decreased coronary artery calcification. In addition, the presence of this variation correlated with increased aspartate aminotransferase (AST) levels (p-value 6.0×10^{-8}). The recessive model p-value for the AST levels was determined to be 9×10^{-23} . The variation did not appear to correlate with increased alanine 10 aminotransferase (ALT) levels, alkaline phosphatase levels, or liver fat levels. The cholesterol, LDL, and AST levels are shown graphically in Figure 7. In Figure 7, the levels of cholesterol, LDL, and AST are shown for subjects who were homozygous (TT) for the reference allele, heterozygous (CT) for the alternate allele, and homozygous (CC) for the alternate allele. Values shown are unadjusted. The values were recalculated based on adjustments for subject age and age squared, sex, and study (tabulated in the bottom of the Figure 7).

15 The effect of the N352S alteration on lipid subfractions was also assessed. These results are shown in Figure 8. The associations were carried out based on the Amish cohort, with individuals who were homozygous for the reference allele, who were heterozygous for the alternate allele, and who were homozygous for the alternate allele. The results in Figure 8 show that the *B4GALT1* N352S alteration associates with decreases in all lipid subfractions tested.

20

Example 5: *B4GALT1* N352S Associates with Decreased Fibrinogen Levels

Association of the *B4GALT1* N352S variation with fibrinogen levels was also assessed in a subset of samples. As for the serum lipids, CAD, and liver traits assessed in Example 4, the association with fibrinogen levels was carried out based on the Amish cohort, with individuals 25 who were homozygous for the alternate allele, who were heterozygous for the reference allele, and who were homozygous for the alternate allele. The genotypic means for fibrinogen levels were determined in two subgroups of individuals – individuals not on a clopidogrel regimen (drug naïve) and individuals on a clopidogrel regimen (on-clopidogrel) and, as part of the analysis, the mean levels in each group were adjusted by removing the effects of subject age 30 and age squared, subject sex, and study. The effect sizes of the variation on fibrinogen levels was measured at the 95% confidence interval. As shown in Figure 9, the presence of the N352S variation was associated with decreased fibrinogen levels in each of the drug naïve (p-value

1.15×10^{-3}) and on-clopidogrel (p-value 2.74×10^{-5}) groups. The drug naïve subgroup showed a decrease of approximately 24 mg/dL of fibrinogen (see, Figure 9). The on-clopidogrel subgroup showed a decrease of approximately 32.5 mg/dL of fibrinogen (see, Figure 9).

5 Example 6: Additional *B4GALT1* N352S Associations

Within the Amish cohort, assessment of associations between the *B4GALT1* N352S variation and other traits, including creatinine levels, estimated glomerular filtration rate (eGFR), basophil levels, and hematocrit percentage was also carried out. As shown in Figure 9, the variant weakly associated with a small increase in creatinine levels, but did not significantly 10 associate with eGFR, basophil levels, or the hematocrit percentage.

Example 7: *b4galt1* Ortholog Knockdown in Zebrafish

In parallel to the evidence in cell-based assays, a zebrafish model was pursued to investigate the effect of *B4GALT1* p.Asn352Ser on LDL.

15 *Zebrafish husbandry, morpholino injection and validation*

Wild-type (Tubingen) zebrafish stocks were used to generate embryos for morpholino injection. Adult fish were maintained and bred at 27-29°C and embryos were raised at 28.5°C. All animals were housed and maintained in accordance with protocols approved by the University of Maryland Institutional Animal Care and Use Committee. Morpholino antisense 20 oligonucleotides (MOs) were obtained (Gene Tools, Inc.) based on previously published MOs targeted against *b4galt1* (Machingo et al., Dev. Biol., 2006, 297, 471-482). MOs were injected at the 1-2 cell stage and validated by qRT-PCR quantification of wild type *b4galt1* transcript. Off-target toxicity was assessed by qRT-PCR quantification of the delta113 isoform of p53 (Robu et al., PLoS Genet., 2007, 3, e78). For mRNA rescue experiments, human *B4GALT1* mRNA was 25 transcribed from a pCS2⁺ plasmid vector containing the open reading frame (ORF) of the wild-type or N352S variant of the gene. mRNA was mixed with MO at varying concentrations and co-injected into 1-2 cell stage embryos. For each injection experiment, a total of 200-400 embryos were injected and each experiment was repeated a minimum of three times.

LDL quantification in Zebrafish

30 One hundred 5 days post fertilization (dpf) larvae were homogenized per experiment in 400 µl of ice-cold 10 µM butylated hydroxytoluene. The homogenate was filtered through a 0.45 µm Dura PVDF membrane filter (Millipore) in preparation for lipid extraction. Using the

HDL and LDL/VLDL Cholesterol Assay Kit (Cell Biolabs, Inc.), the homogenate was processed as per manufacturer's protocol. After precipitation and dilution, samples were analyzed by fluorimetric analysis using a SpectraMax Gemini EM plate reader and SoftMax Pro microplate data acquisition and analysis software (Molecular Devices).

5 A genomic knockout of the zebrafish ortholog (b4galt1) was generated using CRISPR/Cas9-mediated targeting of exon 2. Consistent with mouse reports of embryonic lethality in knockout animals, injected F0 animals were not viable to adulthood and consistently died at juvenile stages. To circumvent the lack of viability, a knockdown approach using a previously reported splice-blocking antisense morpholino oligonucleotide (MO) injected into 10 embryos (Machingo et al., Dev. Biol., 2006, 297, 471-482) was employed. The efficacy of the MO was validated at two different concentrations by qRT-PCR (see, Figure 10) and ruled out the possibility of off-target toxicity (see, Figure 11). To quantify changes in LDL levels, 8 ng of MO was injected and injected embryos were cultured until 5 days post fertilization (dpf), at which stage larvae were assayed for total LDL as per previously published protocols (O'Hare et al., J. 15 Lipid Res., 2014, 55, 2242-2253). A significant decrease in LDL in MO-injected larvae was observed compared to control larvae consistent with a role for b4galt1 in LDL homeostasis (see, Figure 12). This result was confirmed using a second splice-blocking MO targeting exon 2 which produced a reduction in LDL concentration upon injection of 2 ng of MO (data not shown). To validate the specificity of these observations and to test the functionality of human B4GALT1 in 20 zebrafish, full length capped mRNA encoding the human gene was generated by *in vitro* transcription from a pCS2⁺ plasmid carrying the open reading frame (ORF) of the human gene. To assess the capacity of the wild type human mRNA to rescue the knockdown phenotype, it was co-injected with b4galt1 MO into embryos and LDL in unfed larvae was assessed. Three concentrations of mRNA (10 pg, 25 pg, and 50 pg) were co-injected with 8 ng of MO. Co- 25 injection of 50 pg of B4GALT1 mRNA resulted in LDL levels that were statistically indistinguishable from those in larvae injected only with a control MO (p-value = 0.14), suggesting that the human mRNA could rescue the effects of knockdown of the zebrafish gene (see, Figure 12; larvae were treated with MO against b4galt1, MO co-injected with WT human B4GALT1 mRNA (WT rescue), or MO co-injected with B4GALT1 mRNA encoding the Asn352Ser 30 mutation (N352S rescue)).

These data support the use of this system for functional interpretation of variants in human B4GALT1, and suggest that human wild type B4GALT1 mRNA is functional in zebrafish

with respect to regulation of systemic LDL levels. The impact of p.Asn352Ser on B4GALT1 function was further investigated. Using site-directed mutagenesis (O'Hare et al., *Hepatology*, 2017, 65, 1526-1542), a T to C change was introduced in the coding sequence of the human B4GALT1 ORF construct to generate full length mRNA. Co-injection of the B4GALT1 p.352Ser mRNA with MO resulted in a reduced capacity for rescue of the LDL phenotype. The resulting LDL concentration was 15% lower than that resulting from co-injection of wild type mRNA with MO, a statistically significant effect (39.9 μ M compared to 46.6 μ M, p-value = 0.02). This level of LDL was also statistically greater, however, than b4galt1 MO alone (p-value = 0.01) (see, Figure 12), suggesting a partial defect in function introduced by the missense variant.

10

Example 8: Targeted Genotyping

Targeted SNP genotyping using the QuantStudio system (Thermo Fisher Scientific) was performed for 3,236 OOA subjects. Based on the LD structure of the 14 SNPs, seven SNPs were selected for genotyping, and the association evidence for rs551564683 was 4.1E-13, while it was about E-10 for the other SNPs (Figure 14), confirming that rs551564683 is the causal variant in this region.

Example 9: B4GALT1 N352S Causes Reduced Enzymatic Activity in Absence of Change in Protein Stability or Cellular Localization

20

Investigations of the properties of B4GALT1 were carried out in COS-7 and Huh7 cells overexpressing human epitope-tagged Flag-B4GALT1 352Asn or epitope-tagged Flag-B4GALT1 352Ser (Figures 15 and 16). Referring to Figure 15, confocal microscopy images of Flag-352Asn or Flag-352Ser using B4GALT1 or Flag antibodies indicate an identical pattern of staining (scale bars = 10 μ m). Referring to Figure 16, subcellular localization by indirect immunofluorescence of Huh7 cells showed a co-localization of endogenously expressed B4GALT1 and TGN56, a Golgi apparatus marker. A similar co-localization pattern was observed whether human epitope-tagged Flag-B4GALT1 352Asn or epitope-tagged Flag-B4GALT1 352Ser were over expressed (Figure 16). Referring to Figure 16, endogenous B4GALT1, Flag-352Asn, and Flag-352ser overexpressed in human hepatoma Huh7 cells co-localized with the Trans Golgi Network marker TGN46. Shown are confocal microscopy images of endogenous B4GALT1, Flag-352Asn, and Flag-352Se sub-cellular localization in relation with the trans Golgi Network marker TGN46, with scale bars = 10 μ m.

COS-7 cells were observed to have a low content of endogenous B4GALT1 (Figure 17, Panel B), so this cell line was used to assess the effect of the missense mutation on protein stability and/or steady-state levels, and galactosyltransferase activity. The results showed that the missense mutation does not affect protein stability and/or steady-state levels (by Western blot) (Figure 17). Referring to Figure 17, the effect of 352Ser on protein stability and/or steady-state levels is shown. Panel A shows COS7 cells expressing either 352Asn or 352Ser Flag tag proteins fusion with free EGFP were expressed in COS7 cells. Cell lysates were analyzed by Western blot for B4GALT1, Bactin, and EGFP using commercial antibodies. One of four similar experiments is shown. Panel B shows mRNA expression levels for B4GALT1 gene determined by 10 RT-qPCR analysis. Data represent means \pm S.E. of 4 experiments.

To determine the catalytic activity of 352Ser, lysates of nontransfected COS-7 cells and COS-7 cells transfected with the expression vector alone or containing the cDNA insert of wild-type or mutant B4GALT1 were analyzed for galactosyltransferase activity. When normalized relative to the expression of FLAG-tagged protein (immunoblotting experiment in Figure 18, 15 Panels A and B), the enzymatic activity of the 352Ser was approximately 50% decreased in comparison to 352Asn (Figure 18, Panel C). Referring to Figure 18, the effect of 352Ser mutation on activity is shown. Panels A and B show COS7 cells expressing either 352Asn or 352Ser Flag tag proteins fusion expressed in COS7 cells. Cell lysates were incubated with rabbit anti-Flag IgG or rabbit pre-immune control IgG. Immunoprecipitates were analyzed by Western 20 blot for B4GALT1 or Flag using commercial antibodies. One of four similar experiments is shown. Panel C shows B4GALT1 activity in the immunoprecipitates measured with a commercial kit (R&D). Each data point represents the average of the calculated ratio of B4GALT1 specific activity with the amount of 352Asn or 352Ser protein recovered in the immunoprecipitates. Signals from Western blots ECL were quantified by densitometry using 25 ImageJ software. Data represent means \pm S.E. of 4 experiments (*, p < 0.05, 352Asn vs 352Ser).

These experiments show that this missense mutation has no effect on the level of protein expression and its localization, but it leads to lower enzymatic activity.

Example 10: Carbohydrate Deficient Transferrin for Congenital Disorders of Glycosylation
30 **(CDG) Test**

The CDG test was performed using 0.1 ml serum samples from 24 subjects from the 3 genotype groups (8 minor homozygotes, 8 heterozygotes and 8 major homozygotes). Each

minor homozygote was matched with a heterozygote and a major homozygote that are either sibs or closely related same sex individual based on the kinship coefficient. The age, and the carrier status were also matched for major lipid-altering gene alleles in APOB^{R3527Q}.

Water diluted samples were double washed using an immunoaffinity column.

5 Glycosylation profiling of eluted proteins was performed using a mass spectrometer operated with 2 scan ranges specific for APOCIII and transferrin. Glycoform ratios of each protein were used to determine glycosylation deficiency. The CDG test was performed at the Mayo medical laboratory of the Mayo Clinic.

The results showed that all 24 samples had normal levels of the mono-

10 oligosaccharide/di-oligosaccharide transferrin ratio, the a-oligosaccharide/di-oligosaccharide transferrin ratio, the ApoCIII-1/ApoCIII-2 ratio, and the ApoCIII-0/ApoCIII-2 ratio. However, while all wild type samples had normal levels of the tri-sialo/di-oligosaccharide transferrin ratio, the level in all heterozygotes were in the intermediate range and the level in all minor homozygotes was abnormal and significantly higher than matched wild type and heterozygotes

15 (p=7.6 E-10) (Figure 19). These results show that this missense mutation is associated with defective glycosylation as a result of the decreased enzymatic activity of B4GALT1.

Example 11: Global N-Linked Glycan Analysis of Plasma Glycoproteins

To determine if the desialylation and hypogalactylation are affecting only transferrin or extending to other glycoproteins, global N-Glycan analysis was performed by the analytical chemistry group at Regneron. Lectin enriched glycoproteins were extracted from serum of 5 pairs of major and minor homozygotes in duplicate, and Global N-linked glycan separation was performed for labeled glycans using hydrophilic interaction chromatography and detected by fluorescence and analyzed by mass spectrometry (HILIC -FLR-MS) (Figure 20 and Table 5).

25 Referring to Figure 20, a representative HILIC-FLR-MS spectrum of N-Glycan analysis of Glycoprotein from a matched pair of minor (SS) and major (NN) homozygotes of B4GALT1 N352S is shown. The results showed that the minor homozygotes have significantly higher levels of hypogalactosylated and less sialylated glycans including biantennary glycans with only one galactose and one sialic acid (p=3.1 E-5), asialylated biantennary glycans with one galactose

30 (p=0.001), and truncated biantennary glycans missing both galactoses and sialic acids(p=0.005). On the other hand, the minor homozygotes have significantly lower levels (p=0.001) of biantennary glycans with two galactose and two sialic acid (Table 5). There was a significantly

lower overall galactosylation ($p=9.2 \times 10^{-5}$) and sialylation ($p=0.001$) among minor homozygotes, while there was no difference in fucosylation level ($p=0.5$). Both CDT and global N-glycan analysis of serum show significantly increased levels of carbohydrate-deficient glycoproteins in minor homozygotes, indicating that B4GALT1N352S is leading to 5 defective protein glycosylation.

Table 5: Mean (\pm sd) of % peak area of significantly different glycans between minor and major homozygotes

Glycan	Major Homozygote	Minor Homozygote	P value
G0F	0.58 \pm 0.34	1.84 \pm 0.48	0.005
G1	0.19 \pm 0.12	0.91 \pm 0.16	0.001
G1S1	0.63 \pm 0.16	4.7 \pm 0.38	3.1E-5
G2S2	39.3 \pm 0.79	31.5 \pm 1.8	0.001

The disclosure is not limited to the embodiments described and exemplified 10 above, but is capable of variation and modification within the scope of the appended claims. The disclosure is also not to be limited in any manner by the use of any headers recited herein.

The reference in this specification to any prior publication (or information derived from it), 15 or to any matter which is known, is not, and should not be taken as, an acknowledgement or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of determining a human subject's susceptibility to developing a cardiovascular condition, comprising:
 - 5 a) assaying a sample obtained from the subject to determine whether a nucleic acid molecule in the sample comprises a nucleic acid sequence that encodes a serine at the position corresponding to position 352 of the full length/mature *B4GALT1* polypeptide; and
 - b) classifying the human subject as being at decreased risk for developing the cardiovascular condition if the nucleic acid molecule comprises a nucleic acid sequence that
 - 10 encodes a serine at the position corresponding to position 352 of the full length/mature *B4GALT1* polypeptide, or classifying the human subject as being at increased risk for developing the cardiovascular condition if the nucleic acid molecule does not comprise a nucleic acid sequence that encodes a serine at the position corresponding to position 352 of the full length/mature *B4GALT1* polypeptide.
- 15 2. The method according to claim 1, wherein the assay comprises:
 - sequencing a portion of the *B4GALT1* genomic sequence of a nucleic acid molecule in the sample, wherein the portion sequenced includes positions corresponding to positions 53575 to 53577 of SEQ ID NO:2;
 - sequencing a portion of the *B4GALT1* mRNA sequence of a nucleic acid molecule in the sample, wherein the portion sequenced includes positions corresponding to positions 1243 to 1245 of SEQ ID NO:4; or
 - 20 sequencing a portion of the *B4GALT1* cDNA sequence of a nucleic acid molecule in the sample, wherein the portion sequenced includes positions corresponding to positions 1054 to 1056 of SEQ ID NO:6.
- 25 3. The method according to claim 1, wherein the assay comprises:
 - a) contacting the sample with a primer hybridizing to: i) a portion of the *B4GALT1* genomic sequence that is proximate to a position of the *B4GALT1* genomic sequence corresponding to positions 53575 to 53577 of SEQ ID NO:2; ii) a portion of the *B4GALT1* mRNA sequence that is proximate to a position of the *B4GALT1* mRNA corresponding to positions 1243 to 1245 of SEQ ID NO:4; or iii) a portion of the *B4GALT1* cDNA sequence that

is proximate to a position of the *B4GALT1* cDNA corresponding to positions 1054 to 1056 of SEQ ID NO:6;

b) extending the primer at least through: i) the position of the *B4GALT1* genomic sequence corresponding to positions 53575 to 53577; ii) the position of the *B4GALT1* mRNA corresponding to positions 1243 to 1245; or iii) the position of the *B4GALT1* cDNA corresponding to positions 1054 to 1056; and

c) determining the whether the extension product of the primer comprises nucleotides at positions: i) corresponding to positions 53575 to 53577 of the *B4GALT1* genomic sequence; ii) corresponding to positions 1243 to 1245 of the *B4GALT1* mRNA; or 10 iii) corresponding to positions 1054 to 1056 of the *B4GALT1* cDNA; that encode a serine at position 352 of SEQ ID NO:8.

4. The method according to claim 1, wherein the assay comprises contacting the sample with a primer or probe that specifically hybridizes to the *B4GALT1* variant genomic sequence, mRNA sequence, or cDNA sequence and not the corresponding wild-type 15 *B4GALT1* sequence under stringent conditions, and determining whether hybridization has occurred.

5. A method of determining a human subject's susceptibility to developing a cardiovascular condition, comprising:

a) performing an assay on a sample obtained from the human subject to 20 determine whether a *B4GALT1* protein in the sample comprises a serine residue at position 352; and

b) classifying the human subject as being at decreased risk for developing the cardiovascular condition if the *B4GALT1* polypeptide comprises a serine at the position corresponding to position 352 of the full length/mature *B4GALT1* polypeptide, or 25 classifying the human subject as being at increased risk for developing the cardiovascular condition if the *B4GALT1* polypeptide does not comprise a serine at the position corresponding to position 352 of the full length/mature *B4GALT1* polypeptide.

6. The method according to any one of claims 1 to 5, wherein the cardiovascular condition comprises a feature selected from the group consisting of: an elevated level of 30 one or more serum lipids, elevated levels of coronary artery calcification, elevated levels of

pericardial fat, an atherothrombotic condition, elevated levels of fibrinogen, and a blood clot formed from the involvement of fibrinogen activity.

7. The method according to claim 6, wherein the serum lipids comprise one or more of cholesterol, LDL, HDL, triglycerides, HDL-cholesterol, and non-HDL cholesterol.

5 8. The method according to claim 6, wherein the atherothrombotic condition comprises elevated levels of fibrinogen.

9. The method according to claim 6, wherein the atherothrombotic condition comprises a blood clot formed from the involvement of fibrinogen activity.

10. 10. The method according to any one of claims 1 to 9, further comprising: c) for a subject having an increased risk for developing a cardiovascular condition, administering a therapeutic agent that treats or inhibits the cardiovascular condition.

11. 11. A method of treating a subject who is not a carrier of a *B4GALT1* variant and has or is susceptible to developing a cardiovascular condition comprising introducing into the subject an antisense RNA, an siRNA, or an shRNA that hybridizes to a sequence within the 15 endogenous *B4GALT1* gene and decreases expression of *B4GALT1* polypeptide in a cell in the subject, wherein the *B4GALT1* variant is a nucleic acid sequence that encodes for a serine at position 352 of the full length/mature *B4GALT1* polypeptide.

12. 12. The method according to claim 11, further comprising introducing an expression vector into the subject, wherein the expression vector comprises a recombinant *B4GALT1* 20 gene comprising a nucleotide sequence encoding a serine at positions corresponding to positions 53575 to 53577 of SEQ ID NO:2, wherein the expression vector expresses the recombinant *B4GALT1* gene in a cell in the subject.

13. 13. The method according to claim 11, further comprising introducing an expression vector into the subject, wherein the expression vector comprises a nucleic acid molecule 25 encoding a *B4GALT1* polypeptide that is at least about 90%, at least about 95%, at least about 98%, or at least about 99% identical to SEQ ID NO:8 (*B4GALT1* Asn352Ser), wherein the expression vector expresses the nucleic acid encoding the *B4GALT1* polypeptide in the cell in the subject.

14. 14. The method according to claim 11, further comprising introducing an mRNA into 30 the subject, wherein the mRNA encodes a *B4GALT1* polypeptide that is at least about 90%, at least about 95%, at least about 98%, or at least about 99% identical to SEQ ID NO:8

(*B4GALT1* Asn352Ser), wherein the mRNA expresses the *B4GALT1* polypeptide in the cell in the subject.

15. The method according to claim 11, further comprising introducing a *B4GALT1* Asn352Ser polypeptide or fragment thereof into the subject, wherein the polypeptide is at 5 least about 90%, at least about 95%, at least about 98%, or at least about 99% identical to SEQ ID NO:8 and comprises a serine at position 352 corresponding to SEQ ID NO:8.

16. The method according to any one of claims 11 to 15, wherein the cardiovascular condition comprises a feature selected from the group consisting of: an elevated level of one or more serum lipids, elevated levels of coronary artery calcification, elevated levels of 10 pericardial fat, an atherothrombotic condition, elevated levels of fibrinogen, and a blood clot formed from the involvement of fibrinogen activity.

17. The method according to claim 16, wherein the serum lipids comprise one or more of cholesterol, LDL, HDL, triglycerides, HDL-cholesterol, and non-HDL cholesterol.

18. The method according to claim 16, wherein the atherothrombotic condition 15 comprises elevated levels of fibrinogen.

19. The method according to claim 16, wherein the atherothrombotic condition comprises a blood clot formed from the involvement of fibrinogen activity.

20. The method according to any one of claims 11 to 19, wherein the introducing into the subject comprises hydrodynamic delivery, virus-mediated delivery, lipid-nanoparticle-mediated delivery, or intravenous infusion.

21. Use of an antisense RNA, an siRNA, or an shRNA in the manufacture of a medicament for treating a subject who is not a carrier of a *B4GALT1* variant and has or is susceptible to developing a cardiovascular condition, wherein the antisense RNA, siRNA, or shRNA hybridizes to a sequence within the endogenous *B4GALT1* gene and decreases 25 expression of *B4GALT1* polypeptide in a cell in the subject, wherein the *B4GALT1* variant is a nucleic acid sequence that encodes for a serine at position 352 of the full length/mature *B4GALT1* polypeptide.

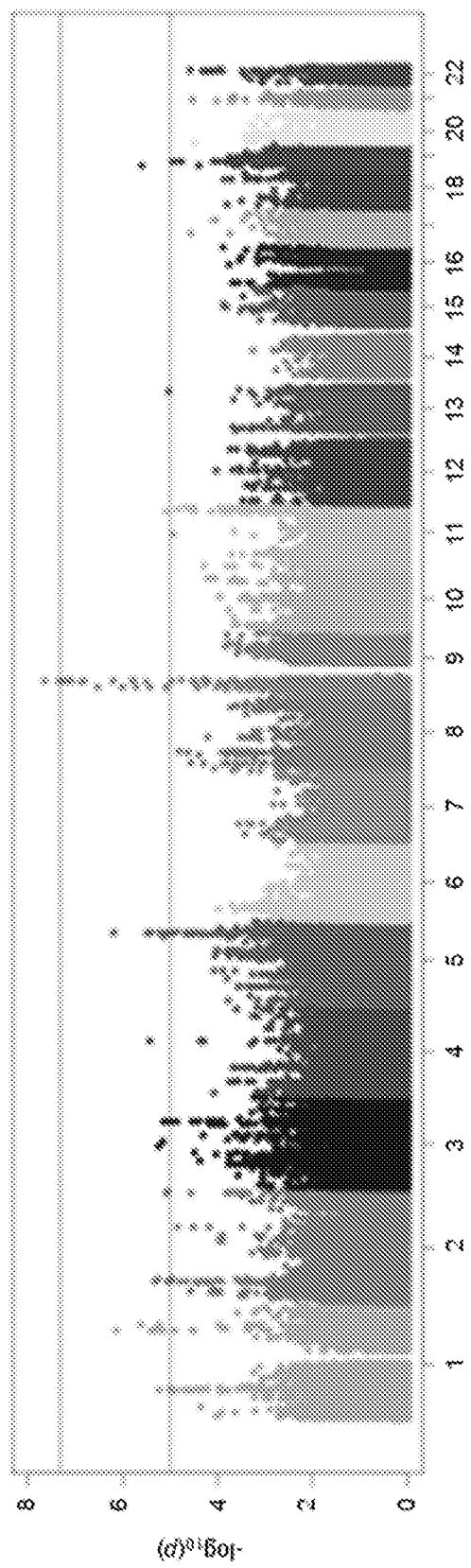


Figure 1

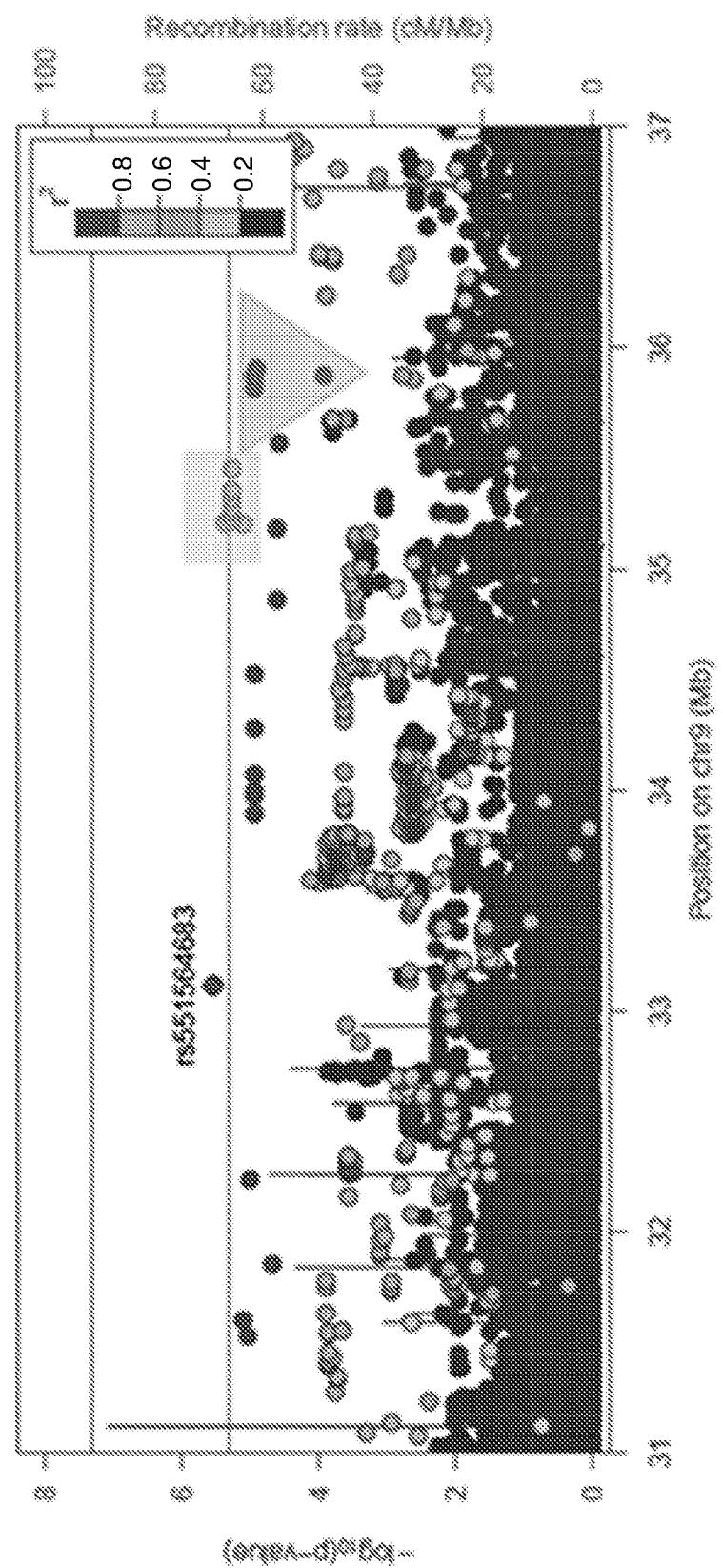


Figure 2

Haplotype	Copies	9:311523876	9:311599161	9:311862653	9:322231857	1855115646833	9:33892787	9:33971380
A	115	1	1	1	1	1	1	1
B	7	1	1	1	1	1	0	0
C	6	0	0	0	0	1	1	1
Haplotype	Copies	9:33991334	9:340586223	9:34277737	9:34528531	9:34861334	9:351178756	9:35570095
A	115	1	1	1	1	1	1	1
B	7	0	0	0	0	0	0	0
C	6	1	1	1	1	1	1	1

Figure 3

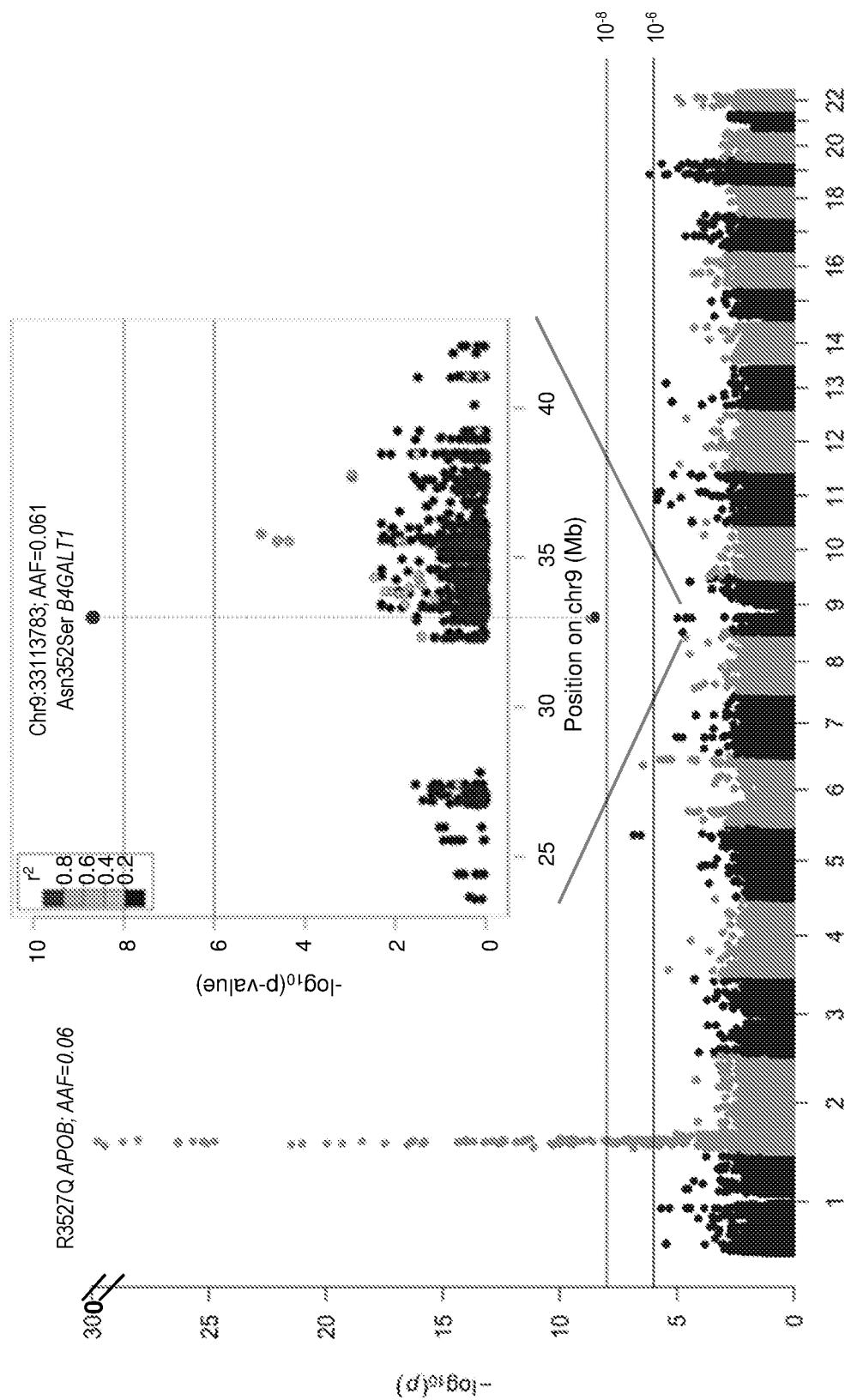


Figure 4

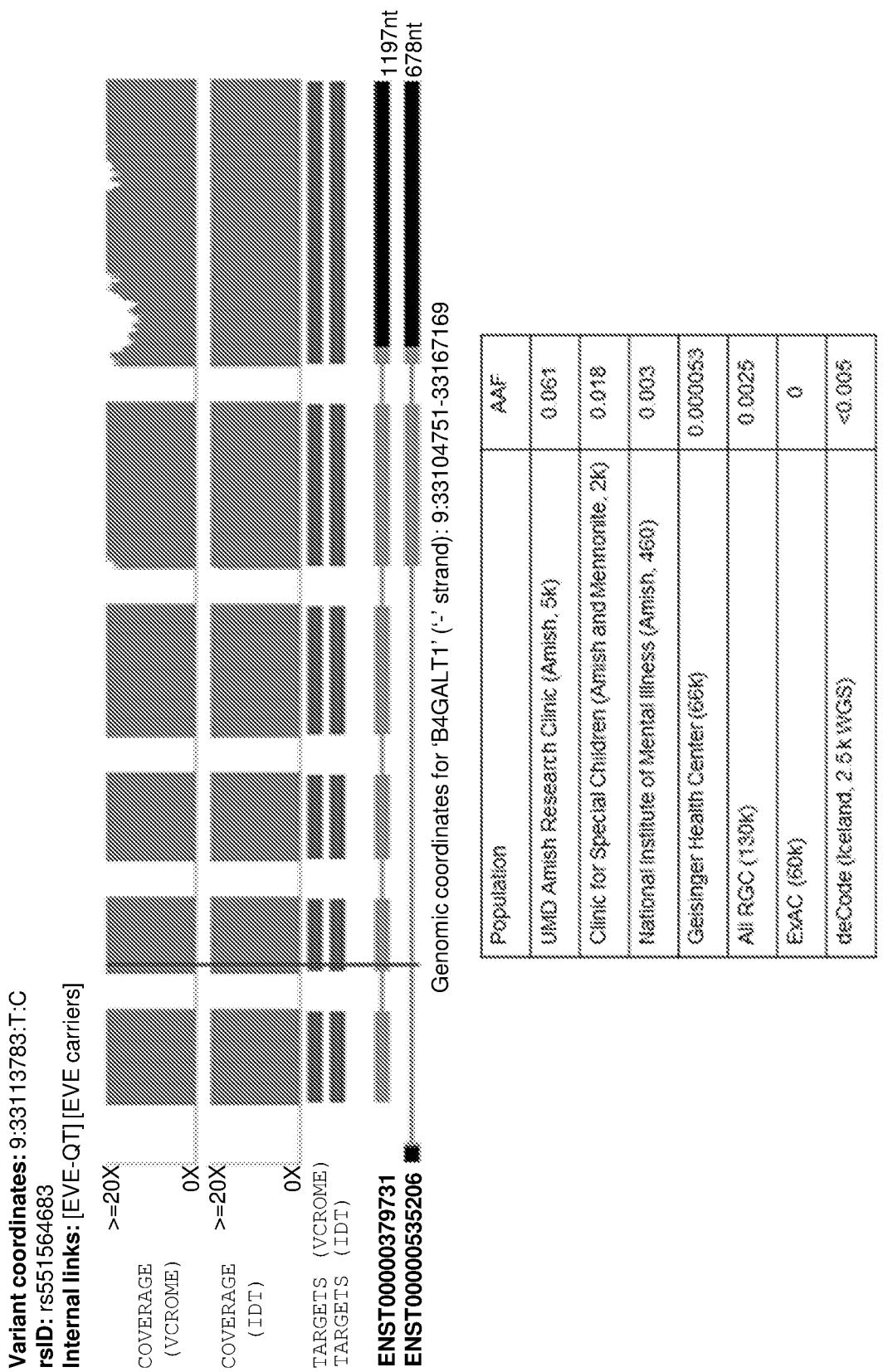


Figure 5

Population	Population size	# HET carriers	# HOM carriers	AAF
BCH	580	0	0	0.000000
CNCD	96	0	0	0.000000
COL-CHUNG	4064	0	0	0.000000
COL-CHUNG_FBC	1193	0	0	0.000000
CSC	2084	65	5	0.017994
DHS	4654	0	0	0.000000
DRIFT-NIMH	460	3	0	0.002081
DUKE	8783	2	0	0.000114
ECO	858	0	0	0.000000
GHS	66216	7	0	0.000053
IOWA	58	0	0	0.000000
MADGC	2393	1	0	0.000209
MARIO	127	0	0	0.000000
NIAID	95	0	0	0.000000
SIMONS	96	0	0	0.000000
SINAI	96	0	0	0.000000
TAICHI	13963	0	0	0.000000
TSK	3407	0	0	0.000000
UCHC	1039	0	0	0.000000
UMD	4725	548	13	0.060741
UPENN	11451	1	0	0.000044
UTAH	3688	0	0	0.000000
Total	130126	627	18	0.002548

Figure 5 (cont.)

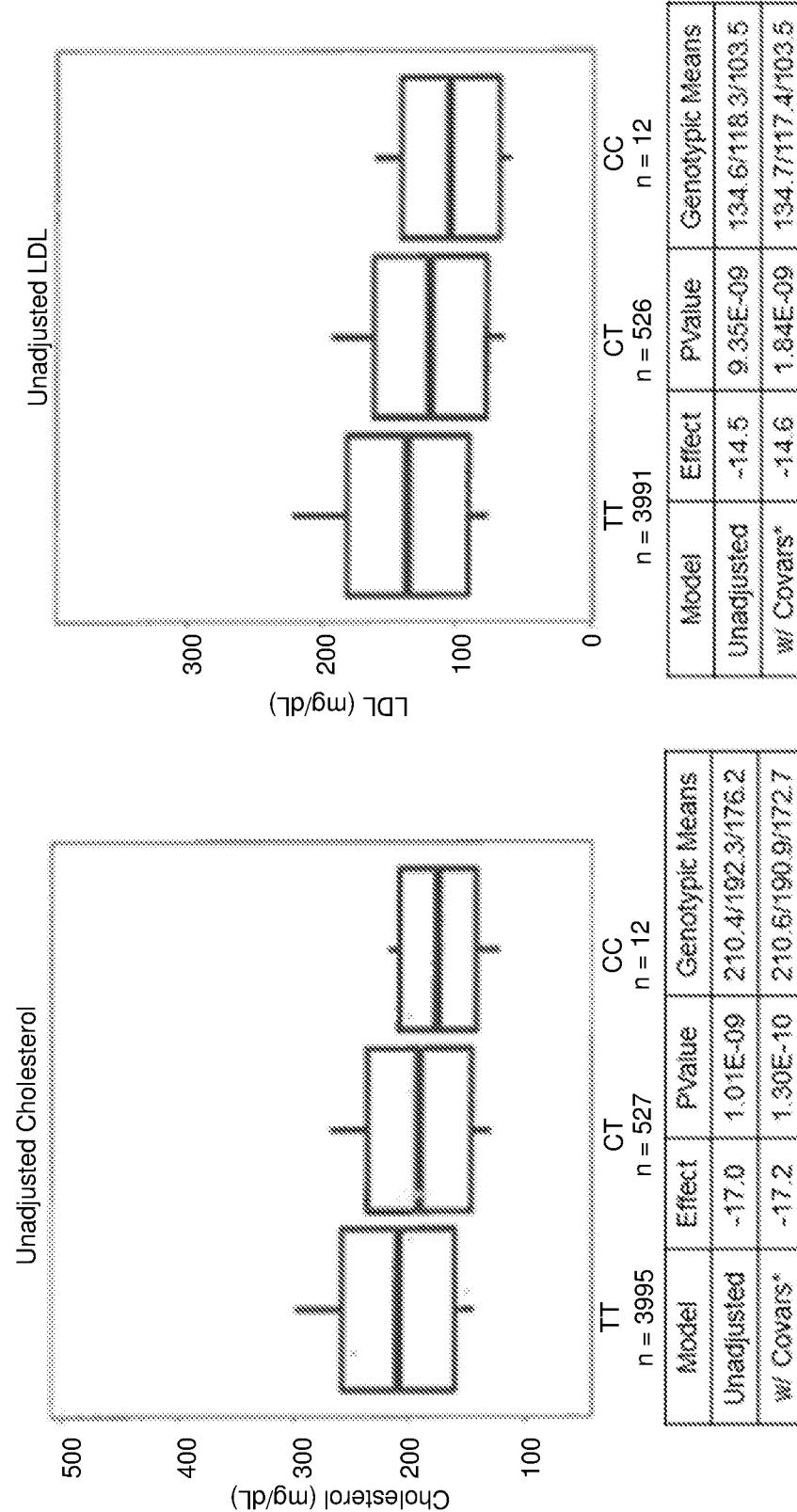
Phenotype	Genotypic Means ^{**} Unadjusted	Genotypic Means Adjusted	Counts {Ref/Het/Alt}	Effect {95% CI}	P-value
Serum lipids					
Cholesterol, mg/dL	210.6 / 198.9 / 172.7	210.4 / 192.3 / 176.2	3935/527/12	-17.18 {-32.4, -11.35}	1.3E-10
LDL, mg/dL	124.7 / 117.4 / 103.5	134.8 / 118.3 / 103.5	3933/526/12	-14.61 {-13.37, -3.36}	2.8E-09
HDL, mg/dL	61.4 / 59.4 / 58.6	61.3 / 58.6 / 61.6	3935/527/12	-2.14 {-3.88, -0.41}	0.0155
Triglycerides (log10), mg/dL	73.9 / 72.9 / 72.7	73.3 / 72.0 / 65.8	3935/527/12	-3.39 {-3.17, 1.62}	0.1760
Chol/HDL (log10)	3.39 / 3.15 / 2.94	3.39 / 3.16 / 2.87	3348/450/11	-6.87 {-8.80, -2.28}	0.0003
NonHDL Cholesterol, mg/dL	161.5 / 144.9 / 92.1	162.0 / 143.0 / 93.0	727/87/2	-14.33 {-23.57, -5.08}	0.0025

0.0774* Genotypic means are on the clinical scale, removing the effects of Age, Age2, Sex, and Study

** Also adjusted for BMI

*** Result generated at UMD in a model with Age Sex, Study as covariates.

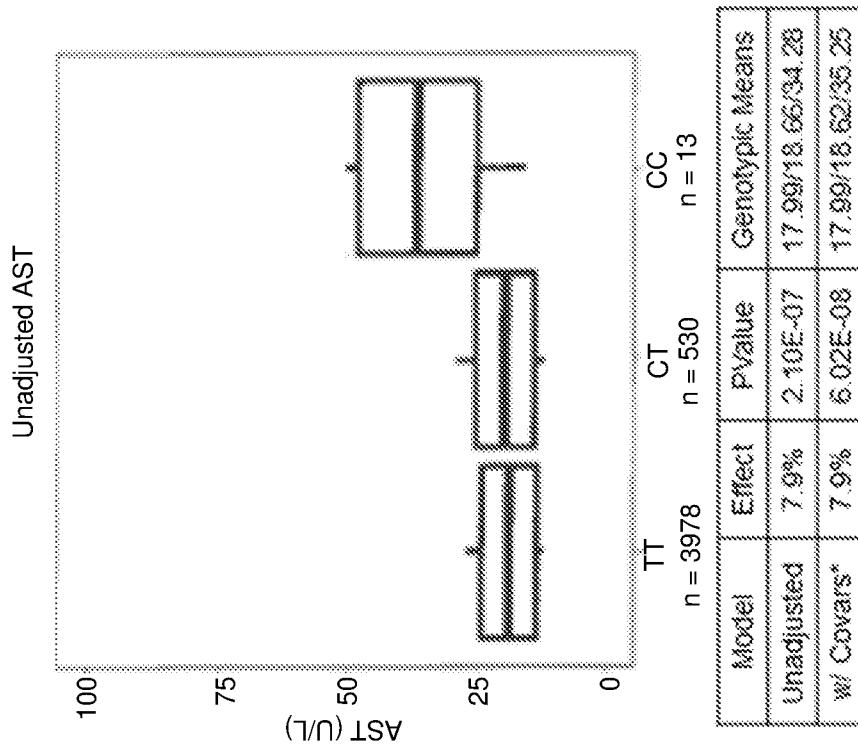
Figure 6


Phenotype	Genotypic Means*	Genotypic Means Unadjusted	Counts (Ref/Het/Alt)	Effect (55% CI)	P-value
CAD-related traits					
Coronary Calcification (log ₁₀)	0.301 / 0.301 / NA	0.288 / 0.280 / NA	2011/42/10	-32.4 (-38.3, -26.5) %	0.0433
Coronary Calcification (log ₁₀)**	1.87 / 1.44 / 0	NA	5465/94/1	-19 %	0.1349
Pericardial Fat**	69.5 / 82.7 / NA	71.3 / 71.4 / NA	143/27/0	12.78 (11.86, 24.46) %	0.0339
Liver traits					
AST (log ₁₀), uL	18.0 / 18.6 / 35.3	18.0 / 18.7 / 34.3	3310/33/12	7.15 (4.71, 12.20) %	6.06e-08
ALT (log ₁₀), uL	17.2 / 16.9 / 20.3	17.2 / 16.9 / 19.7	3378/33/12	-0.23 (-4.50, 4.71) %	0.8920
Alb/Plt (log ₁₀), uL	53.8 / 52.3 / 62.3	53.8 / 53.1 / 61.8	3587/33/13	0.92 (3.87, 2.08) %	0.5391
Liver fat (log ECF)	1.27 / 1.33 / NA	1.27 / 1.32 / NA	1864/38/0	0.05 (-0.005, 0.110)	

0.0774* Genotypic means are on the clinical scale, removing the effects of Age, Age2, Sex, and Study

** Also adjusted for BMI

*** Result generated at UMD in a model with Age Sex, Study as covariates.


Figure 6 (cont.)

B4GALT1 ASN352SER IS HIGHLY ASSOCIATED WITH SERUM LIPIDS AND AST

*Statistical models account for Age, Age², Sex, and Study; further adjustment for R3527Q APOB does not appreciably alter results; AST normal reference range = 10-35 U/L

Figure 7

B4GALT1 ASN352SER IS HIGHLY ASSOCIATED WITH SERUM LIPIDS AND AST

*Statistical models account for Age, Age², Sex, and Study; further adjustment for R3527Q APOB does not appreciably alter results; AST normal reference range = 10-35 U/L

Figure 7 (cont.)

**B4GALT1 ASN352SER IS ASSOCIATED WITH DECREASES IN ALL LIPID SUBFRACTIONS
(AMISH HAPI HEART STUDY)**

Phenotype	Genotypic Means*	Genotypic Means Unadjusted	Counts(Ref/Het/Alt)	Effect	Pvalue
HDL2, mg/dL	15.9 / 13.5 / 19.6	15.9 / 13.7 / 21.0	660/74/1	-2.07 (-3.68, -0.46)	0.012
HDL2a, mg/dL	11.2 / 9.7 / 15.3	11.2 / 9.8 / 16.4	660/74/1	-1.23 (-2.38, -0.09)	0.036
HDL2b, mg/dL	3.2 / 2.9 / 3.6	3.2 / 2.9 / 3.9	660/74/1	-0.33 (-0.73, 0.08)	0.113
HDL2c, mg/dL	1.5 / 1.1 / 0.1	1.5 / 1.1 / 0.2	660/74/1	-0.47 (-0.87, -0.07)	0.023
HDL3, mg/dL	39.5 / 36.8 / 39.3	39.4 / 37.1 / 41.0	660/74/1	-2.48 (-4.23, -0.72)	0.006
HDL3a, mg/dL	14.8 / 12.8 / 17.1	14.8 / 12.9 / 18.3	660/74/1	-1.73 (-3, -0.47)	0.007
HDL3b, mg/dL	6.2 / 6.4 / 5.8	6.2 / 6.4 / 5.9	660/74/1	0.09 (-0.3, 0.49)	0.640
HDL3c, mg/dL	9.5 / 9 / 9.3	9.5 / 9.0 / 9.7	660/74/1	-0.49 (-0.96, -0.03)	0.037
HDL3d, mg/dL	9 / 8.7 / 7.5	8.9 / 8.7 / 7.5	660/74/1	-0.34 (-0.7, 0.03)	0.070
LDL1, mg/dL	22.8 / 20.2 / 15.2	22.7 / 20.9 / 17.4	660/74/1	-3.17 (-5.89, -0.45)	0.023
LDL2, mg/dL	48.3 / 39.4 / 32.1	48.2 / 39.7 / 34.4	660/74/1	-8.43 (-14.47, -2.38)	0.006
LDL3, mg/dL	45.7 / 43.2 / 18.2	45.4 / 44.4 / 18.3	660/74/1	-1.69 (-6.77, 3.38)	0.513
LipoproteinA, mg/dL	7.7 / 6.6 / 11.6	7.7 / 6.7 / 12.0	660/74/1	-0.66 (-1.56, 0.24)	0.150
Lpa1 (log10), mg/dL	3.79 / 3.39 / 5.13	3.78 / 3.50 / 5.50	220/10/1	-4.50 (-33.9, 34.9) %	0.764
Lpa2 (log10), mg/dL	1.91 / 1.66 / NA	1.91 / 1.66 / NA	206/29/0	-14.9 (-41.1, 23.0) %	0.395
Lpa3 (log10), mg/dL	4.58 / 3.72 / NA	4.58 / 3.72 / NA	323/47/0	-18.7 (-30.8, -4.50) %	0.009
Lpa4 (log10), mg/dL	3.78 / 3.65 / NA	3.76 / 3.85 / NA	204/23/0	-4.50 (-27.6, 28.8) %	0.784
Lpa5 (log10), mg/dL	3.37 / 2.89 / 5.74	3.36 / 2.95 / 6.10	252/25/1	-8.80 (-24.1, 9.65) %	0.339

*Statistical models account for Age, Age², Sex, and Study

Figure 8

**B4GALT1 ASN352SER IS ASSOCIATED WITH DECREASED FIBRINOGEN LEVELS
(AMISH PAPI STUDY) + OTHER TRAITS OF POTENTIAL INTEREST**

Phenotype	Genotypic Means*	Genotypic Means Unadjusted	GenoCounts (Ref/Het/Alt)	GenoCounts (Ref/Het/Alt)	Effect	Pvalue
Fibrinogen, drug naïve, mg/dL	280.8 / 255 / 253.8	280.5 / 257.1 / 273.3	564/54/3	-23.97 (-38.35, -9.59)	1.15E-03	
Fibrinogen, post-clopidogrel, mg/dL	276 / 247.7 / 182	275. / 249.7 / 197.0	549/54/3	-32.45 (-47.5, -17.41)	2.74E-05	

Of 20+ platelet aggregation measures, pre/post-clopidogrel/post-aspirin, only 2 are nominally significant

Phenotype	Control Counts (Ref/Het/Alt)	Case Counts (Ref/Het/Alt)	Control Freq	Case Freq	OR (95% CI)	OR Het (95% CI)	OR Hom	Pvalue
CAD (logistic)	3535/473/11	101/13/0	0.061	0.057	0.78 (0.45, 1.48)	0.96 (0.54, 1.72)	-	0.42

Phenotype	Genotypic Means*	Genotypic Means Unadjusted	GenoCounts (Ref/Het/Alt)	GenoCounts (Ref/Het/Alt)	Effect	Pvalue
Creatinine (log10), mg/dL	0.747 / 0.767 / 0.789	0.748 / 0.763 / 0.756	3987/531/13	2.23 (0.46, 1.04) %	0.0095	
eGFR, mL/min/1.73m ²	107.2 / 104.1 / 97.0	107.2 / 103.5 / 95.5	3910/517/12	-2.86 (-5.10, -0.63)	0.0121	
Basophils (log10), %	0.402 / 0.376 / 0.369	0.402 / 0.378 / 0.370	3275/444/11	-6.67 (-10.87, 0.69) %	0.0259	
Hematocrit, %	40.5 / 40.8 / 42.8	40.5 / 40.7 / 41.4	3897/514/12	0.34 (0.04, 0.63)	0.0271	

*Statistical models account for Age, Age², Sex, and Study

Figure 9

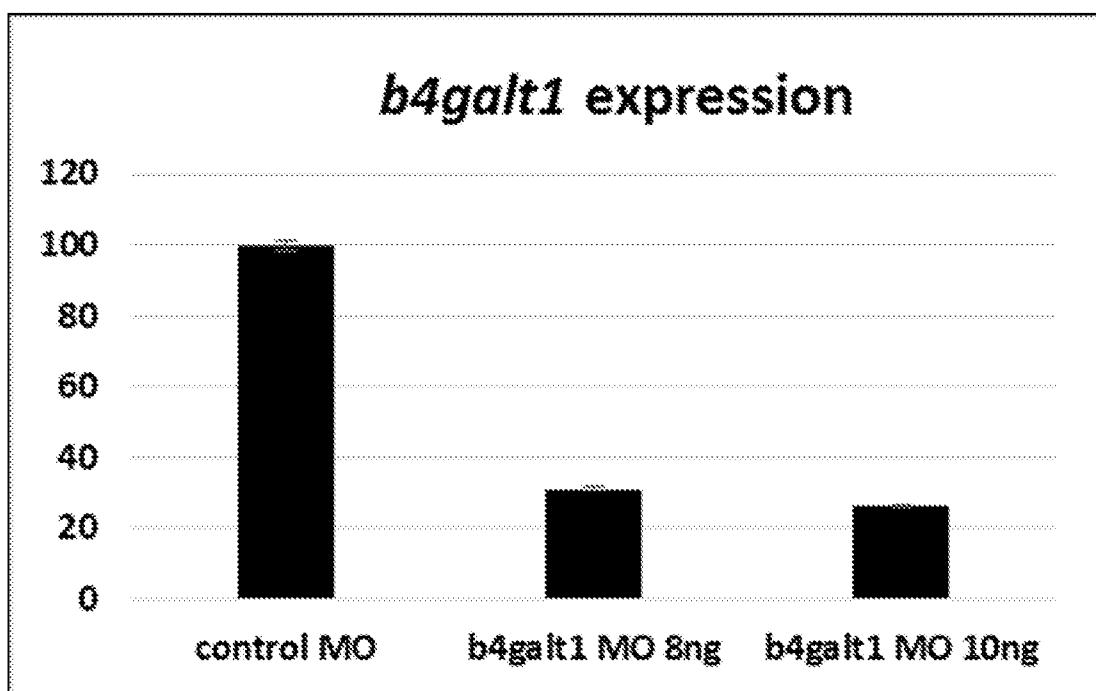


Figure 10

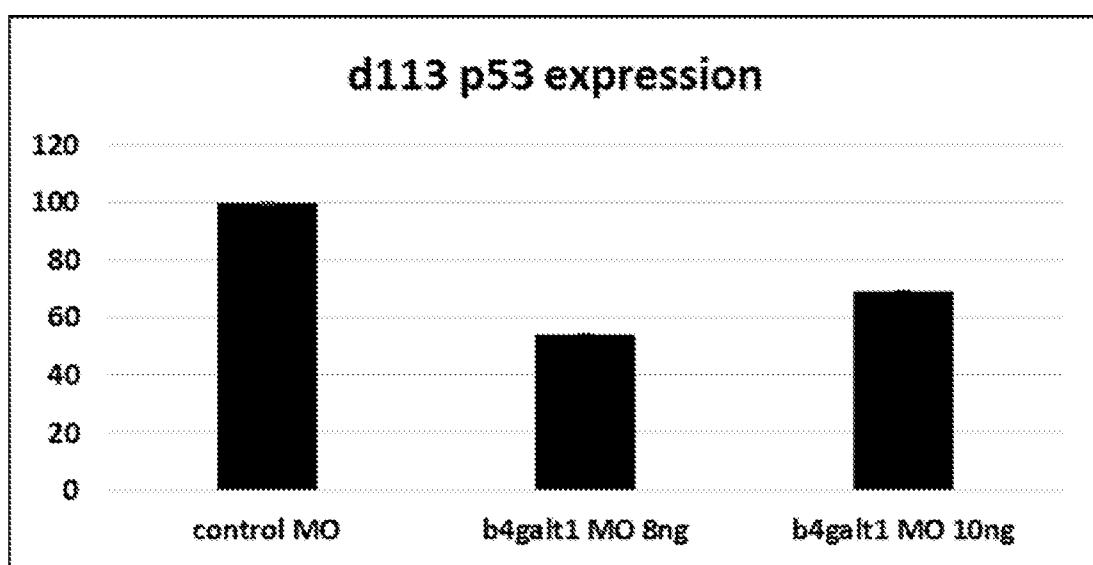


Figure 11

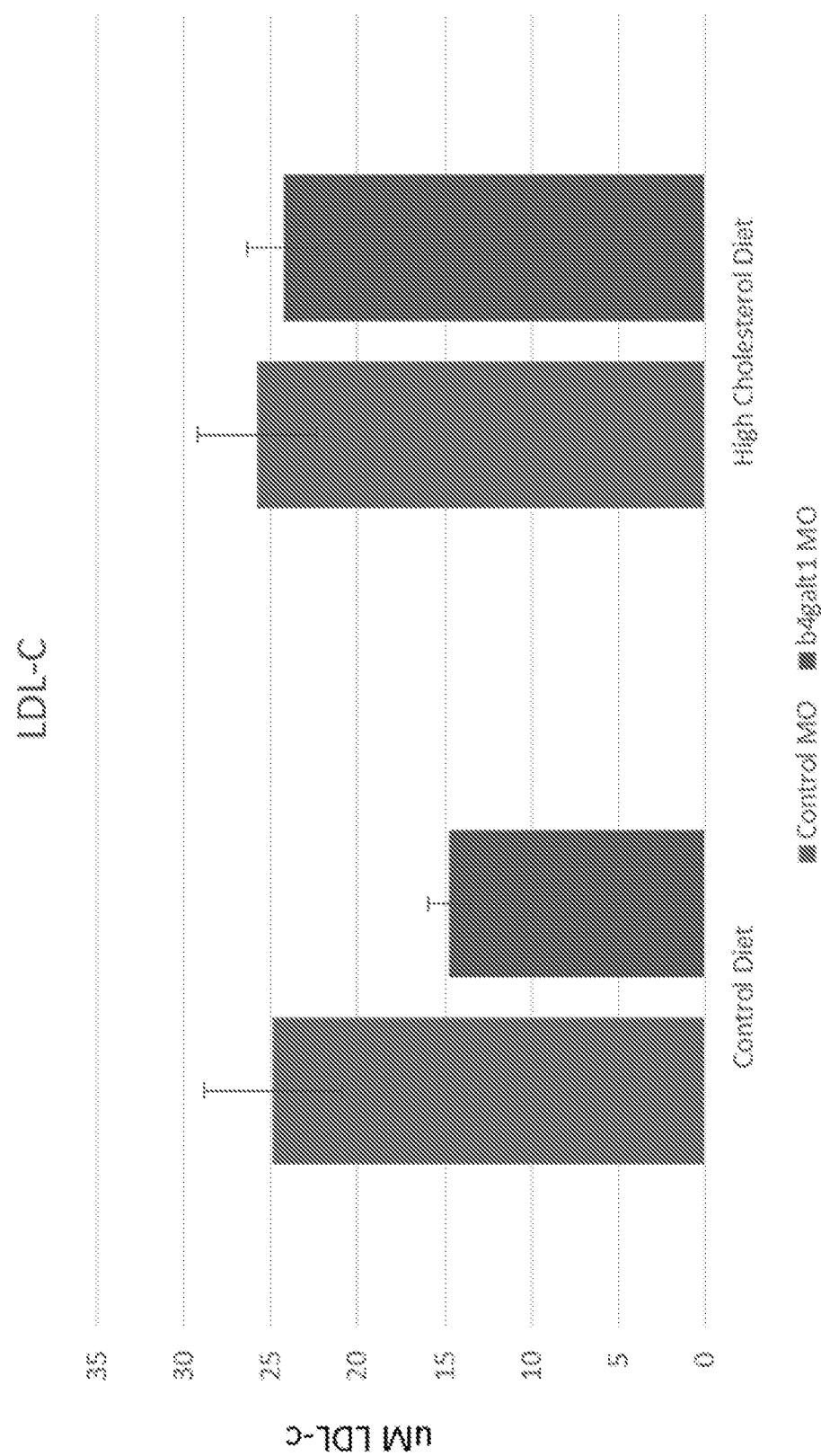


Figure 12

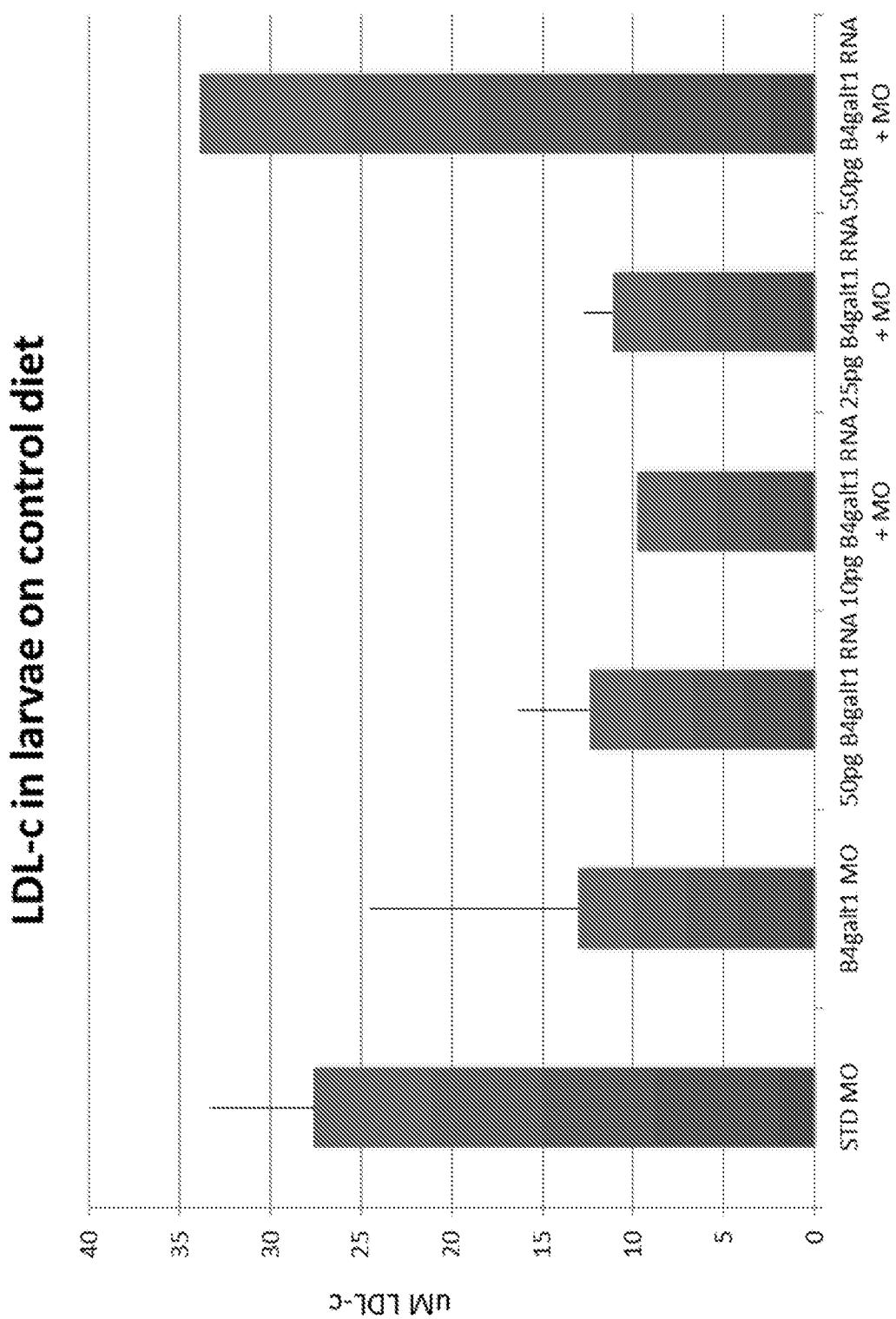


Figure 13

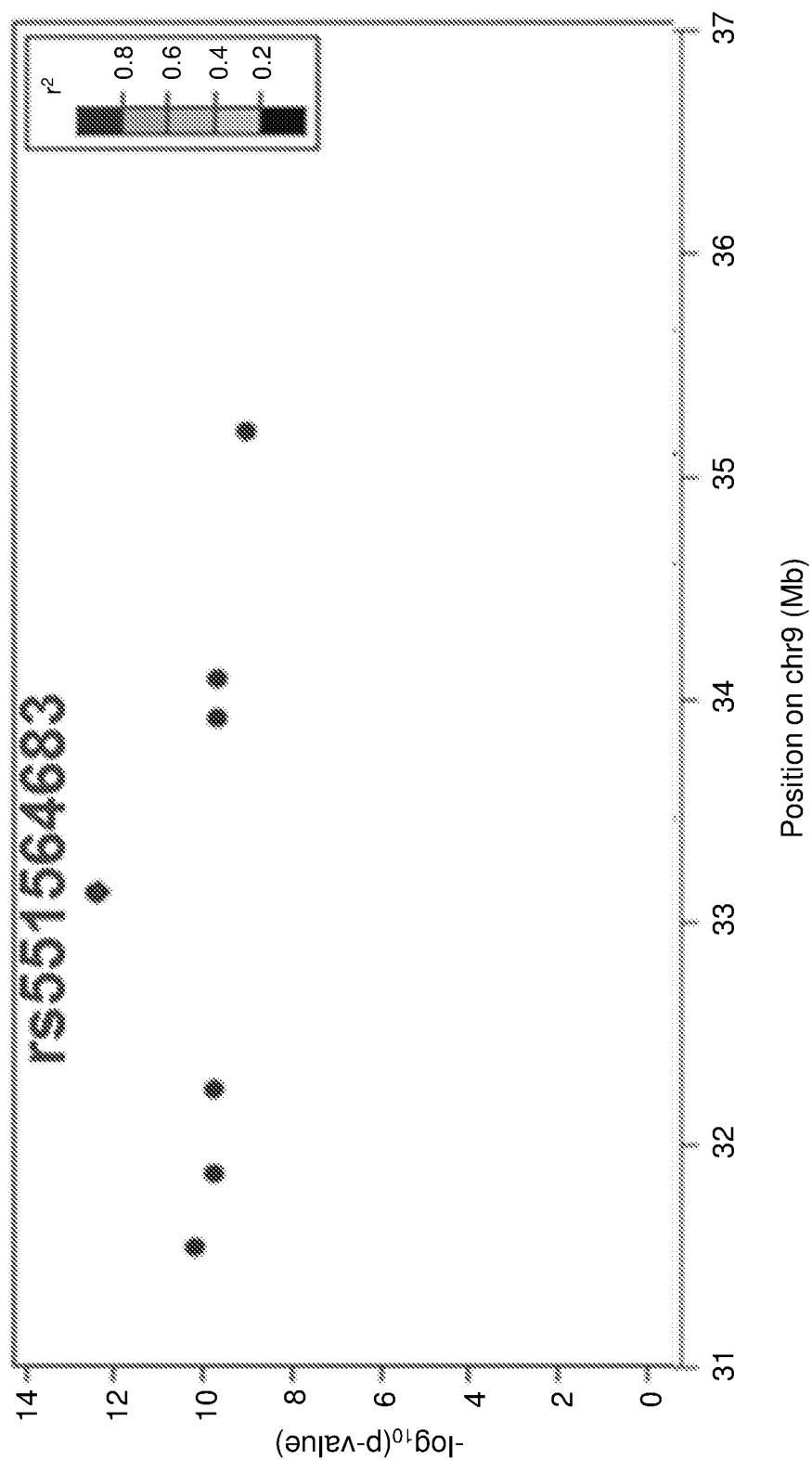


Figure 14

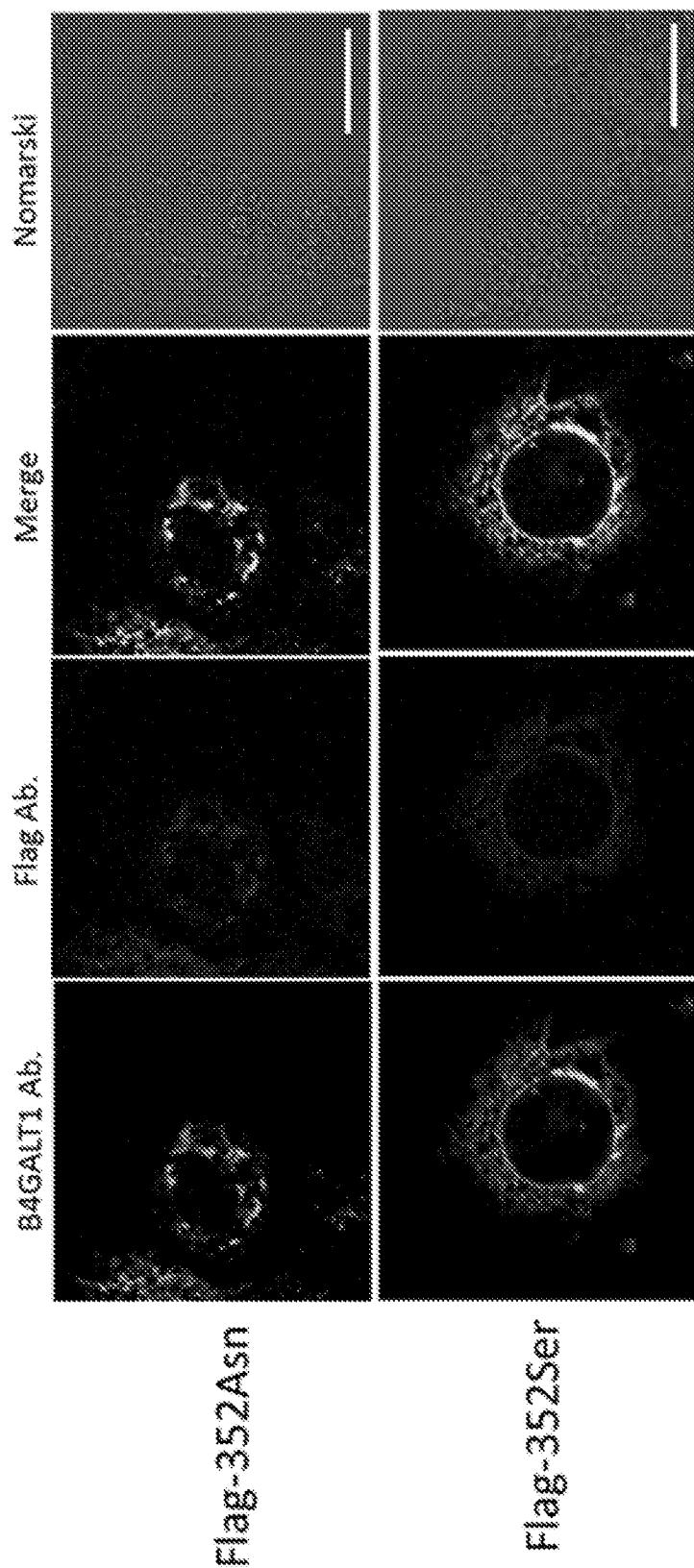


Figure 15

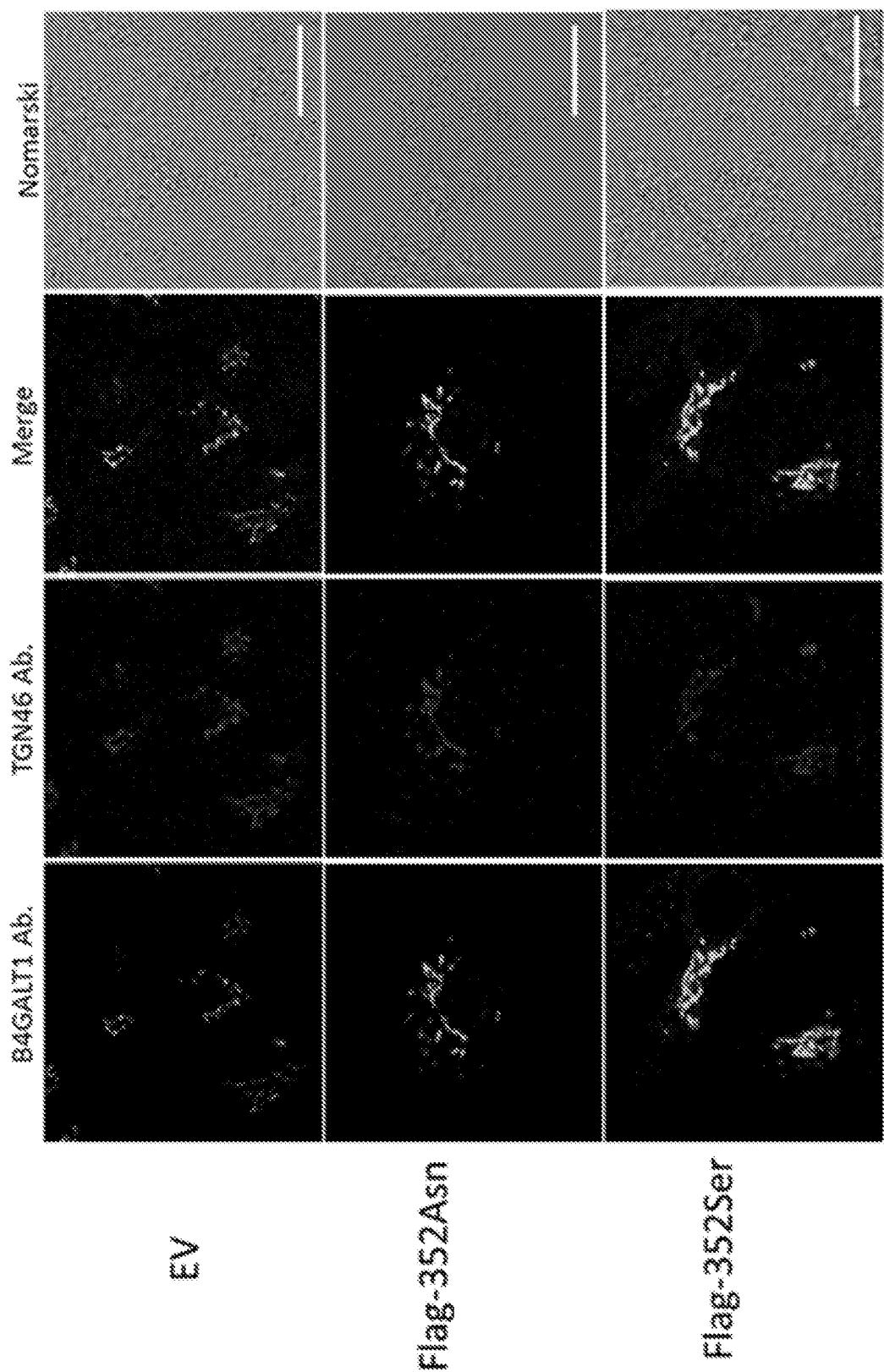


Figure 16

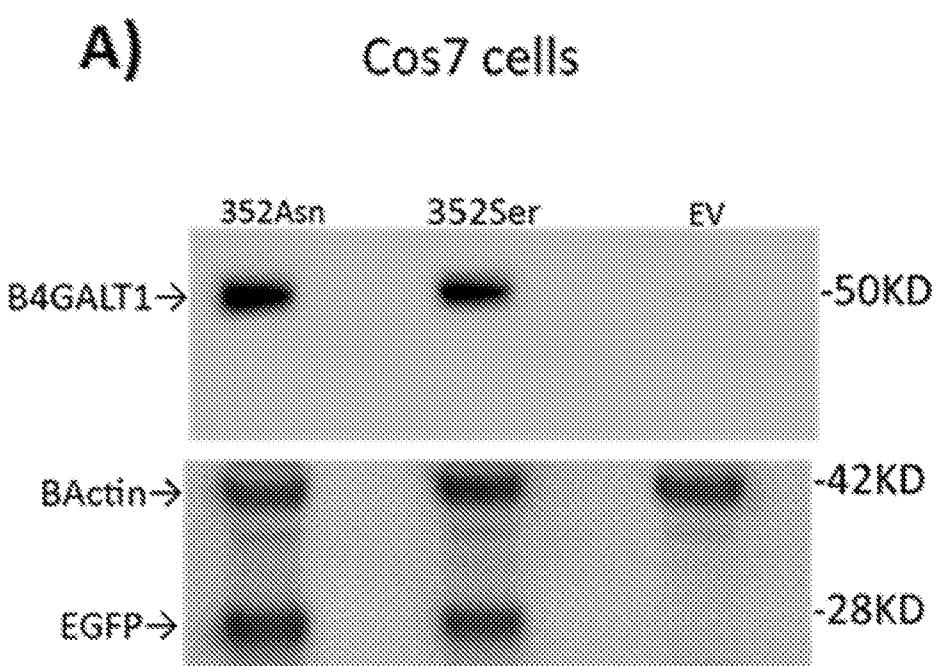


Figure 17

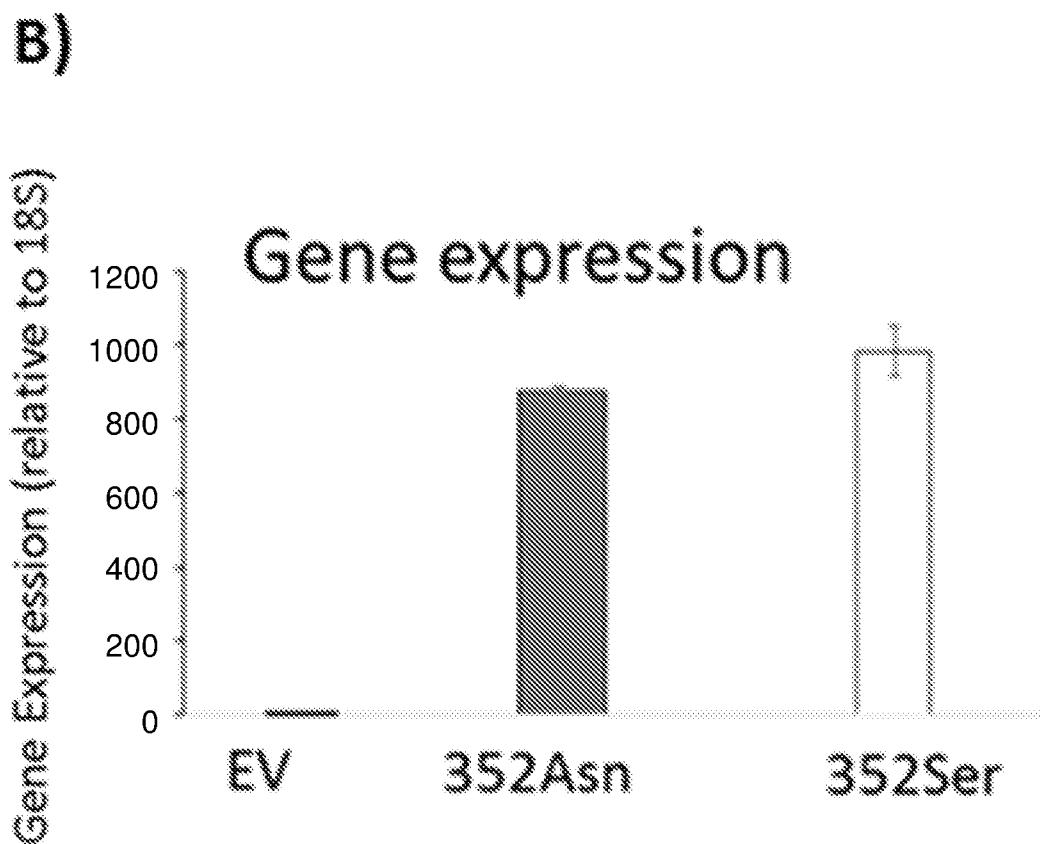
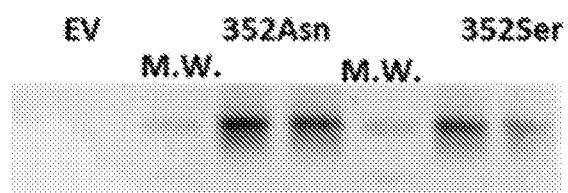


Figure 17 (cont.)



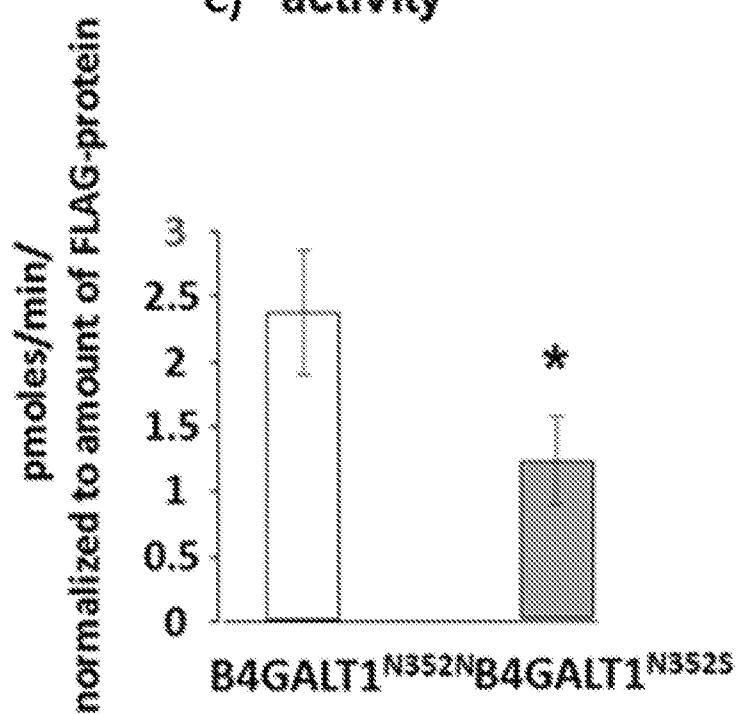

A) B4GALT1 antibody**B) Flag Antibody****C) activity**

Figure 18

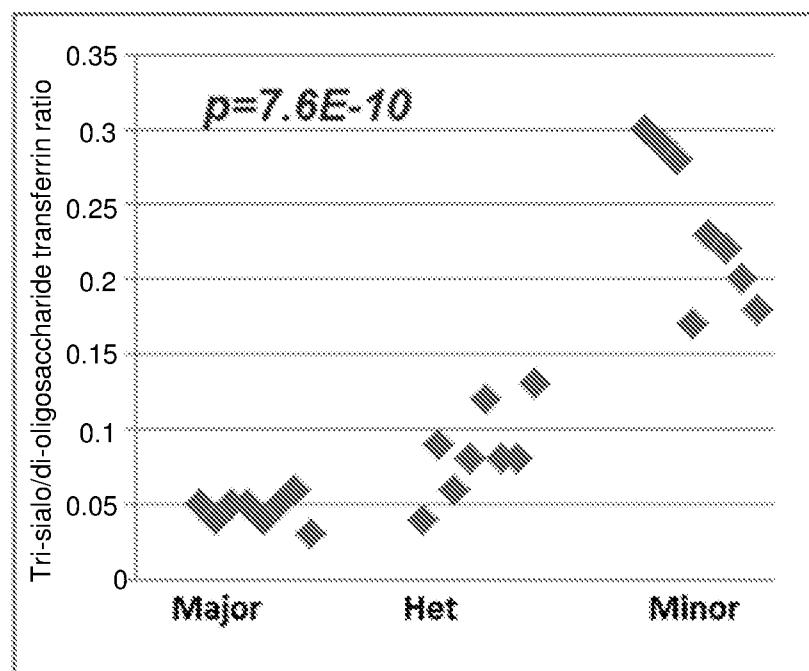


Figure 19

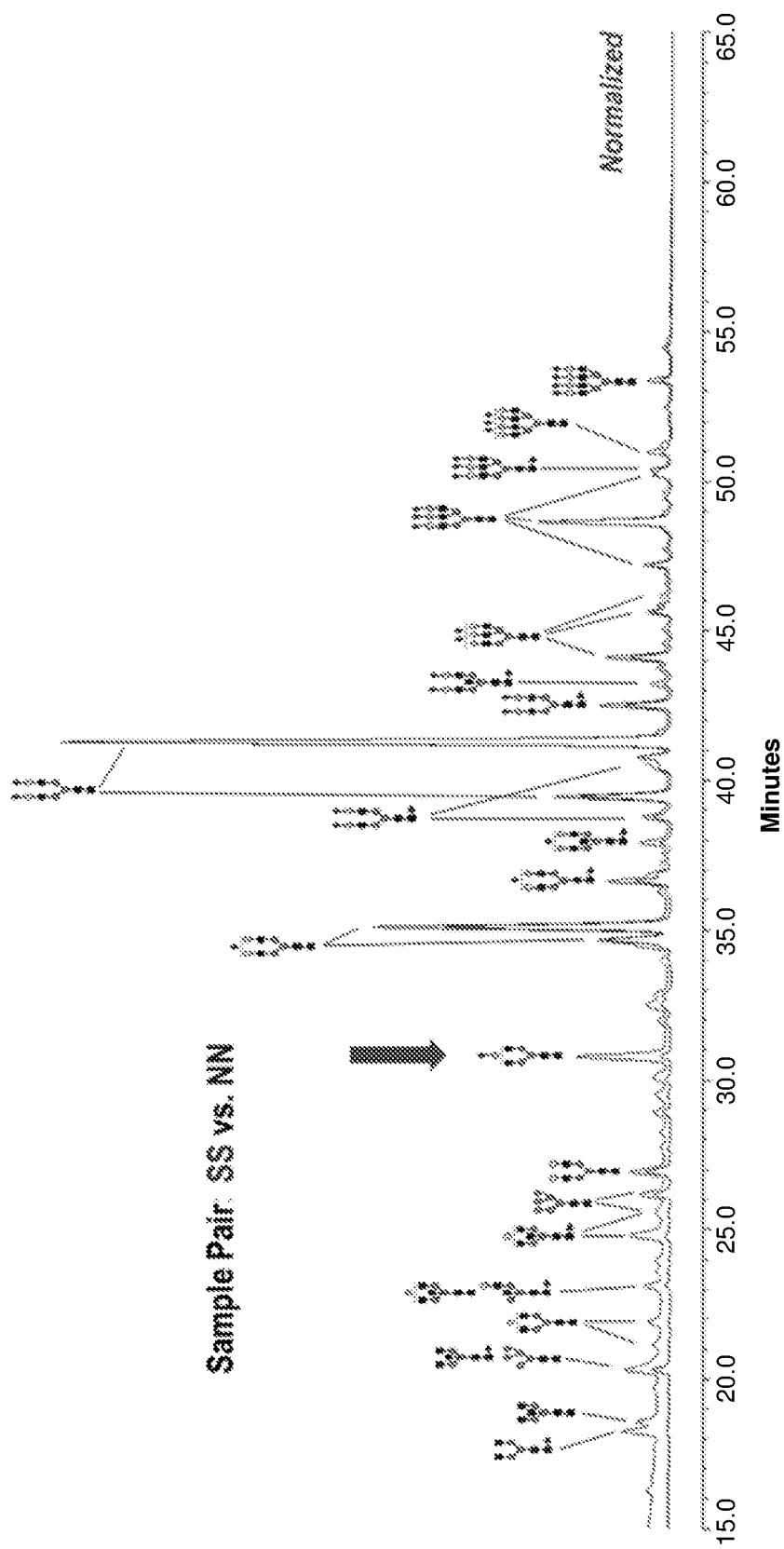


Figure 20

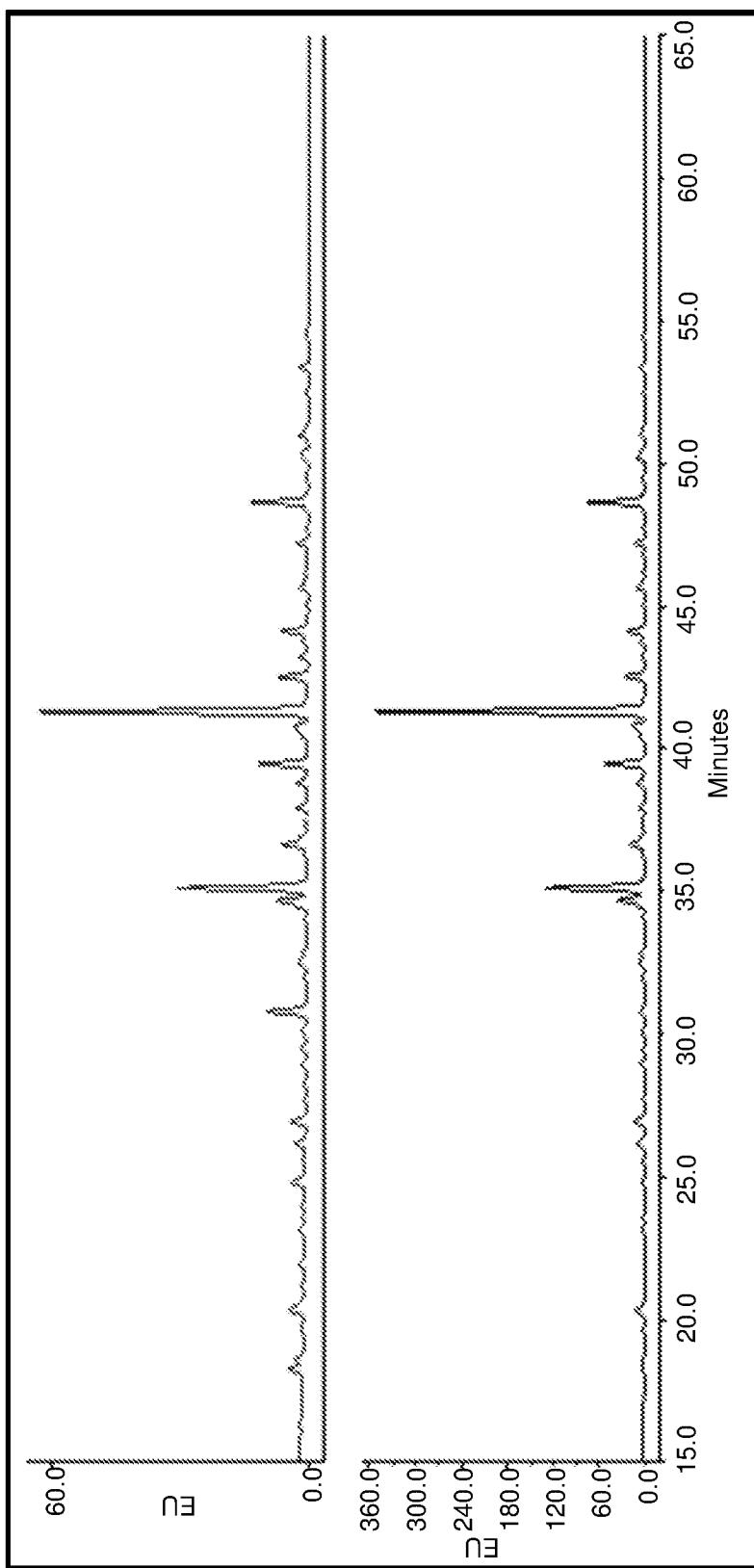


Figure 20 (cont.)

18923800202SEQ.txt
SEQUENCE LISTING

<110> Regeneron Pharmaceuticals, Inc.
University of Maryland, Baltimore

<120> B4GALT1 Variants And Uses Thereof

<130> 189238.00202 (3040) (10351-W001)

<160> 17

<170> PatentIn version 3.5

<210> 1

<211> 56718

<212> DNA

<213> Homo sapien

<220>

<223> wild-type B4GALT1 genomic sequence

<400> 1

gcccctcggg cggcttctcg ccgcctccag gtctggctgg ctggaggagt 50
ctcagctctc agccgctcgc ccgccccccgc tccgggcccct cccctagtcg 100
ccgctgtggg gcagcgcctg gcggggcggcc cgcggggcggg tcgcctcccc 150
tcctgttagcc cacacccttc tttaaagcggc ggcgggaaga tgaggcttcg 200
ggagccgctc ctgagcggca gcgcgcgcgtat gcccaggcgcg tccctacagc 250
gggcctgccc cctgctcggt gccgtctcggt ctctgcaccc tggcgtcacc 300
ctcgtttact acctggctgg ccgcgcacctg agccgcctgc cccaaactggt 350
cggagtctcc acaccgcgtc agggcggctc gaacagtgcc gcgcgcattcg 400
ggcagtcctc cggggagctc cggaccggag gggcccgcc gcgcctccct 450
ctagggcgct cctcccaagcc gcgcgggggt ggcgactcca gcccagtcgt 500
ggattctggc cctggccccc ctagcaactt gacctcggtc ccagtgcggcc 550
acaccaccgc actgtcgctg cccgcctgccc ctgaggagtc cccgctgctt 600
ggtaaggact cgggtcggcg ccagtcggag gattgggacc ccccccggatt 650
tcccccggacag ggtccccccag acattccctc aggctggctc ttctacgaca 700
gccagccctcc ctcttctgga tcagagtttt aaatccaga cagaggcttg 750
ggactggatg ggagagaagg tttgcgaggt gggccctgg ggagtcctgt 800
tggaggcggtg gggccgggac cgcacaggga agtcccggagg cccctctagc 850
cccagaacca gagaaggcct tggagacttc cctgctgtgg cccgaggctc 900
aggaagtttt ggagtttggg tctgcttagg gtttcgagca gccttgcact 950
gagaactctg gtagggaccc ttagtgcgtatcc actccctttt ggggactgac 1000
gtgaggcgtcc cgggtgggaa ggagactgac ctctcggttc acgtgtcttg 1050
ccatagagcc actctcctga gtgggttttt ctcctgatcg tttgggccaa 1100
gtgacttctc tctgaacccctc atatttctct tctggataa taaaatggtca 1150
ccctttcaag gggttgtttt ggaagatatt gtgaacaatg gtaaataagg 1200
gcttaattaa tgagggtaag ccctcagtaa attgtcaactg tgtgttcatt 1250
tcttcctctg tgtggatcgat gaccgagagc cttcccccctt agcctcctcc 1300
tggatgggt accccaaaacc taggtgagca gggatctctc ccagggcag 1350
agagcttgtg tactctgggt gttagaggc taaaatataa ccagtcaaca 1400
ccacgttgcc catttctgggt acttccggta gcagcctgag tctcaattat 1450
cttggccaga tgatctgaac tctgacccctc agcctgtttc agcataggca 1500

18923800202SEQ.txt

gagagcttga gtaggtgagt ttgcattcct catagcagct ggctgagcct 1550
agtctggact tctcttgc ctgtAACCTA caggcccaca ggcccaaggc 1600
aaccacaggt tgcttccagg gttaccacac aggtggttc tcatttctaa 1650
tgcttaggtt tagataattg ttgttaagtga gggccctgg caggcaggat 1700
gacatcctgc caataggagt tttctgtcac tttcccacag agccctggct 1750
actacatact cttgctcaat ttgcCcagta attgcgtcaa tttgttcata 1800
tcaagtttgg gaagaacatc ttgttaattgg tcagacgtga actgtggtaa 1850
taatggggc ttgtttttt aagcagataa ttAAattcct ttgcatttga 1900
tgattattct gggaaagcaga cttagtcccat aaaatgaaat ggactctgcc 1950
ttgctgctaa gtgtctgact tgagacatgc tattcgagtt ctcaaaatct 2000
cttccttgc taaaatgtgg ttgtcgtatga ttaccttaca ggggttttt 2050
taagactaaa tgagatcgtg tacattaaat acaggcactc aggctggca 2100
tggggcgtca cgcctgtat cctagcactt tggggaggctg aggggagtgg 2150
atcacttgag gtttaggagtt tgagaccagc ctggccaaata tggtaaaca 2200
ccatcccatac tctacaaaaa tacaaaaaaag ttagccaggg gtggggcat 2250
cgcaGctact caggaggccg aggaggaga attgctgaa cctggggaggc 2300
agagggttgcg gtgagtcaag attgtgccag tacactccag cctgggcgac 2350
gaagcaagac tgtctaaaaa aaaaaaaaaa aaaaaaaaaata cgggcactca 2400
atacaccgtat taataataat atagtaataa tatttgctta ggtatcttaa 2450
aaagtttcat tttttcagac tcccacagaa atggctctgc acagcagagt 2500
gaagggggag agagactgag tctccaggcc agaaaaaggc cagggttttt 2550
gctttgttt ttagttgttgc cctggatatt gcacagaaag aaaaaataat 2600
tagcaagttttaa aacaaaaagta ccgcAAagttt gattacattt gtagttgagt 2650
atcacatctt ctctcagaag cgtaagagac aaggtcgta ccatacctct 2700
gcttagtttt gttttgtat ggtgttgcta gtgatcggt tgcaccagt 2750
tactgggttt tctaaatggat ctataattgg ctacttggaa ggacttcctg 2800
agaaagaaca ttttggagga cgaggagaga gtgcctctc tattttggct 2850
gctttcatgt gacatgcag agaccatgac gtttaggctg ctgctgggc 2900
agccccagaa atggggggccg agaggtcttt tcttcatttt aatagggtct 2950
gtagggttgg gtgggttagt acagttctca gaatggaggt tcctggctat 3000
gaggccttga gaaagctgaa agtctccctg ggagtgtgt ggtgggggg 3050
gtcgagccca tctgttcatg ggcagggtgtc agccaaagcc cttgggggt 3100
gttttggaggt tgggtggaga aagcatccgt ggggtttaga gttgtggcct 3150
tttcaactact tgcagttctt ttccccactt tggctttact ttctgggtgc 3200
caggggtctg ggccagatgc tgagattcct ctcagctgac aggtgtgggt 3250
tatgggcaaa cccttccctg gaggacataa ggcaccggat tggactgctg 3300
atgggttgct gttggagttg tcagggcctt ggaatagtct tcagatagac 3350
ttgggttagt gtgaccttgg gcaggctgca ggtttggagc catagtaccc 3400
cccgccccca caccggccac cctgctctgg gctaatgtga ggcttgcagg 3450
agtgagtgtat gcagtggaa gggggccctt tcctgaggat tctacagctt 3500
tctccaggga atcctccctg gtagtttagg cctgcagggt ctatgctatc 3550
cttcttcctt aaccctgtct caggtcctca gcggggccat gccggcatcca 3600
cttataaccc tgcagcgagg ccctttttc tggccacctg ggtgttgcc 3650
tgctgagatg ggaggaacag tggccttggg cttcttccc cgtcatgttt 3700
atctctgctc agattggca gcagctcaat gggacttgac cagctgtggc 3750
actgccagtc tgaagatgag tagggtgatg gggggagggtg ggcagtaccc 3800
gaagctgaac tggtgagaga ggcaggctgg cctggggct cagctggggc 3850
ctgggatggt tggtagatgc ccctcagggg ggttagggag tgagtgttag 3900
actgcttaag cctcagagggc cgctcttgcc cacctatgct ttgaggagat 3950
cctcttcatt tggtaaagg gaagactctg atctagagat gggcacttgg 4000
accagcaaac agcagctaca ggtagccagg gcacccgagg agcacttgct 4050
catgagccgg tttccctggg ttttatgggg gctgttgctg agcgtctgcc 4100

18923800202SEQ.txt

agggtttgtg tcctagcaact tgctggctt tgctgggctc tcagctctca 4150
ggtgtttctc taccagcacg tttccccctc cctcatatgc acacatgtgg 4200
acacaagcag gctgcccagg acagagtgt a ctttggggct tgggaaagga 4250
ctctctctcg ccctttggg gatgagcctt ggaacctcat caccttccgg 4300
cttggggctgg agcttcatcc tgggggttga agctttaggc tcagataact 4350
agtcttgtaa gccagtttgc tcctgttgc ttttctgtt aaaaataatgt 4400
attgacgtat acacagacat tctttgtcta acagtctgag attgagaaat 4450
accctccatg actatgggt ttgccttcat ggtgaaactt ggtcgcttc 4500
ttagacacag cctatggcaa taagagtgtat ccctggctgc tctaattcat 4550
tccagacttt gagcaaacac aaggcaccgc ctccacactc agtggagcct 4600
ctgatgaacc aaatggaaac tccttgggaa atggggagta agagccaaat 4650
gtgggattgg acttaaactg cagcttcttta gaactgttagc attccacgt 4700
gggattgtct agtgctctc ctggaggtta ctattcaata gttggctagt 4750
gcacagggttc aggggtgacc tgatatgccc tagcgttca gaagatccct 4800
gcaaggtgtg tctttggc catctgaagg gtcttgatg gtgatcttgc 4850
atggatattcc gtgacggcta aggcatctga taacttcatt ccttcagttc 4900
cagcagtgtt cctgtattat gctggcact agagctacaa agaagaaaac 4950
aaagtgcctc ctcttcagga actcttaatt taggcagggg aggataatt 5000
gaacagtgct gaggtcatct agggaaacca aagtgtgtat ttatcccctt 5050
ccctatcaact cccctccctc ctccatatttct tcctttctt tttcagaaac 5100
tccaagttca tatcaaattt ctccagccct gggttattt ggttgtgtga 5150
aaatttcct ctaatttctg aagctatgca ttagttctgc ttagtaatct 5200
ttaacttgct gctttataat gattataatg agatattcact gggatttatg 5250
gtcttgggt agcagcaggg tagggatttc caggctgggaa ctaagctaat 5300
ttatgggtt ggaattatgg ggcagttat agcaaggcag tccaagcttt 5350
ccacagattc cacccttaggg accatccaga cttaaggaac agggccggca 5400
ggctcatccc ctgcactc agctggctt tgggtgtgt tttgtgaaag 5450
aggtttattc agtagtcata cctgctgatt tccctgctat ctgtttaccc 5500
agtgcctcct gtaccttgc tcttactctt ttttctctgc tcttactatg 5550
aagaagcaga gactggattt ctgcatttgc acatcttac ctggaaattt 5600
cagttttct tgcattttgc agcagcaatc cagttttttt aggacaaatg 5650
gtctgcctt gaagctaaa tccttgggaa gcctggcatg gtgacagttt 5700
tacatttggc tttggatattt actgggtgtt tccctgggca gtgaggtcac 5750
tgtaaggcca gccagccaga ccctggctcc tagggaaattt aacaaggcat 5800
gggatttagac tcacagggtc cctcctgtcc cttaacttgg taggggttcc 5850
tgggagccag actgcgatattt agattgttgc gacctgagac ctgagttgt 5900
ggggctctg tggatcttgc ggccatttgc gggtagctg aggccgtcac 5950
tagctcaagg agtgcatttgc ggatattttt ctgttgc ttagacacttca 6000
ggttggagag tggggcttgc ggggggggaa cagggttttag tggggagctg 6050
gttctgggtt aatgtggctt aaagggtttt gtccttagaa gacagagggg 6100
tgagtcacac actcagtgtc tcaggttcca ctttgggttgc tggcctcagc 6150
ccgccccttc cctgcacaaa tgaaggccag gggctatata attggctttt 6200
gctgaattct ttggcatttttgc ttttttttttgc ttttttttttgc 6250
gctgcttctc tatccactcc ccacacccgc tgcttcttca gagccctca 6300
caaagcccag gcagagagag agagagagag agagagaatg acttgcctca 6350
cagagatgtt gggataggg ataggggtat gggtcttgc ttttgccttt 6400
tgagggggaa taatcttttgc ctccatatttgc aaagtttttttgc ttttttttttgc 6450
ctcatttttttgc aatatttttttgc aagtttttttgc agatatttttttgc ttttttttttgc 6500
attcctatca cccaaaagaa acataccggc atatttttgc ttttttttttgc 6550
tcatgtttaa gaatataatgtt gatatttttttgc ttttttttttgc 6600
acagggttttt tgctctgtca cccaggctgg agtgcagtgtca tcacggctca 6650
ctgcagcctc gacctctcg gcttaagcgtat tctccactt cagtctcccg 6700

18923800202SEQ.txt

agtggcagg accacaggtg cacaccgcca tgcctgacta atttttgtat 6750
ttttttaga gatggggttt tgccatgtt cctaggctgg tctcgaactc 6800
cagagctcaa gtgattcacc tgcctggcc tcccaaagcg ctgggattat 6850
aggtgtcagt caccacaccc agtgttata gctgtgtt tatagatgaa 6900
cagatagatt gacatagatt catgtagata gcctgggtt cagcatttt 6950
catttaagat tctgtcacag acttgaccct ataccttta aatcacaaa 7000
ggcagtatca tagtctgtca gctgaatatg ccataactt aaaaaatcat 7050
tcaactgtt ctgaacacac acatatacat atatagttt tggtttttct 7100
tagtgatgta gtgatgctt tgcaagaaagc tttatgtact tttggatgg 7150
tttctgttagg agagctttct aaaaaaggaa aaaaagtgtt gaatgtttt 7200
tgagaaggc tagattttca agccagtctt acaaaaggat agactcattg 7250
gaaattccag atttgcttag tgctggcaga tgagtatcac ttattgctga 7300
acaatgtgtc tagaattctg attaaaaaag aaacttaggtc caggaagtgc 7350
ctggggcag gggcaaaggg ccaggctgca ggataggctc ttaggatctg 7400
gctgaggcaga aatctgctgt gaacagaatc ggtgggggtg atgcttctc 7450
agtaacttct ccatttgttt cttagcagc taagtccctg tgctggactt 7500
ctgtggacta ctgtggctct ggggctgtgg ttgtgggtga acaacagcta 7550
gctaaaccag tgctgttgac atcattgaga tgtgacgcac aggaagggtg 7600
gagcaagctt gcaaattcaga ttctgaaaca tatagcacag ctctcccacc 7650
tccaggtggt cctgagatct agggaggagc catagtgaga aacttttaggt 7700
ttcttaggaat tctcttaggg agaagctctc tttagggagag gcagaacctg 7750
gttctcagtt gggctgattt caggtgggtt agatcaataa agcctcaggc 7800
cagtgtccca ggcatttccc aaggagtata cttagtggatt actcccttta 7850
gaatgtcctc agtggagata aattctctc gaggagcagt ttgtctgcc 7900
ggggtcattt ggcacaaagc ctggagtgtc agggcggaggt tgcaactgagg 7950
gaagggcag gattatgtca gcagtgtgac ggatacagtg tgaggtcagg 8000
ctccttcctg ccccaccacg ggggcctaga ggtcatgggg agggtccctg 8050
gcaggggatt caatcattgc ttggcccat gacagagttt attctaaaaa 8100
tgccttaagt tttttctt caaagtttct tcctgtttt cataatggcc 8150
tttgcctt gacatcctga aaccgcagag ctgtcattgg ttttgcagga 8200
caactgcacg ttaaaaaaaaa tcaacaacaa aaaaagaaac agggaaaggat 8250
gtggagttca gggtgcggcc tagggaaagct ggtatggcg ttatggatt 8300
gtggggatgt ggtattaaagg ttgtgggtag cgcctgacat ttagaggagt 8350
actctggca gagtccctgc ctgcccaga ataggtagaa ttgagtcttc 8400
acaccaaagt caggagagac cccctccccc caggaagaga atgaacaggg 8450
actcatttcc tcattcagca aactttatt ggttaactaca ctatatgaag 8500
tgtgagagat agacatgaac aagagaggcc cccactcttgc ggcagtcct 8550
tagtagtagt agatagactc tggcaatatg gtgtggtcag agagaggaag 8600
cctgggtgct ttgagggtac tgaggaggtg cagggagccca aatgggttgt 8650
ctggccagg gccagagtca gaatgaagga cctctcttcc agacgttgc 8700
tttagcatct ctgtctctca gtatgttgc acagtctccc ttattggaaag 8750
ggcaggagtc tactgctaaa agtaacctgc gatttcctt acttgctgc 8800
atgtggaaag aatactaaag ctgaaattcc aaaagttca cacccttacc 8850
agcagggcag gagaggaaag gaaatggagg cagagtggc tgaagatgat 8900
aaaagaaaga gaaggtgggt cagttggac ttgtatggac agaggaagtc 8950
tgagggtagc tgactgagg gatcaaagg aggcaaggta aagggaaagag 9000
agctgcagag agggatttct tggctgcag aggtaggag caagccttgc 9050
aggctgctgg agtgaggatt ccgagccctg gtctttattc ttttctaat 9100
tcattacatc atttttaggc agtccataact cctttggct ctgttgcctt 9150
tctgaaattt gagtggctg ggcctgctgg tcttttagcct ctgtcttct 9200
ctacctccta gattccagtt tggcgagtgg gggggaaaac ctggttgtat 9250
atgcaacgtg aaaggcctctt ggaattccctt ttgaagctca ctacccatga 9300

18923800202SEQ.txt

ggcttctgct aaggattca tcatgtctgt ctaagcagac ataaaaattt 9350
tagcaggtgg atgacccgta gaaatggcac aaggaatgtt tccttctgtc 9400
acactgtggt atttgattta agaaaagttgt tattcctctt gtgcctcagt 9450
gttctcactt gtaaaaatggc aataacagta tccacccat agatgtttag 9500
aaatacaggt agtagccacg aaagggctta aaacagtgcc taacacagaa 9550
taagttgtga atatatgtta tttattattt gtagtataat gcttattttgt 9600
gaagattttg gcttttgcct tataggacct ttttttttt tagttgaaaa 9650
tacaatgtta ccatgttaaa tggtaaaaaaa aattctactt accattgtaa 9700
cagaacatgc tcccacttct gtaacagagc ttgctattac ttttcaaattg 9750
catacatatt ccaatgcata tattccaatg cagttgtaga gtgaaactgt 9800
ttgcatgcag ccatttttat ccaacattat cttataaaaat gttatgttgt 9850
ttatgattat cctaattatc ttttggct gtctagtagt cttatagata 9900
ttccatttagc atacactatt ccaggtttca ctatcgtcga taatctagat 9950
atgaacattt ttgttagtgg tagcttttgc cttcaggtaa attactttcc 10000
tgggataaaat tcctggggaa gaatttctag gccagaggat atggtcattct 10050
tgacaatact gattcacatt gctgcattgc tttccaaagag gtttggaaatc 10100
attcacaggt tctaaatttg aaaaatccgg cttttgaagt atgtggattc 10150
taagggcgat ttggatctag ctggagccctc acactgacac ttccagccag 10200
tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgttagt tccctatgct 10250
ggacaccgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgttagttc 10300
cctatgctgg acaccatgtg gcctttctgg acattagggt tttcctgtga 10350
ttgcctcaga gcagttcctg ttgaattcac tctgtgtcca caaaaggagc 10400
cttactgtgg ctcttcaac acccacctac ctttgc当地 ag ttggtttaca 10450
gaaagtaaga acattcttc ctcttc当地t gatatgtggc gctaaaccta 10500
tagcatgggg caggctctgg cttaaaaac ctgacttaaa aataatggtg 10550
ttgatcaaaa agtttggta tcagttttt gaaacactgc atgttagccat 10600
ccatagaaac ttatattctg ttggcttagc ctggggccct gatcatttaa 10650
ctcatgtgga tgaacttcta tgtaatagcc ctgggtgtatg ggatccagaa 10700
acagggccct aatgaagaaa ggctttaaa ttatgtggta taaaaataag 10750
ttgttacaat agcccaaagt ctgcaaatat gaattgccag ttctgtc当地t 10800
gtagtc当地cc accatgtgcc tc当地tctttt gtagactctt gtagattcag 10850
aagcccactg aattgcataa atgatggaaat gattttagac tttagtattt 10900
cagtactaa aagtttacag atcctggccg ggcacagtgg ctcacacccg 10950
tattcccagc actttgggg gccgagggtgg gtggatcacc tgaggcagg 11000
agtttggagac cagcctggcc aacatggtaa aaccttgc当地t ctactaaaaa 11050
tacaaaaattt agccgggtgt ggtggcatgc acctgtgtc ccagctactt 11100
gggaggc当地t ggtggggagaa tggcttgaac ctggggccg gaggttgcag 11150
tgagcccaca tcaggccact gcactccagc ctgggtgaca gagtgagact 11200
ctgtctccac ctccccccccc cccggaaaaaaa aaaaaaagtt tacagatcca 11250
gcagatgggg catattcaat ttgtgacagc cactccctt accttatacg 11300
tatgtc当地at gtcttcttctt ccttgc当地t cattctgc当地t cagtc当地ttt 11350
tgacttaata tggcactctg ggcccactga attaggtcag agctgcttagt 11400
agtatattgt tccttagagac cttagggcaag attttcttac tacataaaaat 11450
gagggagata atttcttacc tcaagatgtt ggttaagagga gtgaatgagg 11500
ttagttatat ggttaatatca gtactctgaa tggcttttgc tcaatgc当地t 11550
actcatcttcc ttggccacaa aaggcataca gtcagcaccctt tagggccaca 11600
tataaaaattt ctccaaatgc agttttcat ctgc当地tggg gcagagtcaa 11650
gagaagaag aggaagagggc gtgaggctct gaccacaact tagggacaga 11700
atataggccca aagcgagttac cccaggccac aaggagaagg cc当地tatttt 11750
gttgaatccca cagcactgga aacttggagt gtgtgttccc ctgtgtc当地t 11800
tacactggaa ttttatggct gctcacattt ttcccttgc gtggacgttgc 11850
ttcatcagta tcctggccaa gaggccatca taaaccacag acagctgagtt 11900

18923800202SEQ.txt

gattaggaag aggagctgaa gagggagcat tagattttg attgagtctt 11950
aggtgagaaa gtatatcatt aaaacaaaaa gatagatgt agcgggctca 12000
gtcttgtgtg cctgggtgt tggtagaaaa actaaagcac aagcctgtag 12050
ataacctgct ttattctacc tcggggctgg tggatc caggatgcc 12100
gaccctaaag tccagcttc tttcaacact actgaataat ccgagagaaa 12150
tcatgttctc tctctggcc tcagttgcc catgtataaa atgagatgaa 12200
ggattggctg ggatgcttc cagagtctc tcctgcctgg agttctgacg 12250
tagccatgt a ctcctgctca gcatcgctaa atggcttgc ggtaggacca 12300
ttgagtgctg cctccattag ggcagctat gtaatgtgg ggtggctgtc 12350
actggccct aagagccagg attggctta ctggagaaat ccacatccac 12400
ctaaacttaa gacccaggg tggccatct tttggcttc ccaggccaca 12450
ctggagaag aattgtctt gaccgcatat aaaatacact aattatagcc 12500
gatgaggtt aaaaaaaaaa actcaatatt ttaagagagt tcatgaattt 12550
gtgttgagct gcattcaag ccatcctggc cgcatgtggc ccatgggcca 12600
tcggttggac atgcttgctt tagacctccc agcaattcta gtctctaaac 12650
aggaaatcaa aagtcaagat gaatagataa gttggtcagt gtggaaaagt 12700
aattggtggg agccactgta gatgcagggt tctaggctcc atcaacaacc 12750
acctacatca ctgaacgaaa gataatgctt gttcagcact tattacatgc 12800
caaccatggt aaaaatactt cagatgcatt gtttcatga actctcacag 12850
cagctcttt tcttgcctaa atgccccgtt agaacctcca gtacaatgtt 12900
aaatagatat gctaagagac aacatatgtg tcttggtagg gggaaaatat 12950
ccagtcctt gactttaaga atgggtttag cagtgggtt ttcctaggtg 13000
cccttatca gggtgagaa gttcccttctt attcctgggtt tggtaggtat 13050
ttttatcatg aaaagggtat ggggttgc taaatgtttt ctgtgtctgt 13100
tgagatgatc atgtttttt gtcatttatt ctattgatat ggtatattat 13150
acattgattt ttcagatatt aatcttgcatt acctgggata aatcccactt 13200
ggcatggtg tataattttt tttatgtt gctggattga gtttgcgt 13250
atttgttga tttgtattca taacagatag tggctgttag tctttccctc 13300
cctccctccc tccctccctc cctcccttcc ttccctccctc tctctctc 13350
tctcccccct cccctccctt ctttccctt cctcccccctt cccctccctt 13400
ttcttcctt tcatagttt ttaccactgt cagaaaagggt ctgttcgtt 13450
tcttcgtcg tgagatctt gttgggttt ggtatcaggg taataactgccc 13500
tcaaaaaatg agtagggaaag tggcccttcc tcttctgtat tttgagagag 13550
tttgggtcg gtttttattt attttctttt aaatatctgg tagcgttac 13600
cagtaaagcc atctggccct gatgtttctt ttgtggaaaa ctttttgatt 13650
cctaattcag tttctggta taggtctatt cagacccctt atttttctt 13700
aagttagttt tgatagttt tggcccttccaa ggagtttgc tcatctaagt 13750
catctaattt gttggcatac atttcatagt gattcctt gatcctttt 13800
atttccgtta aagttgggtt agggatagtc ccttttcat tactgattat 13850
aataattga atttctttt ttcttagtc ttgcctt cttgtcattt 13900
ttattgatct tttcagagga ccaacttgc gttcatttatt tttctctttt 13950
gttcttattt ttctgttca ttaacttctc taatctttt tctttcattt 14000
tgcttgcattt tggtaagtt tgcttttctt ggtgtctt ggttagaagg 14050
taggttactg attttagatt taaagatcat gctctttaaa ctttttgata 14100
gatactgtca gtttgccttc tggcttttcc tcattaaacag tttataggag 14150
tgcttattcc tcacactcat accagccctg ggtgttacta acctttat 14200
atttgccagt atcatattca gacatagttt ctgtttttaa tatgtttctc 14250
tgattactga tgaagttaa caaatttca cgtgttttatt ggccatctgt 14300
ctttctttt tcatccttcc tttcaagatg ggagtcttgc ccatgttgc 14350
caggctggac tcgaactcctt gggctcaat gatcttgc tggcccttc 14400
ctgagtagct gggactatag gcgtgagcca ccatggctgg cttgcccatt 14450
tgtatttctt atgtgagttt tttttttttt tttttgaagt ggagtctcac 14500

18923800202SEQ.txt

tccatcccc agagtggagt gcagttgtcc gatctggct cactgcaacc 14550
accgcctccc aggttcaagt gattctcaca ccttagcctc ccaagtatct 14600
gggactatag gtgtgtgccca ccacacctgg ctaatatttgc tatttttagc 14650
agagatgggg tttcaccatg ttggccaggc tggtttcaaa ctggcctcaa 14700
gtgatttcacc tgcctcgccc tcccaaagtgc ctgggattac aggtgtgagc 14750
cactgtgccc agctgacttt tttttcttt ttttaaccc ttttttttt 14800
ttaccctttt tttggcccat tttttttac ctttttctt ttaacccatt 14850
tttctattag ttttaaaaat atgtttgcag gagctttta tattgtggat 14900
ttttctgtt tattacatat cattgtaaa tatggctct ccatctgtca 14950
ctcttcctta tctctgggtt cttagctat gtagaagttt ttatgtttag 15000
ttatgtttag ttatgtttag ttatgtttag ttatgtttag ttatgttatt 15050
ttttggagag ggagtctgc tctgtcgccc aggctggagt gcagtggta 15100
aatctcggtt cactgcaacc tctgcctcct gggttcaagc gattctcctg 15150
cctcagcttc ccgagaagct gtgattacag gcacccgcca ccacacccag 15200
ctaatttttgc tgtttttaga gagacggggt ttcactatgt aggtcaagct 15250
gatctcaaacc tcctgatctc aaatgatcct cccaaagtgc tggggttaca 15300
ggcgtgagcc actgcactcg gccagaagtt ttgaattttt atgtgtttaa 15350
atctatgttt tcctttatga cttcaggttg ctttcataact taagcaggtc 15400
ttcaccatcc caaaatgata aaattttct cctgagttt cttctaaatgtt 15450
ggttcttttag aagccaccaa cttggcttcg acagaaaaag atgaacagaa 15500
tttctgttca actctcatgc tgcaagaagc tttatgttaat actccaggga 15550
ccctttaagg tcccagagtt ttccctccaaa tctatcagtg attctagtgg 15600
ctaagagtag aaatgtgaaa atttagccat gtgtgctgat agagctgttag 15650
taatttgtaa gctctgaagt tctaaggagt cagggagaa gggaaagtaa 15700
catttattga acatctatta gctcaataag aacatgcgt aagtatgtat 15750
atgtattatt tcacttacat ctgaaaggaa ggcataatta tccccactcc 15800
ttagagaagg aaattggagc tggctacatt taaagttagtc ctgacaccag 15850
agagatattg ccaggagttac ttggctggct gagtgcccg atggcccata 15900
ggagtagtgg gccctccaca gtccaaggc tggttctagg tggagagaga 15950
aggatgtgct cgtagtcgc accgcagctc cagaaaatct gctggggctc 16000
caaaactgtat tagagggca gctgactcag taataaaaact cccaggagac 16050
ttacttacat actggaatgc aaagttgcag ctttactggg aagattagaa 16100
ctgttattga gtagcttaga aatctctggc tgaatttact gcaagggaaag 16150
ccgcaggata agctaactgc tggtgagtca gcagtcagag cagggaaagtg 16200
aatttaacat tagatgggtc agtctctcggt ggctgatgaa ttcatcccc 16250
caatactgtat cacctgcctt agggaccttt gtctggacta ggggttgggg 16300
tccccctcct ttgtacagcc ctgaaaggac acatccagct ccatccgcca 16350
tctctccctt acttatttcc ttcccttcctt ctttcttcc atccagccat 16400
caagttcctt ttcatggcca ataatcatca ttggggctta ctcatggact 16450
ctcttgcctc atgtatttgc tttatgttgc ctcatttccc acttctattt 16500
cccaggtata tcacaggca ctattctaac gtatttataat tttgtgtatc 16550
tgttttgct cttgccaataa tggaagccac tgctttataat atagatgtat 16600
tcttaacttt aaaaaaaaaatt ttttagatt aacctacaat aaaattggct 16650
ttttggcata tagtctataa atttaacac atacatattt ttgtgtatct 16700
accaccacaa tcaggataca gaacagttcc atcaccacaa aaaaatccct 16750
ctttagtca cattctcctc ccacccctaa tcccaggca ccactgatct 16800
attcttcatt actattgttt tgccttttttgc aggatgtcactc ataaatggag 16850
tcacacagta tatatacatt ttttaaaaca tatgttaatgc cattttata 16900
gctcatttttgc attatatgtt ttcatccag ttctgtttt tttttttatt 16950
tttaaaaaatgttgcataac ttcatggacta cagaaaagttt gtttagactaa 17000
tacaaagaat tcctggatataat cctttggagtt ccctaaatgtt taacatttt 17050
ctatatttac tttttccctt ctcctctc tctctctcgcc tctgtgtgt 17100

18923800202SEQ.txt

tgtgtgtgtg tgtgtgtgtg tgtgtatcta cctgtagata gatagatatt 17150
aatataattt tagatagatg tattctagatc tctctctc atatatatgt 17200
gtgtgtgtat atatctatat ctatatctat atatatctcc ttttaccctt 17250
aaatattcag tgtatatttc ctaacaacaa ggtgatttaa aaatatata 17300
ataaaacatag tataattaac aatcaggaca tcaacattga aacatttctg 17350
ctatgtcatc tacaggcctt aggaagactt tgtcaggtgc cccaataata 17400
gccttgatgg tagaagaaaa ccatgtgtt tattcagtt tcatgtctc 17450
tagtgtctt taatctgaaa taattcccaa gcccttgga tttcatgaca 17500
gtgacattgt tgaagagta agggcagttt tttttagaa ggtctctcag 17550
tttaggtctg tctgatgtt cctcctgatc agattcaggt tattcactt 17600
tgacaggaat accactgaaa ttagtgcgat ttcttcag tgtaacgaga 17650
tctagagaca cacactgtca gtttggcct tattggcagt gtgaacctt 17700
aggatttcat tgttagtgca tttggcatta ctccattata gttactattt 17750
taccattta aattaaaact atctggccgg gcgttagtagc tcatgtctgt 17800
aatcccagca ctttaggagg ctgaggcggg caaattgcct gaggtcagaa 17850
gtttgaaacc atccttagcca acataacatg gtgaaacgcc atctctataa 17900
aaaataaaaaaa aaatttagcct ggcgtggtgg cgcatggta gtccagcta 17950
ctcaggaggc tgaggcacaa ggcttgctt agcctggag gcggaggtt 18000
cagtgagctg aaatcacgcc actgcactt agccagggtg acagagttag 18050
actctgtctc aaaaaaaaaa agtaaataaaa taaaaaaaaatt ttttaagtat 18100
cttatggca tatacttgc tctttactcc tcaaacttcc atccactttt 18150
tttttttaa atttttttc ttaccttca tcgtttctt gatatccact 18200
gggttttagc atctacaaat gattcttgc tgaatcagtt attatggtag 18250
ttgatggttt tctaattcca ttattccctt tattttttttt aattttggca 18300
ttcttctata aggaagagct taccctttt cccttataat taattcatat 18350
attaatgcag acctatgcat tcttacttca ttaaatcata atcctttact 18400
atcattatgt attctgtatgt tcagactatc ccagatttag ccaataagat 18450
ccccttcagg ggaatggctt ttgggattcc tcttttaggg ttcctgggtt 18500
ctgtttctt ttgacatatc ctattactt ttgagcattt tttttttttt 18550
ttttactttt aggcacagca agaagttcca tggccctt gttttttccc 18600
caactcagcc ctagagtcag tcacttctcc aatgagctt agttcccttt 18650
agtagagaat cataattaga aaacaagaat cagtgccaaag tttgcaccc 18700
tgtttttaag gtccatccac gttggcgtgt atatgtccag catgttgatt 18750
ctaactgctg aataataacct catgattgtc atccatccca gtgtttctt 18800
ttcccttctg taatgagggc ctcctggact gcctccagca ttaccttcac 18850
aaatattgct gtgaggaaaa tccttaaacg tttcctttaat gggcaacgtg 18900
tgagcatgtt tatgttattt caggggtgcc agacacagct ccagaatggc 18950
tgcctcagtt tacatttcca ccagcagagc atgacaggct ctgtgtctcc 19000
gtgaataatc agcattaacc agcttcctat ttttgcctt actaatagat 19050
gtgctaggat aactctttgt ttttacttgc ttttcttgc ttaccaatga 19100
gctggagcat ttcttcatat gcctgatggc ttttggatt cctcttaggt 19150
aaattgctta ttcattataa tcctttgcct gtttttcaat ggagttctta 19200
tattttctt gaagatatgc aggaattccct tatacatcct agatattaaat 19250
cccttcctgg tctcagacat tgcagatatc ttctgaatct gttatattact 19300
tattttattta caattttttt tttttagagtt ggggtttgc tctgtcaccc 19350
agactggagt gcagtggtat gatcatgact cattgtggcc tcgcaatccc 19400
gggcttaagc gatcctccca cctcagcctc ctgagtagtt gggactacag 19450
gtatgcacca ccagacttgg ctaattttat ttttattttt agagatggaa 19500
gtcttaatat gttgctcagg ccaatcttgc actcctggcc tcaagcaatc 19550
tttccacctc agcctcctgc atctattata tatatgttca ctttgctcat 19600
gctgtatttt gttgcaacat aaaactattt ttcccattgt tttgtgcagt 19650
ctctcaccag cactcttctt tttctgttaac tttgttaatg ccctttgttc 19700

18923800202SEQ.txt

ttccatatgt taggtatgct ggtatagtt aactctgctg actctcctca 19750
gtaaacagtc tcttttatg acaccttatac ctctactgaa ttctctctat 19800
caagaatgac ttggccgggc atgggggctc atgcctgtaa tcccagcatt 19850
ctgggaggcc gaggtggca gatcacccga ggtcagaagt tcaagaccag 19900
cccggccaac acggtaaac cctgtctcta taaaataca aaaatcagct 19950
ggcggtggtg gcaggtgcct gtaatcccag ctacttggga ggctgaggcg 20000
ggagaatcac ttgaacctga gggggaggtt gcagtaagcc gggatggcac 20050
attgcactcc agactgggtg atggagaaac tccatctcag gggaaaaaaa 20100
aaaaaaaaaa aaagaatgac ttgtcttcct cttagagtgt gaggtctaca 20150
tacaatattt attcttgat tcagcaaatg tatgtcatag gcctagtgtg 20200
tgttaggaac tgtgctgtca ccaacaaagt ttagagaggt tataaaaactt 20250
gactgtagct ttttagaggt ggaggagtga ttgaaacct aggctgtaat 20300
tccttcctcc tgtgattcct tcctactgtg ttgccttccc ttgaaaattt 20350
catttgggg ccaggtgtgg tggctctcgc ctgtaatccc agcactttgg 20400
gaggctgagg cgggtggatc acctgaggtc aggagttcaa gaccagcctg 20450
gccaaacatgg cggaaaccccg tctttactaa aaataaaaaa attagctgga 20500
tgtgggtgt ggtgacatgc acctatattc ccaggtactc agtaggctga 20550
ggcaagagaa tcacttgaac ccaggaggca gaggctgcag tgagctgaaa 20600
ttgcaccact gcactccagc ctgagtgaca gagtgagact ctgtctcaaa 20650
aaaaaaaaaa agaaaagaaa gaaaattgca tttagttcct gtagactgtg 20700
tgtcaaatgt ctaaatctt tctaacaat ggcctaagga ggtgcaaagc 20750
gaagcatcct caccagcatc ctgacttggc agtgaggcat gggaccctgg 20800
agggagtagt ggtaagtgtg actctggaat tttccttggg ctacttgtca 20850
gtgactggct ccagatttag aggagagccc agaggacaca ggtggctgcc 20900
ccagcctgga ggtgaaagtc taaaataaa atgcccagatg cctagaccat 20950
tctaaacctt tctgagaagc tgaatcatc cttctggaa gcgtcttagt 21000
tctaaaagga cagatataca gcaagatctt cctgggctta atatggagtt 21050
tataggcaag taggccttcag aacccttccc tggtagtgat atctgtggc 21100
aggcacagtt tccacacttt ccagaaaattc cagcggagg agtgagaagg 21150
aggaatctgc ctttgagtga ggaccaaaga aagcagaaat tcccttggg 21200
aattttccct ccagagacca aacactactt gggagcttgc ttactgggct 21250
ttaaaagctt gtgacccca gtcactctt cttgacccca aggcttgc 21300
tttctgtggc ttccccactg gacagaagtg gaactgtcat gctgcctgtt 21350
ctgggtctc ccagaggttt cccatgtcc tctccttgct tctactgcc 21400
cacagaattt gggatctgtg accacatatg gtatagaatt aatgcttgag 21450
aatggtttag ttcatgtat tcaaataaga ttcaacttta tgccacctcc 21500
atcagttgaa ggccccctg gcccctaaat tggaaaagat tctgagacag 21550
aatccccgtg ggtacagcgc agggacagta aaggcacgtg tgctgtgatt 21600
tgctatccac tgtgtggatg catccaggaa tatcagaacc ctggaagatt 21650
attnaagggg aagtttagac agcttttttgc ccaatccaag ggtgttctt 21700
aggaagtctg tcttcctgtt tggccttcag tttcttccct gtgttaaccat 21750
ggggccaaaca cataattccc acagcttat tggcccttgc ctgcccaggat 21800
tctctagggt ctgattcgag gtgatcctg gccccttgat gttttgttgc 21850
ctgatcatgg tgctgtttcc ttagatttag gccttgatac ctttggcgag 21900
agcatcctgg gctgagtgtac caccgtggat ttttctgttgc attttgc 21950
ccatgtaaaa ctttgagttt tgggattatt ctctcaagga aatagtgaca 22000
tttgggtgaag agcctgttttgc gtgtggctat gtgaggctta gccaagaaaa 22050
tgcaccattt ttatttagag gttaggccat ccgttggccac aaagtgtcag 22100
atgctaggcc tagagcctgg agaaaactta ttttaaaattt gatgggggtgc 22150
tggaggggtt ggggggttggt ggctgttagct catgaatcag gtgctaaacc 22200
tagaaacaaa aggccctcatg tggcagactg tttctgagca cagatgaatg 22250
gatgagcaac tggcgcaact ttgcccagtt ggtccagctt cccacttggc 22300

18923800202SEQ.txt

cacctaggct tgctgtgaag acctcgctcg gcagaaaatga gagtgaaaa 22350
gccccatctt gatcttaact gtaatttaag actaaaatct tagattctaa 22400
aacatcaaag gcaagatggc tcccagctct gtgagctcg cttctcacct 22450
cttagttgaa caagtgcagt gtgggtcaat acatgattgc tgctcttgct 22500
gccaggaact gtcccagcat agaaaaggaaat gggacacaat ccctgccgtc 22550
aagattctaa gggaggaagc aggaggctcg actgggcct catctctgca 22600
gggctccagc caaggttgtt gaaggatttt gcaggcatat ggagtgggaa 22650
ctgattgatc ccgagagggg actggggaaa gctctgaaga ggggatgaca 22700
tttggtttga actccaaaaa atggttgctt tacctgttac ctgaagttt 22750
tgagggtggct tataagaaca tataaccataa aaaggaccaa tataaattta 22800
aaatcagaaaa aagagaaaaat gggctgggca tggtggtca tgccctgtat 22850
cccagcactt tgggaggcca aggtgggtgg atcgtgaggt caggagatcg 22900
agaccatcct gcctggccaa catggtaaaa ccccgctct actaaaaata 22950
caaaaaattta gctgggtgtg gtggcacatg cctgttagtcc cacctacttg 23000
ggaggctgag gcaggagaat cgcttgaac cttggaggcg gaggttgcag 23050
tgagctgaga tcgcaccact gcactccagc ctgggcgaca gagtgagact 23100
cctcctcaaa aataaataaa taaagagaaaa atggaaactta gaaaattaag 23150
aggaagagtg aaaaggtaga tatttagtca ggcacagtgg ctcatgcctg 23200
taatcccaac actttgggag gccaaagacag gaaaatctct tgagaccagg 23250
agcttgagac ttgcctggca acatctcagg tgagaccta tctctacaaa 23300
aaatttaaaa attagctgag ctgtgtggct cgtgactgtg atcccagcta 23350
ctcaggaggc cgagaccaca gcccaggagg atcgcttggg cccagcagtt 23400
tgaggctgca gtgagctggc accactgcaa ttccagcctgg gctacagagc 23450
aagacccagt ttaaaaaaaa aaaaaaagat attcaaacca tgggtcccaa 23500
cgtagtttatt atatttgacc atttgcaaaa gctgaaagca aaacatgtt 23550
cacatttca gagagggaaa tacacagtag ttccctgagtg taagttgtt 23600
ttcttgacct cattcttaaa ttgttccatg agggtgggag ggaagtggta 23650
gttaataagt gaacctgtaa accagcgaaa ctcaaaatgt agtccaggaa 23700
attgcataa aattgcagtt acctacagtg ttgtttaaaa tgcagattcc 23750
tggggccctg ccccaggctt atcaaataa tctggtgagt aggactcaag 23800
aacctgtaaa ttcacataact tctgcagatg attcttcttg cactgcacag 23850
catgaaagcc tctgcaatag acagaaaagct accagcattt cggaaagcaac 23900
ttgagtgctt ggccttggaa gggttgagtg gactttatg agggagagag 23950
taaggcatga gaaatggcag ttccactgag gtcagtcgtt ggttcatgtc 24000
tgacgaagtc acttttaagt catgttttag aagaactacc aagtgtggca 24050
ggtcaggcat gtggcaggac tggctctgag cacagatgaa tggatgagca 24100
cctggcccca ctgtgcccag ttggtcttagc ttcccacttg gccacctacg 24150
gtctgctgtg tggaccttgt ctggcagtc ctgtttaattt attttttatt 24200
attttttct ttttgagatg gagtcctgtt ttgttggccaa ggcttagagtg 24250
cagtggcatg atctcggttc actgcagcct ccacttccca ggttccagcg 24300
attctccctgc ctcagccccc cagtagctg ggatcacagg caagtgccac 24350
cacgcccagc taattttgtt attttaata gagacatgg tttaccatgt 24400
tggccaggct ggtctcgaaac tcctgaccc aggtgatcca cccatctcag 24450
cctcccaaaa tgctggaaattt acagggtgtga gccaccgcac ctggcctatt 24500
ttttttcagc aaattcttgc ttgttctctc tggttccaaa tgcaagggtac 24550
tgagaccaca gatgttattt gttccctgtt gaaaaaatgt ttctcactta 24600
gctgggtgtg gtagcatgca ctgcagtc acggggaggct gaggcgagag 24650
gattgcttga gcccaggagt tcgataatca tgccattgca ctctggctcg 24700
ggtaacagag cgagaaaactg tctcttaaaa aaaagaaaaa gaaaaagagg 24750
tccttagggaa agaaacaaat agtggcttgg atggtgagtt ggtggaaaga 24800
acagtggtgtt ttgggggtgt tgaacttgc ttgtgtgtg gtgtacccaa 24850
gacatatcat gtcagcatta agaatagact attcctgttt tctggtaact 24900

18923800202SEQ.txt

gagttgtatg ttttgacatc cttattttgg aagataacttc cttacttagga 24950
atggatagg gagggggtca ctttccat ctgtgggtca tattttaaa 25000
tatttattgt tcaagttaa agatataacc aaaggatataa agaaaaatac 25050
cacaacatc tgatttaaga aacaaccagg ccgagcgcgg tggctcg 25100
ctgtaatccc agcaactgtgg gagccgagg caggcagatc atgaggtaa 25150
gagatcgaga ccatctggc caacatggt aaacccgtc tctactgaaa 25200
atacaaaaat taactggtca tgggtgtg tgcctgtat cccagctact 25250
cgggaggctg tggcaggaga atcgcttga cccaggaggc ggagggtgt 25300
gtgagccaag attgtgccac tgcattctag cctggcaca gagtgagact 25350
ccgtctcaaa aagaaaaaaa aaagaaagaa atcatttc acacccctcg 25400
agccttcatg agtttagtt tgaacacgtg caaaatgctt cacgtgagaa 25450
tcgagagtcc cttctggg ctctccatcc cctgctctc tgtcagg 25500
tctttaggt ttatggaaac ctttgttact tgcaggtg gcagagaagc 25550
agagaggata gctgcgcgccc acccacacag ctaggattt ttggcgta 25600
cccacgtgca tggcagccaa gtggacacaa ctctgtatg aatcctccca 25650
agagaactga ggggccccta tggaggagct gcttcttgc aaagcttcc 25700
ttgactctct tcctgtcccc tagttgattt cccttctgtg ctatgttt 25750
cttattgttt gttacctgtc acacttagca gtactgtgg ctttgctgg 25800
ctccttgact actgggggta aagacctttt gttgtgttgg ttgagacaga 25850
gtcttgctct gtcgcccagg ctggagtgca atggcgat ttcggctcac 25900
tgcaacccctc acctcccaagg ttcaagagat tctcctgcct cagcctcc 25950
agtagctggg attacagcta caccacaccc ggttaatttt tgtatttt 26000
atagagatgg ggttttagtag agatggggtt tcaccatgtt ggccaggctg 26050
gtctcaagcc cctgacatca aggtgacactg cctgtctcag cctcccaaag 26100
tgctgggatt acagacatga gccaccatgc ccagcctcaa agacctttc 26150
tttacttgct caccctggc cccactcccc taccaacccc tgcacccct 26200
ataccacctg gcacatgata cataacttact ggttacatgt ttgaatatga 26250
atggatgtgg tgctgtgaat gcttaggggaa agtgggtgaa atgcttaaga 26300
accaacctt ggtggcttgg gaaggcttcc tgggggggtg gtgtttgagc 26350
taaggccagg cagctgttag atttggtaga ctgaagccct tgcagactta 26400
gagagctt gctcttccca gaatgacggg tgagccacgt acagtaatg 26450
gtgcttctca tttctagcccc aaggggcctc aaggggcacc gtgatttcac 26500
gagaatgtcg caagcaaattt ttttctcaag ctggggatt tgggtgtaat 26550
gcctggctca gcttgcgttgc cgacacttgc ctttggaaaga ttggtaga 26600
gagaagcggc ccatccacat gagcctgtgg aacagcaactg gtgggggagc 26650
tgatttgcg agaggggctg tgcagtgtac tgcaggatc gagacccagg 26700
aagaaattcc agtatccatc ctctcagaat cacagagttc taggcactgc 26750
ctagttccac gtgttccaa atgttccctg aataacttgg tttcctgtcc 26800
agagaatttt caaaacaaac ttagaggcct gacccatggc tgccaaggaa 26850
ggattttttt tttaaattaa attttaaaaaa tcagtccacg atgaaaatct 26900
atgatgattt cataagagaa aggacatttt aatattcaaa gagtaagaag 26950
cacttaatct tggaaagaaag ggcattccta tactttgatt accttttagtt 27000
taattaaaaaa acacctacat ggtcttact tctgtgatcattt cattcctgg 27050
ctagtgaaac attgtcacaa taaagcatca ggccaacgct tctttcgacc 27100
cactggccaa tcagttgaca aacagtactt agatgttca gcctatttt 27150
ctgaggctaa aggattgaac tagtgcttca gccagcatga aaaccagtca 27200
ggagtcgttgc ctgggttgg cttagatttt cagggcctt gatgggggg 27250
catgtatgtg tttgggtttt ctgtgcccagg caggggagca gtggatattt 27300
tctgaatttga gctcacacat tgaagttt gacgcactt catgcaaggc 27350
catgacccatgg actcccaagcc gagaggccca cgtggggggg cttgagctgg 27400
gggagccgag gacagcttac atctgctcat ctgcttacgt aaccctgcct 27450
cccagcttcc agagccaaga aaacacacaa gccagccag cggggccgag 27500

18923800202SEQ.txt

agcctgtggt agcacacgccc atgcgcccga cagcaaggcgc gcctggctc 27550
ggcttgaggc ctgtcatgaa gcccctcagcc ctctgcctcc tcccagagct 27600
tctccccacc acccccaggca gtggctctga aacctggctcg caggtctgca 27650
tgatttctgaa cagaggttagt cgttgccttc ctggaggtctg agctctctgg 27700
agtttctcac tgggacagag ccaggtgtgt agcagaggcat ggtccctgca 27750
gtatggcagg aggtgtgcag ggcattcagg aggccctctg gctggcactc 27800
gacccaatta gtcattcaac gccaggctcg gggctgctgt ctgttgctc 27850
aaaggtgtga gctgcaagat ccttagagtt gtggagaaaa aattgccaga 27900
ttggcaagaa gggcaggatt ggggtcaag gtgtctcagt gtgttgaaag 27950
catgatgggg gttgtgcag gggcacagcgc agttcagaag ggagcaggag 28000
agtgagaaga ggctgttcag tgataaagct ctgcacagag ccattggagg 28050
agcaagctcc ttgaccatcc ttaaaccagg gtaattttca tttaggttct 28100
gccacacgct cagcaggaa ctccctgaaag gcaggatttg tcttgccat 28150
cctccctccc tacctaacc cactcctcct tgggctggca cacagtaggt 28200
acccagaaag tatcaattga aacaattga aagtggctt gatacatatc 28250
acagggcaag tttgcagttt acagacattt cagagtaaag actctctggc 28300
ttggtgctcg atcggcttct gtgggttgc agcatgtgt ggacagcccc 28350
ggcatgggag cgagtggcgc tgggtgtgt tggatgtgag ggtgagagag 28400
cgttagtgtg tgggttgggg ttggggagag aggaggggaa atagaagatg 28450
gaccacccgg gtatcagtt ctgcccctggg gagatggtgg tggcgttgc 28500
tgaggaaatc ctgagaagca ggtctggctg taggtggta tgggtgggg 28550
gttgcattgaaatccattt gggcaggattt aattttaggt gcccattgaca 28600
tatggcttagc catgttctgt tggctgtgag gtcaggagag agacatgaga 28650
tggaaacaga ggtttggaa ctgtcatgtg cttaaaccctt agacactggg 28700
atagggagag tgagaagaga agggggcaaa gatggacatc caagaaagaa 28750
gctgagaaag ccttaggaatt tgaggttaaga ggagacgttag gtaaatgtga 28800
cgcttggta tcaaggcttc tttccaccc tcctatgtc gacactcagc 28850
tctcctgtct gcttggaaat tcatgctgag ggcagggaaat gttggagcaa 28900
ggatttgtct aaagatctt cttggatcc ctgcactcct cctggtttac 28950
caagtgtcac tggacacgtc agggcggttct gagacccctt agagcatcca 29000
gtcctgtccc tgcagtttac aaatgaggaa accagtagcc tgagagtggc 29050
tgtactatcc actctcagga taccaaagat catctggaaa gtcactgggt 29100
gagctggacc ggggcccagg catctttct cctgtccggg gctcttgact 29150
tcaggaccac cttctgaaa cccatgtatgg ggcaacacca ggacactttc 29200
cagcctgcag gtgtctgtcc cgccggaaagcgc agccaggccatgtgaatt 29250
cctgtttctt ggggtggggtt cagaaggatc gagcaagtcg gcagggtgac 29300
agcccagggtg cttctgggt tccccaaaac gcggttatgt ttagcagcat 29350
cctcagaacc aaaggtgggg tggggctgc agatgtgtg ggggcccctc 29400
gaagtgaaaa gagccctgtg acagatctt tcttcatgtt tttcacaagt 29450
tcactgtgca gcagggcccc cccagtagcc tttgcccagg gttgggtgtt 29500
gggcagccca ggcctggctg accttgggg gaagggtgtg aatgggtggg 29550
atccccgggg gcccctttt cccgaaagcc ctaagccttgc acatcagatg 29600
cccattcagat ggtccatcgg agccctacta cccagcttc ccagtggaaa 29650
tcatctgggc tccttggtag gtagccattt aggtcccttc caaaatccac 29700
agactctcta agggaaaggcc cccgagatgct gtacttgtac taacttcctc 29750
aagcaattct tggataggt ttggaaaaaa cttgtccagg gtgaccactg 29800
actgagtccct ggtcttctct gaagagcaca gtgcctgctc acttttagggc 29850
accctgggag gtgggagctg gctcagcagg cagtcttata agggactgag 29900
cttcaaggcc tctgtccctc caggagggag gtgcattgacc agagagggag 29950
gcctgaggat cttctccct gcccagagg gtctgctgcc tgagctctgt 30000
gatagcgcag agagtaaaag gatcaagctt gattgaggcc tatctctcaa 30050
tgcgaaagtt tgcttagtaa gaggagatg ggaagggcat ttctggcaaa 30100

18923800202SEQ.txt

gagaaaagtg tggacaggca tggcttaagg gatggggagg gagacagaca 30150
gagctgaggg tgaaggccct tttgctcagc tgtggccctt ggccttccct 30200
tgtgcagggc cacacagccct tagagccact ggaggtttta gtgggaaagt 30250
aatatggtcg gggctgtatc tcagaagaaa acaaactaat gggAACAGGT 30300
cctgtgatgg tggacctggg tcagctacgg agggagggaa gatgtgagat 30350
gtgtactggg gaaggggggtg gaagtggcag ctatctggt agaggaagca 30400
ggcccacagc ttttttctc aagctgttga attcagaagg gcgagtgatt 30450
ccgggagtag ggggtgctt gagagccacg cgttattgtat aaacagggca 30500
ggctgaagcc tgctcaactgg ccctggcggtt gttctcacca gcatgtttca 30550
ggtttgcgtc tggcttgcgtt gttgggtttc ctacctgttc tcttaggttcc 30600
ttcctttgtt cttgtggctc atttgcttca caggtgaagc tggttacact 30650
agagtaacag ttcccaaagt gtgtccctg gaaaaatggt tctgttagcca 30700
aataagcttggaaatgtt ggttaaatat aacgaagggg gtttttcgac 30750
tgcacaactt ctcagaggct ttgggtgtgt tcgtgacttt gcagaagcag 30800
gatttaatac gcagcattcc cgttcttatt tgaccacgag acatgttttt 30850
ccattaagca tcttgctggg tctgatgttt tctggAACCC attttgaggc 30900
ggtctggctc gcagagagta tggggagcct gggttcaagc cttggctctt 30950
gactctcagc agagccttga ttccctgtgt tgcctggact gcaccacgtg 31000
taccacatac ccggtatgtt acgttttcctt catccctt cccacctgcc 31050
gttacactcactt aatccacaat ctgcacactca tccatttttcc ttctgaggca 31100
agcactctct tactaactta cttatctcat ctgcacccat gttcttcttag 31150
gccagaaact tgggagtcat ccctccctct ttgttacttc ttcttcctct 31200
ttgttactttt atccctcttg ttactaaaca ttcttctgtt tttccagctt 31250
tttcttttat tttccctcgg tctcccttgg ggtttcttgc cctccatctc 31300
tcccagaccc tgggtcacct tccatcgagt ccctccctgg gacatgggca 31350
ctcatgccac tcctgcttacc ttccacttcg aagctaactc cctccacact 31400
gacgtccccca acatgcatgc atacacacac acacacacac acacacatac 31450
acacacacac acacacactt ccccaagttttag gctagaatca gagagatgt 31500
gtcagccatt tgtccaaggc cacgcagctg ggaggtcaca gagcttaagtc 31550
tcaacactcag gggttttagt aaattgcctt ctcacccgtt atcactgatt 31600
tctacaacag cctgtcagga agtctggta gaaattactt ccattttaca 31650
gtggagtcag agcggggagg gtcctggca ggcgagtgct tcacagagtg 31700
accaaccatc taggtttgcc ccacactgaa gggggtttct ggggatgggt 31750
ggtcacccta atgctggatg tgggtcctga tgctggcag gaggccctc 31800
tccgtggcca cgttgcctcc caggaggaga catttcctct gcagctgcag 31850
ctgcagccctg gccatctgtt gcagcctgtt gagcggtgcc gagtcctgtt 31900
gcctgctaactt ccctccctcc ctccacccctt ctatgtggcc ccatgctgtat 31950
tgagtttaac atgcctgtgg acctggagct cgtggcaaag cagaacccaa 32000
atgtgaagat gggcggccgc tatccccca gggactgcgt ctctccctcac 32050
aagggtggcca tcatcattcc attccgcac cggcaggagc acctcaagta 32100
ctggctatat tatttgcacc cagtcctgca ggcgcagcag ctggactatgt 32150
gcatctatgt tatcaaccag gtgaggcctg ggaaggtgga atgagagagg 32200
gtgtgtgtgc atgcagatgt gtatcagatg tgggtgtat gagggcagg 32250
gaaggggagttt gatttcacag acacctggca cttacagcga ggaaccagcc 32300
ccccagccac caccagtgc gatgaggtaa acgcacaaaca gtgtgcttgc 32350
ctattgctgtt caactctata gccaaggaa atgctggagt gttttcgtt 32400
ttctgtttttt gttttctggaa agtagccctt cagcaagatt gggaaaaaaag 32450
acaaccctaa ttattccaaa gtacacactg attattccct ggctttgtt 32500
agctgtgtat ttccctttta aaaataaaaac caccatttag atgtcagact 32550
tttaggttaac ttcaaaggaa atccagtcag tcagagcgttgc tctccctgggg 32600
cacctggaga cagtgcctt agttcaggc acatgcctac atgcccagccc 32650
ctggtaaat atctggagaa gtctgatttcg tggccatct gagagttatg 32700

18923800202SEQ.txt

tgactgggc cgagtctgag aaaaagttc tcactgctcg tctgatccat 32750
atgtgttggg ctttagccct gcttaggaaa gtaatgctaa ggataggta 32800
actttcatca ccatggcatg gagaatcaga ttgatctaag aggcatctt 32850
attgaaataa attttcagt ttatttgagg agcattattt tcccaagagt 32900
ataacttga tatttcaaga ttacccctaa cacttaaattt catgtttta 32950
gactataacc tccttaggtgc aatgacacat ctaacttattc taagcaccca 33000
gtttcattga aatttcatttg aagagtctga gtacgcccattt ttctacaagg 33050
cccaatgtcc atttcatttc gagataaaact ctgctttagg taggaggatt 33100
gttggcagtt tacggcttcc atcaaggtca aggaactctg tgcaccccttcc 33150
ctatgacccc aggggaagca ctcgaggact gctgtggcat tgcgtgcattt 33200
cacttgctgc agggagattc tgaagaagtg taaggtctca gtcctgccc 33250
gtcccgaagc ctccaaaccca cttctggcaa gtgggacctt cccagggAAC 33300
aatttggtaa cagacccaaa tattcctgtga ttggatgggtt gctgccaat 33350
gctttggaag ctcagaggaa ggagagagag caatggcttga 33400
gatataaaact agttctaaa gtctgcaggaa agatgggctt ctcagctggg 33450
gccagtgagc agggaccttta aggcaagggag gaggcttgca tggaccagg 33500
aatttgagatg cccactgggg taggaaagca ccagaagctc tggaccagg 33550
tgtcagagtt aaggcctgtga ggcaggagag agcagaacaa gcccgttac 33600
aaggaaactg aagcaggaga gcaggtgggtt ggcaaaacccc ttgaggctgt 33650
ttgaattctt cggccaagtg aggtacagac cagggcccta tgaacacctg 33700
caagcaagac agccacgcag ttgtgggtca ctttggaaat atattggaga 33750
atgcaagaga gaacaggtaa atgtcctgca aaatgcgggtt cacttaacc 33800
caacacatat tcatttaaga aaagctctgtt gattgagaaa cattgtctg 33850
atgccagttt gcacatacca atgacggcaa gattcaggag cctgttatta 33900
aagcagtggc agcgagcacc tggaaagaggc ggccaccatc accaggagcc 33950
agcaggatg actaataagc cgtccagct gcatctcggtt tctcttgc 34000
cagttgctat gccagtagat gagggatgtt ctgtggatatac aatgtgtca 34050
tatcttattt agcagggcat ctgatagcat cccacaaatc tgcctgagta 34100
gaagacagac agctgtggc tgggtgcccattt ataggttaggt taaaatataat 34150
atttgggcctt aggccagttt gctcatgcctt gtaatcccgactt cacttggga 34200
ggccaaggca ggcggatcac ttgaagtcag gagttcaaga ccagccctggc 34250
caacatggcg aaaccccgctc tctactaaaa atacaaaaaat tagctggaca 34300
tagtggtggg cggctgtat cccagctact cgggaggctg aggcaaggaga 34350
atctcttgc aaaccccgctc tctactaaaa atacaaaaaat tagctggaca 34400
ccaggaggc agaggttgc gtgagccgag atcatgccac 34450
tgtcactccag cctggcaac agagttagac tctgtctcaa aaaaataaaaa 34500
taaataaaata aataaaataaa atatataactt gggtaaagag gataaaaagag 34550
tttagcgatga tgctgaattt ttgaactgag gtggctgttt tcaaggaaga 34600
ctggagggtt ggatgctacg tctagatatg ttgcagttt ggtgaatgtt 34650
agacttccctt gtttgaagt caaatattgg accagtaaaa tctagccatc 34700
agcttaaattt cctatgatac aatttacata ctccccagggc tcaacacagt 34750
agatttctga atgtcctctg ccagctacat gctctgccc acctcaatcc 34800
gagtagatgg aacaactaac caagccagct cagaccgggtt gcacagctgt 34850
gctggctaac actgggcacc acctaagaga gtgcttctcc aaaagtgtgc 34900
ttccccaaat ggagcgaaat acgcttgagg aatgttgggtt tgaaccatgt 34950
aaagcaggc tcattcccgcc agagccttgc gtagccgggtt gtacactgtt 35000
accccagaag tggcccttgc gcttgcctga cgagacaact tttccaagaa 35050
ccgtctcaag tgatgagttt tttgtgagtc acactttggg gaaagcgggc 35100
ctaagtttagc attcctccccc agctgctcc ctgcttccccc tggaaacacta 35150
ggaactgccc gtcctccctc cctccctccctt cttcccaactt cacaacttag 35200
catcaggaat atttttagttt tggttttca aacatataa cctctttttt 35250
tcttatcttgc tcaatatcat cttttttttt tctttgcttt tcctcataact 35300
tttttttcttgc ttcattccaa gggttaactt tccaccccttag 35350

18923800202SEQ.txt

gagaatcttt tctgctttt ctcccacttc cccagctact ctcttatcat 35350
ctgctccaat ctcaccctaa ttgatcattt tggaaaata tggtcagagt 35400
ccagataact aagttgagaa atgcttaaac tctgccatac ctttccagta 35450
aagaatatta cctaataaaat aataaaatgg taatggaaa cctgaaccct 35500
gaaaaaaaaag aggttggagg agaaacattt ggagcacatc ctgtctacaa 35550
attaggaact gcctgttta tctgttttat gtttatattc tagaagaaga 35600
aagggatttt gtagcacctg gtttgacct ttctgactg tttgtttagc 35650
aaataaacct tatggctgt tagccctt tatacgctc cagcttatcc 35700
ctggccaga caccctgctg tcattttgac ttttattcc cacacacaca 35750
tacacatgca cacacatgt a cacacacaca cataccattt aagatttagac 35800
agaagtaatg ctcaaaatgg agtggcttct gagacattt gtccaagggt 35850
tcccaaacag gctttcagt atcagattt tttctgcccc attgaaatgc 35900
tacacaacct tccgcttaca gcaggtcaca agggttcat tctacttcaa 35950
gtagggcca tgccttattt ccacttcctt ggctccat tcagtcactg 36000
cttaggattt cctagacccc tgaggccaga caatgtagaa acttctgctc 36050
catgtcacag gtgaggaaac aggctcagag agggacaggc tccgaaagt 36100
acatagacaa cagtagggct gcgcgtcaaa ccccgacgtc tgactccagg 36150
tttagtgcct tctcaggcga tcagtgacac tcctcatggc cagggtgccc 36200
ccagtgtgc tcacagtctg gtatccaggg ctgagagtgt gctgtgtgct 36250
cagactgcct gggttcagtc ctggcactgc cactttacag tcagtgaccc 36300
caggcagggtt acttaagctc tgcaggcctc agttcctcc ttgggtggga 36350
gggttatgag gcatccttct catggtaaac cttcagtaaa taccagccgt 36400
tactaggagg gtccactcct gcctctccac tctccattca tcctgcctgt 36450
ttcctctgcc tgcttcctct gcctgcttct gtgggtgtga attcttcatg 36500
gctcccaccc cctcctgctg cacccccact cagggccgc atcaggaccc 36550
ttcctcttat tggtttgaac tccttggagt cagaggtaa tggatagtgg 36600
agtgagccag gtggcagaat ctcaagaggcc atcccggcc tataaggcctc 36650
ttcaaaatag ggccacgtat caagcttac acacaggagt gaactttcac 36700
aagttgttat gactcataact ctgtctatag taagctgttta accactccca 36750
tttggcttat gcctctgtaa ttattgtact aacttatatc taaaataag 36800
gatattgaag gaatgagccg ggagaggctt tcctgggtga gatatagaag 36850
aacaagagtt gctcttttc cttaaaggctt ctccctccac ccctgacctt 36900
agctcaccag catgggagaa tactatttga ctccctgtac tctgagacgt 36950
ggatttcaag atatagcatt ccaacttcaa cggcagcaag aaaagaagca 37000
acagaaggag aagacatcat agcaaacagg gatgcatgct gcatttccta 37050
atactcaaac ccggaaacga gacttcactc aaggtgaagg gagggcaggt 37100
caccacctgg tagcaactgc cttaaattaa ggaatgcaga atgtttgtgg 37150
gattgccat cataaaaatt aaaaaatgag taaggaatgc aggcacagct 37200
ggccaggtgg gtttgcaca accatggcag cccttgcac cacagccagt 37250
acacagaact ggtctctcca attccgatttgc catatcttctt ggcacccctg 37300
ttcctctccc tcagctgccc aggatttttc tggttctgac catgttactt 37350
cctctttaa acctgttagc atttcacgac tgcctacagg caacggtcta 37400
aatggtcga aggcccaagc tttagcatccg agacccgtac ctacccctcag 37450
ccacttcctc ctcctctcca cttcaactggc ctcccccattt ccacccagac 37500
acctctgttc tcccctctgt gtgcctttgc ttatgctgct ccctgtgttc 37550
ctagtggtc tctggctatc ttttaagctt ccctcccaa cctcatttagt 37600
tctgtggagc ccctggata gagctgactt tccttcctt gctgctccca 37650
ggctgctcag aactttctgg aaaggatga ttatctgagt tccagcctca 37700
ccccagccccc cggactctga gtccctcatg tctgcctccc ttctttctt 37750
ctgaccacac agctgttaca tagtcagttac agacgcagtc agtgagtgaa 37800
gcacggggct tctctccagg attcctgccc ctttggatattt cccttagtctc 37850
aggactccct actcctggc ttctgcctaa atctgtgcctt cttggaaagt 37900

18923800202SEQ.txt

aagcctccgt tcccagtggg gccaggtcct gaccctggg aacttgcagg 37950
atcccctccct tgggcctctc cccgaagctt ccagctcaat gctgaccaga 38000
gcacaggctg cctgtgacag tccttggggt gacccctt atcaggaaaa 38050
atgcagaaaa cctattaata ccttagcctt gtgattgtta atggtcacaa 38100
aactccttta gggtccttg gactcagcac cttagtggc tcactttgaa 38150
ttttgaacct cccacccccc cccatcccc agagtaaggc aaatggtctt 38200
ctgattgttc ctgcagaggg aaggctccac aggttaagcac acgatggcca 38250
ggaagcagag ctggagcctg cctgaaaggc tggagggaaa tggagggagg 38300
gctgccctga ggactctgtc tggcttgaa gtttctact gtttcctttt 38350
cttctgtgca ctgttttagg atgatggggt gatagttcca ggctgggtga 38400
ggatggattt ggagacagtc cttgtaccc tcagttagca agagtatctg 38450
tcaccctacc tcagcagttg tctctgtcac tggccaagc agctggttcc 38500
tacacaaggt caagatcaac tggggagaag cagactcctg ggtctatccc 38550
attagtgagg acagctgcct gggcttatgg cctcattggt ttggtttcta 38600
tcttgatcat ctctaccatc ccccatccc ggccttccat tttctacctc 38650
agctgtcagt gcacagattt atgtgtgtgg gaacggagct tgggaggagt 38700
ggggtagggc tggcctgtc ctgttagcctc cccttccttc gggcacttgg 38750
accctttgga gcttgcgggg gtggggaaatg ggagtgggaa ggccagggag 38800
tgtctctgca ccatcactgt ttgagtggtt ccccttgct gtgtgcccc 38850
cctagtctat gtgtgtctct ttctcttggt gactcaattt gctggtaat 38900
tgcttccatg gacattgttc tggaaatgc catttttct gtcacccat 38950
gactctgtga caaggaatga cagtttatta ggaatttggtt ttgcattgg 39000
aacagtggtc atcagaatgg gcccctttc cttgcagct ttgacattt 39050
cctctctttt cctcacctct ctccttgca tccaccctt tctctttttc 39100
ttctttttt tttccttct agcagggggcc ttttacctt acttgtaat 39150
cctgtttgta gcaaagcaag tggaaaggagg agttcctctc tgatctgctt 39200
cttattctcc acctacctt tctctgtac tttccgcctc ctagagagag 39250
agagagagag aggaatgccg acctaactac cgctgccact gctgctgcca 39300
ccaccgctgc caccaccacc ctgtaatgt tcacatgtcc tcaaataac 39350
ccagagccag ggcctgctg gtcagggggaa ggctatgtaa ataatccat 39400
gagtgtgcca tcctcaggcc ctggggctc ctaggcaaga ccagggcctc 39450
tgtggctct ctcggaaatg ctgaggttgc tggaaaggccag cccgtcatac 39500
agggtctgag agttaactt cttttaattt aaaccacagt tgagctcatg 39550
ctgtgtgtgt ataaaacttt gtatcctgct tttccttaa attcttatac 39600
atcagcatct tcccatgtta tttcatagtc ttcatcatca tcactttcca 39650
tacccatata gttagttgatc gtagaattcc atcataatta acttgtctt 39700
tctctcttag aagtcctta ggtaatgtcc aattttccgt gaggtaagt 39750
aataccataa tgaacatctt ggagtctgaa gtttattctg tggggattt 39800
ttccacattt aggatcattt tccaggcta gatttcaga tggggattt 39850
tgggttcaga tatggtttac acattttat agttcttaat acagatggcc 39900
aaattgcttt ctgaaagaga agctttctt aagtattttt ctccaacttg 39950
tatcttaaac atcctgaaca tgcttagcac cactgtctt atatatctgc 40000
ggaaagccac gtctccactt ttcaatgtgt cggccctgg gagaggcagg 40050
catccctgcgc tggctcctt gacgtgggtt taaaattgtc tcctctggct 40100
ggcggtggtg gctcacaccc tgaatccag tactttgggaa ggccgaggtg 40150
ggcggtacac taggtcagga gatcgagacc atcctggcta acatggtaa 40200
accccgctc tactaaaaat acaaaaaatt agccggcgt ggtggcgggc 40250
acttgaaaag tcccagctac tcgggaggct gagggcaggag aatgatatga 40300
acccgggagg cggagcttgc agtgagccga gatcgccca ctgcactcca 40350
gcctggcga cagagtgaga ctccattttt aaaaaacaaa caaacaacaa 40400
aaaaaaaaacaa acaaacaaaa actgtctctt ctgtgctcac ttccacccaga 40450
atccctgttg ggctttcaa ggagctcagt tctctgtaa agcaacttta 40500

18923800202SEQ.txt

tagcctcagt ccagtctgtg ttccctgtgt gcaggggtca agggtatgct 40550
cacttttagt agtgggtgtct ttgggtgacc aagaaccact cccatagcct 40600
ggtccttaac ccttgaaggc ccatctct cactcaactt ggtgaagagt 40650
ttaaatctca gatccaagtt ttgtttagagag ctctgagcta ccatattgct 40700
atggtaaca atatgttaaca atgttaacaa tggtaacta tggtaacaa 40750
tagttaacaa tggtaacaa ctagagccca gctgggtgtg gtggcatgt 40800
ctaacagtcc cagcttctca agaggctgag gtgagaagat tgctggagtc 40850
caggagctca aggccagcct gggcaacatg gcgagaccct gtctccctg 40900
caaaaaaaca acaacaacaa aagcaaaact agagccaac tgctgtgaac 40950
tcatggctga gtagatatta ttagccctcc acaaactcag catttgtata 41000
atcccaggct gtttccagta attctctggg gatcatctcc cagcctgtcc 41050
actgttccag gatccacact taggcctata ggaatgcccc gtcagagctt 41100
ctgctgccgc ttagtctgtt ctgtttcatg caacccactc ggcctagttc 41150
cttcctcta ctgtctcagt gggcacagaa aagcatacag aggggtttc 41200
agcaaacatt gccactggct gcagacctgc ccccgatct gtcctgttg 41250
gagcttagt ctgcgttctt gcatgggtggg gaggggtgtg gctctgtgat 41300
gagccaggc atgtgtatag gagaacacagt gtctcttta tcacgttagaa 41350
gttctgactc attgcgagtc ttggctttgg gttaatgggtt ccagccatgt 41400
tgctgctgtg tcttttgggt caggagaggc tgggcacagt tggccctaa 41450
gccatttatgg ataaggatg tgcgtctgttatacacaca tgacgtgac 41500
atccagggaa ggcagggta ttggacagaa cagttttcc agaagctggt 41550
ggaacttgga caagagtggc ccttggcttt ctgttagttt tcacgtgtcc 41600
cctgttgc当地 tcagggaaag gccacacttgc cttccctaa ccacagttt 41650
gattttctt gggatttagac cagattcttag cacctgtcctt gaacctctcg 41700
ccccccccctt acaaaggctg ctgcgttctt tagtgcacat acacagggag 41750
caggtggggc atggaaatgg aagtggagcc cctgccttgc ccccttgggg 41800
gaggcactgt ctgcgttaccc acgttgggtt cctcatagga atcatacacaac 41850
agcttcctaa ctggcttctt tgcgttctt gggattttggg cacaatccc 41900
tccttgacat ataaaccatg gttttaggtt ccctgtggcc taaataaaga 41950
taaagcttaa gtatcttaa aagcacctaa cccttcctcc cagcctcggt 42000
gattttggctc atgcgtgcct tcatgtttca ttctggcttc actcattcgg 42050
aatttcttgt agttcttgg ctgttctt ttcccttaccg cctttacaaa 42100
tgctctcacc atgcgtgtt ttctctgttgc ctacagatgc cttctctccc 42150
agcaccgcctt ccagactcta tgctgtgtcg attctgtctg ctgtctccag 42200
tccccatctt gtggcgttctt ctgcgttacatc atttggggat tttatatgtt 42250
ttctggccctt tcttttgggg gcctgtcttgc tccttctaaa agcagccagt 42300
tgaccttagaa ggaagggttactc ttgtcttacca acataagatt 42350
aggcccaccc tttaaaagct gcgtcttga aaggacacc tgcacccagc 42400
atgctggctt ctcttcacca agcgtgactt cctacgcatt tcacaggcc 42450
ccagaggcctt ccctgtactt ctgttctgtt gagaactct aatcatgtta 42500
gccacaggctt aattcccttgc agccttacatc tttttagta atttccctt 42550
catcagagaa gcaggatgtt ggaggttacatc tgaagcaac actacagaag 42600
gcagagtctc caggttaggtt atctaagaga catttggat ggtctgactg 42650
ttcaagatgg atggaaatgc ctcttcgtt aatgtatgtt gccaacattt 42700
gttgcaggc agtggggccctt catttttggat gttgggttctc tgcacccag 42750
gttggagtgc ggtgggtgttgc tcatggctca ctgcacccctc agcctccccc 42800
ggctgggtct tcttaatttgc gaaaaacccca gcttttaag ggtggaccta 42850
atcttatgtt ggttagacaat gttgtctcat ttaataacat gcacatgctc 42900
tccccataac acaaaaaggaggc gaactgaggc ctggaggtgtt gatgtaccc 42950
aagtacata gctaataat aaagaagccca gcattccctgg gattaaaaat 43000
gcatgtgtct gtcactgtgg tggatgttgc gtttgcataa tggatgttgc 43050
agcaaatggaa gggcagaggc taccgttgc tggctcagt gaggagggca 43100

18923800202SEQ.txt

ggagtgaagc tgggcgtctt cccgcctctt gtgagtggtg gggcttgggt 43150
agcttgcag ggcctgtctt tcttatcaaa gaaggtgtgt gccccagtgt 43200
tacagcattt cacccaaagc agcctagaaa atgcttgact tttctgtcat 43250
tccggggagg acactttcct cctccactgt tctgctggcc tggatgtaccc 43300
acggccctg atagatgata gcacctgcta aagtgcacca tgcccttccg 43350
tctcaactgca tcccacagat gaggccaggc tggatgagg gagaaaggga 43400
gggatataa gttcaggtt ttttggaaaaa ctgcctgacc aattttaagt 43450
ctggccgga cactgggca tctcaccacg ttgaaaggc cgtggcaccc 43500
cggccggtga aaggggctgg aaccaggtct gcttctggg cttctcctcc 43550
agggtgccat tgctcatggg ccttggctgc agaggtgctc attcgtggtt 43600
ccaaaattcc aattcctggg agagggaaaaa tgcttagttc agtctcagtt 43650
aggcctctgc ttagatcaaa cagccaaggc cagtaggccc agtcctatgg 43700
tagagacatg gcctcaaaga gccctctgct gcagttgtt gggagtgtac 43750
caagagaagg gaggcattgtc ctgggctggg cagccctggg ggtctagtgc 43800
atagatgttag aaaggctctg ttgttatacc tcccttgct tggatggaaag 43850
tgctcaacgg ggctgaattt tggttgcacag tgtaagtctg ggctgggtg 43900
agggttgtta caagattgtc aagatgatta aatgaaatgc catttggaaac 43950
acttatccat gccttgcata tggtatcccc accagtgaat attcacagta 44000
tattataata attccaacaa ctccataatt ttcatatgca atttctaaac 44050
tttgaacttt tttttttttt tttttttttt tgagacagtg ttcgtcttg 44100
ttgcccaggc tggagtgcag tggcgcaatc ttggctcact gcaacctcca 44150
cctccggct tcaagtgatt ctccgcctc agcctcctga gtagcttagga 44200
atccaggcgc cggccaccac acccagctaa tttttgtatt ttttagtagag 44250
acgggctttc gccatgttgg ccaggctggt ctcaaactcc tgacctgagg 44300
tgatccaccc ccttggcctt ccaaagtgtc aggattacat acgtgagcca 44350
ctgtgcccgg caatttttg tggttttagt agagatgggg tttcaccatg 44400
ttggccaggc tggtctcgaa ctccgtaccc caagtgtatct gcccgcctca 44450
gcctccctaa tgctgggatt acaggtgtga gccaccacgc ccagcctaaa 44500
ctttgaattt ctttgaaccc atgacttaca cagaatttagc tgaacgcaga 44550
attccaaatc aactcagccct gtggacacgc caaaaaacac agtgtgcctt 44600
tgggcctt cactcaccac gcggggtagt aaaaacttgc tggaggcttt 44650
aaaaaaaggag ctcttgcgtg taaaatgttt ctttgattct ctttctgggt 44700
cctctcttcc tctaagtggg ttgctccccc aagttccca cctgagtcgt 44750
ggtggtgtg gcacatctgt gcattctgtc cgcacacagg cagcctttt 44800
gagtgcctgtt ttccagggtct tggtttatt tatttattttt tttatgggg 44850
tgagatgggg gtctcactct gcccggcagg ctggagtgca gtgggtgccgt 44900
catggctcac tgcaacctca acctccctgg gatcaggta gcctcctacc 44950
tcagcctcca gagtactagg gaccacatg cctggcaaat ttttgtatt 45000
tttttagag gcagagtc accatgttgc tcaggctggt ctcgagctcc 45050
tagactcaag tgatctgccc accttggcct cccaaagtgtt aggattacaa 45100
gtgtgagcca ccatgcccgg cccaggtcat cttttgaggg catggagaga 45150
agactttgag catcccactt ttgagattgt gtaccagtcg caagccccta 45200
tgacacactt tttcccaaaa gtagagggct ctgactatgt tgatcccaag 45250
agagatggga aagagcattt aatgaggatt ccaaagtatt gggccttagt 45300
tcgtttccctc atgttgggtgt tggatggatt ctgggttagga taacagcatg 45350
tgtgcaggag gctttgtgaa ctgcgtgagag tgaggcgtgg caatgtcagt 45400
gcttaggttg tccttactaa cctggggcca tggaaattga taagaccaga 45450
ttcccaactc taccccaaaa tggatccct gttgtgaccc ctcacaggcc 45500
tctttggctg agcttcccag aagggtacac catctgcccatt tggatgttga 45550
accccaattca ttcattcatt cattcagccca accagcaact atttgggtgag 45600
ctcttattgt gtgagaagca gtcttcaagg aactgggtga ataaaaaaaaa 45650
caaaacatcc taacccatcat tgagcttaca ttcttactga aagaaaacaa 45700

18923800202SEQ.txt

ataaaacata catgtaatcc tagcaacttgc ggaggccaag gcaggcggat 45750
cacttgaggt caggaatttgc aaaccagcct ggccaacgtg aaaccatct 45800
ctactgaaaa ttaaaaaaaaaaa aaaaaaaaaa aagccggca tggtggcaca 45850
tgcctgtat cccagctact cgcgaggcta aggcaaggaga atcgcttcaa 45900
tcctggaggc agagggttgc gtgagccaag atcataccat tataactccag 45950
cctcagtgtat gaagcaagac tccatctcaa aaataaaaaa taaaataaa 46000
aatatgcatt cccttgcac cagcacactt ggtgcctggg gacctcgtgg 46050
ttggcaccct gaagcagggt tcccttctc gtcttgcaca ccttgcttct 46100
gtcctgggtgt gtatggcatg gccttctgcc ctccatggtg agcactgtga 46150
gggcagaggt tgagttgggt ttgctgtatt tctcagggtgc ctaggtttgt 46200
gcttgcagg tagatggaa gcacacaatg tggtcatcaa acctcagtca 46250
accatataag gaaggttagaa gtaaaaagtc ccataggtac ccaactaatg 46300
tcaccaggtt cctggatacc tttcctggag tttatttata gtgtgtataa 46350
ataaaatgtat tatgtgttta aatgccttt tcaccttcc ttttagagct 46400
gcctctttt aacagttcca ttccattgtat tggatgtact atgatttt 46450
gaaccagttc cctactgatt attctgtttt ttgcagtctt ttgttatgat 46500
gaacattcca cagtgacaat gttttcata gtcattcaca cacatgcaag 46550
tccttctgca ggatataattt ctagagggga attgctgact cagaggtttt 46600
ggtactctgt gttgattgtat gaggacggc agaaaagtga ggcccaagag 46650
tttccttagt accatgtgtat gtggacaagt caccagtcctc ttttgatgtt 46700
tggcccaaag gctttaaggc atttgatatc actgttttg tttctgcacc 46750
aggcgggaga cactatattc aatcgtgcta agctcctcaa ttttggctt 46800
caagaagcct tgaaggacta tgactacacc tgcttgcgtt ttagtgacgt 46850
ggacccattt ccaatgaatg accataatgc gtacaggtgt tttcacagc 46900
cacggcacat ttccgttgcata atggataagt ttggatttcag gtaagagata 46950
ctcagtcaga atctgtgtat aacatgtctc tctcatgtgt tgacttaggaa 47000
atgcagtccct ggcagctcaa gagtcctct ttaagctctg gagcagaatg 47050
cctccctctga gaaatgggtt cttgttataa gttgagatgg aaagaagaga 47100
ccagaaatgc ctgttagtctc tgacacatcca gacaaaaaca aatttcccc 47150
cctttttttt ttttggatgtt ttttggatgtt agggcttggc tctgtcaccc 47200
aggctggagt gcagtgcgtt gatcttggctt caccgcaacc tctgcctccc 47250
gggttcatgc catcctgtca cctcagcctc ctgagtagct gggactacaa 47300
acacttgcca ccatgcgcag ctaatttttgc tatattttgt agagatgggg 47350
ttttgctgtat ttgccttgcgtt tggctcgaa ctccctgagctt caagcaatcc 47400
atctgccttgc gcctctcgaa gtgctggattt ataggcatgtt ggcaccatgc 47450
ctggcctaag aacagttttt agcattttggg agggctctc atctttaagc 47500
tccaaatgtat actgtatattt ctgcctttt tctttctt gccccacaag 47550
ttttggaaag taaattggaa tagtttccc ccactgaattt attagcttgc 47600
tataacctcg cagatgttcc ttggcctgtt ttgtttgtt tttgagacag 47650
ggtcttgcgtc tgcaccccg gctggaggtgc agtgcacacaa tcatggctca 47700
ctgcacccctt gactgcctgg gctcaatcca tcctgcagcc tcagcctcc 47750
gagtagttgg gactacaggc atgagccagc atgtccagctt aatttttat 47800
tttttagtggat gatgagggtct ggctatgttg cccaaatgg gcttgaactc 47850
ttgggctcaa gtgatcctt caccctcagcc ttccaaagca ttgggattac 47900
aggtgtgaac cactgcctcc gcccctggcc ctataagaag gaatgtgatt 47950
ctgttttccca gcagggcaca aacttctgtt taaataaaaaa gccccaaattt 48000
ttccacccaaa atgccccttag tgaagtggcc agcccaatgtt cccgactagc 48050
gtattatccaa aagcatatttgc tcattgggtgg aaaatggctt tatagtccat 48100
tgttttgtct taaaagttaaa tatataaaata aacttgcata ttgtttccat 48150
attccgtgtt tatattaaca taaaagtttttgc ttaaatttacc tgcgtggc 48200
caggtgcagt ggctcgttgc tgtaatcgca gcactttggg agggccgaggc 48250
gggcagatca cctgagggtca ggagttcgag accagcctga ccagcatggt 48300

18923800202SEQ.txt

gaaaccctgt ctctactaaa aatacaaaaa ttagccaggt gtgggtggcag 48350
gtgcctgtaa tcccagctac tcggaagct gaggcaggag aattgctga 48400
acccgggagg cagaggttgc agtgagttga gatcgccca ttgaacttca 48450
acttgggcaa cagagcaaga ctctgtctca gagaagaaaa aaaaaaaacc 48500
tatcagttga ataacaaac ccttccttc cttgctttaa gtgaatctga 48550
agatccagga gctgtgctgc aggtaccctc tatgttgggt acccctgggt 48600
taggctgact agtacagtgt ggttggctca tgttagacagc agacccttta 48650
ttttagatac aactttttt cttttcttt tattttttt gagacagagt 48700
cttgcttgc acccagcctg gagtgcagtg gcgtgatcat ggctcaactat 48750
agccttaaac tccctggctc aagtgatcct ctcaccccg ctttccttagt 48800
agctgggacc acaggtgtgg gccagcaccc ctggctgatt taaaaaaaaa 48850
aaaattttt ttttagaga tgtctacta ttttacccag gctggtctt 48900
aactcctggg ggctcaagca atcctcctgc tttgacctcc caaagtctg 48950
ggatgacagg catgaactac tgcacctgct gagatgcaac agcttctgt 49000
cagactcatt ttattctcat catttcttcc tgcctccct tgctgggagc 49050
atgagagctg ttagtggaaat ataggaatgt atgaagtcct tctcccaagat 49100
caaaaatcct aacttcttgc cttaaaggga gaaaaatttta aatgtaacct 49150
tacttttaga ctttcagaa atccttctat acccttccgt ccccgcttcc 49200
acccttcctc cctctccgtg tttgtatctt cttcttcttga aacacacagg 49250
tttataccct gacccctctt gattcatccc ttgaagcaca gtggtaaca 49300
aggaaggggc ccgtgatgcc ctaattctt gcccacagcac catgtttgtt 49350
tcacaaggag cctggcaggt ttgggcttgg ggcagatagg ggagagaaag 49400
cagcagagac agcaaaaacca aatcatgtca gcttggcatg tactccctc 49450
tgaaatagct aagaatccat ttctgtaaaaa gcactgatta tcagaaaaacc 49500
ttattggcct ggccacccctt ggttcaaacc ctcacattaa taatgtggac 49550
agtagtatga ggtgtgccaa aggtggatga ctcagcacct aagtgtatgac 49600
acctaattac gaataggttc attaaagcag accccctggg gaccccttgc 49650
tgaggatcct tacagtcaga attcctgaat atatttggaa ataataattt 49700
catctttatt ttcatatgtt ctgtatgggt tggctgactt cccctcaaa 49750
gtctgagttt gagttttctt taattttatgt gatgggttt gtccttttgg 49800
attccagaaaa gagctgggtg tgggttggag ctgcactcag agtcacacaa 49850
aaccacagcc ttttagagaac ccacaggaag gctttgggc acgtcctgat 49900
tcttgcatt tctcatcagt gctgactttg tatcccttag gagttcacaa 49950
ttcataacca ctgaaatatt aaaataaaaaa aagttttggaa aggtggagag 50000
cccagatgct ctactacttgg aaaaatgtt aaaaacataag ttcatcatta 50050
tacattttgc taaatcagga taaagtctga agtttcaaag aagttttatt 50100
ttagcaaatt ttcagaaaca ctgcctcaac tggtagggcc agtggcttag 50150
tcagtagtgc tttggaaagca tggtaggtgg attggctgat aggtgggtg 50200
tggaaggggg gctgtgactg ggtgggtaca gagaggctt gaaacaatct 50250
cagattccag gagttccctgg ataaggactt catgtcgccc aacagagcac 50300
aggagaagca gattccctgag ccactcagga agaactgggc ctaggcctgc 50350
tcttgcact gactggcttt ctacataacc acagaaacag cactgtgtt 50400
tagaaagagg aagatcatac ttttggatat ctgtgtctaa tttaaggtca 50450
tctgagccct gatagaaaaa caaaacagac aaaacccttgc taactgctcc 50500
ctcccacccccc acccaccatc aaaaaagctt tagagaggct ggacatgggt 50550
gctttgcct gtgttccctgg cactttggga ggctaaagggtt ggtggatcac 50600
ctgaggtcag gagttcgaga ccagcctgac caatatgggtt aaaccccatc 50650
tgtactaaaa atacaaaaat tagccaggtt tggtagggcaca cgcctgttagt 50700
cccagctact tgggaggctg agacaggaga attacttggaa aacctgggag 50750
gcggagggtt cagttagggcc agatcactcctt accctgggtt 50800
acagagcgag actccttcaa aaaaaaaaaa aaaaaaaaaaagat ccggtttgggt 50850
gtcttacaac tggatccca gcactttggg aggccgaggc cgggtggatca 50900

18923800202SEQ.txt

cgaggtaag agatcaagac catcctgacc aacatggta aaccctgtct 50950
ctactaaaaa ttagctggc gtggtggcag gcgcctgt tag tcccagctcc 51000
tcaggaggct gaggcagaag aatcgcttga acccgggagg cggaagttgc 51050
agtgaggct a gatcgcccc ctgcactcca gcctggcaac agagcaagac 51100
tacgtctcaa aaaaaaaaata aataaaaaact ctagagaagc aaaaagaata 51150
actttaaaag ttttatgtt cttagcaagc tttatggg ggatgtcaga 51200
acttaactaa ccactgctcc ttctgtgt atgttttcc tccagcctac 51250
cttatgttca gtatgggtaa ggtgtctctg ctctaagtaa acaacagttt 51300
ctaaccatca atggatttcc taataattat tggggctggg gaggagaaga 51350
tgcacattt ttaacaggt aatggtcata acttagatat ctttctccctc 51400
tgtcaacctt cacttccagt ttttaacca atgcttggtt gttccccaaag 51450
gactgaccct cagatgggat gcacccctag tcagccaca ttcttaggtt 51500
tggcttccta caggtcctgc aggtgctaaa agggatctgt aggaaaatga 51550
gtttctgaga tttttgtatt ggcctggaaa aatgtcaa at gggaaaccaag 51600
tgacggggca agtttacttt gacttgcgtc atgcccgtt gtactcaagg 51650
agtaaaccaa tgcctttgtt aaaaatccct ctttcattt tggccccctt 51700
tcactgtgaa acaagttcc ttgagcagaa tcctaactgt cttcacagaa 51750
gctttgtgtt atatttttt tttggagttt tttcacat acaaaaagaga 51800
tacttagta taataaacct ttgaggacct atccagcccc agcaaccatt 51850
atggcctggt cagttctgtc ccatccacat cctggggctc ttttaagct 51900
ggtaaatcat tatgatgtgg gttgtcattt acagtggtaa aaaacatcta 51950
tcagtagcat ttgaaaagaac attctgctca gtcctctggc ttagaggct 52000
tcaacccac cagccaccga tgagcacctt ctccctccag gagccagtct 52050
gagctcatta ctgagtttaa tatcagaata caccctggc cagcctttct 52100
aaattgcagt accagttaac agaagggtgc tgcagagca acacccaagt 52150
cattcaagtt accattgtgt gcaaacttaa cagagaccca cgtcttcaat 52200
ataaggcttg aaggaaactc cagtttttagt atgtagatgg ggtatcaagt 52250
gtgtgcacat tgaacatctg ctgcatacag agcactgtgc caggcaggcc 52300
caggacactg aaaacctgga catagggtcc agacagaagc aagcctgctt 52350
ccacagaggc actcctggc agacactctg gactgatatg acagtgtgca 52400
ggccgcacag gataccacag gtctgaatgg tcagaacagc tggggaggga 52450
gggagcatcc gcaggcatct agtcccatgc taacgcagtgc gcaactagaag 52500
gatgggtggt gtgtggagca actttcttga aagataaagg acctaacact 52550
ttctatgcac cacttactgt gtgccaggca aggccaggaa ttttaagtg 52600
gtctggatc agccagttct gcctttaac taactttgt gtcctgctct 52650
ccaggctttc attttggtcc tcattccctt tccttggacc aacacagaat 52700
cctccaccct gttctggctg cctctagtct ttttctcagc cctccattt 52750
ttttttctg ctttttccca catgttctga agccctccat tcgtataacta 52800
ctttccagag acttcccat ggctaaaagc atttggaaa tactgttat 52850
taggcccctt tcagatactg gcaaccgttt gtggatgtc ctgagaaggc 52900
ctctgtgact tagcctggcc ctttcagcc catcacctgc cacgtcctac 52950
cccagaccct tgcaccagt cccaggagc ttacgttgc ccctgagggc 53000
actaggctt ctctcactt catgcctttg cctgtgccat cctggctgcc 53050
caaaatgcta tggcagatac ctgttcatcc tcaactggc tctgcctagg 53100
cttgctccag cagaggttac aaactctatg cttcttccctc tgcgtctcca 53150
acctcatctt cctcttctca cttccatcct gcccctaaag gccctatgtt 53200
tgaagcattc acactgtata ttctgtgggg cacacggccc cagtgtctgg 53250
cacatggtag tcaacaccac aaaccgcaga accagttgtaa aaggacatg 53300
gagtcggaaat gtgagttta accagggtca tgctggctg gttctggca 53350
tgcacatcc tgcaggccgg ggctctcagg ccaagtgtat ggcagctctg 53400
tgataatgac tttcccttta ctcttgcag attagttttt agaggcatgt 53450

18923800202SEQ.txt

ctatatctcg cccaaatgct gtggtcggga ggtgtcgcat gatccgccac 53550
tcaagagaca agaaaaatga acccaatcct cagaggtgca ttctttgtt 53600
attcatactc cttccccctt taggatgagg taggctgcag gtccgaggct 53650
ctgggcctag agggaaattg aggtggtcag gttacagtgg agagggagga 53700
ggaagtacgt gtgatgattt cttcttaaga tttttgttt aagacaatct 53750
ccttgcgtc ttttccttgt aggttgacc gaattgcaca cacaaggag 53800
acaatgctct ctgatggttt gaactcactc acctaccagg tgctggatgt 53850
acagagatac ccattgtata cccaaatcac agtggacatc gggacaccga 53900
gctagcgtt tggtacacgg ataagagacc tggaaattgc cagggacctc 53950
tgctgtgtt ctctgccaat ctgctggct ggtccctctc atttttacca 54000
gtctgagtga caggtccct tcgctcatca ttcagatggc tttccagatg 54050
accaggacga gtggatatt ttgccccaa cttggctcg catgtgaatt 54100
cttagctctg caaggtgtt atgccttgc gggttcttg atgtgtcgc 54150
agtgtcaccc cagagtcaaga actgtacaca tcccaaatt tggtgccgt 54200
ggaacacatt cccgggtgata gaattgctaa attgtcgtga aataggtag 54250
aattttctt taaattatgg tttcttatt cgtaaaaatt cggagagtgc 54300
tgctaaaatt ggattgggtt gatcttttg gtagttgtaa ttaacagaa 54350
aaacacaaaa tttcaaccat tcttaatgtt acgtcctccc cccacccct 54400
tcttcagtg gtatgcaacc actgcaatca ctgtcataat gtctttctt 54450
agcaaaaagga ttttaaaaact tgagccctgg acctttgtc ctatgtgtt 54500
ggattccagg gcaactctag catcagagca aaagccttgg gtttctcgca 54550
ttcagtggcc tatctccaga ttgtctgatt tctgaatgtt aagttgtt 54600
gtttttttt aaatagtagt ttgttagtatt ttaaagaaag aacagatcga 54650
gttctaatta tgatctagct tgatttgtg ttgatccaa tttgcatagc 54700
tgtttaatgt taagtcatga caatttattt ttcttgcatt gctatgtaaa 54750
cttgaatttc ctatgtattt ttattgtgtt gttttaataa tggggagggg 54800
tattgagcat ttttttaggaa gaaaaataaaa tatatgtgtt agtggccaca 54850
aataggccctaa tgatctagct ggcaggccag gtttctcaa gagcaaaatc 54900
accctctggc cccttggcag gtaaggcctc ccggcagca ttatcctgcc 54950
agacccctggg gaggataacct gggagacaga agcctctgca cctactgtgc 55000
agaactctcc acttcccaa ccctccccag gtgggcaggg cggaggagc 55050
ctcagcctcc ttagactgac ccctcaggcc cctaggctgg ggggttgtaa 55100
ataacagcag tcaggtgtt taccagccct ttgcacctcc ccaggcagag 55150
ggagccctcg ttctggggg ggcacccctcc ctcagaggct ctgctagcca 55200
caactccgtgg cccacccttt gttaccagtt cttcctccctt cctctttcc 55250
cctgcctttc tcattccttc cttcgtctcc cttttgttc ctttgcctct 55300
tgcctgtccc ctaaaacttg actgtggcac tcagggtcaa acagactatc 55350
cattccctag catgaatgtt ccttttaattt agtcatctag aaagaagttc 55400
agccgaaccc acaccccaac tccctcccaa gaacttcggt gcctaaagcc 55450
tcctgttcca cctcagggtt tcacaggtgc tcccacccca gttgaggctc 55500
ccacccacag ggctgtctgt cacaacccca cctctgtgg gagctattga 55550
gccacccctggg atgagatgac acaaggact cctaccactg agcgcctttg 55600
ccaggtccag cctgggcctca ggttccaaga ctcagctgcc taatcccagg 55650
gtttagccctt gtgctcggtt cggaccccaa accactgccc tcctgggtac 55700
cagccctcag tggggaggct gagctggcgt ctggcccccag tcttatctgt 55750
gcctttactg ctttgcgtcat ctcagatgct aacttggttc tttttccaga 55800
agcctttgtt ttggtaaaa attatttcc attgcagaag cagctggact 55850
atgcaaaaag tatttctctg tcagttccccc actctataacc aaggatatta 55900
ttaaaaacttag aaatgactgc attgagaggg agttgtggaa aataagaaga 55950
atgaaagcct ctcttcgtt ccgcagatcc tgactttcc aaagtgcctt 56000
aaaagaaatc agacaaatgc cctgagtggtt aacttctgtt ttatttact 56050
cttaaaaacca aactctaccc tttcttgggtt tttttttttt tttttttttt 56100

18923800202SEQ.txt

tttttttgg ttaccttctc attcatgtca agtatgttgt tcattcttag 56150
aaccaaggga aatactgctc ccccccatttgc ctgacgtagt gctctcatgg 56200
gctcacctgg gccccaggca cagccaggc acagtttaggc ctggatgttt 56250
gcctggtccg tgagatggcc cgggtctgt ttccttactg gggatttcag 56300
ggctgggggt tcagggagca tttcttttgc ctggaggttgc tgaccgcgaa 56350
gttgcatagt gcccgtccct tttctgtttc tgtgtatcct attgctgggt 56400
actctgtgtg aactggcctt tggaaagat cagagaggc agaggtggca 56450
caggacagta aaggagatgc tgtgctggcc ttcagcctgg acagggtctc 56500
tgctgactgc cagggggcggg ggctctgcat agccaggatg acggcttca 56550
tgtcccagag acctgttgc ctgtgtattt tgatttcctg tgtatgc当地 56600
tgtgtgtattt taccattgtg tagggggctg tgtctgatct tgggtttcaa 56650
aacagaactg tattttgcc tttaaaattaa aataatataa cgtgaataaa 56700
tgaccctatc tttgtac 56718

<210> 2
<211> 56718
<212> DNA
<213> Homo sapien

<220>
<223> variant B4GALT1 genomic sequence

<400> 2
gcgcctcggg cggcttctcg ccgcctccag gtctggctgg ctggaggagt 50
ctcagctctc agccgctcgc ccgcggccgc tccggccct cccctagtcg 100
ccgctgtggg gcagcgcctg gcggggcggcc cgcggggcggg tcgcctcccc 150
tcctgttagcc cacacccttc ttaaagcggc ggcgggaaga tgaggcttcg 200
ggagccgctc ctgagcggca gcgcgcgcgc gcccggcgcg tccctacagc 250
gggcctgccc cctgctcggt gcccgtctgcg ctctgcaccc tggcgtcacc 300
ctcggttact acctggctgg ccgcgcacccgc agccgcctgc cccaaactgg 350
cgaggtctcc acaccgcgtc agggcggctc gaacagtgcc gcccgcattc 400
ggcagtcctc cggggagctc cggaccggag gggccggcc gcccgcctcc 450
ctaggcgcct cctcccgacc gcgcgggggt ggcgactcca gcccagtcgt 500
ggattctggc cctggccccc ctagcaactt gacctcggtc ccagtgcctcc 550
acaccaccgc actgtcgctg cccgcctgccc ctgaggagtc cccgctgctt 600
ggtaaggact cgggtcggcg ccagtcggag gattgggacc ccccccggatt 650
tccccgacag ggtccccccag acattccctc aggctggtc ttctacgaca 700
gccagcctcc ctcttctgga tcagagttt aaatccaga cagaggcttg 750
ggactggatg ggagagaagg tttgcgaggt gggccctgg ggagtcctgt 800
tggaggcgtg gggccgggac cgcacaggga agtcccgggg cccctctagc 850
cccagaacca gagaaggcct tggagacttc cctgctgtgg cccgaggctc 900
aggaagttt ggagtttggg tctgtttagg gcttcgagca gccttgcact 950
gagaactctg gtagggaccc cgagtaatcc actccctttt ggggactgac 1000
gtgaggcgtcc cgggtggggaa ggagactgac ctctcggttc acgtgtctt 1050
ccatagagcc actctcctga gtgggtttt ctccctgatcg tttgggcca 1100
gtgacttctc tctgaacccctc atatttctct tctggataa taaaatggca 1150
ccctttcaag gggttgtttt ggaagatatt gtgaacaatg gtaaataagg 1200
gcttaattaa tgagggtaag ccctcagtaa attgtcaactg tgtgttcatt 1250
tcttcctctg tgtggatcgt gaccgagagc cttcccccct agcctcctcc 1300
tggatgggt acccaaacc taggtgagca gggatctcgc ccagggcag 1350
agagttgtg tactctgggt gtttagagggc taaaatataa ccagtcaaca 1400

18923800202SEQ.txt

ccacgttgcc catttctggc acttccggta gcagccgtag tctcaattat 1450
cttggccaga ttagtctgaac tctgacccctc agcctgttc agcataggca 1500
gagagcttga gtaggtgagt ttgcattcct catagcagct ggctgagcct 1550
agtctggact tctctttgac ctgtAACCTA caggcccaca ggcccaaggc 1600
aaccacaggt tgcttccagg gttaccacac aggtggttc tcatttctaa 1650
tgcttaggtt tagataattt ttgttaagtga gggccctgg caggcaggat 1700
gacatcctgc caataggagt ttctgtcac ttcccacag agccctggct 1750
actacatact cttgctcaat ttgcggcgtt attcgcgttca tttgtttcata 1800
tcaagtttg gaagaacatc ttgttaattgg tcagacgtga actgtggtaa 1850
taatggggc ttgtttttt aagcagataa ttAAATTCTT ttgcatttga 1900
tgattattct gggaaagcaga ctatcccattt aaaaatgaaat ggactctgcc 1950
ttgctgctaa gtgtctgact tgagacatgc tatcgagttt ctcaaaatct 2000
cttccttgc taaaatgtgg ttgtcgatga ttaccttaca ggggtttttt 2050
taagactaaa tgagatcgta tacattaaat acaggcactc aggctggca 2100
tggggctca cgcctgttaat cctagcactt tggggaggctg aggggagtgg 2150
atcacttgc gtttaggatg tgagaccaggc ctggccaaata tggtaaaaca 2200
ccatccccatc tctacaaaaa tacaaaaaaag ttagccaggg gtggggcat 2250
cgccagctact caggaggccg aggcaggaga attgctgaa cctggggaggc 2300
agagggttgcg gtgagtcaag attgtgccag tacactccag cctggggcgac 2350
gaagcaagac tgtctaaaaa aaaaaaaaaa aaaaaaaaaata cgggcactca 2400
atacaccgtt taataataat atagtaataa tatttgctta ggatctttaa 2450
aaagtttcat ttttcagac tcccacagaa atggctctgc acagcagagt 2500
gaagggggag agagactgag tctccaggcc agaaaaaggc cagggtttttt 2550
gcttttgc tttagttgttgc cctggatattt gcacagaaag aaaaaataat 2600
tagcaagtta aacaaaagta ccgcggaaatgattt gattacattt gtatttgcgt 2650
atcacatctt ctctcagaag cgtaagagac aaggtcgta ccataccctt 2700
gcttagttttt tttagttgttgc cctggatattt gcacagaaag aaaaaataat 2600
tagcaagtta aacaaaagta ccgcggaaatgattt gattacattt gtatttgcgt 2650
atcacatctt ctctcagaag cgtaagagac aaggtcgta ccataccctt 2700
gcttagttttt tttagttgttgc cctggatattt aatagggtct 2950
tactgggtttt tctaaatggc ctataattgg ctacttggaa ggacttcctg 2800
agaaaagaaca ttttggagga cgaggagaga gtgcctctc tattttggct 2850
gctttcatgt gacatgcggcc agaccatgac gtttaggcgt ctgctggggc 2900
agccccagaa atggggggccg agaggtcttt tcttcatttt aatagggtct 2950
gttaggtttgg gtggtaggtt acagttctca gaatggaggt tcctggctat 3000
gaggccttgc gaaagctgaa agtctccctt ggagtgtgtg ggtgggggg 3050
gtcgagccca tctgttcatg ggcaggctgc agccaaagcc cttgcgggtg 3100
gttttgcgtt tggtggggaga aagcatccgt ggggtttaga gttgtggcct 3150
tttcaactact tgcagtttctt ttcccccact tggctttact ttctgggtgc 3200
caggggtctg ggccagatgc tgagattcctt ctcagctgac aggtgtgggt 3250
tatggcaaa cccttccctg gaggacataa ggcacccggat tggactgctg 3300
atgggttgct gttggagttt tcagggccctt ggaatagtct tcagatagac 3350
ttgggttagt gtgaccttgg gcaggctgc ggtttggagc catagtaccc 3400
cccgccccca caccggccac cctgctctgg gctaattgtg ggcttgcagg 3450
agttagtgcgtt gcaatggaa gggggccctt tcctgaggat tctacagctt 3500
tctccaggaa atcctccctt gtagtttagg cctgcagggt ctatgctatc 3550
cttctttctt aaccctgtct caggtcctca gcggggccat gggcatcca 3600
cttataaccc tgcagcgagg ccctttttc tggccacctg ggtgtttgcc 3650
tgctgagatg ggaggaacag tggcccttggg cttctttccc cgtcatgttt 3700
atctctgctc agattggca gcagctcaat gggacttgac cagctgtggc 3750
actgcccagtc tgaagatgag taggtgtatg gggggaggtg ggcagtaccc 3800
gaagctgaac tggtaggaga ggcaggctgg cctggggct cagctggggc 3850
ctgggatgggt tggtacagtc ccctcagggg ggttagggag tgagtgttag 3900
actgcttaag cctcagaggc cgctcttgcac cacctatgct ttgaggagat 3950
cctcttcatt tggtaaaagg gaagactctg atctagagat gggcacttgg 4000

18923800202SEQ.txt

accagcaaac agcagctaca ggtagccagg gcacccgagg agcacttgct 4050
catgagccgg tttccctgggt ttttatgggg gctgttgcgt agcgtctgcc 4100
agggtttgcgt tccttagcact tgctggtctt tgctgggctc tcagctctca 4150
ggtggggctc taccagcacg tttccccctc cctcatatgc acacatgtgg 4200
acacaagcag gctgcccagg acagagtgtt ctttggggct tgggaaaggg 4250
ctctctctcg cccttttggg gatgagccctt ggaacccat caccttccgg 4300
cttggggtgg agtttcatcc tgggggttga agcttttaggc tcagataact 4350
agtcttgcata gccagtttg tcctgttgg ttttgcgtgg aaaataatgt 4400
attgacgtat acacagacat tctttgtcta acagtctgag attgagaaat 4450
accctccatg actatttggt ttgcatttcat ggtgaaactt ggtcgctttc 4500
tttagacacag cctatggcaa taagagtgtat ccctggctgc tgtaattcat 4550
tccagacttt gagcaaacac aaggcaccgc ctccacctgc agtggagcct 4600
ctgatgaacc aaatggaaac tccttgggaa atggggagta agagccaaat 4650
gtgggattgg actttaaactg cagtttcttta gaactgttagc attccacgat 4700
gggattgtct agtgctcttc ctggagggttta ctattcaata gttggctagt 4750
gcacagggttc aggggtgacc tgatatgccc tagcgtttca gaagatccct 4800
gcaagggtgtg tctttggc catctgaagg gtcttgatg gtgatcttg 4850
atggatatcc gtgacggcta aggcattctga taacttcatt ccttcagttc 4900
cagcagtgtt cctgtattat gctgggact agagctacaa agaagaaaaac 4950
aaagtgcctc ctcttcagga actcttaatt taggcagggg aggccataatt 5000
gaacagtgcctt gaggtcatct agggaaacca aagtgtgtat ttatcccctt 5050
ccctatcaact cccctccctc cttcatttctc tccttcttc tttcagaaac 5100
tccaagttca tatcaaaatt ctccagccct ggttttattt ggttgcgtga 5150
aaatttccct ctaatttctg aagctatgca ttagttctgc ttagtaatct 5200
ttaacttgct gctttataat gattataatg agatattcact gggattttatg 5250
gtcttgggt agcagcaggg tagggatttc caggctggga ctaagctaat 5300
ttatgggttg ggaattatgg ggcagttaat agcaaggcag tccaagcttt 5350
ccacagattc cacccttaggg accatccaga cttaaaggAAC agggccggca 5400
ggctcatccc ctttgactc agctgggcta tgggtgtgtg tttgtgaaag 5450
aggtttattt agtagtcata cctgctgatt tccctgttat ctgtttaccc 5500
agtgcctcct gtaccttgc tcttactctt tggtctctgc tcttactatg 5550
aagaagcaga gactggaaatt ctgcttgcac ccacatctac ctggaaattc 5600
cagttttct tgccttgc tgccttgc tgccttgc tgccttgc 5650
gtctggccctt gaagcttaaa tccttggagg gcctggcatg gtgacagttt 5700
tacatttggc tttggatag actgggtgtgg tccctggca gtgaggtcac 5750
tgtaaggcca gccagccaga ccctggctcc tagggaaatt aacaaggcat 5800
gggatttagac tcacagggtc cctctgtcc ctaaacttgg taggggttcc 5850
tgggagccag actgcgatata agattgttaga gacctgagac ctgagttgt 5900
ggggcctctg tggtgatctg ggccattgcc gggtagctg aggcggtcac 5950
tagctcaagg agtgcattca ggatattgtt ctgttgc tgccttgc 6000
ggttggagag tggggcttgg gggggggggc cagggttttag tggggagctg 6050
gttctgggtg aatgtggcct aaagggtttt gtccttagaa gacagaggggg 6100
tgagtcacac actcagttgc tcaggttcca ctttgcggct tggcctcagc 6150
ccgccccttc cctgcacaaa tgaaggccag gggctatata attggctgtt 6200
gctgaattct ttggcagtga ttttaaagtc tggtctgggt gtgttatgt 6250
gctgcttctc tatccactcc ccacacccgc tgcttccca gagccctca 6300
caaagcccag gcagagagag agagagagag agagagaatg acttgcctca 6350
cagagatgtt gggataggg ataggggtat gggctttgc ttttgccttt 6400
tgagggggga taatctttc cttcatttttta aaagtaaaaa gtaatgcagg 6450
ctcattgaaa ataatttggaa aagttgaaag agatataaaa gcacacccaa 6500
attccatca cccaaaagaa acataccggc atatttccta ctgtctttt 6550
tcatgtttaa gaatatagtt gatataattt tttttctttt tcttttttag 6600

18923800202SEQ.txt

acagggtttt tgctctgtca cccaggctgg agtgcagtga tcacggctca 6650
ctgcagcctc gacctctcgg gctaaagcgat tctcccactt cagtctcccg 6700
agttgctggg accacaggtg cacaccgcca tgcctgacta atttttgtat 6750
ttttttaga gatggggttt tgccatgttgc cctaggctgg tctcgaactc 6800
cagagctcaa gtgattcacc tgccttggcc tcccaaagcg ctgggattat 6850
aggtgtcagt caccacaccc agtgttatag ctgttgcctt tatagatgaa 6900
cagatagatt gacatagatt catgtagata gcctgggtt cagcattttt 6950
catttaagat tctgtcacag acttgaccct ataccttaa aaatcacaaa 7000
ggcagttatca tagtctgtca gctgaatatg ccataactta aaaaaatcat 7050
tcaactgttg ctgaacacac acatatacat atatagttt tgtttttct 7100
tagtgatgtta gtgatgcttgc tgcaaaaaagc tttatgtact ttttggatgg 7150
tttctgttagg agagcttct aaaaaaggaa aaaaagtgtt gaatgtttt 7200
tgagaaggc tagattttca agccagtctt acaaaaggat agactcattt 7250
gaaattccag atttgcttag tgctggcaga tgagtatcac ttattgctga 7300
acaatgtgtc tagaattctg attaaaaaaag aaacttagtc caggaagtgc 7350
ctggggcag gggcaaaggcc ccaggctgca ggatagctc ttaggatctg 7400
gctgagcaga aatctgtgt gaacagaatc ggtgggggtg atgcttctc 7450
agtaacttct ccatttgcattt ctttagcagc taagtccctg tgctggactt 7500
ctgtggacta ctgtggctct gggctgtgg ttgtgggtga acaacagcta 7550
gctaaaccag tgctgttgac atcattgaga tgcacgcac aggaagggtgg 7600
gagcaagctt gcaaattcaga ttctgaaaca tatagcacag ctctcccacc 7650
tccaggtggt cctgagatct agggaggagc catagtgaga aacttttaggt 7700
ttcttaggaat tctcttaggg agaagctctc tttagggagag gcagaacctg 7750
gttctcagtt gggctgatt caggtgggtt agatcaataa agcctcaggc 7800
cagtgccca ggctattccc aaggagtata ctttgaagtt actccctta 7850
gaatgtcctc agtggagata aattctctt gaggagcgt tttgtctgcc 7900
ggggtcattt ggcacaaagc ctggagtgct agggcgggt tgcaactgagg 7950
gaaggggcag gattatgtca gcagtgtgac ggatacagtg tgaggtcagg 8000
ctccttcctg cccccaccacg gggcctaga ggtcatgggg agggccctg 8050
gcaggggatt caatcatgc ttggcccat gacagagttt attctaaaaa 8100
tgccttaagt tttttcttcaaagtttct tcctgttttgcataatggcc 8150
ttttgcctt gacatcctga aaccgcagag ctgtcattgg tggtgcagga 8200
caactccagc ttgaaaaaaaaa tcaacaacaa aaaaagaaac agggaaaggat 8250
gtggagttca gggtcggcc taggaaagct ggtatttgcg ttatggatt 8300
gtggggatgt ggtatttaagg tggtgggttag cgcctgacat ttagaggagt 8350
actctggca gactccctgc ctggcccaaga ataggtagaa ttgagtcttc 8400
acaccaaagt caggagagac cccctcccccc caggaagaga atgaacaggg 8450
actcatttcc tcattcagca aacttttatt ggttaactaca ctatatgaag 8500
tgtgagagat agacatgaac aagagaggcc cccactcttgc ggcagtcctt 8550
tagtagtagt agatagactc tggcaatatg gtgtggtcag agagaggaag 8600
cctgggtgct ttgagggtac tgaggaggtg cagggagcca aatgggtgg 8650
ctggggccagg gccagagtca gaatgaagga cctctttcc agacgttgc 8700
tttagcatct ctgtctctca gtatgttgc acagtctcc ttattggaaag 8750
ggcaggagtc tactgctaaa agtaacctgc gatttcctct acttgctgtc 8800
atgtggaaag aatactaaag ctgaaattcc aaaagttgcac caccttacc 8850
agcagggcag gagaggaaag gaaatggagg cagagtggc tgaagatgat 8900
aaaagaaaaga gaaggtggtg cagttggac tggtatggac agaggaagtc 8950
tgagggtac tggactgagg gatcaaaggag aggcaatttgc aagggaaagag 9000
agctgcagag agggatttct tggctgcag aggtaggag caagccttgc 9050
aggctgctgg agtgaggatt ccgagccctg gtcttatttgc tttttctaat 9100
tcattacatc attttaggca agtccact cctttggctt ctgttgcctt 9150
tctgaaattt gagtgggttg ggcctgctgg tctttgcct ctgtctttct 9200

18923800202SEQ.txt

18923800202SEQ.txt

tacactggaa ttttatggct gctcacattc ttcccttcag gtggacgttg 11850
ttcatcagta tcctggcaa gagggcatca taaaccacag acagctgagt 11900
gatttaggaag aggagctgaa gagggagcat tagatgttg attgagtctt 11950
aggtgagaaa gtatatcatt aaaacaaaaa gatagatgta ggcgggctca 12000
gtcttgtgtg cctgggtgt tggtagaaaa actaaagcac aagcctgtag 12050
ataacctgct ttattctacc tcggggctgg tggtgaatc caggatgcc 12100
gaccctaaag tccagcttc ttccaaacct actgaataat ccgagagaaa 12150
tcatgttctc tctctggcc tcagttgcc catgtataaa atgagatgaa 12200
ggattggctg ggatgcttc cagagtctct tcctgcctgg agttctgacg 12250
tagccatgta ctcctgctca gcatcgctaa atggcttgg ggtaggacca 12300
ttgagtgctg cctccattag ggcagctat gtaatgctgg ggtggctgtc 12350
actggccct aagagccagg attggctta ctggagaaat ccacatccac 12400
ctaaacttaa gacccagggg tgtccaaatct tttggcttcc ccaggccaca 12450
ctggaaagaag aattgtctt gaccgcatat aaaatacact aattatagcc 12500
gatgaggtt aaaaaaaaaa actcaatatt ttaagagagt tcatgaattt 12550
gtgttgagct gcattcaaag ccattcctggc cgcatgtggc ccatgggcca 12600
tcggttggac atgcttgcct tagacctccc agcaattcta gtctctaaac 12650
aggaaatcaa aagtcaagat gaatagataa gttggctagt gtggaaaagt 12700
aattgggtgg agccactgta gatgcagggt tctaggctcc atcaacaacc 12750
acctacatca ctgaacgaaa gataatgctt gttcagcact tattacatgc 12800
caaccatggt aaaaatactt cagatgcatt gtttcatga actctcacag 12850
cagctcttt tcttgcctaa atgcccgtt agaacctcca gtacaatgtt 12900
aaatagatat gctaagagac aacatatgtg tcttggtagg gggaaaatat 12950
ccagctttt actattaaaga atgggttag cagtgggtt ttccctaggt 13000
ccctttatca ggttgagaa gttcccttct attcctgggt tggtaggtat 13050
tttatcatg aaaaggtgat gggtttgc aaatgcctt ctgtgtctgt 13100
tgagatgatc atgtttttt gtcatttatt ctattgatat ggtatattat 13150
acattgattt ttcagatatt aatcttgcatt acctgggata aatcccactt 13200
ggcatggtg tataattctt tttatgtt gctggattga gtttgctagt 13250
atttgttga tttgtattca taacagatag tggtctgttag tcttccctc 13300
cctccctccc tccctccctc cctcccttcc ttccctccctc tctctctc 13350
tctctccctt cccctccctt ctttccctt cctctccctt cccctccctt 13400
ttcttctctt tcatagttgt ttaccactgt cagaaaaggt ctgttcgttt 13450
tcttcgtcg tgagatctt gttgggttt ggtatcaggg taatactgcc 13500
tcaaaaaatg agtagggaaag tgcccttcc tcttctgtat tttgagagag 13550
tttgggtcg gtttttattt attcttctt aaatatctgg tagcgttcc 13600
cagtaaagcc atctggccct gatgtttct ttgtggaaaa cttttgatt 13650
cctaattcag tttctggta taggtctatt cagaccttct atttttctt 13700
aagttagttt tgatagttt tgcttccaa ggagttgtc tcatctaagt 13750
catctaattt gttggcatac atttcatagt gattccttatt gatccttttt 13800
atttccgtta aagttgggtt agggatagtc cctcttcat tactgattat 13850
aataattga atttctttt tttcttagtc ttgcggaaag cttgtcattt 13900
ttattgatct ttccagagga ccaacttgc gttcattatt tggtctctt 13950
gttcttattt ttctgcttca ttaacttctc taatctttat tctttcattc 14000
tgcttgcctt tggttaagtt tgcttttctt ggtgtcttaa ggttagaagg 14050
taggttactg atttgagatt taaagatcat gctctttaaa cgttttgata 14100
gatactgtca gtttgcctc tggcttttc tcattaaacag tggataggag 14150
tgcttattcc tcacactcat accagccctg ggtgttacta acctttat 14200
atttgccagt atcatattca gacatagttt cttgtttaa tatgtttctc 14250
tgattactga tgaagttaaag caaattttca cgtgtttatt ggccatctgt 14300
ctttctttt tcatccttc tttcaagatg ggagtcttg ccatgttgcc 14350
caggctggac tcgaactcct gggctcaaattt gatcttcctg cctcagccctc 14400

18923800202SEQ.txt

ctgagtagct gggactata ggcgtgagcc a ccatggctgg cttgccatt 14450
tgtatctt atgtgagtt ttttctttt ttttgaagt ggagtctcac 14500
tccatccccc agagtggagt gcagttgtcc gatctggct cactgcaacc 14550
accgcctccc agggtcaagt gattctcaca ccttagccctc ccaagtatct 14600
gggactata ggtgtgtccca ccacacctgg ctaatatttg tatttttagc 14650
agagatgggg tttcaccatg ttggccaggc tggttcaaa ctggcctcaa 14700
gtgattcacc tgcctcgcc tcccaaagtg ctgggattac aggtgtgagc 14750
caactgtgccc agctgacttt tttttcttt ttttaaccc ttttttttt 14800
ttaccctttt tttggcccat ttttttttac ctttttctt ttaacccatt 14850
tttctttagt ttttaaaaat atgtttgcag gagctttta tattgtggat 14900
ttttctttagt tattacat cattgtaaa tatggctct ccatctgtca 14950
ctcttctta tctctggttt ctttagctat gtagaagttg ttatgttatg 15000
ttatgttatg ttatgttatg ttatgttatg ttatgttatg ttatgttatt 15050
ttttggagag ggagtctgc tctgtcgccc aggctggagt gcagtggta 15100
aatctcggt cactgcaacc tctgcctcct gggttcaagc gattctcctg 15150
cctcagcttc ccgagaagct gtgattacag gcacccgcca ccacacccag 15200
ctaattttt ttttttagta gagacgggtt ttcactatgt aggtcaagct 15250
gatctcaaac tcctgatctc aaatgatcct cccaaagtgc tggggttaca 15300
ggcgtgagcc actgcactcg gccagaagtt ttgaattttt atgtgtttaa 15350
atctatgttt tcctttatga cttcaggttg ctttcataact taagcaggc 15400
ttcaccatcc caaaatgata aaattttct cctgagttt cttctaagtt 15450
ggttctttag aagccaccaa cttggcttcg acagcaaaag atgaacagaa 15500
tttctgttca actctcatgc tgcaagaagc tttatgtaat actccaggga 15550
ccctttaagg tcccagagtt ttccctccaa tctatcagtg attctagtgg 15600
ctaagagtag aaatgtgaaa atttagccat gtgtgctgat agagctgttag 15650
taatttgtaa gctctgaagt tctaaggagt caggggagaa gggaaagtaa 15700
catttattga acatctatta gctcaataag aacatgcgt aagtatgtat 15750
atgttattt tcacttacat ctgaaaggaa ggcataatta tccccactcc 15800
tttagagaagg aaattggagc tggctacatt taaagtagtc ctgacaccag 15850
agagatattt ccaggagtagc ttggctggct gagtgccag atggccata 15900
ggagtagtgg gccctccaca gtccaaggc tggttctagg tggagagaga 15950
aggatgtgct cgtagtcagc accgcagctc cagaaaatct gctggggctc 16000
caaaactgat tagagggca gctgactcag taataaaaact cccaggagac 16050
ttacttacat actggaatgc aaagttgcag cttaactggg aagattagaa 16100
ctgttattga gtagcttaga aatctctggc tgaattcact gcaaggaaag 16150
ccgcaggata agctaactgc tggctgagtca gcagtcagag caggaaagtg 16200
aatttaacat tagatgggtc agtctctcgt ggctgatgaa ttcatcccc 16250
caatactgta cacctgcctt aggaccttt gtctggacta ggggttgggg 16300
tccccctcct ttgtacagcc ctgaaaggac acatccagct ccatccgcca 16350
tctctccctt acttatttcc ttccctccctt cttctttcc atccagccat 16400
caagcttccctt ttcatggcca ataatcatca ttggggctca ctcatggact 16450
ctcttcctc atgttattgt ttttattttgt ctcattcccc acttcttattt 16500
cccaggtata tcacaggcaa ctattctaac gtatttata gttgtgtatc 16550
tgttttgct cttgccaataa tggaaagccac tgctttatac atagatgtat 16600
tcttaacttt aaaaaaaaaatt ttttagatt aacctacaat aaaattggct 16650
ttttggcata tagtctataa atttaacac atacatattt ttgtgtatct 16700
accaccacaa tcaggataca gaacagttcc atcaccacaa aaaaatccct 16750
ctttagtca cattctcctc ccacccctaa tcccaggcaa ccactgatct 16800
attcttcatt actattgttt tgcctttttt aggtatgtcac ataaatggag 16850
tcacacagta tatatacatt ttttaaaaca tatgtaaatg gcattttata 16900
gctcattttt attatatgtt ttcatccag ttctgtttt ttttttattt 16950
tttaaaaat ttgacataac ttcagactta cagaaaagtt gttagactaa 17000

18923800202SEQ.txt

tacaagaat tcctggatat cctttggagt ccctaaatgt taacatttt 17050
ctatatttac ttttccttc tctctctc tctctctgc tctgtgtgt 17100
tgtgtgtgtg tgtgtgtgtg tgtgtatcta cctgtagata gatagatatt 17150
aatataattt tagatagatg tattctagatc tctctctc atatatatgt 17200
gtgtgtgtat atatctatat ctatatctat atatatctcc ttttaccctt 17250
aaatattcag tgtatatttc ctaacaacaa ggtgattaa aaatataat 17300
ataaaacatag tataattaac aatcaggaca tcaacattga aacatttctg 17350
ctatgtcatc tacaggcctt aggaagactt tgcagggtgc cccaataata 17400
gccttgatgg tagaagaaaa ccatgtgtt tattcagtt tcatgtctct 17450
tagtgtctt taatctgaaa taattcccaa gccctttgga tttcatgaca 17500
gtgacattgt tgaagagttc agggcagttt tttttagaa ggtctctcag 17550
tttaggtctg tctgtatgtt cctctgtatc agattcaggt tattcacttt 17600
tgacaggaat accactgaaa tgcgtctgag ttcttctcag tgtaacgaga 17650
tctagagaca cacactgtca gtttggccct tattggcagt gtgaacctt 17700
aggatttcat tgcgtgtggca tttggcattt ctccattata gttactattt 17750
taccattttt aattaaaact atctggccgg gcgttagtagc tcatgtctgt 17800
aatcccagca ctttaggagg ctgaggcggg caaattgcctt gaggtcagaa 17850
gtttgaaacc atcctagcca acataacatg gtgaaacgcc atctctataa 17900
aaaatacaaa aaatttagcct ggcgtggtgg cgcatttgc tttccagcata 17950
ctcaggaggg tgaggcacaa ggcttgcctt agcctggag ggagggtt 18000
cagtgagctg aaatcacgcc actgcactt agccagggtg acagagttag 18050
actctgtctc aaaaaaaaaa agtaaataaa taaaaaaaaatt ttttaagtat 18100
cttatgggca tatacttgc tgcattactcc tcaaacttcc atccactttt 18150
tttttttaa attttttttca ttaccttca tcgtttctt gatattccact 18200
gggttttagc atctacaaat gattcttgc tgaatcagtt attatggtag 18250
ttgatggttt tctaatttca ttattccttca tattttttttt aattttggca 18300
ttcttctata aggaagagct taccctttt ccctattaaat taattcatat 18350
attaatgcag acctatgcat tcttacttca tttaatcata atcctttact 18400
atcattatgt attctgtatgt tgcactatc ccagatttag ccaataagat 18450
ccccttcagg ggaatggtct ttgggattcc tctttagagg ttctgggtt 18500
ctgtttctt ttgacatatac ctattactt tgcattttttt 18550
ttttactttt aggcacagca agaagttcca tggccctt gttcttccc 18600
caactcagcc ctagagtccat tcacttctcc aatgagctt agttcccttt 18650
agtagagaat cataattaga aaacaagaat cagtgccaaag tgcaccc 18700
tgtttttaag gtccatccac gttgccgtgt atatgtccag catgttgatt 18750
ctaactgctg aataataacct catgattgtc atccatccca gtgtttctt 18800
ttcccttcgt taatgagggc ctcctggact gcctccagca ttaccttcc 18850
aaatattgct gtgaggaaaa tccttaaacg tttcctttt gggcaacgt 18900
tgagcatgtt tatgttgatt caggggtgcc agacacagct ccagaatggc 18950
tgcctcagtt tacatttcca ccagcagagc atgcacaggct ctgtgtctcc 19000
gtgaataatc agcattaacc agcttccat ttttgcctt actaatagat 19050
gtgctaggat aactctttgt tttaacttgc ttttctctga ttaccaatga 19100
gctggagcat ttcttcataat gcctgtatggt ctttggatt cctcttaggt 19150
aaattgctta ttcattataa tccttgcct gtttttactt ggagttctt 19200
tattttctt gaagatatgc aggaattccct tatacatcct agatattaat 19250
cccttcctgg tctcagacat tgcagatatc ttctgaatct gttattttact 19300
tattttatataa caattttttt tttaagagtt ggggtttgc tctgtcaccc 19350
agactggagt gcagtggtat gatcatgact cattgtggcc tcgcaatcc 19400
gggcttaagc gatcctccca cctcagcctc ctgagtagtt gggactacag 19450
gtatgcacca ccagacttgg ctaattttat ttatgtttt agagatggaa 19500
gtcttaatat gttgctcagg ccaatcttga actcctggcc tcaagcaatc 19550
tttccacctc agccttcgtc atctattata tatatgttca ctttgctcat 19600

18923800202SEQ.txt

gctgtatTTT gttgcaacat aaaactatTTT ttcccattgt tttgtgcagt 19650
ctctcaccag cactcttctt tttctgtAAC tgggttaatg ccctttgttc 19700
ttccatATgt taggtatgct ggtatAGTT aactctgctg actctcctca 19750
gtAAACAGTC tcttttATgt acacCTTATC ctctactgaa ttctctctat 19800
caagaatgac ttggccgggc atgggggctc atgcctgtAA tcccAGCATT 19850
ctgggaggcc gaggtgggca gatcACCCGA ggtcagaAGT tcaAGACCAg 19900
cccggccaac acggtaaAC cctgtctcta tgAAAatacA aaaatcagCT 19950
gggcgtggTg gcaggtgcct gtaatcccAG ctacttggA ggctgaggcG 20000
ggagaatcac ttgaACCTGA gggggaggtt gcagtaAGCC gggatggcAC 20050
attgcactcc agactgggtg atggagaaAC tccatctcAG ggggaaaaAA 20100
aaaaaaaaaa aaagaatgac ttgtcttcct cttAGAGTGT gaggtctaca 20150
tacAAatatt attcttgat tcagcaaATg tatgtcatAG gcctAGTGTg 20200
tgTTtaggaac tGTgCTgtCA ccaacAAAGT ttagAGAGGT tataAAactt 20250
gactgtAGCT tttagAGGT ggaggAGTgA tttgAAACtT aggctgtAAT 20300
tccttcctcc tGTgattcct tcctactgtg ttgccttccc ttgAAAATTG 20350
catttggggg ccaggtgtgg tggctctcgc ctgtAAtccc agcactttgg 20400
gaggctgagg cgggtggatc acctgaggTC aggAGTCAA gaccAGCCTG 20450
GCCAAACATGG CGAAACCCG TCTTACTAA aaatacAAAA attAGCTGGA 20500
tGTgggtgtgt ggtgacatgc acctatattc ccaggtaCTC agtaggCTgA 20550
ggcaagagaa tcacttGAAC ccaggaggca gaggctgcAG tgAGCTgAAA 20600
ttgcaccact gcactccAGC ctgAGTgaca gagtGAGACT ctgtctcAAA 20650
aaaaaaaaaa agaaaAGAAA gaaaATTGCA tttagttcct gtagactgtg 20700
tgtcaaATgt ctaaatctc tctaACAAAT ggcctaAGGA ggtgcaaAGC 20750
gaagcatcct caccAGcatc ctgacttggc agtGAGGCAt gggaccctgg 20800
agggAGTAGT ggtAAGTGT actctggAA tttcctggg ctacttGTCA 20850
gtgactggct ccagattgag aggAGAGCCC agaggACACA ggtggctGCC 20900
ccagcctgga ggtgAAAGTC ttAAAATAAA atGCCAGATG cctAGACCAT 20950
tctaaACCTT tctgagaAGC tgaatcatc cttctggAA ggcctctAGT 21000
tctaaaAGGA cAGATAATAcA gcaAGATCTT cctggggCTA atATGGAGTT 21050
tatAGGCAAG taggcctcAG aacCTTCCC tggtagtGAT atctgtgggC 21100
aggcacAGTT tccacACTT ccAGAAATTc cAGCGGAAGG agtGAGAAGG 21150
aggaatCTGC ccttgAGTgA ggACAAAGA aAGCAGAAAT tcctcttggg 21200
aattttcct ccagAGACCA aacACTACTT gggAGCTTGT ttactgggCT 21250
ttAAAAGCTT gtgACCCCCA gtcaCTTtT cttgACCCCCA aggCTTtGCA 21300
tttctgtggc ttccccactg gacAGAAGTg gaACTGTcat gctgcctgtt 21350
ctggggTctc ccAGAGGTTT ccccatgtcc tctccttgct tctactGCC 21400
cacAGAATTG gggatCTGTg accACATATG gtATAGAATT aatGCTTgAG 21450
aatGGTTAG ttcaGTGATG tcaAAATAAGA ttcactTTA tgccACCTCC 21500
atcAGTTGAa ggccccCTG gcccCTAAAT tggAAAAGAT tctGAGACAG 21550
aatccccgtg ggtacAGCgc aggACAGTA aaggCACGTg tgctgtgatt 21600
tgctatccac tGTgtggATG catccAGGAA tATCAGAAcC ctggAAAGATT 21650
atTTAAGGGG aAGTTAGGAC agCTTTTtG ccaATCCAAg ggtgttCTTg 21700
agGAAGTCTG tCTTCTGTa tggcCTTcAg tttcttCCT gtgtAAccAT 21750
ggggCCAACA cataATTccc acAGCTCTAT tggccCTTGT ctGCCAGGAT 21800
tctctAGGgt ctgattcGAG gtggatCCTG gcccTTGAG gtggcAGAAAT 21850
ctgatcatgg tgctgttcc ttagATTTAG gccttgatac ccttggcGAG 21900
agcatcctgg gctgAGTgAC caccTgAGGT ttttctggTg atTTTGTgAC 21950
ccatgtAAA ctttgAGCTT tgggatttT ctctcaAGGA aATAGTgACa 22000
tttggTgAG agcCTgtttG gtgtggCTAT gtgaggCTTA gccaAGAAA 22050
tgcaccATTt ttattAGGAG gttAGGccAT ccgttGCCAC aaAGTGTcAG 22100
atgctAGGcc tagAGCCTGG agAAAACtTA ttttAAATT gatggggTgC 22150
tggaggggtt ggggggtggT ggctgtAGCT catGAATCAG gtgctAAACC 22200

18923800202SEQ.txt

tagaaacaaa aggccatcg tggcagactg tttctgagca cagatgaatg 22250
gatgagcaac tggcgcaact ttggccagtt ggtccagctt cccacttggc 22300
cacctaggct tgctgtgaag acctcgctg gcagaaatga gagtgaaaa 22350
gccccatctt gatcttaact gtaatttaag actaaaatct tagattctaa 22400
aacatcaaag gcaagatggc tcccagctct gtgagctcag cttctcacct 22450
cttagttgaa caagtgcagt gtgggtcaat acatgattgc tgctcttgct 22500
gccaggaact gtcccagcat agaaaggaat gggacacaat ccctgccgtc 22550
aagattctaa gggaggaagc aggccaggtcg actgggtgcct catctctgca 22600
gggctccagc caaggttgt gaaggatttt gcaggcatat ggagtgggga 22650
ctgattgatc ccgagagggg actggggaaa gctctgaaga ggggatgaca 22700
tttggttga actccaaaaa atggttgctt tacctgttc ctgaagttt 22750
tgaggtggct tataagaaca tataaccataa aaaggaccaa tataaattta 22800
aaatcagaaaa aagagaaaaat gggctggca tggtgctca tgccctgtaat 22850
cccagcactt tgggaggcca aggtgggtgg atcgtgaggt caggagatcg 22900
agaccatcct gcctggccaa catggtaaaa ccccgctct actaaaaata 22950
caaaaaattta gctgggtgtg gtggcacatg cctgttagtcc cacctactt 23000
ggaggctgag gcaggagaat cgcttgaaac ctgggaggcg gaggttgtag 23050
tgagctgaga tcgcaccact gcactccagc ctgggcgaca gagtgagact 23100
cctccctcaaa aataaataaa taaagagaaa atggaactta gaaaattaag 23150
aggaagagtg aaaaggtaga tatttagtca ggcacagtgg ctcatgcctg 23200
taatcccaac actttgggag gccaagacag gaaaatctct tgagaccagg 23250
agcttgagac ttgcctggca acatctcagg tgagaccta tctctacaaa 23300
aaatttaaaa attagctgag ctgtgtggct cgtgactgtg atcccagcta 23350
ctcaggaggg cgagaccaca gcccaggagg atcgctggg cccagcagtt 23400
tgaggctgca gtgagctggc accactgcaa ttcaagctgg gctacagagc 23450
aagaccagg ttaaaaaaaa aaaaaaagat attcaaacca tgggtcccaa 23500
cgtagttt atatttgacc atttgcaaaa gctgaaagca aaacatgtt 23550
cacatttca gagaggaaaa tacacagtag ttccctgagtg taagttttt 23600
ttcttgacct cattcttaaa ttgcttcatg agggtgggag ggaagtggta 23650
gttaataagt gaacctgtaa accagcggtt ctcaaatgt agtccaggaa 23700
attgcatcaa aattgcagtt acctacagtg ctgtttaaaa tgcagattcc 23750
tggggccctg ccccaggctt atcaaataa tctggtgagt aggactcaag 23800
aacctgtaaa ttcacataact tctgcagatg attcttcttg cactgcacag 23850
catgaaagcc tctgcaatag acagaaagct accagcattt cgaaagcaac 23900
ttgagtgctt ggccttgaa ggttgagttt gactttatg agggagagag 23950
taaggcatga gaaatggcag ttccacttgat gtcagtcgtt gttcatttc 24000
tgacaagtc acttttaagt cattttttag aagaactacc aagtgtggc 24050
ggtcaggcat gtggcaggac tggcaggatctt ctggcagttt cttttttttt 24100
cctggcccca ctgtgcccag ttggctctagc ttccacttg gcccacccat 24150
gtctgctgtg tggaccttctt ctggcagttt cttttttttt 24200
atttttttct ttttgagatg gagtcttgct ttgttggccaa ggcttagatg 24250
cagttggcatg atctcggttc actgcaggctt ccacttccca ggttccaggcg 24300
attctccctgc ctcagccctt cagttggatg ggttccatgg caagtgcac 24350
cacgcccagc taattttgtt attttaata gagacatggt tttaccatgt 24400
tggccaggct ggtctcgaa tcctgaccc aggtgtatcca cccatctcag 24450
cctcccaaaa tgctggaaattt acaggtgtga gccaccgcac ctggcctatt 24500
ttttttcagc aaattctttt ttttctctc tggcccaaa tgccaggatc 24550
tgagaccaca gatgtattct gtttcctgtt gaaaaaatgt ttctcactta 24600
gctgggtgtg gtagcatgca ctgcagttt acggggaggct gaggtggagag 24650
gattgcttga gcccaggatg tcgataatca tgccatttgca ctctggctg 24700
ggtaacagag cgagaaactg tctcttaaaa aaaagaaaaa gaaaaagagg 24750
tccttagggaa agaaacaaaat agtggcttgg atggtgagtt ggtggaaaga 24800

18923800202SEQ.txt

acagtgggtg ttgggggtgt tgaacttgtg tttgtgtgt gtgtacccaa 24850
gacatatcat gtcagcatta agaatagact attcctgtt tctggtaact 24900
gagttgtatg tttgacatc cttatttgg aagatacttc cttactagga 24950
atggatagg gagggggtca ccttccat ctgtgggtca tattttaaa 25000
tatttattgt tcaagttaa agatataacc aaaggtataa agaaaaatac 25050
cacaacatc tgatttaaga aacaaccag ccgagcgcgg tggctcgtgc 25100
ctgtaatccc agcaactgtgg gagggcgagg caggcagatc atgaggtcaa 25150
gagatcgaga ccatcctggc caacatggt aaaccccgta tctactgaaa 25200
ataaaaaat taactggtca tgggtgggtg tgcctgtat cccagctact 25250
cgggaggctg tggcaggaga atgccttga cccaggaggc ggaggttga 25300
gtgagccaag attgtccac tgcattctag cctggcgaca gagtgagact 25350
ccgtctaaa aagaaaaaaa aaagaaagaa atcatttc acacccctcg 25400
agccttcatg agttagattt tgaacacgtg caaaatgtt cacgtgagaa 25450
tcgagagtcc cttctgggtt ctctccatcc cctgctttc tgcagggtt 25500
tctttaggt ttatggaaac ctttgttact tgcagggtg gcagagaagc 25550
agagaggata gctgcgcgcc acccacacag ctaggatata ttggcgtaact 25600
cccacgtgca tggcagccaa gtggacacaa ctctgtatc aatcctccca 25650
agagaactga ggggcctga tggaggagct gcttcttgc aaagcttcc 25700
ttgactctt ccctgtcccc tagttgattt cccttctgtg ctatgttttag 25750
cttattgttt gttacctgtc acacttagca gtactgtgg ctttgctgg 25800
ctccttgcact actggggta aagacctttt gttgtgttg ttgagacaga 25850
gtcttgctt gtcgcccagg ctggagtgca atggcgtgat ttccggctcac 25900
tgcaacccctc acctccagg ttcaagagat tctcctgcct cagcctccct 25950
agtagctggg attacagcta caccacaccc ggttaatttt tgcattttt 26000
atagagatgg ggtttagtag agatgggtt tcaccatgtt ggccaggctg 26050
gtctcaagcc cctgacctca aggtgacctg cctgtctcag cctcccaaag 26100
tgctgggatt acagacatga gccaccatgc ccagcctcaa agacctttc 26150
tttacttgct caccctggcg cccactcccc taccaacccc tgcattccct 26200
ataccacctg gcacatgata catactaact gggtacatgt ttgaatatga 26250
atggatgtgg tgctgtgaat gcttagggta agtgggtgaa atgcttaaga 26300
accaacccctg agtggcttgg gaaggcttcc tgggagggtg gtgtttgagc 26350
taaggccagg cagctgttag attttttaga ctgaagccct tgcagactta 26400
gagagcttgt gctcttccca gaatgacggg tgagccacgt acagtaaatg 26450
gtgcttctca tttctagccc aaggggcctc aaggggcacc gtgatttcac 26500
gagaatgctg caagcaaattt ttttctcaag ctggggattt tggtggtaat 26550
gcctggctca gcttgcgttgc cgcacccgtt ctttggaaaga ttgttacaga 26600
gagaagccgc ccatccacat gaccctgtgg aacagcactg gtgggggagc 26650
tgatttgcata agagggctg tgcagtgtac tgcagggtct gagacccagg 26700
aagaattcc agtatccctt ctctcagaat cacagatgtc taggcactgc 26750
ctagttccac gtgttccaa atgtttcctg aataacttgg aatctgtcc 26800
agagaatttt caaaacaaac ttagaggccct gacccatggc tgccaaggaa 26850
ggattttttt tttaaattaa attttaaaaaa tcagtccagc atgaaaatct 26900
atgatgattt cataagagaa aggacatttt aatattcaaa gagtaagaag 26950
cacttaatct tggaaagaaag ggcattccata tactttgatt accttttagtt 27000
taattaaaaa acacctacat ggtctttact tctgtgattt cattcctgg 27050
ctagtgaaac attgtcacaa taaagcatca ggccaacgct tctttcgacc 27100
cactggccaa tcagttgaca aacagtgact agatgttca gcctatttt 27150
ctgaggctaa aggattgaac tagtgcttca gccagcatga aaaccagtca 27200
ggagtccgtg ctgggtttgg ctttagattttt cagggcctt gatgggggg 27250
catgtatgtg tttgggttttgc tggccagg caggggagca gtggaaattt 27300
tctgaattga gctcacacat tgaagttattt gaggcactt catgcaaggc 27350
catgacccctgg actcccgccca gagaggccca cgtggcgcccccttgc 27400

18923800202SEQ.txt

gggagccgag gacagcttac atctgctcat ctgcttacgt aaccctgcct 27450
cccagcttcc agagccaaga aaacacacaa gccagcccag cggggccgag 27500
agcctgtggt agcacacgccc atgcggcgca cagcaaggcgc gccttggctc 27550
ggcttggggc ctgtcatgaa gcccctcagcc ctctgcctcc tcccagagct 27600
tctccccacc accccagggca gtggctctga aacctggctc caggtctgca 27650
tgattctgaa cagaggttagt cgttgccttc ctggagtctg agctctctgg 27700
agtttctcac tgggacagag ccaggtgtgt agcagagcat ggtccctgca 27750
gtatggcagg aggtgtgcag ggcattcagg aggccctctg gctggcactc 27800
gacccaatta gtcattcaac gccaggctcg gggctgctgt ctgttgcctc 27850
aaagggtgtga gctgcaagat ccttagagtt gtggagaaaa aattgccaga 27900
ttggcaagaa gggcaggatt gggggcaag gtgtctcagt gtgttggaaag 27950
catgatgggg gttgtgcaag gggcacagcg agttcagaag ggagcaggag 28000
agtgagaaga ggctgttcag tgataaaagct ctgcacagag ccattggagg 28050
agcaagctcc ttgaccatcc ttaaaccagg gtaatttca ttttaggttct 28100
gccacacgct cagcaggaa ctccctggaaag gcaggatttg tcttgcctcat 28150
cctccctccc tacctaacc cactcctcct tgggctggca cacagtaggt 28200
acccagaaag tatcaattga aacaaattga aagtggctt gatacatatc 28250
acagggcaag tttgcagttt acagacattt cagagtaaag actctctggc 28300
ttgggtctcg atcggcttct gtgggttgc agcatgctgt ggacagcccc 28350
ggcatggggag cgagtggcg tgggtgtgt tggatgtgag ggtgagagag 28400
cgttagtgtg tgggttgggg ttggggagag aggaggggaa atagaagatg 28450
gaccaccgg gtatcagctt ctgcctctggg gagatggctt tgcagttgc 28500
tgagggaaatc ctgagaagca ggtctggctg taggtggtga tgggtgggg 28550
gttgcattgag aatccatttgc gggcaggattt aattttaggtt gcccattgaca 28600
tatggcttagc catgttctgt tggctgtgag gtcaggagag agacatgaga 28650
tggaaacaga ggtttggaa ctgtcatgtg cttaaaccacaa agacctgggt 28700
atagggagag tgagaagaga agggggcaaa gatggacatc caagaaagaa 28750
gctgagaaag ccttaggaatt tgaggtttaga ggagacgttag gtaaatgtga 28800
cgcttggtga tcaaggcttc tttccacctc tcctatgctg gacactcact 28850
tctccgtct gcttggaaat tcatgctgag ggcaggaaag gtgggagcaa 28900
ggatttgcattt aaagatcttgc cttggatcc ctgcactcct cctgggttac 28950
caagtgtcac tggacacgtc agggcggttct gagaccttag agagcatcca 29000
gtcctgtccc tgcagtttac aaatgaggaa accagtaccc tgagagtggc 29050
tgtactatcc actctcagga taccaaagat catctggaaa gtcactgggt 29100
gagctggacc ggggcccagg catctttct cctgtccggg gctcttgact 29150
tcaggaccac ctttctgaaa cccatgatgg ggcaacacca ggacactttc 29200
cagccctgcag gtgtctgtcc cgccggaaagcg agccaggcca catgtgaatt 29250
cctgtttctt ggggtgggtt cagaaggatc gagcaagtcg gcagggtgac 29300
agcccagggtg cttcttgggt tccccaaaac gcggttatgt ttagcagcat 29350
cctcagaacc aaaggtgggg tggggctgc agatgtgtg ggggcccctc 29400
gaagtgaaaaa gagccctgtg acagatctt tcttcatgtt tttcacaagt 29450
tcactgtgca gcagggccccccc cccagtagcc tttgcccagg gttgggtgtt 29500
gggcagccca ggcctggctg accttgggg gaagggtgtg aatgggtggg 29550
atccccgggg gccccttttgc cccgaaagcc ctaaggcttgc acatcagatg 29600
cccatcagat ggtccatgg agccctacta cccagcttgc ccagtggaa 29650
tcatctgggc tccttgggttgc gtagccattt aggtcccttcc caaaatccac 29700
agactctcta agggaaaggcc cccagatgtt gttacttgc taacttcctc 29750
aagcaattct tggatgttgc ttggggaaaaa cttgtccagg gtgaccactg 29800
actgagtcct ggtcttctcttgc gaagagcaca gtgcctgctc acttttagggc 29850
accctggggag gtggggagctg gctcagcagg cagtcttata agggactgag 29900
cttcaaggcc tctgtccctc caggagggag gtgcattgacc agagagggag 29950
gcctgaggat cttcttccttgc gccccagagg gtctgctgccc tgagctctgt 30000

18923800202SEQ.txt

gatagcgcag agagtaaaag gatcaagctt gattgaggcc tatctctcaa 30050
tgcgaaagtt tgcttagttaa gaggagagt ggaagggcat ttctggcaaa 30100
gagaaaagtg tggacaggca tggcttaagg gatggggagg gagacagaca 30150
gagctgaggg tgaaggcct tttgctcagc tgtggccctt ggccttccct 30200
tgtcagggc cacacagcct tagagccact ggaggttta gtgggaaagt 30250
aatatggtcg gggctgtatc tcagaagaaa acaaactaat gggAACAGGT 30300
cctgtgatgg tggacctggg tcagctacgg agggagggaa gatgtgagat 30350
gtgtactggg gaagggggtg gaagtggcag ctatctgtg agaggaagca 30400
ggcccacagc ttttttctc aagctgttga attcagaagg gcgagtgtt 30450
ccgggagtag ggggtgctt gagagccacg cgttattgt aaacagggca 30500
ggctgaagcc tgctcaactgg ccctggcgg gttctacca gcatgtttca 30550
ggtttgatc tgtgcttgg gttgggttc ctacctgtt tctaggttcc 30600
ttccttggtt cttgtggctc attgttca caggtgaagc tggttacact 30650
agagtaacag ttcccaaagt gtgttccctg gaaaaatggt tctgttagcca 30700
aataagctt gaaaaatggt ggttaaatat aacgaaggg gtttttcgac 30750
tgcacaactt ctcagagcct ttgggtgtg tcgtgactt gcagaagcag 30800
gatttaatac gcagcatcc cgttcttatt tgaccacgag acatgtttt 30850
ccattaagca tcttgctggg tctgatgtt tctggAACCC attttgggc 30900
ggtctggct gcagagagta tggggagcct gggttcaagc cttggcttcc 30950
gactctcagc agagccttga ttccctgtgt tgccctggact gcaccacgt 31000
taccacatac ccggtatgtg acgttttcctt catcccttcc cccacctgcc 31050
gttacctcac aatccacaat ctgcacccat tccatttttc ttctgaggca 31100
agcactctt tactaactt cttatctcat ctgcattccat gtttttcttag 31150
gccagaaaact tgggagtcat ccctccctct ttgttacttc ttcttcctct 31200
ttgttacttt atccctctg ttactaaaca ttcttctgtg tttccagcta 31250
tttctttat tttccctcgg tctcccttgg ggtttcttg cctccatctc 31300
tcccagaccc tgggtcacct tccatcgagt ccctccctgg gacatgggca 31350
ctcatgccac ccctgctacc ttccacttcg aagctaactc cctccacact 31400
gacgtccccca acatgcatgc atacacacac acacacacac acacacatac 31450
acacacacac acacacactt ccccaagttttag gctagaatca gagagatgat 31500
gtcagccatt tgtccaaggc cacgcagctg ggaggtcaca gagctaagt 31550
tcaacctcag gggtttttag aaattgcctt ctcatccgtg atcactgatt 31600
tctacaacag cctgtcagga agtctgggtt gaaattactt ccattttaca 31650
gtggagtcag agcggggagg gtccctggca ggcgagtgct tcacagagt 31700
accaaccatc tagtttgcc ccacactgaa ggggtttctt gggatgggt 31750
ggtcacccta atgctggatg tgggtcctga tgctggcag gaggggccctc 31800
tccgtggcca cgttgcctcc caggaggaga catttcctct gcagctgcag 31850
ctgcagccctg gccatctgtat gcagcctgtg gagcgggtgc gagtcctgt 31900
gcctgctaacttctcc ctccacccctt ctgtggcc ccatgctgtat 31950
tgagtttaac atgcctgtgg acctggagct cgtggcaaag cagaacccaa 32000
atgtgaagat gggcggccgc tatccccca gggactgcgt ctctccctcac 32050
aagggtggca tcatcatcc attccgcaac cggcaggagc acctcaagta 32100
ctggctataat tatttgcacc cagtcctgtca gcgcgcagc ctggactatg 32150
gcatctatgt tatcaaccag gtgaggcctg ggaagggtgg atgagagagg 32200
gtgtgtgtgc atgcagatgt gtatcagatg tgtgttaat gaggggcagg 32250
gaagggggagt gatttcacag acacccgttca cttacagcga ggaaccagcc 32300
ccccagccac caccagtgc gatgaggtaa acgccaaaca gtgtgcttgc 32350
ctattgctgt caactctata gccaaggaa atgctggagt gttttcgtt 32400
ttctgtttt gtttcttgg agtgccttc cagcaagatt gggaaaaaaag 32450
acaaccctaa ttattccaaa gtacacactg attattccct ggctttgtgt 32500
agctgtgtat ttccctttt aaaaataaaac caccatccat atgtcagact 32550
tttaggttaac ttcaaagttt atccagtcag tcagagcgtg ttcctgggg 32600

18923800202SEQ.txt

cacctggaga cagtgcctt agttcaggta acatgcctac atgccagccc 32650
ctggtaaat atctggagaa gtctgattcg tggccatct gagagttatg 32700
tggactggc cgagtctgag aaaaagttc tcactgctcg tctgatccat 32750
atgtgttggg cttagccct gcttaggaaa gtaatgctaa ggataggtca 32800
actttcatca ccatggcatg gagaatcaga ttgatctaag aggcacatctt 32850
attgaaataa attttcagt ttatggagg agcattattt tcccaagagt 32900
ataacttga tatttcaaga ttacccctaa cacttaaatt catgtttta 32950
gactataacc tccttaggtgc aatgacacat ctaacttatac taagcaccca 33000
gtttcattga aattcattt aagagtctga gtacgcccatttctacaagg 33050
cccaatgtcc atttcatttc gagataaaact ctgctttagg taggaggatt 33100
gttggcagtt tacggcttcc atcaaggta aggaactctg tgccaccccttcc 33150
ctatgacccc aggggaagca ctggaggact gctgtggcat tggctgcat 33200
caactgctgc agggagattc tgaagaagtg taaggtctca gtcctgcctt 33250
gtccccaagc ctccaaacca cttctggcaa gtggacccctt cccagggAAC 33300
aatttggtaa cagacccaaa tatcctgtga ttggatggtg gctgccaaat 33350
gctttggaaag ctcagagaa ggagagagag caatggctt gaaagaaccag 33400
gatataaaact aggttctaaa gtcgtcaggg agatggctt ctcagctggg 33450
gccagtgagc agggacccctt aggccagaaag gggcccttgc tggcccttgg 33500
aatttggatg cccactgggg taggaaagca ccagaagctc tgggaccagg 33550
tgtcagagtt aaggctgtga ggcaggagag agcagaacaa gcccgttac 33600
aaggaaactg aagcaggaga gcagggtggg ggcaaaccccc ttgaggctgt 33650
ttgaattctt cggccaaatg aggtacagac cagggcccta tgaacacctg 33700
caagcaagac agccacgcag ttgtgggtca ctttggaaaga atattggaga 33750
atgcaagaga gaacaggtaa atgtcctgca aaatgcgggt cacttttaacc 33800
caacacatat tcatttaaga aaagctctgt gattgagaaa catttgcctg 33850
atgccagttttaa gcacatacca atgacggcaa gattcaggag cctgttattt 33900
aaggcgtggc agcgagcacc tggaaagaggc ggccaccatc accaggagcc 33950
agcagggtatg actaataagc cgtgccagct gcatctcggtt tctctcttgc 34000
cagttgctat gccagtagat gagggatgtt ctgtggatac aatgctgtca 34050
tatcttatttca agcaggccat ctgatagcat cccacaaatc tggctgagta 34100
gaagacagac agctgtggtc tgggtggccat ataggttagt taaaatataat 34150
atttgggcctt aggcgcagtg gctcatgcctt gtaatcccag cactttggg 34200
ggccaaaggca ggcggatcac ttgaagtcag gagttcaaga ccagcctggc 34250
caacatggcg aaaccccgctc tctactaaaa atacaaaaat tagctggaca 34300
tagtgggtggg cggctgtatccc cccagctact cgggaggctg aggcaggaga 34350
atctcttgc aaaccccgctc tctactaaaa atacaaaaat tagctggaca 34400
tgcactccag cctggccac agagtggagac tctgtctaa aaaaataaaaa 34450
taaataaaata aataaataaaa atatataactt gggtaaagag gataaaaagag 34500
ttagcgatga tgctgaattt ttgaactgag gtggctgttt tcaaggaaga 34550
ctggagggtg ggtatgctacg tctagatatg ttgcagtttta ggtgaatgt 34600
agacttccctt gttttgaagt caaatattgg accagtaaaa tcttagccatc 34650
agcttaaattt cctatgatac aatttacata ctccccaggc tcaacacagt 34700
agatttctga atgtcctctg ccagctacat gtcctgccc acctcaatcc 34750
gagtagatgg aacaactaac caagccagct cagaccggtg gcacagctgt 34800
gctggctaac actggccacc acctaagaga gtgcttctcc aaaagtgtgc 34850
ttccccaaat ggagcgaaat acgcttgggg aatgttgggt tgaaccatgt 34900
aaaggcgttc tcattcccgcc agagcctttt gtaacccgggt gtacactgt 34950
acccccaagtg tggcccttgc gctggccatc cgagacaact tttccaaagaa 35000
ccgtctcaag tggatggatgtt tttgtggatgc acactttggg gaaagcgggc 35050
ctaagtttagc atctccccc agctgcctcc ctgcttccc tggaaacacta 35100
ggaactgccc gtcctccctc cttccctcctt cttccactt cacaacttag 35150
catcaggaat attttagttt tgggtttca aacatataa cttccctttt 35200

18923800202SEQ.txt

tcttatcttg tcaatatcat ctttttttt tcttgctt tcctcatact 35250
ttttttctc ttcatcctt ccttctccaa gggtaactt tccaccttag 35300
gagaatctt tctgctttt ctcccacttc cccagctact ctcttatcat 35350
ctgctccaat ctcaccctaa ttgatcattt tggaaaata tggtcagagt 35400
ccagataact aagttgagaa atgcttaaac tctgccatac ctttccagta 35450
aagaatatta cctaataaaat aataaaatgg taatggaaa cctgaaccct 35500
aaaaaaaag aggtggagg agaaacattt ggagcacatc ctgtctacaa 35550
attaggaact gcctgttta tctgttttat gtttatattc tagaagaaga 35600
aagggatttt gtagcacctg gtttgcacct ttctgcactg tttgttgagc 35650
aaataaacct tatgggctgt tagcccttct tatagcctct cagcttatcc 35700
ctggccaga caccctgctg tcattttgac ttttcttcc cacacacaca 35750
tacacatgca cacacatgtc cacacacaca cataccattt aagattagac 35800
agaagtaatg ctcaaaaatgg agtggcttct gagacattt gtcacaagggt 35850
tcccaaacag gcttttcaagt atcagattt tttctgcccc attgaaatgc 35900
tacacaacct tccgcttaca gcaggtcaca agggttcat tctacttgaa 35950
gtagggcca tgccttctt ccacttcctt ggctccat tcagtcactg 36000
ctaggatttgc cctagacccc tgaggccaga caatgttagaa acttctgctc 36050
catgtcacag gtgaggaaac aggctcagag agggacaggc tccgaaagtc 36100
acatagacaa cagttagggct gcggctcaaa ccccagcgtc tgactccagg 36150
tttagtgcct tctcaggcga tcagtgcac ac tccatggc cagggtgccc 36200
ccagtggtgc tcacagtctg gtatccaggg ctgagagtgt gctgtgtgct 36250
cagactgcct gggttcagtc ctggcactgca cacttacag tcagtgcac 36300
caggcagggtt acttaagcgc tgcaggcctc agtttccctt ttggggggga 36350
gggttatgag gcaccccttct catggtaaac cttcagtaaa taccagccgt 36400
tactaggagg gtccactcct gcctctccac tctccattca tcctgcctgt 36450
ttcctctgcc tgcttccttgc gcctgcttct gtgggtgtga attcttcatg 36500
gctcccaccg cctcctgctg cacccccact cagggccgc atcaggaccc 36550
ttcctcctat tggtttgaac tccttggagt cagagggtaa tggatagtgg 36600
agtgagccag gtggcagaat ctcaaggccc atcccgccc tataaggcctc 36650
ttcaaaaatag ggccacgtat caagcttac acacaggagt gaactttcac 36700
aagttgttat gactcataact ctgtctatag taagctgtta accactccca 36750
tttggcttat gcctctgtaa ttattgtact aacttatac taaaataaag 36800
gatattgaag gaatgagccg ggagaggctt tcctgggtga gatatagaag 36850
aacaagagtt gctcttttc cttaaaggctt ctcccccac ccctgac 36900
agctcaccag catgggagaa tactatttga ctccctgtac tctgagacgt 36950
ggatttcaag atatagcatt ccaacttcaa cggcagcaag aaaagaagca 37000
acagaaggag aagacatcat agcaaacagg gatgcatttgc gcatttccta 37050
atactcaaac ccggaaacga gacttcactc aaggtgaagg gagggcaggt 37100
caccacctgg tagcaactgc cttaaattaa ggaatgcaga atgtttgtgg 37150
gattgcccat cataaaaatt acaaataatgag taaggaatgc aggcacagct 37200
ggccagggtgg gtttgcaca accatggcag cccttgcac cacagccagt 37250
acacagaact ggtctctcca attccgatttgc catatcttctt ggcac 37300
ttcctctccc tcagctggc aggatttttgc tgggttgcac catgttactt 37350
cctctttaa acctgttagc atttcacgc tgcctacagg caacggctca 37400
aatggtcgga aggcccaagc ttagcatccg agaccctgac ctacctccag 37450
ccacttcctc ctcctctcca cttcaactggc ctccccatct ccacccagac 37500
acctctgttc tcccctctgt gtgccttgc ttatgcgttc ccctgtgttc 37550
ctagtgtgtc tctggctatc tttaagctt ccctccccaa cctcattatgt 37600
tctgtggagc ccctggaaata gagctgactt ctccctccct gctgctccca 37650
ggctgctcag aactttctgg aaagggatga ttatctgagt tccagcctca 37700
ccccagcccc cggactctga gtccctcatg tctgcctccc ttctttctct 37750
ctgaccacac agctggtaca tagtcagttac agacgcagtc agtgagtgaa 37800

18923800202SEQ.txt

gcacggggct tctctccagg attcctgccc ctttgttat ccctagtctc 37850
aggactccct actcctggc ttctgcctaa atctgtgcct cttggaagtg 37900
aagcctccgt tcccagtggg gccaggtcct gacccttggg aacttgcagg 37950
atccctccct tgggcctctc cccgaagctt ccagctcaat gctgaccaga 38000
gcacaggctg cctgtgacag tccttgggt gacccctt atcaggaaaa 38050
atgcagaaaa cctattaata ccttagcctt gtgattgtta atggtcacaa 38100
aactcctta gggtccttg gactcagcac ctttatggtc tcactttgaa 38150
tttgaacct cccacctccc cccatcccc agagtaaggc aaatggtctt 38200
ctgattgttc ctgcagaggg aaggctccac aggttaagcac acgatggcca 38250
ggaagcagag ctggagcctg cctgaaaggc tgtggagaaa tggagggagg 38300
gctgccctga ggactctgtc tggcttgaa gtttctact gtttccttt 38350
cttctgtgca ctgttttagg atgatgggt gatagttcca ggctggttga 38400
ggatggattt ggagacagtc cttgtaccc tcagtgagca agagtatctg 38450
tcaccctacc tcagcaggta tctctgtcac tggtccaagc agctggttcc 38500
tacacaaggt caagatcaac tggggagaag cagactcctg ggtctatccc 38550
attagtgagg acagctgcct gggcttatgg cctcattggt ttggtttcta 38600
tcttgatcat ctctaccatc ccccatccc ggccttccat tttctacctc 38650
agctgtcagt gcacagattt atgtgtgtgg gaacggagct tgggaggagt 38700
ggggtagggc tggcctgtc ctgtagcctc cccttccttc gggcacttgg 38750
accctttgga gcttgccggg gtggggaaatg ggagtgggaa gcccagggag 38800
tgtctctgca ccatcactgt ttgagtggtt ccccttgct gtgtgcccc 38850
cctagtctat gtgtgtctct gttctctggg gactcaattt gctggtaat 38900
tgcttccatg gacattgttc tggaaatgc catttttct gctcacccat 38950
gactctgtga caaggaatga cagttatta ggaatttgg tttgcattgg 39000
aacagtggtc atcagaatgg gcccctttc cttgcagct ttgacattt 39050
cctctttttt cctcacctt ctccttgca tccaccctt tctctttttc 39100
ttctttttt tttccttctt agcaggggccc ttttacctt acttgttaat 39150
cctgtttgtt gcaaagcaag tggaggagg agttcccttc ttagtctgctt 39200
cttattctcc acctacccctc tcttctgtac tttccgcctc ctagagagag 39250
agagagagag aggaatggcg acctaactac cgctgcact gctgctgcca 39300
ccaccgctgc caccaccacc ctgtaatgt tcacatgtcc tcaaataaac 39350
ccagagccag gcccctgtc gtcaaggggaa ggctatgtaa ataatcccat 39400
gagtgtgcca tcctcaggcc ctggggtctc cttaggaaga ccagggcctc 39450
tgtgggctct ctcggaaatg ctgaggttgc tggagccag cccgtcatac 39500
agggtctgag agtttaactt ctttaaattt aaaccacagt tgagctcatg 39550
ctgtgtgtgt ataaaactttt gtatcctgct tttccttaa attctttatc 39600
atcagcatct tcccatttta tttcatagtc ttcatcatca tcactttcca 39650
taccttcata gtagttgatc gtagaattcc atcataatta acttgtcttt 39700
tctctcttag aagtcccttta ggtaatgtcc aattttccgt gaggtaagt 39750
aataccataa tgaacatctt ggagtctgaa gtttattctg tttgggttt 39800
ttccacattt aggtcattt tcccaggctt gattttcaga tttgggattt 39850
tgggttcaga tatggttac acatttttat agttcttaat acagatggcc 39900
aaattgcttt ctgaaagaga agctttctt aagtattttt ctccaacttg 39950
tatcttaaac atcctgaaca tgcttagcac cactgtctt atatatctgc 40000
ggaaagccac gtctccactt ttcaatgtgtt cggccctgg gagaggcagg 40050
catcctgcgc tggctcctt gacgtgggtt taaaattgtc tcctctggct 40100
ggcggtggtg gtcacaccc tgaatccag tactttgggaa ggccgaggtg 40150
ggcggtacac taggtcagga gatcgagacc atcctggctt acatggtgaa 40200
accccgcttc tactaaaaat acaaaaaatt agccggcgt ggtggcgggc 40250
acttgaaaag tcccagctac tcggaggctt gaggcaggag aatgatatga 40300
acccgggagg cggagcttc agtgagccga gatcgccca ctgcactcca 40350
gcctggcga cagagtgaga ctccatttttta aaaaaacaaa caaacaacaa 40400

18923800202SEQ.txt

aaaaaaaaacaa acaaacaaaa actgtctctt ctgtgctcac ttcacccaga 40450
atccctgttggccttcaa ggagctcagt tctctctgaa agcaacttta 40500
tagcctcagt ccagtctgtg ttcctgtgtg gcaggggtca agggtatgct 40550
cactcttgagg agtgggtgtct ttgggtgacc aagaaccact cccatagcct 40600
ggcccttaac ccttgaaggc ccacatctct cactcaactgg ggtgaagagt 40650
ttaaatctca gatccaagtt ttgggtgagag ctctgagcta ccatattgct 40700
atggtaaca atagttaca atgtaacaa tggtaacta tggtaacaa 40750
tagttacaa tggtaacaa ctagagccca gctgggtgtg gtggcatgtg 40800
ctaacagtcc cagcttctca agaggctgag gtgagaagat tgctggagtc 40850
caggagctca aggccagccct gggcaacatg gcgagaccct gtctccctg 40900
caaaaaaaca acaacaacaa aagcaaaact agagccaaac tgctgtgaac 40950
tcatggctga gtagatatta ttagccctcc acaaactcag catttgtata 41000
atcccaggct gtttccagta attctctggg gatcatctcc cagcctgtcc 41050
actgttccag gatccacact taggcctata ggaatggccc gtcagagctt 41100
ctgctgccgc tgatctgtt ctggttcatg caacccactc ggcctagttc 41150
cttccttta ctgtctcagt gggcacagaa aagcatacag aggggtttc 41200
agcaaacatt gccactggct gcagacctgc ccccgatct gtcctgttga 41250
gagcttagt ctgcgttctt gcatgggtggg gaggggtgtg gctctgtgat 41300
gagccaggc atgtgtatag gagcaacagt gtctcttta tcacgtagaa 41350
gttctgactc attgcgagtc ttggctttgg gttaatgggtt ccagccatgt 41400
tgctgctgtg tctttgggtg caggagaggc tggcacagt tggccctaa 41450
gccattatgg ataaggatg tgcgtctga tatacacaca tggacctgac 41500
atccaggaa ggcagggtga ttggacagaa cagtttcc agaagctgtt 41550
ggaacttggaa caagagtggc cttggcttt ctgtagttgg tcatctgtcc 41600
cctgttgc aa tagggaaag gccacacttgc cttccctaa ccacagttag 41650
gattttcttggg gggatttagac cagattcttag cacctgtcctt gaacctctcg 41700
ccccggccctt acaaaggctg cttggcaactg tagtgcacat acacagggag 41750
cagggtggc atggaaagtgg aagtggagcc cttcccttgc gcccgggg 41800
gagggactgt ctgcatttacc acggttggg cctcatagga atcatacaac 41850
agcttccaa ctggtctctt tgcatttgcgt tggattgggg cacaatccc 41900
tccttgacat ataaaccatg gttttaggtt ccctgtggcc taaaataaaga 41950
taaagctt aa gtagtttac aagcacctaa cccttccccc cagcctcggt 42000
gattttggctc atcgctgcct tcatgtttca ttctggcttc actcattcg 42050
aatttcttgcgtt agttcttgg ctgttcttcc ttcccttaccg cttttacaaa 42100
tgctctcacc atgcattgtt ttctctgctc ctacagatgc cttctctccc 42150
agcaccgcctt ccagagtcta tgcgttggcgtt attctgtctg ctgtctccag 42200
tccccatctt gtggcagtct ctgcatttgcgtt atttggggat tttatatgtt 42250
ttctggccctt tcttttgggg gcctgtcttc tccttctaaa agcagccagt 42300
tgacccatggaa ggaagggtata actgttactc ttgttcttaccat acataagatt 42350
aggccccc tttaaaagct gcgttgcgttga aagggttgcgttgcgttgcgtt 42400
atgcgttgcgtt ctcttgcacca agcgttgcgttgcgttgcgttgcgttgcgtt 42450
ccagaggcctt ccctgttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt 42500
gccacaggctt aattcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt 42550
catcagagaa gcaggatgtt ggaggatgtt tgaagcaac actacagaag 42600
gcagagtctc caggttaggtt atctaagaga cattttggat ggtctgactg 42650
ttcaagatgg atggaaagc ctcttgcgttgcgttgcgttgcgttgcgttgcgtt 42700
gttgcaggc agtggggccctt catttttgcgttgcgttgcgttgcgttgcgtt 42750
gttggagtgc ggtgggtgttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt 42800
ggctgggtct tcttaatttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt 42850
atcttatgtt ggttagacaat gtttgcgttgcgttgcgttgcgttgcgttgcgtt 42900
tccccataac acaaaagagg gaactgaggc ctggagggtgttgcgttgcgttgcgtt 42950
aagtacacata gctaataat aaagaagccca gcatttgcgttgcgttgcgttgcgtt 43000

18923800202SEQ.txt

gcatgtgtct gtcactgtgg tgtatgggt gcttgatcaa tgtttacttg 43050
agcaaatgga ggggcagagg taccgatgag tgtgctcagt gaggagggca 43100
ggagtgaaagc tggcgctt cccgcctt gtgagtggtg gggcttgggt 43150
agcttgcag ggcctgtt tcttatcaaa gaaggtgtgt gccccagtgt 43200
tacagcattt cacccaaagc agcctagaaa atgcttgact tttctgtcat 43250
tccggggagg acactttcct cctccactgt tctgctggcc tgggttaccc 43300
acggccccctg atagatgata gcacctgcta aagtgcacca tgcccttccg 43350
tctcaactgca tcccacagat gaggccaggg tgggatgagg gagaaaggga 43400
gggatataata gttcaggtt ttttggaaaa ctgcctgacc aatttttaagt 43450
ctggggccgga cactggggca tctcaccacg ttgaaaggc cgtggcaccc 43500
cggggcgtga aaggggctgg aaccaggctct gcttctggg cttctccctcc 43550
agggtgccat tgctcatggg cttggctgc agaggtgctc attcgtggtt 43600
ccaaaattcc aattcctggg agaggaaaaa tgcttagttc agtctcagtt 43650
aggcctctgc ttagatcaaa cagccaaggc cagtaggccc agtcctatgg 43700
tagagacatg gcctcaaaga gcctctgtct gcagttgtt gggagtgtac 43750
caagagaagg gagcattgtc ctgggctggg cagccctggg ggtctagtgc 43800
atagatgttag aaaggctctg ttgttatacc tcccttgct ttttggaaag 43850
tgctcaacgg ggctgaattt tttttgacag tctaagtctg ggctgggggt 43900
aggggtgtta caagattgtc aagatgatta aatgaaatgc catttggaaac 43950
acttatccat gccttgta tggatcccc accagtaat attcacagta 44000
tattataata attccaacaa cttcataatt ttcataatgca atttctaaac 44050
tttgaacttt ttttttttt ttttttttt tgagacagtg tctcgctctg 44100
ttgcccaggc tggagtgcag tggcgcaatc ttggctcaact gcaacctcca 44150
cctcccgct tcaagtgatt ctccgcctc agcctcctga gtagcttagga 44200
atccaggcgc cggccaccac acccagctaa tttttgtatt ttttagtagag 44250
acgggctttc gccatgttgg ccaggctggt ctcaaactcc tgacctgagg 44300
tgatccaccg ccttggcctt ccaaagtgtct aggattacat acgtgagcca 44350
ctgtgcccgg caatttttg ttttttagt agagatgggg tttcaccatg 44400
ttggccaggc tggtctcgaa ctccgtacact caagtgtatct gcccgcctca 44450
gcctccctaa tgctgggatt acaggtgtga gccaccacgc ccagcctaaa 44500
ctttgaattt ctttgaaccc atgacttaca cagaatttagc tgaacgcaga 44550
attccaaatc aactcagcct gtggacagc caaaaaacac agtgtgcctt 44600
tgggctctt cactcaccac gcgggggttag aaaactttgt cagaggcttt 44650
aaaaaaaggag ctcttggtg taaaatgttt ctttgcattt ctttctgggt 44700
cctcttttc tctaagtggg ttgcttcccc aagttccccca cctgagtctg 44750
ggtggtgtg gcacatctgt gcattctgtc cgcacacagg cagcctttt 44800
gagtggcagt ttccaggtct tggtttatt tatttattt ttttattttt 44850
tgagatgggg gtctcaactt gcccggcagg ctggagtgc gtaggtgcgt 44900
catggctcac tgcaacctca acctccctgg gatcaggatg gcctcctacc 44950
tcagcctcca gagtaactagg gaccaccatg cctggcaaat ttttgaatt 45000
tttttagag gcagagtctc accatgttgc tcaggctggt ctcgagctcc 45050
tagactcaag ttagtgcaccc accttggcct cccaagtgtt aggattacaa 45100
gtgtgagcca ccatgcccag cccaggtcat cttttgaggg catggagaga 45150
agactttgag catcccactt ttgagattgt gtaccagtcg caagcccccta 45200
tgacacactt tttcccaaaa gtagagggct ctgactatgt ttagtccaaag 45250
agagatggga aagagcattt aatgaggatt ccaaagtatt gggccttagt 45300
tcgtttcctc atgttgggt ttttgggtt gttttttttt tttttttttt 45350
tgtgcaggag gctttgtgaa ctgctgagag tgaggcgtgg caatgtcagt 45400
gcttaggtttg tccttactaa cctggggcca tggaaattga taagaccaga 45450
ttcccaactc taccccacaa ttttgggtt gttttttttt tttttttttt 45500
tctttggctg agttccccag aagggttacac catctgcccatt ttttgggtt 45550
accccattca ttcatttattt cattcagccca accagcaact atttggtag 45600

18923800202SEQ.txt

ctcttattgt gtgagaagca gtcttcaagg aactgggtga ataaaaaaaaa 45650
caaaacatcc taaccttcat tgagcttaca ttcttactga aagaaaacaa 45700
ataaaacata catgtaatcc tagcactttg ggaggccaag gcaggcggat 45750
cacttgaggt caggaatttgc aaaccagcct ggccaaacgtg aaacccatct 45800
ctactgaaaa ttaaaaaaaaaa aaaaaaaaaa aagccggcata tggtggcaca 45850
tgcctgtaat cccagctact cgcgaggcta aggcaaggaga atcgcttcaa 45900
tcctggaggc agaggttgcgt gtgagccaag atcataccat tatactccag 45950
cctcagtgtat gaagcaagac tccatctcaa aaataaaaaa taaaaataaa 46000
aatatgcatt ccctttgcac cagcacactt ggtgcctggg gacctcgtgg 46050
ttggcaccctt gaagcagggt tcccttcttgcata ccttgcttct 46100
gtcctgggtgt gtatggcatg gccttctgcc ctccatgggtg agcactgtga 46150
ggcagaggt tgagttgggt ttgctgtatt tctcagggtgc ctaggtttgt 46200
gcttgacagg tagatggaa gcaacacaatg tggtcatcaa acctcagtca 46250
accatataag gaaggttagaa gtggaaagtc ccataggta ccaactaatg 46300
tcaccagttt cctggatacc tttcctggag tttatttata gtgtgtataa 46350
ataaaatgtat tatgtgttta aatgccttt tcaccttcc ttttagagct 46400
gcctctttt aacagttcca ttccattgtat tggatgtact atgattttt 46450
gaaccagttc cctactgatt attctgtttt ttgcagtctt ttgttatgat 46500
gaacattcca cagtgacaat gttgttcata gtcattcaca cacatgcaag 46550
tccttctgca ggatataattt ctagagggga attgctgact cagaggtttt 46600
ggtactctgt gttgattgtat gaggacggc agaaaagtga ggcccaagag 46650
tttccttagt accatgtgtat gtggacaagt caccagtccc tggactgttt 46700
tggcccaaag gctttaaggc atttgatatc actgttttttgcacc 46750
aggcgggaga cactatattc aatcggtcta agctcccaa tggatgtttt 46800
caagaagcct tgaaggacta tgactacacc tgctttgtt ttagtgacgt 46850
ggacccattt ccaatgaatg accataatgc gtacagggtt tttcacagc 46900
cacggcacat ttccgttgcata atggataagt ttggatttcag gtaagagata 46950
ctcagtcaga atctgtgttgcata aacatgtctc tctcatgtgt tgacttaggaa 47000
atgcagtcctt ggcagctcaa gagtgccctt ttaagctctg gagcagaatg 47050
cctccctgtat gaaatgggtt cttgttattt gttgagatgg aaagaagaga 47100
ccagaaatgc ctgttagtctc tgccatccatca gacaaaaaca aattttcccc 47150
cctttttttt ttttgggtt ttttggatc agggcttgc tctgtcaccc 47200
aggctggagt gcagtgccgt gatctggctt caccgcacc tctgcctccc 47250
gggttcatgc catcctgtca cctcagccctc ctgagtagct gggactacaa 47300
acacttgcca ccatgcgcag ctaatttttgcata ttttggatc agagatgggg 47350
ttttgctgtat ttggccagtc tggatgttgcata cctctgagct caagcaatcc 47400
atctgccttgcata gcttctgcata gtgtggattt ataggcatgt ggcaccatgc 47450
ctggcctaag aacagttttt agcattttggg agggctctc atctttaagc 47500
tccaaatgtat actgtattttt ctgtttttt tctttcttgcata gccccacaag 47550
ttttggaaag taaattggaa tagttttccatca ccactgaattt atttagctt 47600
tatacctcag cagatgttcc ttggcctgtt ttgtttgtt tttgagacag 47650
ggtcttgcctc tgcacccatca gctggaggtgc agtgcacacaa tcatggctca 47700
ctgcagccctt gactgccttgcata gcttgcata tccctgagcc tcagcctcc 47750
gagtagttgg gactacaggc atgagccagc atgtccagctt aattttttgcata 47800
tttttagtggat gatgaggtctt ggctatgttgcata cccaaatggg gcttgaactc 47850
ttgggctcaatgcata gtttttttttgcata cccaaatggg gcttgaactc 47900
agggtgtgaac cactgcctcc gcccctggcc ctataagaag gaatgtgatt 47950
ctgtttccatca gcaaggcaca aacttctgtt taaatataaa gccccaaatgg 48000
ttccacccaaatgcata gtttttttttgcata cccaaatggg gcttgaactc 48050
gtattatccatca aagcatatttgcata tcattgggtggaaaatggctt ttttttttgcata 48100
tggtttgtct taaaatggat ttttttttgcata aacttgcata ttttttttgcata 48150
attccgtgttttgcata taaaatggat ttttttttgcata ttttttttgcata 48200

18923800202SEQ.txt

caggtgcagt ggctcggtcc tgtaatcgca gcactttggg aggccgaggg 48250
ggcagatca cctgaggtca ggagttcgag accagcctga ccagcatgg 48300
gaaaccctgt ctctactaaa aataaaaaaa ttagccaggt gtggtggcag 48350
gtgcctgtaa tcccagctac tcggaaagct gaggcaggag aattgcttg 48400
acccgggagg cagagggtgc agtgaggtga gatcgccca ttgaacttca 48450
acttgggcaa cagagcaaga ctctgtctca gagaaagaaa aaaaaaaacc 48500
tatcagttga ataacaaaac ctttccttc cttgctttaa gtgaatctga 48550
agatccagga gctgtgctgc aggtaccctc tatgttgggt acccctgg 48600
taggctgact agtacagtgt ggttggctca tgtagacagc agacccttta 48650
tttagatac aactttttt cttttcttt tattttttt gagacagagt 48700
cttgctgtc acccagcctg gagtgcagtgc gcgtgatcat ggctcaactat 48750
agccttaaac tccctggctc aagtgatcct ctcacccgg ctttccttagt 48800
agctgggacc acaggtgtgg gccagcaccc ctggctgatt taaaaaaaaa 48850
aaaattttt ttttagaga tgtctcaacta tgttacccag gctggtctt 48900
aactcctggg ggctcaagca atccctctgc tttgacccctt ccaaagtgc 48950
ggatgacagg catgaactac tgcacctgct gagatgcaac agcttctgt 49000
cagactcatt ttattctcat catttcttcc tgcctccct tgctgggagc 49050
atgagagctg tgatggaaat ataggaatgt atgaagtccct tctcccaagat 49100
caaaaatcct aacttctgt cttaaaggga gggaaaattt aatgtaacct 49150
tacttttaga ctctcagaa atcctctat acccttccgt ccccgctttc 49200
acccttcctc cctctccgtg tgttatctt cttctttga aacacacagg 49250
tttataccct gaccccttctt gattcatccc ttgaagcaca gtggtgaaca 49300
aggaaggggc ccgtgatgcc ctaattctt gcccacagcac catgtttgtt 49350
tcacaaggag cctggcaggt ttgggcttgg ggcagatagg ggagagaaaag 49400
cagcagagac agcaaaaacca aatcatgtca gcttggcatg tactccctc 49450
tgaatagct aagaatccat ttctgtaaaaa gcactgatta tcagaaaacc 49500
ttattggcct ggccacccctt ggttcaaacc ctcacattaa taatgtggac 49550
agtagtatga ggtgtgccaa aggtggatga ctcagcacct aagtgtatgac 49600
acctaattac gaataggttc attaaaggcag acccccctggg gacctttgct 49650
tgaggatcct tacagtcaaa attctgaat atatttggaaa ataataattt 49700
catctttatt ttcatatgtt ctgtatgggt tggctgactt cccctcaaa 49750
gtctgagtttta gagttttcct taattttatgt gatggggttg gtctttttgg 49800
attccagaaaa gagctgggtg tgggttggag ctgcactcag agtcacacaaa 49850
aaccacagcc ttttagagaac ccacaggaag gcttggggc acgtcctgat 49900
tcttgacatt tctcatcagt gctgactttg tatcccttag gagttcacaa 49950
ttcataacca ctgaaatatt aaaataaaaaa aagttttggaa aggatgagag 50000
cccagatgct ctactacttggaaaatatgtt aaaacataag ttcatcatta 50050
tacatggc taaatcgaga taaagtctga agtttcaaag aagttttattt 50100
ttagcaaatt ttcagaaaca ctgcctcaac tgtagggcc agtggcttag 50150
tcagtagtgc tttggaaagca tgaaagctgg attggcgtat aggatgggtg 50200
tggaaggggg gctgtgactg ggtgggtaca gagaggctct gaaacaatct 50250
cagattccag gagttcctgg ataaggactt catgtgcggg aacagagcac 50300
aggagaagca gattcctggccactcagga agaactgggc ctaggcctgc 50350
tcttgtaact gactggctt ctacataacc acagaaacag cactgtgttg 50400
tagaaagagg aagatcatac ttttgatat ctgtgtctaa tttaaggtca 50450
tctgagccct gatagaaaaaag caaaacagac aaaacccttgc taactgctcc 50500
ctcccccccc acccaccatc aaaaaagctt tagagaggct ggacatgg 50550
gctcttcctt gtatccctg cactttggga ggctaaagggtg ggtggatcac 50600
ctgaggtcag gagttcgaga ccagcctgac caatatgggtg aaaccccatc 50650
tgtactaaaa atacaaaaat tagccaggtg tgggtggcaca cgcctgttagt 50700
cccagctact tgggaggctg agacaggaga attactgaa aacctgggag 50750
gcggaggttgc cagtgagccg agatcacgccc attgtactcc agcctgggct 50800

18923800202SEQ.txt

acagagcgag actccttcaa aaaaaaaaaa aaaaaaaagat ccggtttgg 50850
gtcttacaac tgaatccca gcactttggg aggccgaggc cggtgatca 50900
cgaggtaag agatcaagac catcctgacc aacatggta aaccctgtct 50950
ctactaaaaa ttagctggc gtgttgcag gcgcctgtag tcccagctcc 51000
tcaggaggct gaggcagaag aatcgcttga acccgggagg cggaaagttgc 51050
agtgaggcta gatcgcccc ctgcactcca gcctggcaac agagcaagac 51100
tacgtctcaa aaaaaaaaaa aataaaaact ctagagaagc aaaaagaata 51150
actttaaaag tggatgtt ctcagcaagc tttattttgg ggatgtcaga 51200
acttaactaa ccactgctcc ttctgtgtgt atgaaaaatcc tccagcctac 51250
cttatgttca gtatTTTgga ggtgtctctg ctctaaactt acaacagttt 51300
ctaaccatca atggatttcc taataattat tggggctggg gaggagaaga 51350
tgatgacatt ttaacaggt aatggtcata acttagatat ctttctcctc 51400
tgtcaacctt cacttccagt ttttaacca atgcttgggtt gttcccaag 51450
gactgaccct cagatgggat gcacccctag tcagccaca ttcttaggt 51500
tggcttccta caggtcctgc aggtgctaaa agggatctgt agggaaatga 51550
gtttctgaga tttttgtatt ggcctggaaa aatgtcaaat gggaaaccaag 51600
tgacggggca agtttaccc gacttgcgtc atgcccgtt gtactcaagg 51650
agtaaaacca tgcctttgt aaaaatccct ccttcattt tggtcccctt 51700
tcactgtgaa acaagttcc ttgagcagaa tcctaaactgt cttcacagaa 51750
gctttgtt atattttat tttggagttat tttcacat taaaagaga 51800
tactgttagta taataaacct ttgaggacct atccagcccc agcaaccatt 51850
atggcctggt cagttctgtc ccatccacat cctggggctc ttttaagct 51900
ggttaatcat tatgtatgtt gttgtcattt acagtggtaa aaaaacatcta 51950
tcagtagcat ttgaaagaac attctgtca gtcctctggc ttagaggct 52000
tcaacccac cagccaccga tgagcacctt ctccctccag gagccagtct 52050
gagctcatta ctgagttaa tatcagaata caccctggc cagccttct 52100
aaattgcagt accagttaa agaagggtgc tgcagagca acacccaagt 52150
cattcaagtt accattgtgt gcaacttaa cagagacca cgtcttcaat 52200
ataaggctt aaggaaactc cagtttttagt atgttagatgg ggtatcaagt 52250
gtgtgcacat tgaacatctg ctgcatacag agcactgtc caggcaggcc 52300
caggacactg aaaacctgga catagggtcc agacagaagc aagcctgctt 52350
ccacagaggc actcctggc agacactctg gactgatatg acagtgtgca 52400
gggcccacag gataccacag gtctgaatgg tcagaacagc tggggaggga 52450
gggagcatcc gcaggcatct agtccatgc taacgcagtgc gcactagaag 52500
gatgggtggt gtgtggagca actttcttga aagataaagg acctaacact 52550
ttctatgcac cacttactgt gtgccaggca aggccaggaa tggtaatgt 52600
gtctgggatc agccagttct gcctcttaac taactttgt gtcctgctct 52650
ccaggcttc atttggtcc tcattccctt tccttgacc aacacagaat 52700
cctccaccct gttctggctg cctctagtct tggctcagc cctccatattg 52750
ttttttctg cctttccca catttctga agccctccat tgcgtataacta 52800
ctttccagag acttcccat ggctaaaagc attttgaaa tactgttat 52850
taggccccct tcagatactg gcaaccgttt gtggatgtct ctgagaaggc 52900
ctctgtgact tagcctggcc ctttcagcc catcacctgc cacgtcctac 52950
cccagaccct tgtcaccagt ccccaggagc ttacgttgct ccctgaggcc 53000
actaggctt ctctcaactc catgcctttg cctgtgccat cctggctgcc 53050
caaaatgcta tggcagatac ctgttcatcc tcaactggc tctgcctagg 53100
cttgctccag cagagggtac aaactctatg cttcttcctc tggctcaca 53150
acctcatctt cctcttctca cttccatcct ggccctaaag gccctatgtt 53200
tgaagcattc acactgtata ttctgtgggg cacacggccc cagtgtctgg 53250
cacatggtag tcaacaccac aaaccgcaga accagttgtaa aaggacatg 53300
gagtcggaat gtgagttta accagggtca tgctggctg ggttctggca 53350
tgatgctggg ttgtggctg agtgagaaca gcaagggtga tggtgatgg 53400

18923800202SEQ.txt

agcacacgtc ttgcagccgg ggctctcagg ccaagtgtat ggcagctctg 53450
tgataatgac ttcccttta ctcttgcag attagtttt agaggcatgt 53500
ctatatctcg cccaaatgct gtggcggga ggtgtcgcat gatccgccac 53550
tcaagagaca agaaaaatga acccagtcct cagagggtgca ttcttgcgtt 53600
attcatactc cttccccctt taggatgagg taggctgcag gtccgaggct 53650
ctggcctag agggaaattt aggtggtcag gttacagtgg agagggagga 53700
ggaagtacgt gtatgattt cttctaaga tttttgttt aagacaatct 53750
ccttgtgctc ttttccttgc aggttgacc gaattgcaca cacaaggag 53800
acaatgtct ctgatggttt gaactcactc acctaccagg tgctggatgt 53850
acagagatac ccattgtata cccaaatcac agtggacatc gggacaccga 53900
gctagcgtt tggcacacgg ataagagacc taaaattagc caggacactc 53950
tgctgtgtgt ctctgccaat ctgctggct ggtccctctc attttacca 54000
gtctgagtga caggtccccct tcgctcatca ttcatgatgatc tttccagatg 54050
accaggacga gtgggatatt ttgccccaa cttggctcgg catgtgaatt 54100
cttagctctg caaggtgttt atgccttgc gggttctt atgttgcgc 54150
agtgtcaccc cagagtcaaa actgtacaca tcccaaatt tggtgccgt 54200
ggaacacatt cccgggtata gaattgctaa attgtcgtga aataggttag 54250
aattttctt taaattatgg ttttcttatt cgtaaaatt cggagagtgc 54300
tgctaaaatt ggattgggtgt gatcttttgc gtagttgtaa ttacagaa 54350
aaacacaaaa ttcaaccat tcttaatgtt acgtcctccc cccacccct 54400
tcttcagtgt gatgtcaacc actgcaatca ctgtgcataat gtctttctt 54450
agcaaaagga tttaaaact tgagccctgg accttttgc ctatgtgtgt 54500
ggattccagg gcaactctag catcagagca aaagccttgg gtttctcga 54550
ttcagtgcc tatctccaga ttgtctgatt tctgaatgtt aagttgtgt 54600
gtttttttt aaatagtagt ttgttagtatt taaagaaag aacagatcga 54650
gttctaatta tgatctagct tgatttgc ttgatccaaa ttgcatacg 54700
tgtttaatgt taagtcatga caatttattt ttcttggcat gctatgtaaa 54750
cttgaatttc ctatgtattt ttatttgc gttttaataa tggggagggg 54800
tattgagcat ttttaggga gaaaataaa tatatgctgt agtggccaca 54850
aataggccta tgatcttagt ggcaggccag gtttctcaa gagcaaaatc 54900
accctctggc cccttggcag gtaaggcctc cccgtcagca ttatcctgcc 54950
agacctcggg gaggataacct gggagacaga agcctctgca cctactgtgc 55000
agaactctcc acttccccaa ccctccccag gtggcaggg cggagggagc 55050
ctcagcctcc ttagactgac ccctcaggcc cctaggctgg ggggttgtaa 55100
ataacagcag tcaggtgtt taccagccct ttgcacctcc ccaggcagag 55150
ggagcctctg ttctggggg ggccacctcc ctcagaggtt ctgctagcca 55200
cactccgtgg cccacccttt gttaccagtt cttccctcctt cctctttcc 55250
cctgccttcc tcattccctt cttcgtctcc cttttgttc cttgcctct 55300
tgccctgtccc ctaaaacttg actgtggcac tcagggtcaa acagactatc 55350
cattccccag catgaatgtt cttttaatt agtgcatactg aaagaagttc 55400
agccgaaccc acaccccaac tccctccaa gaacttcgtt gcctaaagcc 55450
tcctgttcca ctcaggttt tcacaggtgc tcccacccca gttgaggctc 55500
ccacccacag ggctgtctgt cacaacccca cctctgttgg gagctattga 55550
gccacctggg atgagatgac acaaggcact cctaccactg agcgcctttg 55600
ccaggtccag cttggcgtca gttccaaga ctcagctgcc taatcccagg 55650
gttggccctt gtgctcgtgg cggacccca accactgccc tcctgggtac 55700
cagccctcag tggaggctt gagctggtc ctggcccccag tcttatctgt 55750
gcctttactg cttgcgtcat ctcagatgtt aacttggtt ttttccaga 55800
agcctttgtt ttggtaaaa attatttcc attgcagaag cagctggact 55850
atgcaaaaag tatttctctg tcagttcccc actctataacc aaggatatta 55900
ttaaaaacttag aaatgactgc attgagaggg agttgtggga aataagaaga 55950
atgaaagcct ctcttctgt ccgcagatcc tgactttcc aaagtgcctt 56000

18923800202SEQ.txt

aaaagaaaatc agacaaatgc cctgagtggt aacttctgtg ttattttact 56050
cttaaaacca aactctacct tttcttggg tttttttttt tttttttttt 56100
tttttttgg ttaccttctc attcatgtca agtatgtggt tcattcttag 56150
aaccaaggga aatactgctc ccccccatttg ctgacgtagt gctctcatgg 56200
gctcacctgg gcccaaggca cagccaggc acagttaggc ctggatgttt 56250
gcctggtccg tgagatgccg cgggtcctgt ttccttactg gggatttcag 56300
ggctgggggt tcagggagca tttcttttc ctggaggtta tgaccgcgaa 56350
gttgcgtatgt gccgtccct tttctgtttc tgtgtatcct attgctgggt 56400
actctgtgtg aactggcctt tggaaagat cagagaggc agaggtggca 56450
caggacagta aaggagatgc tgcgtggcc ttcagcctgg acagggtctc 56500
tgctgactgc caggggcggg ggctctgcat agccaggatg acggcttca 56550
tgtcccagag acctgttgtg ctgtgtattt tgatttcctg tgtatgcaaa 56600
tgtgtgtattt taccattgtg tagggggctg tgtctgtatct tggtgttcaa 56650
aacagaactg tattttgccc tttaaaattt aataatataa cgtgaataaa 56700
tgaccctatc tttgttaac 56718

<210> 3
<211> 4214
<212> DNA
<213> Homo sapien

<220>
<223> wild-type B4GALT1 mRNA sequence

<400> 3
gcccucggg cggcuucucg ccgcucccag gucuggcugg cuggaggagu 50
cucagcucuc agccgcucgc cccgcggccu uccggggccu ccccuagucg 100
ccgcuguggg gcagcgccug gcggggcggcc cgcggggcggg ucgccucccc 150
uccuguagcc cacacccuuc uuaaagcggc ggcgggaaga ugaggcuucg 200
ggagccgcuc cugagcggca gcgcgcgcau gccaggcgcg ucccuacagc 250
gggcugccg ccugcucug gccgucugcg cucugcaccu uggcgcucacc 300
cucguuuuacu accuggcugg cgcgcaccug agccgcgcugc cccaaacuggu 350
cgagacuccc acaccgcugc agggcggcuc gaacagugcc gccgcuaucg 400
ggcaguccuc cggggagcuc cggaccggag gggcccgcc gccgcuccu 450
cuaggcgccu ccuucccagcc gcgcgggggu ggcgcacucca gcccagucgu 500
ggauucuggc ccuggcccg cuagcaacuu gaccucgguc ccagugccccc 550
acaccaccgc acugucgcug cccgcugcc cugaggaguc cccgcugcui 600
gugggccccca ugcugauuga guuuuacaaug ccuguggacc uggagcucgu 650
ggcaaaggcag aacccaaaug ugaagauggg cggccgcua gccccccaggg 700
acugcgucuc uccucacaag guggccauca ucauuccauu cccgcaaccgg 750
caggagcacc ucaaguacug gcuaauuuau uugcaccagg uccugcagcg 800
ccagcagcug gacuauggca ucuauuuau caaccaggcg ggagacacua 850
uauucaaucg ugcuaaggcuc cucaauguug gcuuucaaga agccuugaag 900
gacuaugacu acaccugcuu uguguuuagu gacgugggacc ucauuccaa 950
gaaugaccau aaugcguaca gguguuuuuc acagccacgg cacauuuccg 1000
uugcaaugga uaaguuugga uucagccuac cuuauguuca guauuuugga 1050
ggugucucug cucuaaguua acaacaguuu cuaaccauca auggauuucc 1100
uaauuaauua uggggcuggg gaggagaaga ugaugacauu uuuuacagau 1150
uaguuuuuag aggcauguc auaucucgc caaaugcugu ggucgggagg 1200
ugucgcauga uccgcccacuc aagagacaag aaaaugaac ccaauccuca 1250
gagguuugac cgaauugc acacaaagga gacaugcuc ucugauugguu 1300

18923800202SEQ.txt

ugaacucacu caccuaccag gugcugggaug uacagagaua cccauuguau 1350
 acccaaauca caguggacau cgggacaccg agcuagcguu uugguacacg 1400
 gauaagagac cugaaauuag ccagggaccu cugcugugug ucucugccaa 1450
 ucugcugggc ugguccucu cauuuuuacc agucugagug acaggucccc 1500
 uucgcucauc auucagaugg cuuuccagau gaccaggacg agugggauau 1550
 uuugccccc acuuggcucg gcaugugaaau ucuuagcucu gcaagguguu 1600
 uaugccuuug cggguuuucuu gauguguucg cagugucacc ccagagucag 1650
 aacuguacac aucccaaaaau uugguggccg uggaacacau ucccggugau 1700
 agaaauugcua aauugucug aauuagguaa gaauuuuucu uuaauuuau 1750
 guuuuucuuau ucgugaaaaa ucggagagug cugcuaaaaa uggauuggug 1800
 ugaucuuuuu gguaguugua auuuaacaga aaaacacaaa auuucaacca 1850
 uucuuuaugu uacguccucc ccccacccccc uucuuucagu gguaugcaac 1900
 cacugcaauc acugugcaua ugucuuuucu uagcaaaaagg auuuuaaaaac 1950
 uugagccug gaccuuuugu ccuaugugug uggaauuccag ggcaacucua 2000
 gcaucagagc aaaagccuug gguuucucgc auucaguggc cuaucuccag 2050
 auugucugau uucugaaugu aaaguuguug ugaaaaaaa uaaaaaguag 2100
 uuuguaguau uuuuaagaaa gaacagaua aguucuaauu augauchiagc 2150
 uugauuuugu guugauccaa auuugcauag cuguuuaaug uuaagucaug 2200
 acaauuuuauu uuuuuuggca ugcuauguaa acuugaaauu ccuauguaau 2250
 uuuauuugugg ugaaaaaaauu auggggaggg guauugagca uuuuuuaggg 2300
 agaaaaauaa auauaugcug uaguggccac aauuaggccu augauuuuagc 2350
 uggcaggcca gguuucuca agagcaaaaau caccucucgg ccccuuggca 2400
 gguaggccu cccggucagc auuauccugc cagaccucgg ggaggauacc 2450
 uggaagacag aagccucugc accuacugug cagaacucuc cacuuccccc 2500
 acccuccccca ggugggcagg gcggaggggag ccucagccuc cuuagacuga 2550
 cccucaggc cccuaggcug gggguugua aauaacagca gucagguugu 2600
 uuaccagccc uuugcaccuc cccaggcaga gggagccucu guucuggugg 2650
 gggccaccuc ccucagaggc ucugcuagcc acacuccugc gcccacccuu 2700
 uguuaccagu uciuuccuccu uccucuuuuc cccugccuuu cucauuccuu 2750
 cciuucgucuc ccuuuuuuguu ccuugccuc uugccugucc ccuaaaacuu 2800
 gacuguggca cucagggca aacagacuaa ccauucccca gcaugaaugu 2850
 gccuuuuuau uagugaucua gaaagaaguu cagccgaacc cacaccccaa 2900
 cuccucccca agaacuuucgg ugccuaaagc cuccuguucc accucagguu 2950
 uucacaggug cucccacccc aguugaggcu cccaccacca gggcugucug 3000
 ucacaaaccc accucugug ggagcuauug agccaccugg gaugagaauga 3050
 cacaaggcac uccuaccacu gagcgccuuu gccaggucca gccuggggcuc 3100
 agguuccaag acucagcugc cuaaucccag gguugagccu ugugcucug 3150
 gcggacccca aaccacugcc cuccugggaa ccagcccuca guguggaggc 3200
 ugagcuggug ccuggcccca gucuaaucug ugccuuuac gcuuugcgca 3250
 ucucagaua uaacuugguu cuuuuuccag aagccuuugu auugguuuaaa 3300
 aauuauuuuuc cauugcagaa gcagcuggac uaugaaaaa guauuuucu 3350
 gucaguuccc cacucuauac caaggauauu auaaaaaacua gaaaugacug 3400
 cauugagagg gaguuguggg aauuaagaag aaugaaagcc ucucuuucug 3450
 uccgcagauc cugacuuuuc caaagugccu uaaaagaaaau cagacaaaug 3500
 cccugagugg uaacuucugu guuauuuuac ucuuaaaaacc aaacucuacc 3550
 uuuucuuguu guuuuuuuuu uuuuuuuuuu uuuuuuuuuug guuaccuucu 3600
 cauucauguc aaguaugugg uucauucuaa gaaccaaggg aauuacugcu 3650
 ccccccacuuu gcugacguag ugcucucaug ggcucaccug ggcccaaggc 3700
 acagccaggg cacaguuagg ccuggauguu ugccuggucc gugagaaugcc 3750
 gcggguccug uuucuuuac ggggauuuca gggcuggggg uucaggggagc 3800
 auuuccuuuu ccugggaguu augaccgcga aguugucaug ugccgugccc 3850
 uuuucuuguu cuguguaucc uauugcuggu gacucugugu gaacuggccu 3900

18923800202SEQ.txt

uugggaaaga ucagagaggg cagagguggc acaggacagu aaaggagaug 3950
cugugcuggc cuucagccug gacagggucu cugcugacug ccaggggcgg 4000
gggcucugca uagccaggau gacggcuuuc augucccaga gaccuguugu 4050
gcuguguauu uugauuuuccu guguaugcaa auguguguau uuaccauugu 4100
guagggggcu gugucugauc uugguguuca aaacagaacu guauuuuugc 4150
cuuuaaaaauu aaauaaauua acgugaaaua augaccuau cuuuguaaca 4200
aaaaaaaaaa aaaa 4214

<210> 4

<211> 4214

<212> DNA

<213> Homo sapien

<220>

<223> variant B4GALT1 mRNA sequence

<400> 4

gcccucggg cggcuucucg ccgcucccag gucuggcugg cuggaggagu 50
cucagcucuc agccgcucgc ccgccccccgc uccggggccu ccccuagucg 100
ccgcuguggg gcagcgccug gcgggcccgc cgccggcggg ucgcuccccc 150
uccuguagcc cacacccuuc uuaaagcggc ggcgggaaga ugaggciucg 200
ggagccgcuc cugagcggca gcggcgcgau gccaggcgcg ucccuacagc 250
ggccugccg ccugcucug gccgucugcg cucugcaccu uggcgucacc 300
cucguuuuacu accuggcugg ccgcgaccug agccgcugc cccaaacuggu 350
cggagucucc acaccgcugc agggcggcuc gaacagugcc gccgccaucg 400
ggcaguccuc cggggagcuc cggaccggag gggccggcc gccgcccuccu 450
cuaggcgccu ccuucccagcc gcggccgggu ggcgacucca gcccagucgu 500
ggauucuggc ccuggccccc cuagcaacuu gaccucgguc ccagugccccc 550
acaccaccgc acugucgcug cccgcccugcc cugaggaguc cccgcugcui 600
gugggccccca ugcugauuga guuuuacaaug ccugugggacc ugagacucgu 650
ggcaaaggcag aacccaaaua ugaagauggg cggccgcuau gcccccaggg 700
acugcgucuc uccucacaag guggccauca ucauuccauu ccgcaaccgg 750
caggagcacc ucaaguacug gcuaauuuau uugcaccagg ucugcagcg 800
ccagcagcug gacuauggca ucuauguuau caaccaggcg ggagacacua 850
uauucaaucg ugcuaagcuc cucaauguug gcuuucaaga agccuugaag 900
gacuaugacu acaccugcui uguguuuagu gacgugggacc ucauuccaa 950
gaaugaccau aaugcguaca gguguuuuuc acagccacgg cacauuuuccg 1000
uugcaaugga uaaguuugga uucagccuac cuuauguuca guauuuugga 1050
ggugucucug cucuaaguua acaacaguuu cuaaccauca auggauuuucc 1100
uaauuauuuau ugcccuggg gaggagaaga ugaugacauu uuuuacagau 1150
uaguuuuuag aggcauguc auaucucgc caaaugcug ggcggggagg 1200
ugucgcauga uccgcccacuc aagagacaag aaaaugaac ccaguccuca 1250
gagguuugac cgaauugcac acacaaagga gacaugcuc ucugauugguu 1300
ugaacucacu caccuaccag gugcuggaag uacagagaua cccauuguau 1350
acccaaauca caguggacau cgggacaccg agcuagcguu uugguacacg 1400
gauaagagac cugaaaauag ccagggaccu cugcugugug ucucugccaa 1450
ucugcugggc uggucccuu cauuumuacc agucugagug acaggucccc 1500
uucgcucauc auucagaaagg cuuuccagau gaccaggacg agugggauau 1550
uuugcccccac acuuggcucg gcaugugaauc ucuuagcucu gcaagguguu 1600
uaugccuuug cggguuucuu gauguguuucg cagugucacc ccagagucag 1650
aacuguacac aucccaaaau uugguggccg uggaacacau ucccggugau 1700

18923800202SEQ.txt

agaaauugcua	aauugucgug	aaauagguua	gaauuuuuucu	uuaaauuaug	1750
guuuuucuuau	ucgugaaaaau	ucggagagug	cugcuaaaaau	uggauuggug	1800
ugaucuuuuu	gguaguugua	auuuaacaga	aaaacacaaa	auuucaacca	1850
uucuuuaugu	uacguccucc	ccccacccccc	uucuuucagu	gguaugcaac	1900
cacugcaauc	acugugcaua	ugucuuuucu	uagcaaaagg	auuuuuaaac	1950
uugagcccug	gaccuuuugu	ccuaugugug	uggauuccag	ggcaacucua	2000
gcaucagagc	aaaagccuug	gguuucucgc	auucaguggc	cuaucuccag	2050
auugucugau	uucugaaugu	aaaguuguug	uguuuuuuuu	uaaaauaguag	2100
uuuguaguau	uuuaaagaaa	gaacagaucg	aguucuaauu	augaucuagc	2150
uugauuuugu	guugauccaa	auuugcauag	cuguuuaaug	uuaagucaug	2200
acaauuuuau	uuucuuggca	ugcuauuguaa	acuugaauuu	ccuauguaau	2250
uuuauugugg	uguuuuuaau	auggggaggg	guauugagca	uuuuuuaggg	2300
agaaaaaaaua	auuaaugcug	uaguggccac	aaauaggccu	augauuuuagc	2350
uggcaggcca	gguuuucuca	agagcaaaau	caccucucgg	ccccuuggca	2400
gguaaaggccu	cccggucagc	auuauccugc	cagaccucgg	ggaggauacc	2450
ugggagacag	aagccucugc	accuacugug	cagaacucuc	cacuucccca	2500
acccuuccca	ggugggcagg	gcggagggag	ccucagccuc	cuuagacuga	2550
ccccucaggc	cccuaggcug	ggggguugua	aauaacagca	gucaggguug	2600
uuaccagccc	uuugcaccuc	cccagggcaga	gggagccucu	guucuggugg	2650
gggcccaccuc	ccucagagggc	ucugcuagcc	acacuccgug	gcccacccuu	2700
uguuaccagu	uciuuccuccu	uccucuuuuc	cccugccuuu	cucauuccuu	2750
ccuucgucuc	ccuuuuuguu	ccuuugccuc	uugccugucc	ccuaaaaacuu	2800
gacuguggca	cucaggguca	aacagacuau	ccauucccc	gcaugaaugu	2850
gccuuuuuaau	uagugaucua	gaaagaaguu	cagccgaacc	cacaccccaa	2900
cucccuccca	agaacuuucgg	ugccuaaaagc	cuccuguucc	accucagguu	2950
uucacaggug	cucccaccuu	aguugaggcu	cccacccaca	gggcugucug	3000
ucacaaaaccc	accucuguug	ggagcuauug	agccaccugg	gaugagagaug	3050
cacaaggcac	uccuaccacu	gagcgccuuu	gccaggucca	gccuggggcuc	3100
agguuccaag	acucagcugc	cuauccucag	gguugagccu	ugugcucug	3150
gcggacccca	aaccacugcc	cuccugggua	ccagcccuca	guguggaggc	3200
ugagcuggug	ccuggcccca	gucuuauucug	ugccuuuuacu	gcuuuggcgca	3250
ucucagau	uaacuugguu	cuuuuuccag	aagccuuuugu	auugguuaaa	3300
aaauuuuuuuc	cauugcagaa	gcagcuggac	uaugaaaaaa	guauuuucucu	3350
gucaguuccc	cacucuauac	caaggauauu	auuuuacua	gaaaugacug	3400
cauugagagg	gaguuguggg	aaauaagaag	aaugaaagcc	ucucuuuucug	3450
uccgcagauc	cugacuuuuc	caaagugccu	aaaaagaaaa	cagacaaaug	3500
cccugagugg	uaacuucugu	guuaauuuuac	ucuuuuuacc	aaacucuacc	3550
uuuuuuuuguu	guuuuuuuuu	uuuuuuuuuu	uuuuuuuuug	guuaccuuuc	3600
cauucauguc	aaguaugugg	uucauucuuu	gaaccaaggg	aaauacugcu	3650
cccccccauuu	gcugacguag	ugcucucaug	ggcucaccug	ggcccaaggc	3700
acagccaggg	cacaguuagg	ccuggaughu	ugccuggucc	gugagagugcc	3750
gcggguccug	uuuccuuacu	ggggauuuuca	gggcugggggg	uucagggagc	3800
auuuuccuuuu	ccugggaguu	augaccgcga	aguugucuag	ugccgugccc	3850
uuuuucuguuu	cuguguaucc	uauugcuggu	gacucugugu	gaacugggcu	3900
uugggaaaga	ucagagaggg	cagagguggc	acaggacagu	aaaggagau	3950
cugugcuggc	cuucagccug	gacagggucu	cugcugacug	ccaggggcgg	4000
gggcucugca	uagccaggau	gacggcuuuc	augucccaga	gaccuguug	4050
gcuguguaau	uugauuuuccu	guguaugcaa	auguguguau	uuaccaauug	4100
guagggggcu	gugucuguauc	uugguguuca	aaacagaacu	guauuuuuugc	4150
cuuuaaaaauu	aaauaaauua	acgugaauaa	augaccuuau	cuuuguaaca	4200
aaaaaaaaaa	aaaa	4214			

18923800202SEQ.txt

<210> 5
<211> 1197
<212> DNA
<213> Homo sapien

<220>
<223> wild-type B4GALT1 cDNA sequence

<400> 5
atgaggccttc gggagccgct cctgagcggc agcgccgcga tgccaggcgc 50
gtccctacag cgggcctgcc gcctgctcgt ggccgtctgc gctctgcacc 100
ttggcgtcac cctcgttac tacctggctg gccgcgaccc gagccgcctg 150
ccccaaactgg tcggagtcctc cacaccgctg cagggcggct cgaacagtgc 200
cgccgcctac gggcagtcct ccggggagct ccggaccgga ggggccccggc 250
cgccgcctcc tctaggcgcc tcctcccagc cgcgccccggg tggcgactcc 300
agcccaactcg tggattctgg ccctggccccc gctagcaact tgacctcggt 350
cccagtgcac cacaccaccg cactgtcgct gcccgcctgc cctgaggagt 400
ccccgcgtct tggggcccc atgctgattt agtttaacat gcctgtggac 450
ctggagctcg tggcaaagca gaacccaaat gtgaagatgg ggggccccggc 500
tgcccccaagg gactgcgtct ctcctcacaa ggtggccatc atcattccat 550
tccgcaaccg gcaggagcac ctcaagtact ggctatatta tttgcaccca 600
gtcctgcagc gccagcagct ggactatggc atctatgtta tcaaccaggc 650
gggagacact atattcaatc gtgctaagct cctcaatgtt ggctttcaag 700
aagcctgaa ggactatgac tacacctgct ttgtgttttag tgacgtggac 750
ctcattccaa tgaatgacca taatgcgtac aggtgtttt cacagccacg 800
gcacatttcc gttgcaatgg ataagtttgg attcaggccta ccttatgttc 850
agtattttgg aggtgtctct gctctaagta aacaacagtt tctaaccatc 900
aatggatttc ctaataatattt ttggggctgg ggaggagaag atgatgacat 950
tttttaacaga ttagtttta gaggcatgtc tatatctcgc ccaaattgtt 1000
tggtcgggag gtgtcgcatg atccgcccact caagagacaa gaaaaatgaa 1050
cccaatcctc agaggatttga ccgaattgca cacacaaagg agacaatgct 1100
ctctgatggt ttgaactcac tcacctacca ggtgctggat gtacagagat 1150
acccattgtt taccctaaatc acagtggaca tcgggacacc gagctag 1197

<210> 6
<211> 1197
<212> DNA
<213> Homo sapien

<220>
<223> variant B4GALT1 cDNA sequence

<400> 6
atgaggccttc gggagccgct cctgagcggc agcgccgcga tgccaggcgc 50
gtccctacag cgggcctgcc gcctgctcgt ggccgtctgc gctctgcacc 100
ttggcgtcac cctcgttac tacctggctg gccgcgaccc gagccgcctg 150
ccccaaactgg tcggagtcctc cacaccgctg cagggcggct cgaacagtgc 200
cgccgcctac gggcagtcct ccggggagct ccggaccgga ggggccccggc 250
cgccgcctcc tctaggcgcc tcctcccagc cgcgccccggg tggcgactcc 300
agcccaactcg tggattctgg ccctggccccc gctagcaact tgacctcggt 350

18923800202SEQ.txt

cccagtgcac cacaccaccc cactgtcgct gcccgcctgc cctgaggagt 400
ccccgcgtct tgtgggcccc atgctgattt agtttaacat gcctgtggac 450
ctggagctcg tggcaaagca gaacccaaat gtgaagatgg gcccgccta 500
tgcccccagg gactgcgtct ctcctcacaa ggtggccatc atcattccat 550
tccgcaaccg gcaggagcac ctcaagtact ggctatatta tttgcaccca 600
gtcctgcagc gccagcagct ggactatggc atctatgtta tcaaccaggc 650
gggagacact atattcaatc gtgctaagct cctcaatgtt ggcttcaag 700
aagccttgaa ggactatgac tacacctgct ttgtgttttag tgacgtggac 750
ctcattccaa tgaatgacca taatgcgtac aggtgtttt cacagccacg 800
gcacatttcc gttgcaatgg ataagtttgg attcagccta ccttatgttc 850
agtatttgg aggtgtctct gctctaagta aacaacagtt tctaaccatc 900
aatggatttc ctaataatta ttggggctgg ggaggagaag atgatgacat 950
tttaacaga ttagtttta gaggcatgtc tatatctcgc ccaaatgctg 1000
tggtcgggag gtgtcgcatg atccgccact caagagacaa gaaaaatgaa 1050
cccagtcctc agaggttta ccgaattgca cacacaaagg agacaatgct 1100
ctctgatggt ttgaactcac tcacaccttca ggtgctggat gtacagagat 1150
acccattgtt tacccaaatc acagtggaca tcgggacacc gagctag 1197

<210> 7

<211> 398

<212> PRT

<213> Homo sapien

<220>

<223> wild-type B4GALT1 sequence

<400> 7

Met Arg Leu Arg Glu Pro Leu Leu Ser Gly Ser Ala Ala Met Pro Gly
1 5 10 15

Ala Ser Leu Gln Arg Ala Cys Arg Leu Leu Val Ala Val Cys Ala Leu
20 25 30

His Leu Gly Val Thr Leu Val Tyr Tyr Leu Ala Gly Arg Asp Leu Ser
35 40 45

Arg Leu Pro Gln Leu Val Gly Val Ser Thr Pro Leu Gln Gly Gly Ser
50 55 60

Asn Ser Ala Ala Ala Ile Gly Gln Ser Ser Gly Glu Leu Arg Thr Gly
65 70 75 80

Gly Ala Arg Pro Pro Pro Leu Gly Ala Ser Ser Gln Pro Arg Pro
85 90 95

Gly Gly Asp Ser Ser Pro Val Val Asp Ser Gly Pro Gly Pro Ala Ser
100 105 110

Asn Leu Thr Ser Val Pro Val Pro His Thr Thr Ala Leu Ser Leu Pro
115 120 125

18923800202SEQ.txt

Ala Cys Pro Glu Glu Ser Pro Leu Leu Val Gly Pro Met Leu Ile Glu
130 135 140

Phe Asn Met Pro Val Asp Leu Glu Leu Val Ala Lys Gln Asn Pro Asn
145 150 155 160

Val Lys Met Gly Gly Arg Tyr Ala Pro Arg Asp Cys Val Ser Pro His
165 170 175

Lys Val Ala Ile Ile Ile Pro Phe Arg Asn Arg Gln Glu His Leu Lys
180 185 190

Tyr Trp Leu Tyr Tyr Leu His Pro Val Leu Gln Arg Gln Gln Leu Asp
195 200 205

Tyr Gly Ile Tyr Val Ile Asn Gln Ala Gly Asp Thr Ile Phe Asn Arg
210 215 220

Ala Lys Leu Leu Asn Val Gly Phe Gln Glu Ala Leu Lys Asp Tyr Asp
225 230 235 240

Tyr Thr Cys Phe Val Phe Ser Asp Val Asp Leu Ile Pro Met Asn Asp
245 250 255

His Asn Ala Tyr Arg Cys Phe Ser Gln Pro Arg His Ile Ser Val Ala
260 265 270

Met Asp Lys Phe Gly Phe Ser Leu Pro Tyr Val Gln Tyr Phe Gly Gly
275 280 285

Val Ser Ala Leu Ser Lys Gln Gln Phe Leu Thr Ile Asn Gly Phe Pro
290 295 300

Asn Asn Tyr Trp Gly Trp Gly Glu Asp Asp Asp Ile Phe Asn Arg
305 310 315 320

Leu Val Phe Arg Gly Met Ser Ile Ser Arg Pro Asn Ala Val Val Gly
325 330 335

Arg Cys Arg Met Ile Arg His Ser Arg Asp Lys Lys Asn Glu Pro Asn
340 345 350

Pro Gln Arg Phe Asp Arg Ile Ala His Thr Lys Glu Thr Met Leu Ser
355 360 365

Asp Gly Leu Asn Ser Leu Thr Tyr Gln Val Leu Asp Val Gln Arg Tyr
370 375 380

Pro Leu Tyr Thr Gln Ile Thr Val Asp Ile Gly Thr Pro Ser
385 390 395

18923800202SEQ.txt

<210> 8
<211> 398
<212> PRT
<213> Homo sapien

<220>
<223> variant B4GALT1 sequence

<400> 8
Met Arg Leu Arg Glu Pro Leu Leu Ser Gly Ser Ala Ala Met Pro Gly
1 5 10 15

Ala Ser Leu Gln Arg Ala Cys Arg Leu Leu Val Ala Val Cys Ala Leu
20 25 30

His Leu Gly Val Thr Leu Val Tyr Tyr Leu Ala Gly Arg Asp Leu Ser
35 40 45

Arg Leu Pro Gln Leu Val Gly Val Ser Thr Pro Leu Gln Gly Gly Ser
50 55 60

Asn Ser Ala Ala Ala Ile Gly Gln Ser Ser Gly Glu Leu Arg Thr Gly
65 70 75 80

Gly Ala Arg Pro Pro Pro Leu Gly Ala Ser Ser Gln Pro Arg Pro
85 90 95

Gly Gly Asp Ser Ser Pro Val Val Asp Ser Gly Pro Gly Pro Ala Ser
100 105 110

Asn Leu Thr Ser Val Pro Val Pro His Thr Thr Ala Leu Ser Leu Pro
115 120 125

Ala Cys Pro Glu Glu Ser Pro Leu Leu Val Gly Pro Met Leu Ile Glu
130 135 140

Phe Asn Met Pro Val Asp Leu Glu Leu Val Ala Lys Gln Asn Pro Asn
145 150 155 160

Val Lys Met Gly Gly Arg Tyr Ala Pro Arg Asp Cys Val Ser Pro His
165 170 175

Lys Val Ala Ile Ile Ile Pro Phe Arg Asn Arg Gln Glu His Leu Lys
180 185 190

Tyr Trp Leu Tyr Tyr Leu His Pro Val Leu Gln Arg Gln Gln Leu Asp
195 200 205

Tyr Gly Ile Tyr Val Ile Asn Gln Ala Gly Asp Thr Ile Phe Asn Arg
210 215 220

Ala Lys Leu Leu Asn Val Gly Phe Gln Glu Ala Leu Lys Asp Tyr Asp

18923800202SEQ.txt

225 230 235 240
Tyr Thr Cys Phe Val Phe Ser Asp Val Asp Leu Ile Pro Met Asn Asp
245 250 255
His Asn Ala Tyr Arg Cys Phe Ser Gln Pro Arg His Ile Ser Val Ala
260 265 270
Met Asp Lys Phe Gly Phe Ser Leu Pro Tyr Val Gln Tyr Phe Gly Gly
275 280 285
Val Ser Ala Leu Ser Lys Gln Gln Phe Leu Thr Ile Asn Gly Phe Pro
290 295 300
Asn Asn Tyr Trp Gly Trp Gly Gly Glu Asp Asp Asp Ile Phe Asn Arg
305 310 315 320
Leu Val Phe Arg Gly Met Ser Ile Ser Arg Pro Asn Ala Val Val Gly
325 330 335
Arg Cys Arg Met Ile Arg His Ser Arg Asp Lys Lys Asn Glu Pro Ser
340 345 350
Pro Gln Arg Phe Asp Arg Ile Ala His Thr Lys Glu Thr Met Leu Ser
355 360 365
Asp Gly Leu Asn Ser Leu Thr Tyr Gln Val Leu Asp Val Gln Arg Tyr
370 375 380
Pro Leu Tyr Thr Gln Ile Thr Val Asp Ile Gly Thr Pro Ser
385 390 395

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> guide RNA recognition sequences

<400> 9
attagttttt agaggcatgt 20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> guide RNA recognition sequences

18923800202SEQ.txt

<400> 10
ggctctcagg ccaagtgtat 20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> guide RNA recognition sequences

<400> 11
tactccttcc ccctttagga 20

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> guide RNA recognition sequences

<400> 12
gtccgaggct ctgggcctag 20

<210> 13
<211> 6
<212> DNA
<213> Artificial Sequence

<220>
<223> PAM for Cas9 from S. aureus

<220>
<221> n is A, G, C, or T
<222> (1) .. (2)

<220>
<221> r is A or G
<222> (4) .. (5)

<400> 13
nngrrt 6

<210> 14
<211> 5
<212> DNA

18923800202SEQ.txt

<213> Artificial Sequence

<220>

<223> PAM for Cas9 from S. aureus

<220>

<221> n is A, G, C, or T

<222> (1) .. (2)

<220>

<221> r is A or G

<222> (4) .. (5)

<400> 14

nngrr 5

<210> 15

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> target motif preceding NGG recognized by Cas9 protein

<220>

<221> n is A, G, C, or T

<222> (2) .. (21)

<400> 15

gnnnnnnnnn nnnnnnnnnn ngg 23

<210> 16

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> target motif preceding NGG recognized by Cas9 protein

<220>

<221> n is A, G, C, or T

<222> (1) .. (21)

<400> 16

nnnnnnnnnn nnnnnnnnnn ngg 23

<210> 17

<211> 25

<212> DNA

18923800202SEQ.txt

<213> Artificial Sequence

<220>

<223> RNA recognition sequence

<220>

<221> n is A, G, C, or T

<222> (3) .. (23)

<400> 17

ggnnnnnnnn nnnnnnnnnn nnngg 25