
(12) United States Patent

USOO6983018B1

(10) Patent No.: US 6,983,018 B1
Lin et al. (45) Date of Patent: Jan. 3, 2006

(54) EFFICIENT MOTION VECTOR CODING 5,617,144 A 4/1997 Lee
FOR VIDEO COMPRESSION 5,619.281 A 4/1997 Jung

5,654,771 A 8/1997 Tekalp et al.
(75) Inventors: Chih-Lung (Bruce) Lin, Redmond, WA A 3.9.

2 2 ee

S. Ming-Chieh Lee, Bellevue, WA 5,689,306 A 11/1997 Jung
5,692,063 A 11/1997 Lee et al.
5,784,175 A 7/1998 L (73) Assignee: Microsoft Corporation, Redmond, WA 5,825,830 A 6. Kip?

(US) 5.835,144. A 11/1998 Matsumura et al.
5,847,776 A 12/1998 Khmelnitsky et al.

(*) Notice: Subject to any disclaimer, the term of this 5,946,043 A 8/1999 Lee et al.
patent is extended or adjusted under 35 5,959.673 A 9/1999 Lee et al.
U.S.C. 154(b) by 905 days. 5,970,173 A 10/1999 Lee et al.

(21) Appl. No.: 09/201,278 (Continued)
(22) Filed Nov. 30, 1998 FOREIGN PATENT DOCUMENTS CC

9 EP O540350 A2 3/1993

(51) Int. Cl.
H04N 7/12 (2006.01) (Continued)

(52) U.S. Cl. ... 375/240.16 OTHER PUBLICATIONS

(58) Field of classister S.S.,5'., “Video Coding for Low Bitrate Communication,” Draft
See application file for comple te Search histor s Recommendation H.263, International Telecommunication

pp p y. Union, Dec. 1995, 51 pages.

(56) References Cited (Continued)

U.S. PATENT DOCUMENTS Primary Examiner-Vu Le
74) Attorney, Agent, or Firm-Klarduist Sparkman, LLP 4,999,705. A 3/1991 Puri y, Ag C p

5,117.287 A 5/1992 Koike et al.
5,155,594 A 10/1992 Bernstein et al. (57) ABSTRACT
5,258,836 A 11/1993 Murata
5,274,453 A 12/1993 Maeda Video coding efficiency is improved by jointly coding the X
5,376,971. A 12/1994 Kadono et al. and y components of motion vectors with a single variable
5,379,351 A 1/1995 Fandrianto et al. length code. The motion vector components for a block of
5,400,075 A 3/1995 Savatier. pixels are predicted based on motion vectors of neighboring
5,428,396 A 6/1995 Yagasaki et al. blocks of pixels. The predicted X and y components are then
5.448,297 A : 9/1995 Alattar et al. jointly coded by assigning a single variable length code
5,457.495 A * 10/1995 Hartung...................... corresponding to the pair of components, rather than a
554. A E. f al. Separate code for each component. If the X and y compo
5517327. A 5/1996 N et nents do not have a corresponding entry in the coding table,
55 46,129 A 8/1996 ala C a they are coded with an escape code followed by fixed length
5,594,504 A 1/1997 Ebrahimi codes.
5,598.215 A 1/1997 Watanabe
5,598.216 A 1/1997 Lee 20 Claims, 4 Drawing Sheets

300
MVX1

MV 3O8
JOINT MVx2--PREDICT EN.py SINGEMEC

ESCAPE CODE MVx3
+MVDx, MVDy

MVy1
ENTROPY

MV MVy2--PREDICT CODES - 310

MVy3

US 6,983,018 B1
Page 2

U.S. PATENT DOCUMENTS

5,982,438 A 11/1999 Lin et al.
6,011,596 A 1/2000 Burl et al.
6,052,150 A 4/2000 Kikuchi
6,111,914 A 8/2000 Bist 375/240

FOREIGN PATENT DOCUMENTS

EP O535746 A2 4/1993
EP O614318 A2 9/1994
EP O625853 A2 11/1994
EP O625853 A3 2/1995
EP O614318 A3 5/1995
EP O825778 A2 2/1998
EP 083.0029 A2 3/1998

OTHER PUBLICATIONS

ISO/IEC FCD 14496-2: Information technology-Very-low
bitrate audio-visual coding-Part 2: visual SC 29/WG 11 N
2202), ISO/IEC JTC 1/SC 29/WG 11, May 28, 1998.
Fogg, “Survey of Software and Hardware VLC
Architectures.” SPIE vol. 2186, pp. 29-37 (no date of
publication).
Gersho et al., Vector Quantization and Signal Compression,
“Entropy Coding.” Chapter 9, pp. 259-305 (1992).
Gibson et al., Digital Compression of Multimedia, “Lossless
Source Coding.” Chapter 2, pp. 17-62 (1998).
Gibson et al., Digital Compression of Multimedia,
“Universal Lossless Source Coding,” Chapter 3, pp. 63-112
(1998).
Gibson et al., Digital Compression of Multimedia,
“Multimedia Conferencing Standards,” Chapter 10, pp. 309
362 (1998).

Gibson et al., Digital Compression of Multimedia, “MPEG
Compression,” Chapter 11, pp. 363-418 (1998).
International Organization for Standardisation ISO/IEC
JTCI/SC29/WG 11, N2459 “Overview of the MPEG-4
Standards,” (Oct. 1998).
ITU-T, “ITU-T Recommendation H.263 Video Coding for
Low Bit Rate Communication,” (Feb. 1998).
Kunt, Second-Generation Image-Coding Techniques,
Proceedings of IEEE, vol. 73, No. 4, pp. 549-574 (Apr.
1995).
Le Gall, “MPEG: A Video Compression Standard for
Multimedia Applications,” Communications of the ACM,
vol. 34, No. 4, pp. 47-58 (Apr. 1991).
Lee et al., “A Layered Video Object Coding System Using
Sprite and Affine Motion Model, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 7, No. 1,
pp. 130-145 (Feb. 1997).
Pennebaker et al., “JPEG Still Image Data Compression
Standard.” Chapter 20, pp. 325-329, 1993 (no publication
date).
IBM Technical Disclosure Bulletin, "Advanced Motion
Estimation for Moving Picture Expert Group Encoders,”
vol.39, No. 04, pp. 323-324 (Apr. 1996).
ISO, ISO/IEC JTC1/SC29/WG 11 MPEG 97/N1642,
“MPEG-4 Video Verification Model Version 7.0, 3. Encoder
Definition,” pp. 1, 17-122, Bristol (Apr. 1997).
Yu et al., “Two-Dimensional Motion Vector Coding for Low
Bitrate Videophone Applications.” Proc. Int’l Conf. on Im
age Processing, LOS Alamitos, US, pp. 414-417, IEEE
Comp. Soc. Press (1995).
* cited by examiner

U.S. Patent Jan. 3, 2006 Sheet 1 of 4 US 6,983,018 B1

32 FIG. 1 44
SHAPE
CODING

- - - - - - - SHAPE DATA- - - - - - -

30 MOTION DATA
TEXTURE

MOTION MOTION TEXTURE

ESTMATION COMPENSATION st
GE)

MUX

TEXTURE
DECODING

74 OBJECT
MEMORY

U.S. Patent Jan. 3, 2006 Sheet 2 of 4 US 6,983,018 B1

300

MV
PREDICT

MVX1
3O8

JOINT SINGLE VLC MVX2 ENTROPY
SSER PER MV OR

MVX3 ESCAPE CODE
+MVDx, MVDy

MVy1
ENTROPY

MV CODES - 310 MVy2--PREDICT

MVy3 FIG. 3
3O2

FIG. 4 402 404

MV2MV31 MMCRBNM89NYE99 MV1:PREVIOUS MOTION VECTOR
MV2:ABOVE MOTION VECTOR

MVN406 MV3:ABOVE RIGHT MOTION VECTOR
400

FIG. 5
-502 504

(0.0) MVN506
500

- : PICTURE BORDER

24

U.S. Patent Jan. 3, 2006 Sheet 3 of 4 US 6,983,018 B1

JOINT
ENTROPY
DECODER

SINGLE VLC

ENTROPY
CODES

U.S. Patent Jan. 3, 2006 Sheet 4 of 4 US 6,983,018 B1

PERSONAL COMPUTER 720 FIG. 7
PROCESSING 735

UNIT OERAING}}
SYSTEM 736

Adolf AN J APPLICATIONS
- / MODULES - -

DATA (37

FLOPPY
DRIVE
DISK

INTERFACE

SERIAL
PORT

INTERFACE
REMOTE

COMPUTER

US 6,983,018 B1
1

EFFICIENT MOTION VECTOR CODING
FOR VIDEO COMPRESSION

FIELD OF THE INVENTION

The invention relates to Video coding, and Specifically, to
an improved method for coding motion vectors.

BACKGROUND OF THE INVENTION

Full-motion video displayS based upon analog video
Signals have long been available in the form of television.
With recent advances in computer processing capabilities
and affordability, full-motion video displays based upon
digital Video signals are becoming more widely available.
Digital video Systems can provide Significant improvements
over conventional analog video Systems in creating, modi
fying, transmitting, Storing, and playing full-motion video
Sequences.

Digital Video displays include large numbers of image
frames that are played or rendered Successively at frequen
cies of between 30 and 75 Hz. Each image frame is a still
image formed from an array of pixels based on the display
resolution of a particular System. AS examples, VHS-based
systems have display resolutions of 320x480 pixels, NTSC
based systems have display resolutions of 720x486 pixels,
and high-definition television (HDTV) systems under devel
opment have display resolutions of 1360x1024 pixels.

The amounts of raw digital information included in video
Sequences are massive. Storage and transmission of these
amounts of Video information is infeasible with conven
tional personal computer equipment. Consider, for example,
a digitized form of a relatively low resolution VHS image
format having a 320x480 pixel resolution. A full-length
motion picture of two hours in duration at this resolution
corresponds to 100 gigabytes of digital Video information.
By comparison, conventional compact optical disks have
capacities of about 0.6 gigabytes, magnetic hard disks have
capacities of 1-2 gigabytes, and compact optical disks under
development have capacities of up to 8 gigabytes.

To address the limitations in Storing or transmitting Such
massive amounts of digital Video information, various video
compression Standards or processes have been established,
including MPEG-1, MPEG-2, and H.26X. These video
compression techniques utilize Similarities between Succes
Sive image frames, referred to as temporal or interframe
correlation, to provide interframe compression in which
motion data and error Signals are used to encode changes
between frames.

In addition, the conventional Video compression tech
niques utilize Similarities within image frames, referred to as
Spatial or intraframe correlation, to provide intraframe com
pression in which the image Samples within an image frame
are compressed. Intraframe compression is based upon con
ventional processes for compressing Still images, Such as
discrete cosine transform (DCT) encoding. This type of
coding is sometimes referred to as “texture” or “transform”
coding. A “texture' generally refers to a two-dimensional
array of image Sample values, Such as an array of chromi
nance and luminance values or an array of alpha (opacity)
values. The term “transform' in this context refers to how
the image Samples are transformed into Spatial frequency
components during the coding process. This use of the term
“transform’ should be distinguished from a geometric trans
form used to estimate Scene changes in Some interframe
compression methods.

15

25

35

40

45

50

55

60

65

2
Interframe compression typically utilizes motion estima

tion and compensation to encode Scene changes between
frames. Motion estimation is a process for estimating the
motion of image samples (e.g., pixels) between frames.
Using motion estimation, the encoder attempts to match
blocks of pixels in one frame with corresponding pixels in
another frame. After the most similar block is found in a
given Search area, the change in position of the pixel
locations of the corresponding pixels is approximated and
represented as motion data, Such as a motion vector. Motion
compensation is a proceSS for determining a predicted image
and computing the error between the predicted image and
the original image. Using motion compensation, the encoder
applies the motion data to an image and computes a pre
dicted image. The difference between the predicted image
and the input image is called the error Signal. Since the error
Signal is just an array of values representing the difference
between image sample values, it can be compressed using
the same texture coding method as used for intraframe
coding of image Samples.

Although differing in Specific implementations, the
MPEG-1, MPEG-2, and H.26X video compression stan
dards are similar in a number of respects. The following
description of the MPEG-2 video compression standard is
generally applicable to the others.
MPEG-2 provides interframe compression and intraframe

compression based upon Square blockS or arrays of pixels in
Video images. A video image is divided into image Sample
blocks called macroblocks having dimensions of 16x16
pixels. In MPEG-2, a macroblock comprises four luminance
blocks (each block is 8x8 samples of luminance (Y)) and
two chrominance blocks (one 8x8 sample block each for Cb
and Cr).

In MPEG-2, interframe coding is performed on macrob
locks. An MPEG-2 encoder performs motion estimation and
compensation to compute motion vectors and block error
Signals. For each block MN in an image frame N, a Search
is performed acroSS the image of a next Successive video
frame N-1 or immediately preceding image frame N-1 (i.e.,
bi-directionally) to identify the most similar respective
blockSM or My . The location of the most similar block
relative to the block MN is encoded with a motion vector
(DX,DY). The motion vector is then used to compute a
block of predicted Sample values. These predicted Sample
values are compared with block MN to determine the block
error Signal. The error Signal is compressed using a texture
coding method Such as discrete cosine transform (DCT)
encoding.

Object-based Video coding techniques have been pro
posed as an improvement to the conventional frame-based
coding Standards. In object-based coding, arbitrary shaped
image features are separated from the frames in the Video
Sequence using a method called “segmentation.” The Video
objects or "Segments' are coded independently. Object
based coding can improve the compression rate because it
increases the interframe correlation between Video objects in
Successive frames. It is also advantageous for variety of
applications that require access to and tracking of objects in
a Video Sequence.

In the object-based Video coding methods proposed for
the MPEG-4 standard, the shape, motion and texture of
Video objects are coded independently. The shape of an
object is represented by a binary or alpha mask that defines
the boundary of the arbitrary shaped object in a video frame.
The motion of an object is similar to the motion data of
MPEG-2, except that it applies to an arbitrary-shaped image
of the object that has been Segmented from a rectangular

US 6,983,018 B1
3

frame. Motion estimation and compensation is performed on
blocks of a “video object plane” rather than the entire frame.
The Video object plane is the name for the shaped image of
an object in a Single frame.
The texture of a Video object is the image Sample infor

mation in a video object plane that falls within the object's
shape. Texture coding of an object's image Samples and
error Signals is performed using Similar texture coding
methods as in frame-based coding. For example, a Seg
mented image can be fitted into a bounding rectangle formed
of macroblocks. The rectangular image formed by the
bounding rectangle can be compressed just like a rectangular
frame, except that transparent macroblockS need not be
coded. Partially transparent blocks are coded after filling in
the portions of the block that fall outside the objects shape
boundary with Sample values in a technique called "pad
ding.”

In both frame-based and object-based Video coding, the
encoded bit Stream typically includes many interframe
coded frames (P frames). Each of these P frames includes at
least one motion vector per macroblock, and each motion
vector includes X and Y components that coded indepen
dently. AS Such, motion vectors contribute a significant
amount of data for each coded P frame. There is a need,
therefore, for more efficient motion vector coding Schemes.

SUMMARY OF THE INVENTION

The invention provides an improved method of coding
motion vectors for Video coding applications. One aspect of
the invention is a method for jointly coding a motion vector
with a single entropy code. This method is based on the
discovery that the probability of the X and Y components of
the motion vector are not totally independent. To exploit the
correlation between the motion vector components, the
method uses entropy coding to assign a Single variable
length code to a joint parameter representing the combined
X and Y components of the motion vector. Motion vector
component pairs that are more likely are assigned a shorter
length code, while leSS likely component pairs are assigned
a longer length code or are coded with an escape code
followed by a code for each component. This approach can
be used in a variety of Video coding applications, including
both object-based and frame based coding. In addition, joint
entropy coding of motion vectors can be used in combina
tion with Spatial prediction to code motion vectorS more
efficiently.

For example, in one implementation, an encoder first
computes a predictor for the motion vector, and then com
putes differential X and Y components from the X and Y
components of the vector currently being processed and its
predictor. A joint entropy coder then computes a single
variable length code for a joint parameter representing both
the X and Y differential components.

The decoder performs the inverse of the encoder opera
tions to reconstruct the motion vector from the variable
length code. In particular, it computes the joint parameter
from the variable length code, and then reconstructs the
motion vector from the differential components and the
components of the predictor.

Additional features of the invention will become more
apparent from the following detailed description and accom
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a video coder.

15

25

35

40

45

50

55

60

65

4
FIG. 2 is a block diagram of a video decoder.
FIG. 3 is a block diagram illustrating how an implemen

tation of the invention jointly codes motion vector compo
nents for a macroblock with a single entropy code.

FIG. 4 is a diagram illustrating how a predictor for the
motion vector of a current block is Selected from motion
vectors of neighboring macroblockS.

FIG. 5 is a diagram illustrating how a motion vector
predictor is Selected in cases where one or more neighboring
macroblocks are outside the picture.

FIG. 6 is a block diagram illustrating how an implemen
tation of the invention decodes a jointly coded motion
VectOr.

FIG. 7 is a diagram of a computer System that Serves as
an operating environment for a Software implementation of
the invention.

DETAILED DESCRIPTION

Introduction
The first section below provides a description of a video

encoder and decoder. Subsequent Sections describe how to
improve coding of motion vectors by exploiting the corre
lation between the X and Y components of the vectors.

This approach for jointly coding the X and Y components
of a motion vector applies to both frame-based and object
based Video coding. Both forms of Video coding employ
motion vectors to define the motion of a pixel or block of
pixels from one frame to another. Typically, a motion vector
is computed for regular sized blocks of pixels. In frame
based coding, the frame is divided into regular sized blockS.
In object-based coding, each video object plane is divided
into blockS. Since the object represented in a Video object
plane usually has a non-rectangular shape, object-based
coders use the shape to determine which pixels in each block
fall within the boundaries of the object. While frame-based
and object-based coding differ in this respect, both
approaches use motion vectors that define the motion of
pixels in a block. Thus, the correlation between the X and Y
components of motion vectors in both types of coderS can be
exploited to improve coding efficiency.
While the encoder and decoder described in the next

Section are object-based, they provide a Sufficient basis for
explaining how to implement the invention in both frame
based and object-based coding Schemes.
Description of an Example Encoder and Decoder

FIG. 1 is a block diagram illustrating an implementation
of an object-based video encoder. The input 30 to the
encoder includes imageS representing the Video objects in
each frame, the shape of each Video object and bounding
rectangles. The shape information is available before the
encoder codes texture or motion data. Frame-based coding
differs in that the entire frame is coded without shape
information, and the input 30 consists of a Series of image
frames.
The shape coding module 32 reads the definition of an

object including its bounding rectangle and extends the
bounding rectangle to integer multiples of macroblockS. The
shape information for an object comprises a mask or “alpha
plane.” The shape coding module 32 reads this mask and
compresses it, using for example, a conventional chain
coding method to encode the contour of the object.

Motion estimation module 34 reads an object including its
bounding rectangle and a previously reconstructed image 36
and computes motion estimation data used to predict the
motion of an object from one frame to another. The motion

US 6,983,018 B1
S

estimation module 34 searches for the most similar mac
roblock in the reconstructed image for each macroblock in
the current image to compute a motion vector for each
macroblock. The specific format of the motion vector from
the motion estimation module 34 can vary depending on the
motion estimation method used. In the implementation
described below, there is a motion vector for each macrob
lock, which is consistent with current MPEG and H26X
formats.

The motion compensation module 38 reads the motion
vectors computed by the motion estimation module and the
previously reconstructed image 36 and computes a predicted
image for the current frame. Each pixel in the predicted
image is constructed by using the motion vector for the
macroblock that it resides in to find the corresponding pixel
in the previously reconstructed image 36. The encoder then
finds the difference between the image Sample values in the
input image block as Specified in the input 30 and the
corresponding Sample values in the predicted image block as
computed in the motion compensation module 38 to deter
mine the error Signal for the macroblock.

Texture coding module 40 compresses this error Signal for
inter-frame coded objects and compresses image Sample
values for the object from the input data Stream for intra
frame coded objects. The feedback path 42 from the texture
coding module 40 represents the error Signal. The encoder
uses the error Signal blockS along with the predicted image
blocks from the motion compensation module to compute
the previously reconstructed image 36.

The texture coding module 40 codes intra-frame and error
Signal data for an object using any of a variety of Still image
compression techniques. Example compression techniques
include DCT, wavelet, as well as other conventional image
compression methods.

The bit stream of the compressed Video Sequence includes
the shape, motion and texture coded information from the
shape coding, motion estimation, and texture coding mod
ules. Multiplexer 44 combines and formats this data into the
proper Syntax and outputs it to the buffer 46. AS explained
in more detail below, the encoder also includes a motion
vector encoder that uses entropy coding to jointly code the
X and y components of the motion vector for each macrob
lock. The motion vector encoder may be implemented as
part of the motion estimation module 34 or as part of the data
formatting functions in the multiplexer 44.

While the encoder can be implemented in hardware or
Software, it is most likely implemented in Software. In a
Software implementation, the modules in the encoder rep
resent Software instructions Stored in memory of a computer
and executed in the processor, and the Video data Stored in
memory. A Software encoder can be stored and distributed
on a variety of conventional computer readable media. In
hardware implementations, the encoder modules are imple
mented in digital logic, preferably in an integrated circuit.
Some of the encoder functions can be optimized in Special
purpose digital logic devices in a computer peripheral to
off-load the processing burden from a host computer.

FIG. 2 is a block diagram illustrating a decoder for an
object-based video coding method. A demultiplexer 60
receives a bit Stream representing a compressed video
Sequence and Separates shapes, motion and texture encoded
data on an object by object basis. The demultiplexer also
includes a motion vector decoder that reconstructs the
motion vector for each macroblock from a single variable
length code.

Shape decoding module 64 decodes the shape or contour
for the current object being processed. To accomplish this,

15

25

35

40

45

50

55

60

65

6
it employs a shape decoder that implements the inverse of
the shape encoding method used in the encoder of FIG. 1.
The resulting shape data is a mask, Such as a binary alpha
plane or gray Scale alpha plane representing the shape of the
object.
The motion decoding module 66 decodes the motion

information in the bit stream. The decoded motion informa
tion includes the motion vectors for each macroblock that
are reconstructed from entropy codes in the incoming bit
stream. The motion decoding module 66 provides this
motion information to the motion compensation module 68,
and the motion compensation module 68 uses the motion
vectors to find predicted image Samples in the previously
reconstructed object data 70.
The texture decoding module 74 decodes error signals for

inter-frame coded texture data and an array of color values
for intra-frame texture data and passes this information to a
module 72 for computing and accumulating the recon
Structed image. For inter-frame coded objects, this module
72 applies the error Signal data to the predicted image output
from the motion compensation module to compute the
reconstructed object for the current frame. For intra-frame
coded objects the texture decoding module 74 decodes the
image Sample values for the object and places the recon
structed object in the reconstructed object module 72. Pre
viously reconstructed objects are temporarily Stored in
object memory 70 and are used to construct the object for
other frames.

Like the encoder, the decoder can be implemented in
hardware, Software or a combination of both. In Software
implementations, the modules in the decoder are Software
instructions Stored in memory of a computer and executed
by the processor, and Video data Stored in memory. A
Software decoder can be stored and distributed on a variety
of conventional computer readable media. In hardware
implementations, the decoder modules are implemented in
digital logic, preferably in an integrated circuit. Some of the
decoder functions can be optimized in Special-purpose digi
tal logic devices in a computer peripheral to off-load the
processing burden from a host computer.
Improved Coding of Motion Vectors
The coding efficiency of motion vectors can be improved

by exploiting the correlation between the X and Y compo
nents of a motion vector. Traditional coding methods code
the X and Y components Separately based on the premise
that the probability distribution of the X and Y components
are independent. We have discovered that the X and Y
components are not totally independent, but instead, have a
correlation.
To take advantage of this correlation, an implementation

of the invention assigns a single entropy code to the joint X
and Y components of a motion vector. Before coding,
Sample video data for a target bit rate and content Scenario
is used to generate a codebook. This codebook assigns a
Single variable length code to pairs of X and Y components
based on their frequency of occurrence. More frequent, and
therefore Statistically more probable pairs, are assigned
Shorter length codes, while less frequent pairs are assigned
longer length codes. A Statistical analysis program computes
the probability of each of the joint X and Y components by
extracting the motion vector data generated from an encoder
for Several example video Sequences that have the desired
type of content. The program creates a probability distribu
tion for pairs of motion vectors (namely, differential motion
vectors) and then assigns codes to a Subset of the motion
vectors that are most probable.

US 6,983,018 B1
7

To limit the size of the codebook, low probability pairs
need not be assigned a code. Instead, these pairs can be
coded by using an escape code to indicate that the motion
vector components follow in fix length bit fields. Pairs are
excluded from the codebook based on where they fall in the
probability distribution.

While not required, the coding of motion vectors can be
improved by using a differential coding process that takes
advantage of the Spatial dependency of motion vectors. In
particular, a motion vector for a Small block of pixels is
likely to point in a similar direction as the motion vector for
a neighboring block, especially if both the current block and
its neighbor are in a region of the frame having nearly
uniform motion. One way to take advantage of this spatial
dependency is to code the difference between a motion
vector for the current block and the motion vector for a
neighboring block, called the predictor. The implementation
uses a form of Spatial prediction to encode the X and Y
components before assigning a joint entropy code.

FIG. 3 is a block diagram illustrating how our implemen
tation encodes motion vectors. The features shown in FIG.
3 are implemented in the encoder and operate on the motion
vectors computed in the motion estimation block 34. First,
the motion estimation block computes a motion vector for
each macroblock in the frame. When a frame consists of
more than one video object plane, the motion estimation
block computes motion vectors for the macroblocks of each
Video object plane.

The encoder begins coding the motion vector for each
macroblock by computing a predictor for the current motion
vector. The implementation shown in FIG. 3 selects a
predictor from among neighboring macroblocks. FIG. 4
shows an example of the positioning of the candidates for
the predictor relative to the current macroblock for which
the motion vector is being encoded. In this example, the
candidate macroblocks include the ones to the left 400,
above 402, and above-right 404 relative to the current
macroblock 406. The motion vectors for the candidate
macroblocks are referred to as MV1, MV2, and MV3,
respectively.
As shown in FIG. 3, the encoder computes the predictor

Separately for the X and Y components of the current
macroblock. In particular, the motion vector predictors 300,
302 compute the median of the X and Y components for the
candidate macroblocks. The median of these three values is
chosen as the predictor for the X and Y components. The
precise method of computing the predictor is not critical to
the invention and other ways of Selecting a predictor are
possible. One alternative is to Select a neighboring block
located in the direction of the lowest gradient of the neigh
boring motion vectors. Another alternative is to compute an
average of motion vectors of neighboring blockS.
Once the motion vector predictor Selects the predictor, the

encoder computes differential motion vector components.
For each X and Y component, the encoder computes the
difference between the component of the current motion
vector and the corresponding component of the predictor. AS
reflected by subtractor units 304, 306 in FIG. 3, the X
component of the predictor is Subtracted from the X com
ponent of the current vector MVx, and the Y component of
the predictor is subtracted from the Y component of the
current vector MVy.
The resulting differential X and Y components (MVDX

and MVDy) are then formed into a joint parameter that is
coded with a single variable length code, or an escape code
followed by fixed code word for each differential compo
nent. The implementation uses a joint Huffman coding table

15

25

35

40

45

50

55

60

65

8
that is trained for a target bit rate and Video content. The joint
entropy coder 308 looks up the joint parameter in the table
to find a corresponding variable length code. If the coder
finds a match in the table, it codes the joint parameter with
a single variable length code. Otherwise, it codes an escape
code followed by a fixed length code word for each com
ponent.
The entropy codes 310 shown in FIG. 3 refer to the

Huffman coding table. An example of a Huffman coding
table trained for low bit rate, talking head applications is Set
forth at the end of this section in Table 1. Following Table
1, Table 2 is an example of a Huffman table trained for more
general Video applications. While our implementation uses
Huffman coding tables, the entropy codes can be computed
using other forms of entropy coding Such as arithmetic
coding.

Since the predictor is selected from motion vectors of
neighboring blocks of pixels, the encoder applies Special
rules to address the situation where one or more neighboring
blocks are outside the picture. FIG. 5 illustrates cases where
a neighboring block is outside the picture and shows the
motion vectors that are used to predict the motion vector in
the current macroblock.

If one neighboring block is outside the picture (e.g., block
500 in FIG. 5), a zero motion vector (0,0) is used in its place.
The predictor of the current macroblock 506 is computed as
the median of the Zero motion vector, and motion vectors
MV2 and MV3 for the other two neighboring macroblocks
502, 504. As another example, the configuration on the far
right of FIG. 5 shows the case where the above-right
macroblock 524 is out of the picture. In this case, MV1 and
MV2 for the other two macroblocks 520, 522 inside the
picture are used along with the Zero motion vector for the
third macroblock 524 to predict the motion vector for the
current macroblock 526.

If two candidate macroblocks 512, 514 are out of the
picture (as shown in the middle diagram of FIG. 5), then the
motion vector for the third neighboring macroblock 510 is
selected as the predictor for the current macroblock 516.

FIG. 6 is a diagram illustrating an implementation of a
decoder for decoding a single variable length code repre
Senting joint motion vector components into X and Ymotion
vector components. The joint entropy decoder 600 reads the
variable length code as input and finds the corresponding
differential X and Y components in the entropy codes 602.
In the current implementation, the entry codes are in the
form of a Huffman table (e.g., tables 1 or 2 listed below). As
noted above, the encoder can also use an alternative entropy
coding Scheme, in which case, the decoder would have the
appropriate codebook to correspond with the codebook used
in the encoder.

In Some cases, the motion vector may be coded with an
escape code followed by two fixed length codes representing
the differential motion vector components. In this case, the
joint entropy decoder 600 recognizes the escape code and
interprets the following data as differential motion vectors
instead of a variable length code. It then passes the differ
ential X and Y components to the next stage.

Next, the decoder forms the motion vector from the
differential motion vector components MVDX, MVDy and
the X and Y components of the predictor. In particular the
decoder adds each differential motion vector component
MVDX, MVDy and the X and Y components of the predictor
(see adders 604, 606, FIG. 6). The decoder computes the
predictor components in the same way as the encoder. In
particular, it has a motion vector predictor that computes the
predictor of the motion vectors previously decoded for the

15

TABLE 1-continued

US 6,983,018 B1

XY Joint VLC Motion Vector Table for Talking Head Video

Index Mv x

4

3O
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8O
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

500
5O1
502
503
SO4

-15.5
-0.5

1.5
-8.5

1.5
-0.5

-1.5
-1.5
-4.5
4.5

-2.5

10.5
10.5
-2.5

12.5

-7.5

2.5
-1.5
0.5

-15.5

Mv y

7.5
0.5
6.5

-2.5
-0.5
13
-0.5
O

-0.5
3
5.5

-6
7.5
6.5

Number of bits Code

OO11
OO11
OO11
OO11
OO11
OO11
OO11
OO11
OO11
OO11

O 1.

OO
OO
OO
OO

g g
OOO
OOO

1O

15

25

35

40

45

50

55

60

65

16

TABLE 1-continued

XY Joint VLC Motion Vector Table for Talking Head Video

Index

505
SO6
507
508
509
510
511
512
513
514
515
516
517
518
519
52O
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552.
553
554.
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574.
575
576
577
578
579

4

Mv y

1.5
0.5

-4.5
8.5
4.5

-2
-1.5

1.
3

-12.5
14.5

-10.5
9

-9.5
4.5

-6.5
7.5

-3.5
-3
-8.5
5
4.5

-1.5
6.5

-2.5
-7.5
1.5
O

-1.5

-10.5

Number of bits Code

OOOO11110
OOOO11110
OOO111OO
OOO111OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO

OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO

O10

O

O
O

O1OOOO
O1OOO
110010

1OO
1010
1O
1100
110
1110
11

OOOOOO

Index Mv x

58O
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
6OO
6O1
6O2
603
604
605
606
6O7
608
609
610
611
612
613
614
615
616
617
618
619
62O
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

TABLE 1-continued

17
US 6,983,018 B1

XY Joint VLC Motion Vector Table for Talking Head Video

5
-15
-8.5
9.5
10.5
0.5

-3.5
-1.5
11.5
2.5
3
0.5
3
13.5
3
0.5
3.5

-9.5
O
4

14.
14.

5

4

Mv y

-2.5
-0.5
1.5
1.5

-0.5
-8.5
8.5

-15.5
5

4

-13.5
3

-

-11.5

Number of bits Code

OO10
OO10
OO10
OO10
OO10
OO10
OO10
O OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO

1111111100
11111111010
1111111101
11111111100
1111111110
11111111110
1111111111
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
O1O

O O
1OOOOOOOO
1OOOOOOO1
1OOOOOO1O
1OOOOOO
1OOOOO1OO
1OOOOO10
1OOOOO110
1OOOOO1
1OOOO1OOO
1OOOO1OO
1OOOO1010
1OOOO1O
1OOOO11OO
1OOOO110

OOOOO
OOOO
OOO10
OOO
OO1OO
OO1O
OO110
OO1
O1OOO
O1OO
O1010
O10
O11OO
O110
O1110
O1
1OOOO
1OOO
10010

11

1O

15

25

35

40

45

50

55

60

65

18

TABLE 1-continued

XY Joint VLC Motion Vector Table for Talking Head Video

Index

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
68O
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
7O6
707
708
709

Index

-0.5
-6
O
7.5
7.5
7.5
O
8.5
8.5
8.5

-0.5
-15.5
-2.5
-2
3.5
3.5

-5.5

13.5
-0.5

-9.5
-11.5

1.5

1.5
2.5

14.5
2.5

15.5
-3
ESC

O
-0.5
O
0.5

-0.5
O
0.5
0.5

-0.5

Mv y

8

1O

Mv y

O
O

-0.5
O

-0.5
0.5

-0.5
0.5
0.5

Number of bits

TABLE 2

Number of bits

Code

OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO

OO1OOO

Code

O
10011
10101
11OO1
11011
1001OO
111OOO
111001
111101

OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
O1O
O1O
O1O
O1O

XY Joint VLC Motion Vector Table for General Video

O1110
O11
OOOO
OOO
OO1O
OO
O1OO
O10
O110
O1
1OOO
1OO
1010
1O

O110
O1
1OOO
1OO
1010
1O
11OO
110
1110
11

OOOOO
OOOO
OOO1O
OOO1

Index

9
1O
11
12
13
14
15
16
17
18
19
2O
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8O
81
82
83

0.5

19

TABLE 2-continued

Mv y Number of bits Code

1.

O
O
O
O
O

OO
OO
OO

110110

US 6,983,018 B1

XY Joint VLC Motion Vector Table for General Video

101
OOO

O111
1101
O111
O110
O

1101010
O1110
OOOO

11OOOO

111111
OOOOOOO
OOO1010
OOO1100
OOO1110
OO1OOOO

11 O
101001OO
10110101
10110111
OOOO1OOO
OOOO11OO
OOOO1101
OOO1OOO1
OOO10111
OOO11OO1
OO100101
OO101010

15

25

35

40

45

50

55

60

65

Index

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
OO
O1
O2
O3
O4
05
O6
O7
O8
O9
1O
11
12
13
14
15
16
17
18
19
2O
21

23

25
26

28
29
3O
31
32
33
34
35
36
37
38
39
40
41

43

45
46
47
48
49
50
51
52
53
54
55
56
57
58

20

TABLE 2-continued

XY Joint VLC Motion Vector Ta

-2
O

-14.5

-2.5

-1

2.5
O

Mv y

1.
-6.5
-4
1.5
1.5

-0.5
1.5
0.5

-3.5
2
O
O
3.5

5

5

Numbe r of bits

:
2

ble for General Video

Code

O
O
O
O
O
O
O
O
O
O
O
O
O
O

OO
OO
OO

O1001010
O1OO1O
O1OO1
O1111100

1110101
OOOOOO10
OOOO1010
OOO1OOOO
OOO1OOO
OOO1OO
OO1OOO10
OO1OO1OO
OO1OO1O
OO101110
101OOO10
1010100
101010
101011OO
10101

11100
111010
1111010
O1OOOOO1
O1OOO110
O1001010

Index

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8O
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

2OO
2O1
2O2
2O3
2O4
205
2O6
2O7
208
209
210
211
212
213
214
215
216
217
218
219
22O
221
222
223
224
225
226
227
228
229
230
231
232
233

21

TABLE 2-continued

XY Joint VLC Motion Vector Ta

-0.5
2

-1.5

-9.5

-10
-2.5
-4.5
6.5

-5.5
4.5
0.5

-2.5

2.5
6.5

-5.5
-2.5

0.5
-7.5
3

-10.5
6
5.5
3.5

-4.5

11

-14.5
4
0.5

-9.5
10.5
5.5
9.5

4.5
3.5
7.5

-0.5

-1.5
-2
4
1.

Mv y

-6.5
-2
-2
4.5

-0.5

14.5
-0.5

-9.5

1.5
-2.5
2

-0.5
-4

Numbe r of bits Code

O

OO101011OO
OO101011010
OO10101
OO101101OOO
OO101101OO
OO10110110

OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OO1
OO1
OO1
OO1
OO1
OO1
OO1
OO1
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
O

US 6,983,018 B1

ble for General Video

OO1010
OO110
O1OO1O
O1010
O111OO
O O
O

OOOOO
OOO1OO
OOO10
OOO110
OO1OOO
O11OO
O1110
O11110
O11
OOOO
OOO1O
OOO
OO1OO
OO10
O1OOO
O1010
O110
101OO
10110
11OO
110
11
11

O

15

25

35

40

45

50

55

60

65

Index

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
28O
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
3OO
3O1
3O2
303
304
305
306
307
3O8

22

TABLE 2-continued

XY Joint VLC Motion Vector Ta

15
-0.5
-12

14.5
-0.5
0.5

-0.5

11.5
1O

-15
-0.5
-1.5
1.5

Mv y

O
5.5
O
2
O

-4.5
O

-16
0.5
0.5

-3.5
-5.5
-7.5

-14.5

-15.5

-11.5
-3.5
3.5

Numbe r of bits Code

ble for General Video

O O11110
101OOOOO1O
101OOOO1
101OOO1OOO
101OOO1110
101OOO11
101001OOOO
101001OOO
10100111OO
1010110110
10101101
101111OO10
1011111010
10111110
11OO1OOOO1

Index

609
610
611
612
613
614
615
616
617
618
619
62O
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
68O
681
682
683

27

TABLE 2-continued

XY Joint VLC Motion Vector Ta

Mv x Mv y Numbe

5 -3
-3.5 -4.5
4 -4
0.5 -9

-15 -15
1. 5.5

-14.5 -1
-15 -15.5

5.5 3.5
-5.5 -14.5
-1.5 5.5
-11 0.5

0.5 -13.5
-12.5 0.5
-0.5 -14
5 0.5

-6 -3
4.5 -2

-4 2.5
-14.5 5.5

4.5 4.5
5.5 1.5

-15 -5
0.5 -10

-2 -6
-1 9
3.5 -15.5

-9.5 -9.5
-15.5 8.5
-14 -1

O 0.5
2 -5
5.5 -6.5
2 4

-1 -12
0.5 7.5
0.5 -16

-14.5 0.5
6.5 -3.5

-1.5 5
1. 6

-0.5 5
6.5 -1
1.5 1.5

-14.5 -15.5
9.5 -9.5

-2 3.5
5.5 -14.5
0.5 -15
0.5 -8
4.5 -15.5
6 3

-6 -2
1. 0.5

-4.5 2.5
0.5 8

-5.5 3.5
1.5 -11.5
3.5 -14.5
6.5 -15.5

-14.5 9.5
6.5 3.5
5.5 -11.5

-5 -4
5 1.5
3 -5

-1 -15.5
-9.5 3
4.5 2.5

-6.5 2.5
1.5 -5

15.5 -4.5
-15.5 14.5
-3.5 -4
-15 1.

US 6,983,018 B1

e for General Video

of bits Code

O

OO1011011OOOO
OO1011011OOO
OO10110110010
OO1011011 OO1
OOOOO1OOO1O
OOOOO1OOO1
OOOOO1OO1OO
OOOOO1OO10
OOOOO101100
OOOOO10110
OOOOO111OOO
OOOOO111OO
OOOOO111010
OOOOO1110
OOOOO111100
OOOOO11110
OOOO1OO1110
OOOO1OO11
OOOO1010010
OOOO1O1OO
OOOO1O11OOO
OOOO1O11OO
OOO1OOOOOOO
OOO1OOOOOO
OOO1OOOOO1O
OOO1OOOOO
OOO1OOOO1OO
OOO1OOOO10
OOO1OO11010
OOO1OO110

OO1OO1OOOOO
OO1OO1OOOO
OO1OO1OOO1O
OO1OO1OOO
OO1O1OOO1OO
OO1O1OOO10
OO101001OOO
OO101001OO
OO101001010
OO1010010
OO101011010
OO1010110

OO101011110
OO1010111
OO101101OOO
OO101101OO
OO11OOO1110
OO11OOO11
OO11OO1O1OO
OO11001010
OO110010110

15

25

35

40

45

50

55

60

65

28

TABLE 2-continued

XY Joint VLC Motion Vector Table for General Video

Index Mv x Mv y Number of bits Code

684 2 5 4 O1OO11001011
685 3.5 8.5 4 O1OO11OO11OOO
686 -5 3 4 O1OO11OO11OO
687 -11.5 -3.5 4 O1OO11OO111OO
688 -9 -3 4 O1OO11OO1110
689 -6 2 4 O1OO11OO11110
690 5 6.5 4 O1OO11OO1111
691 -14.5 -10.5 4 O100110101110
692 5.5 -3.5 4 O10011010111
693 -12.5 -15.5 4 O100110111OOO
694 -4.5 -3.5 4 O100110111OO
695 -4.5 -2.5 4 O100110111010
696 -9.5 3.5 4 O10011011101
697 -14.5 15.5 4 O100110111100
698 9.5 8.5 4 O10011011110
699 6.5 2.5 4 O100111011OOO
700 -1.5 -6.5 4 O100111011OO
701 -10 -3 4 O100111011010
702 -11.5 3.5 4 O10011101101
703 -2.5 3 4 O1001111OO1OO
704 -2 5 4 O10011110010
705 -5.5 -3.5 4 O100111100110
7O6 9.5 3.5 4 O10011110011
707 1.5 -15.5 4 O11OOOOOOOO1O
708 6 1. 4 O11OOOOOOOO1
709 Esc Esc 4 OOO

Brief Overview of a Computer System
FIG. 7 and the following discussion are intended to

provide a brief, general description of a Suitable computing
environment in which the invention may be implemented.
Although the invention or aspects of it may be implemented
in a hardware device, the encoder and decoder described
above are implemented in computer-executable instructions
organized in program modules. The program modules
include the routines, programs, objects, components, and
data Structures that perform the tasks and implement the data
types described above.
While FIG. 7 shows a typical configuration of a desktop

computer, the invention may be implemented in other com
puter System configurations, including hand-held devices,
multiprocessor Systems, microprocessor-based or program
mable consumer electronics, minicomputers, mainframe
computers, and the like. The invention may also be used in
distributed computing environments where tasks are per
formed by remote processing devices that are linked through
a communications network. In a distributed computing
environment, program modules may be located in both local
and remote memory Storage devices.

FIG. 7 illustrates an example of a computer system that
Serves as an operating environment for the invention. The
computer System includes a personal computer 720, includ
ing a processing unit 721, a System memory 722, and a
System bus 723 that interconnects various System compo
nents including the System memory to the processing unit
721. The system bus may comprise any of several types of
bus structures including a memory bus or memory control
ler, a peripheral bus, and a local bus using a bus architecture
such as PCI, VESA, Microchannel (MCA), ISA and EISA,
to name a few. The System memory includes read only
memory (ROM) 724 and random access memory (RAM)
725. Abasic input/output system 726 (BIOS), containing the
basic routines that help to transfer information between
elements within the personal computer 720, Such as during

US 6,983,018 B1
29

start-up, is stored in ROM 724. The personal computer 720
further includes a hard disk drive 727, a magnetic disk drive
728, e.g., to read from or write to a removable disk 729, and
an optical disk drive 730, e.g., for reading a CD-ROM disk
731 or to read from or write to other optical media. The hard
disk drive 727, magnetic disk drive 728, and optical disk
drive 730 are connected to the system bus 723 by a hard disk
drive interface 732, a magnetic disk drive interface 733, and
an optical drive interface 734, respectively. The drives and
their associated computer-readable media provide nonvola
tile Storage of data, data Structures, computer-executable
instructions (program code Such as dynamic link libraries,
and executable files), etc. for the personal computer 720.
Although the description of computer-readable media above
refers to a hard disk, a removable magnetic disk and a CD,
it can also include other types of media that are readable by
a computer, Such as magnetic cassettes, flash memory cards,
digital Video disks, Bernoulli cartridges, and the like.
A number of program modules may be stored in the drives

and RAM 725, including an operating system 735, one or
more application programs 736, other program modules 737,
and program data 738. A user may enter commands and
information into the personal computer 720 through a key
board 740 and pointing device, such as a mouse 742. Other
input devices (not shown) may include a microphone, joy
Stick, game pad, Satellite dish, Scanner, or the like. These and
other input devices are often connected to the processing
unit 721 through a serial port interface 746 that is coupled
to the System bus, but may be connected by other interfaces,
Such as a parallel port, game port or a universal Serial bus
(USB). A monitor 747 or other type of display device is also
connected to the system bus 723 via an interface, such as a
display controller or video adapter 748. In addition to the
monitor, personal computers typically include other periph
eral output devices (not shown), Such as Speakers and
printers.

The personal computer 720 may operate in a networked
environment using logical connections to one or more
remote computers, such as a remote computer 749. The
remote computer 749 may be a Server, a router, a peer device
or other common network node, and typically includes many
or all of the elements described relative to the personal
computer 720, although only a memory storage device 750
has been illustrated in FIG. 7. The logical connections
depicted in FIG. 7 include a local area network (LAN) 751
and a wide area network (WAN) 752. Such networking
environments are commonplace in offices, enterprise-wide
computer networks, intranets and the Internet.
When used in a LAN networking environment, the per

sonal computer 720 is connected to the local network 751
through a network interface or adapter 753. When used in a
WAN networking environment, the personal computer 720
typically includes a modem 754 or other means for estab
lishing communications over the wide area network 752,
such as the Internet. The modem 754, which may be internal
or external, is connected to the system bus 723 via the serial
port interface 746. In a networked environment, program
modules depicted relative to the personal computer 720, or
portions thereof, may be Stored in the remote memory
Storage device. The network connections shown are merely
examples and other means of establishing a communications
link between the computerS may be used.

CONCLUSION

While the invention has been illustrated using a specific
implementation as an example, the Scope of the invention is

15

25

35

40

45

50

55

60

65

30
not limited to the Specific implementation described above.
Spatial prediction effectively exploits the Spatial depen
dency of motion vectors and improves the efficiency of
jointly coding motion vectors with a Single entropy code.
However, the Specific form of prediction used on the motion
vectorS is not critical to the invention. In fact, it is possible
to implement the invention without using a prediction
Scheme.
The implementation described above Specifically uses a

Huffman coding Scheme to compute entropy codes for a
joint motion vector parameter. AS noted, it is also possible to
use other forms of entropy coding to encode the joint
parameter with a single entropy code.

In view of the many possible implementations of the
invention, it should be recognized that the implementation
described above is only examples of the invention and
should not be taken as a limitation on the Scope of the
invention. Rather, the scope of the invention is defined by
the following claims. We therefore claim as our invention all
that comes within the Scope and Spirit of these claims.
We claim:
1. In a Video coder for coding video images in a block

format, a method for improving compression of the Video
images comprising:

predicting X and y motion vector components for a current
block of pixels based on a motion vector of at least one
neighboring block of pixels to compute X and y com
ponents of a predictor motion vector;

computing differential X and y components from the X and
y components of the predictor and X and y components
of a motion vector for the current block; and

assigning a single variable length code to joint X and y
differential motion vector components, wherein the
Single variable length code is assigned from a variable
length code table, the table comprising a list of pairs of
joint differential motion vector components and a cor
responding variable length code for each pair, Such that
shorter variable length codes are assigned to joint
differential motion vector components that have a
higher probability of occurrence in the Video images,
and longer variable length codes are assigned to joint
differential motion vector components that have a
lower probability of occurrence, wherein the table
includes the most probable pairs of joint differential
motion vector components as computed by Statistical
analysis of example Video Sequences.

2. The method of claim 1 wherein the assigning includes:
looking up the joint differential motion vector compo

nents in the table;
when no match is found in the table, coding an escape

code along with a fixed length code for each differential
motion vector component.

3. The method of claim 1 wherein the block of pixels
corresponds to a macroblock in a Video frame divided into
fixed-sized, rectangular macroblocks, and the predicting,
computing, and assigning are repeated for the macroblockS
in the video frame.

4. The method of claim 1 wherein the block of pixels
corresponds to a macroblock of a Video object plane in a
Video frame having two more Video object planes, and the
Video object planes are each divided into fixed-sized, rect
angular macroblocks, and

the predicting, computing and assigning are repeated for
the macroblocks in the Video object planes.

5. A computer readable medium having instructions for
performing the method of claim 1.

US 6,983,018 B1
31

6. In a Video decoder, a method for decoding macroblockS
of a predicted Video frame comprising:

receiving a single variable length code representing joint
X and y components of a motion vector for each of the
macroblocks,

for each of the macroblocks, Searching for a Single entry
in an entropy codebook corresponding to the variable
length code and including the X and y components of
the motion vector, wherein training determines which X
and y components to include in the entropy codebook,
and

using the X and y components of the motion vector from
the codebook to define motion of pixels in a corre
sponding macroblock.

7. The method of claim 6 wherein the X and y components
of the motion vector in the codebook comprise X and y
differential motion vector components, and the method
comprises:

reconstructing the motion vector from the differential
motion vector components and X and y components of
a predictor motion vector.

8. The method of claim 6 wherein the codebook is a
Huffman table trained for a target bit rate and content type
from a Statistical analysis of example Video Sequences
having the content type.

9. A computer readable medium having instructions for
performing the method of claim 6.

10. A motion vector encoder comprising:
a motion vector predictor for computing a motion vector

predictor for a motion vector of a block of pixels from
at least one motion vector for a neighboring block of
pixels;

a Subtractor for computing differential motion vector
components from motion vector components of the
predictor and the motion vector of the block of pixels;
and

a joint entropy coder for jointly coding the differential
motion vector components with a single variable length
code, wherein Statistical analysis indicates which dif
ferential motion vector components to represent with
variable length codes and which differential motion
vector components to represent with an eScape code
followed by fixed length codes.

11. The encoder of claim 10 wherein the joint entropy
coder computes the Single variable length code by Searching
for the code in a Huffman coding table comprising a list of
joint differential motion vectors and a corresponding vari
able length code for each of the joint differential motion
VectOrS.

12. A motion vector decoder comprising:
a motion vector predictor for computing a motion vector

predictor for a motion vector of a block of pixels from
at least one motion vector for a neighboring block of
pixels;

a joint entropy decoder for decoding a single variable
length code into joint differential motion vector com
ponents, wherein the joint entropy decoder decodes the
Single variable length code by Searching for the code in
a Huffman coding table comprising a list of variable
length codes and corresponding joint differential
motion vector components for each of the variable
length codes, wherein training determines which joint
differential motion vector components to include in the
table and which joint differential motion vector com
ponents to exclude from the table; and

15

25

35

40

45

50

55

60

65

32
an adder for reconstructing X and Y motion vector com

ponents from the joint differential motion vector com
ponents and X and Y components of the motion vector
predictor.

13. The decoder of claim 12 wherein the joint entropy
decoder is operable to detect an escape code indicating that
two fixed length codes representing X and Y differential
motion vector components follow the escape code.

14. In a Video coder for coding video images in a block
format, a method for improving compression of the Video
images comprising:

computing X and y motion vector components for a block,
forming the X and y motion vector components into a joint

parameter representing joint X and y motion vector
components, and

assigning a single variable length code to the joint X and
y motion vector components, the Single variable length
code Selected from a set of available variable length
codes, Such that shorter variable length codes are
assigned to joint motion vector components that have a
higher probability of occurrence in the Video images,
and longer variable length codes are assigned to joint
differential motion vector components that have a
lower probability of occurrence, wherein training deter
mines which joint X and y motion vector components to
represent in the Set of available variable length codes.

15. The method of claim 14 further including spatially
predicting the X and y motion vector components from a
neighboring block of the block, and using spatially predicted
components as the joint X and y motion vector components.

16. The method of claim 15 wherein the spatially pre
dicted components are differential motion vector compo
nents computed as a difference between X and y components
of the motion vector for the block and X and y components
of a predictor motion vector.

17. In a video decoder, a method for decoding macrob
locks of a predicted Video frame comprising:

receiving a single variable length code representing joint
differential X and y components of a motion vector for
each of the macroblocks,

for each of the macroblocks, Searching for a Single entry
in a Huffman table corresponding to the variable length
code and including the joint differential X and y com
ponents of the motion vector, wherein the Huffman
table includes variable length codes for the most prob
able joint differential X and y components as computed
by Statistical analysis of example video Sequences,

computing X and y components of a predictor motion
Vector from neighboring macroblocks to the macrob
lock currently being decoded; and

reconstructing the motion vector from the differential
components obtained from the Huffman table and the X
and y components of the predictor motion vector.

18. In a Video coder for coding video images in a block
format, a method for variable length coding block motion
information of the Video images, wherein a joint parameter
represents X and y motion vector components for a block, the
method comprising:

assigning a single variable length code Selected from a Set
of available variable length codes to the joint X and y
motion vector components, wherein training deter
mines which joint X and y motion vector components to
represent in the Set of available variable length codes.

19. The method of claim 18 wherein the block is a 16x16
macroblock of pixels, and wherein each of the X and y
motion vector components comprises a differential value.

US 6,983,018 B1
33

20. A video decoder including computer-executable
instructions for causing a computer programmed thereby to
perform a method for variable length decoding macroblock
motion information of a predicted Video frame, wherein a
Single variable length code represents joint differential X and
y components of a motion vector for each of plural mac
roblocks, the method comprising:

for each of the plural macroblocks, Searching for a single
entry in a Huffman table corresponding to the variable
length code for the macroblock, wherein the Single
entry includes the joint differential X and y components

34
of the motion vector for the macroblock, wherein the
joint differential X and y components are combinable
with predictor X and y components to reconstruct the
motion vector for the macroblock, and wherein the
Huffman table includes variable length codes for the
most probable joint differential X and y components as
computed by Statistical analysis of example video
Sequences.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,983,018 B1 Page 1 of 1
APPLICATIONNO. : 09/201278
DATED : January 3, 2006
INVENTOR(S) : Lin et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

In column 2, line 37, delete “MN and insert -- MN --, therefor.

In column 2, line 42, delete “MN and insert -- MN --, therefor.

In column 2, line 45, delete “MN and insert -- MN --, therefor.

In column 5, line 24, after “stream insert -- 30 --.

Signed and Sealed this

Twenty-fifth Day of August, 2009

David J. Kappos
Director of the United States Patent and Trademark Office

