a2 United States Patent

Stokes

US008667274B2

US 8,667,274 B2
Mar. 4, 2014

(10) Patent No.:
(45) Date of Patent:

(54)
(76)

")

@
(22)

(65)

(62)

(60)

(1)

(52)

(58)

SYSTEM AND METHOD FOR WORM DATA
STORAGE

Inventor: Terry Lee Stokes, Redmond, WA (US)
Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1455 days.

Notice:

Appl. No.: 12/014,799

Filed: Jan. 16, 2008
Prior Publication Data
US 2008/0172428 Al Jul. 17, 2008

Related U.S. Application Data

Division of application No. 12/014,721, filed on Jan.
15, 2008.

Provisional application No. 60/885,129, filed on Jan.
16, 2007.

Int. Cl1.

HO4L 29/06 (2006.01)
HO4L 9/32 (2006.01)
GO6F 12/14 (2006.01)
GO6F 17/30 (2006.01)
HO4N 7/167 (2011.01)
HO4L 9/00 (2006.01)
HO4L 9/28 (2006.01)
GO6F 7/00 (2006.01)
U.S. CL

USPC ... 713/165; 713/156; 713/168; 713/187,

713/193; 726/26; 380/201; 380/259; 380/28;
707/662; 707/663; 707/664; 707/694
Field of Classification Search
USPC 713/165, 156, 168, 187, 193; 726/26;
380/201, 259, 28; 707/662-664, 694
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,758,360 A 5/1998 Zbikowski

5,931,947 A 8/1999 Burns

6,021,408 A 2/2000 Ledain

6,021,414 A 2/2000 Fuller

6,336,175 Bl 1/2002 Shaath

6,405,315 Bl 6/2002 Burns

6,615,330 B2 9/2003 Debiez

6,643,750 B2 11/2003 Achiwa

6,775,679 B2 8/2004 Gupta

6,807,632 B1 10/2004 Carpentier

6,912,645 B2 6/2005 Dorward

6,976,165 B1 12/2005 Carpentier
2005/0278383 Al 12/2005 Kazar
2007/0027872 Al* 2/2007 Johnsonetal. 707/9
2007/0094471 Al* 4/2007 Shaathetal. 711/163

* cited by examiner
Primary Examiner — Aravind Moorthy

(57) ABSTRACT

A system and method for Write Once, Read Many (WORM)
compliant storage is disclosed. A storage administrator in
user space is employed as an interface between the kernel
space WORM VFS and the user applications. The storage
administrator accesses the WORM VFS through the operat-
ing system’s Virtual File System. The WORM VFS com-
prises of three layers: a data encryption\compression layer,
the WORM filesystem layer and a logical volume manager.
The data encryption\compression layer preprocesses the data
as it moves between from the user space and the WORM
filesystem layer. The WORM filesystem layer stores the com-
pressed and encrypted data on the physical disk drives in a
specialized disk format. The logical volume manager man-
ages the physical disk drives. ANVRAM journal aids in crash
recovery.

20 Claims, 25 Drawing Sheets

Supparted Operations

File Oreation

File Heading

Filasystem MountiUnmount
Filaaystem Siofistics

Volurme Statistics

File Ueletion {if past reftention period)

File Annotaton faudiing unctions)

Unsupporied Operations

Symbolic Links

File Deletion {prior 1o retention periad}

File Cortarnt Moddfioation or Sppsnding

File Attribute Modification

Directory Support {creation, listing, defetion, et

U.S. Patent Mar. 4, 2014 Sheet 1 of 25 US 8,667,274 B2

Supported Operations

Filssystem MountiUnmount

Filegysten Stofistios

Volume Stadistics

File Greation

File Delotion (Fpast relenbon pennd}

File Aaroiation {audiing funclions)

FiG. 1A

U.S. Patent Mar. 4, 2014 Sheet 2 of 25 US 8,667,274 B2

Unsupporied Operations

;Fﬂi}: Daletion {prior 1o retention peniod}

File Content Modification or Appending

F i Atribute Modification

%@Ef&fﬁ:ﬁﬁi’}f Support (oragtion, listing, dedation, o)

 Syrrbolio Links

FIG. 1B

U.S. Patent Mar. 4, 2014 Sheet 3 of 25 US 8,667,274 B2

203 ™\ Mﬁ‘ 3‘93{35”‘“ File Anchival P03
X i 4 o LA
o 204
Stomgs e
Addinistralor /‘— 201
User Spage
, .mmm«mmmNWMNNN«NN«MNM%SQ:M
213 X
. ’ { ®.
CHf-Box | Virlual File System WFQ} “““ 202
WORM L 206
3 ¥ s
""""""" ' i ®
R (Data Encryplion
) {\ Comprassion Layer |
+ ST 08
1 "{'{., 3 P —
o WORM
¥ ; Filesystem Layer
» Storags: . : i
i Y a’F?;i\M
¢ o N Goumal
“ Logical Volume b ‘: i‘
243 L Manager J\fw
AR RS
\ WORM VFS

hﬁwro*ed '

Rirrorsd
Brivas

FiG. 2

US 8,667,274 B2

Sheet 4 of 25

Mar. 4, 2014

U.S. Patent

Ve Old

P
QIBT UOIS0Y

puosng
HIOMISN
abieing

suippddy

1Buany
380 AN

JSHEN
ety g%zﬁ

IS

SES oA POIAN e e LU LT
WOMIBN 1 I0aep MOMISN
wamﬁﬁ , amm,ﬁm W mm@aww

08

U.S. Patent Mar. 4, 2014 Sheet 5 of 25 US 8,667,274 B2

322 BN

QDOATRECDERSEDCIMIBOLDTISDARF4IBE

e
(0901 {0001

0001

-~ 324

US 8,667,274 B2

Sheet 6 of 25

Mar. 4, 2014

U.S. Patent

a8 Ol

o
LA
e nd
w4t

QRGG | RO
LBET | PIEE
OFdE THWELS

02 HE AHEO DBAY G MNonos, LYAN
£z |izEsy Jwopeer| eindnoif LOAN

Ly fviiin Apea gigdnody | pumsog

o

rgd
47]
o

I
oy

#
&

e
i
P
e
b
L]
o
ol
Lo
0
oy
X

ve josgcz | Apess ozndroB ZOAN

R FLEEE Apreau 2 adnomy LR

[
9]
&
e
]
e
e
540
&5
o
hag

%

oo Apead GENaniy QAN | soed RICT | BOIETION

FE 194086 Apea CFANB R ZOAN | BiSE SHZE | SOETOL
LizEey | Apsay By Ndnoth LOAN | vg2 5EEL | SO
ZEL jegers | Apsas gpydnoy |ouopuo | opEZL | 0000 [B0ER

swolaw doig | oueig 2B
SERO0Y | B8y . UE

SN W {2 w

SIGE | uaiRULoI 9BRI0IS NIOMIBN

z
%
48]

UERIROUT

U.S. Patent

340

Mar. 4, 2014

Sheet 7 of 25

Structured File Format

hMeta Data

e

Meaders

List of
Ralgted Hashes

File Headears

FIG. 3D

L GGG

4
m

%

Lo%]
.
9

R

US 8,667,274 B2

U.S. Patent Mar. 4, 2014 Sheet 8 of 25 US 8,667,274 B2

Hem Header

248 5:*4* 5’%48 5\:&“

ftem e 1 lem
Type Offset | Length

U.S. Patent

Mar. 4, 2014

Sheet 9 of 25

Mata Data

Yarsion

Type

Create
DatafTimes

Ratantion
Fariod

[3585

Criginat Size |

Num of
Radatad

FiG. 3F

US 8,667,274 B2

US 8,667,274 B2

Sheet 10 of 25

Mar. 4, 2014

U.S. Patent

DE DI

0 = SIS0 pue Ay

¥

BNAISE ISUEND = SVWUSY DUR SR

EOUBLEY SO0KT < SAnad) pus spndey g wa@mxwmm%&m

ADOQUN Si18g e slosn) UG LU = SISE PUE PR = e
SO = SRS PUB Ay = SUA L
LD
SR L SPIH BORHHS(] /K LG aue

U.S. Patent Mar. 4, 2014 Sheet 11 of 25 US 8,667,274 B2

[mﬁuag File System {vm}}\j‘“ sl

&

o A0E
i *}j 4L

Binck Sccumulator

A05 —sv"'(v i W e Data
: &

406 i a101 &
i‘wmgrmszﬁn } (E}@ m*s‘@’m“sf;sc}v§> IR

& ;":f-?

P
4{3 | ;1 5;3
m,s“i_,yittm; } Diaoryption .

7

dmag

sUGHAAIUY 218

T

sahE u

Off &*m 4 Q.rts;b(:s:x:
MFSISAN WORMFS
Storage Layer

443

U.S. Patent Mar. 4, 2014 Sheet 12 of 25 US 8,667,274 B2

Data Encrypliont 504
Comprassion Layer ‘
L3
5&] 4 fefm TE,,"E‘
5 —~ : L N 502
& Space | Encryphion
~ Manager Linit
& = 5
ii‘ 3
§ §
& Ruffar Joumal
§ ‘ Cache - Manager '
N N’ NVRAM

¥ Y L .
5 -4 =807 Journal

W

Loginal Volume 505
W o S0
[Manager \f“
. ey

FiG. 5A

U.S. Patent

Mar. 4, 2014 Sheet 13 of 25

Journal Entry

Oparation | Inode Entry
Type Location Data

FiG. 58

US 8,667,274 B2

U.S. Patent Mar. 4, 2014 Sheet 14 of 25 US 8,667,274 B2

TR

%

,))
Journating I

Ring sﬁffgr ctﬁ”ﬂﬁi Eﬁh‘}{

U.S. Patent

Mar. 4, 2014 Sheet 15 of 25

US 8,667,274 B2

Shart

T Entry in ﬁin N

5
L3
s

Féas Entiren_ Yes

T e AR by o
s Wiiltsn

S Fhe Write™S_ Yes ;
. Entry?

R

Disleta Filg node
and Extents and
Fut on Free List

N -~
< Dilotion Sed2E

N
D37 ;;

Addd Audit info
To File inodea

U.S. Patent Mar. 4, 2014 Sheet 16 of 25 US 8,667,274 B2

501 \j"muma Layout

Yoltme Bogt
Block

Fubic Key

Sertificate W\

Filesystem
Super Block

TER) \ j| Header)_
Inods “\m

= Data r

£l
4

o GBroa

Ed

Al

AL
Headsr

R \

inode
and
Data

Alocation Group 2

FIG. 6A

U.S. Patent Mar. 4, 2014 Sheet 17 of 25 US 8,667,274 B2

810 Superblock Format

Filesystem
information

Alncabon

GHOUPS e
nformation \\
s S-in

FIG. 6B

U.S. Patent Mar. 4, 2014 Sheet 18 of 25 US 8,667,274 B2

AG Header Format

£20 ‘L}
N AG .
Metadata _ a1
Fras /’\“

Eximnts List

?ﬁ‘ﬁ%}. B e 673
fockes Ligt R

Lockbox P gng

FIG. 6C

U.S. Patent

Mar. 4, 2014

Sheet 19 of 25

Volume Inode Format

inodes Hdr

FraviNaxt
Inoade Firs

Extant
Firs

Sudit info

Auiclit P

Meta

Data

ftam
Maadars

Listof
Hushas

File
Taill
o

“\- 830

FIG. 6D

US 8,667,274 B2

U.S. Patent Mar. 4, 2014 Sheet 20 of 25 US 8,667,274 B2

Logical File Format

BES 887

5 fngds
N I B T T

Direct Extents indirect Bxtanis

indirect Pirs
Blook

Other
883 ™ A e

E34 ™ .
__’ Fils

Tad

FIG. 6E

U.S. Patent Mar. 4, 2014 Sheet 21 of 25 US 8,667,274 B2

Logical Voluma 7O
' Manager W,

T
Mirrored
N Brives

- pfirared
T .f‘g’g"{-}

- Afivored

U.S. Patent Mar. 4, 2014 Sheet 22 of 25 US 8,667,274 B2

801 T ’
\ Read Public Kay

Cerlificate from Disk |

. Fatoh Privats Kay
Matching Cartificate
83 “'\\ o

Gel Storage

Advrinistrator Ray

I

Raad, Deorypt and

804

1 Varily Disk Superbloek

G

805

Dore Run]
T} Jaurnal Recovery
209 L i;mﬂai& Fi%esﬁ,{sﬁem

et Statistios and Notity

808 7 | Read and Decrypt Starage Admiristrator
AG Header

!

807 = Create B+ Trass in

‘ 7_ Space Manager of
1 AG's Free inndes and
Eatents

For Each ™
Allocation

B Gfﬁuy

Movrs

FIG. BA

U.S. Patent

Mar. 4, 2014 Sh

Cpen Filg
for Greation Using
Storage Admindstralor

eet 23 of 25

US 8,667,274 B2

with File Infn

5 B2d

Sturage

S

Admmisirgor

¥

Lreate Inode and
Regerve Extent in
Allpeation Gooun

J17

AAAAAAAAAAAAAAAAAA Y.

Journst By
Yyrittan

Avhile Datad

sedng YWritte

Done

Mors

Ancumutats
Fie Data Blacks

¥

Compress Set of
File Data Blonks

v

Enorypt |
Comprassaed Daty

R

Wite Binary Data |

WORM VES

Update Inods,
AG angd Flesyaiem
Information

To Extent Blocks

Jowrnat Endry
AR
Writlen

Are Exiend

. Allocate
Another Extent

“Siocks Full?

FIG. 88

U.S. Patent Mar. 4, 2014 Sheet 24 of 25 US 8,667,274 B2

B30 “L Cpen Filg
: fur Read Using
Biorsge Administralor

v

g3
—L Read ndex DB
for Flie Infg

Y

Srorage
Adurinisinst

¥
832 ™ Read Filg
nods

WORMVES

is this the

Feturn :
. First Head?

File Matadain |

¥ Resd Binary Dats
i from Exlent Blocks

837 ™y .
3 z Daorypt
| Cormpressed Data

v

| Decomprass Setof
i Fie Dals Blocks

File Dista Blocks

FIG. 8C

U.S. Patent Mar. 4, 2014 Sheet 25 of 25 US 8,667,274 B2

G

Query ndex DB

“«\/ for List of Files

| Ready for Deletion

" Coar Each i
A Ot
w Filztobe > el
\\Dateied »»»»»»»»»»»»»»»»»»»»»»

Fead File's
Medadata

o
17
b

Ghack Fils Against
Deletion Holds Table.

s Thare & .
Dadution Hold?.

883
.all Dalaln)
Funclion in

WORRM VFS

el

Reimove Filg
Froan Inclex DB

Storags
Adasnisivator

¥ WORM VIS

Raad Fils .
inode NS E0R

,,,,,,,,,,,,,,,,,,,,,,,,, /\}g;

857 =) | Returs NG o ws Fite
Dsletion Eror . Inods Exésﬁ‘}ix
£y o

860 ™y

- ' ¢ 881
Joursat Eotry | eturn File inode and j

ol

Writhen ” Extons i Free List

FliG. 8D

US 8,667,274 B2

1
SYSTEM AND METHOD FOR WORM DATA
STORAGE

REFERENCES CITED

T. Stokes, “Compliance Appliance Product Specification,”
30 pages, January 2004.

T. Stokes, “Compliance Appliance Storage Design,” 47
pages, October 2004.

T. Stokes, “ExtraordinaryFS Filesystem,” 2 pages, March
2005.

T. Stokes, “Indexing/Search Design Discussion,” 18 pages,
June 2005.

FIELD OF THE INVENTION

The present invention relates generally to Write Once,
Read Many (WORM) data storage. More specifically, the
present invention relates to techniques for the secure storage
and retrieval of electronic data, such that the electronic data
cannot be modified or deleted during its predetermined life-
time, after which the electronic data is automatically deleted.

BACKGROUND OF THE INVENTION

The use of electronic communications, such as email,
instant messaging, web pages, SMS and voice over 1P, and
computer files, such as presentations, spreadsheets and docu-
ments, for business purposes have become prevalent in
today’s business world. Over the years, as electronic commu-
nications and computer files have supplanted the use of paper
documents, it has become more and more important to find a
way to archive copies of electronic data files.

There are many reasons why business communications and
documents in general need to be archived in searchable
WORM storage. Many government regulations, such as Sar-
banes Oxley, HIPAA, Patriot Act, GLB and SEC, require that
business communications be archived for a number of years.
Evidentiary discovery rules require the production of busi-
ness communications pertinent to the issues in a case. And
corporate governance and disaster recovery requires the
archival of important business communications and docu-
ments in case the originals are destroyed.

In the past, the archival of business communications was
limited to storing corporate reports and accounting books to
an off-site warehouse. As email came into wide usage, the
archival of emails became a regulatory requirement, but this
was mostly limited to financial institutions. In the last five
years, due to the increased prevalence of electronic commu-
nications and the increase in government regulations result-
ing from several accounting scandals, nearly all companies
are required to archival some amount of email, instant mes-
sages, business reports and accounting spreadsheets.

Currently, most companies meet government regulatory
and corporate governance requirements by archiving copies
of corporate document files and email backups to optical
WORM storage, such as optical tape or CD-R discs, and
storing the optical WORM storage at a third party vendor’s
location. There are several drawbacks to this approach. The
optical WORM storage archives are not readily available. Itis
difficult to find specific archived documents among a set of
optical WORM storage, since there is no consolidated index,
requiring each optical disc or tape to be retrieved, loaded and
searched. To find a specific email can require a large effort,
since backups normally occur on a daily or weekly basis and
each backup needs to be restored to an email server before it
can be searched.

20

25

30

35

40

45

50

55

60

65

2

Another drawback to the “copy everything to optical
WORM storage” is the inability to delete documents and
emails after their retention period has lapsed. Information
stored in these archives could potentially be used against a
company in the event of a lawsuit, so it is important to delete
the archived material as soon as government regulatory and
corporate governance retention requirements are met. While
an optical WORM storage media can be physically destroyed
at the end of'the retention period, a manual process must be in
place to implement this. Plus, since an individual file cannot
be deleted on the optical WORM storage media, the entire
disc or tape must be retained until the retention period of
every electronic data file has passed, forcing files to be saved
that could have been deleted.

Finally, the electronic data files on the optical WORM
storage media are typically not encrypted. This allows anyone
with access to the optical WORM storage media and an opti-
cal WORM storage reader to potentially view confidential
corporate information.

Several products have been created to address these issues.
They seek to implement WORM storage on regular hard disk
drives. The two main storage products are EMC’s Centera,
which uses Content Addressable Storage (CAS) and Network
Appliance’s Netstore, which uses SnaplLock. Both prevent
file deletion by using a custom operating system. Both also
employ a custom proprietary filesystem, which means their
hard drives are unreadable in general purpose operating sys-
tems.

The drawback to these storage products is they were cre-
ated for general purpose network storage, abet with WORM
characteristics. Since third-party user applications access via
NFS or SAN, the products need to provide a full set of
filesystem operations. The underlying hard disk data is not
completely encrypted. And there is no automatic deletion
mechanism when electronic data files reach the end of their
retention period.

SUMMARY OF THE INVENTION

The present invention implements systems and methods to
provide Write Once, Read Many (WORM) compliant stor-
age. The system comprises a set of interconnecting compo-
nents: user space applications, the storage administrator, the
virtual file system, optional oft-box network storage, the
WORM VES and on-box storage. The WORM VFS com-
prises three layers: the data encryption\compression layer, the
WORM filesystem layer and the logical volume manager.
The storage administrator, its index database and the appli-
cations that access it, such as messaging applications and file
archival applications, reside in user space. All other compo-
nents of the invention reside in kernel space. User space
applications store and access electronic data files using the
storage administrator. Since there is no disk directory struc-
ture, the storage administrator maintains an index database
with a cross-reference between file identification and file
location. The file identification is a value known to the user
space applications, such as document name or email headers.
The file location contains information used to locate the on-
box inode or off-box file. For on-box files, the location
includes the filesystem ID, the allocation group ID and the
inode ID. In the preferred embodiment, the storage adminis-
trator accesses files using the virtual file system interface
(VFS) implemented in most UNIX operating systems. The
operating system’s VFS layer forwards the file or filesystem
operation to the data encryption\compression layer of the
WORM VES by calling the layer’s registered callback func-
tion for the operation. If the file or filesystem operation is not

US 8,667,274 B2

3

supported, the call returns with an error. Otherwise, operation
is verified as coming from the storage administrator using the
key the WORM VFS received when the filesystem was
mounted (FIG. 8A), which is included in the operation’s data.
The data encryption\compression layer handles any data pro-
cessing needed and determines where the file is located. If
off-box, the data encryption\compression layer accesses the
appropriate off-box WORM storage mounted locally using an
NFS or SAN connection. If on-box, the data
encryption\compression layer forwards the processed data
and operation data to the WORM filesystem layer. The
WORM filesystem layer records the operation in the non-
volatile RAM backed journal. The WORM filesystem layer
then performs the requested operation and returns the opera-
tion’s result back up the chain to the storage administrator and
finally to the user space application. The WORM filesystem
layer lies on top of the logical volume manager. The logical
volume manager is used to group a set of physical disks into
a logical volume. The set of physical disks that a logical
volume comprises is transparent to the WORM filesystem
layer, it only knows about the logical volume. The logical
volume manager maintains each logical volume and notifies
the storage administrator about any important events, such as
disk failures or disk full, so that human operators can be
alerted. In the preferred embodiment, the logical volume
manager is implemented using Vinum, a UNIX operating
system component and employs mirrored drives, but alterna-
tive embodiments could implement the logical volume man-
ager as a VFS layer or embedded within the kernel and use
non-mirrored drives or storage arrays.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A shows a list of supported file and filesystem opera-
tions.

FIG. 1B shows a list of unsupported file and filesystem
operations.

FIG. 2 shows the components of the preferred embodiment
of the present invention.

FIG. 3A shows an example of a storage network containing
the invention.

FIG. 3B shows an example of data hashing for storage
location.

FIG. 3C shows an example of a network storage informa-
tion table of the preferred embodiment of the present inven-
tion.

FIG. 3D shows the structured message format of the pre-
ferred embodiment of the present invention.

FIG. 3E shows the format of a single item header contained
in the Item Headers portion of the structured message format
of the preferred embodiment.

FIG. 3F shows an example of the Meta Data portion of the
structured message format of the preferred embodiment.

FIG. 3G shows an example of a Deletion Holds Table of the
preferred embodiment of the present invention.

FIG. 4 shows the components of the Data
Encryption\Compression Layer of the preferred embodiment
of the present invention.

FIG. 5A shows the components of the WORM FS Layer of
the preferred embodiment of the present invention.

FIG. 5B shows the format of a single journal entry con-
tained in the Journaling Ring Buffer of the preferred embodi-
ment.

FIG. 5C illustrates the Journaling Ring Buffer of the pre-
ferred embodiment.

20

25

30

35

40

45

50

55

60

65

4

FIG. 5D is a block diagram illustrating a method of the
present invention for recovery using the Journaling Ring
Buffer entries.

FIG. 6 A shows the disk layout of the WORM filesystem of
the preferred embodiment of the present invention.

FIG. 6B shows the format of the Superblock portion of the
WORM filesystem of the preferred embodiment of the
present invention.

FIG. 6C shows the format of the AG Header for each
Allocation Group in the WORM filesystem of the preferred
embodiment of the present invention.

FIG. 6D shows the format of each disk inode in the WORM
filesystem of the preferred embodiment of the present inven-
tion.

FIG. 6E shows the logical file layout of the WORM file-
system of the preferred embodiment of the present invention.

FIG. 7 shows the components of the Logical Volume Man-
ager of the preferred embodiment of the present invention.

FIG. 8A is a block diagram illustrating a method of the
present invention for mounting the WORM FS.

FIG. 8B is a block diagram illustrating a method of the
present invention for creating a file within the WORM FS.

FIG. 8C is a block diagram illustrating a method of the
present invention for reading a file from the WORM FS.

FIG. 8D is a block diagram illustrating a method of the
present invention for deleting a file within the WORM FS.

DETAILED DESCRIPTION OF THE INVENTION

The present invention will be illustrated below in conjunc-
tion with an exemplary storage network. It should be under-
stood, however, that the invention is not limited to use with
any particular type of network storage, network interface
card, file server or any other type of network or computer
hardware. It should also be understood that while the term
“electronic data” is used in the description, the invention is
not limited to either electronic communications or computer
files. In alternative embodiments, the invention could archive
web pages, telephone recordings or binary data objects.
Moreover while the preferred embodiment takes the form of
a WORM storage appliance, the invention can also be deliv-
ered as one or more software products as alternative embodi-
ments.

The present invention has several characteristics that inher-
ently make its storage WORM compliant. One characteristic
relates to its file and filesystem operations support. FIG. 1A
shows the file and filesystem operations supported by the
invention. FIG. 1B shows the file and filesystem operations
specifically not supported by the invention. Note that no
directory operations or file modification (after creation)
operations are supported in the invention. All of the supported
operations are available only through the storage administra-
tor 204, which requires authorization for all file and filesys-
tem operations.

FIG. 2 shows the internal components of the preferred
embodiment of the present invention. The storage adminis-
trator 204, its index database 205 and the applications that
access it, such as messaging applications and file archival
applications 203, reside in user space 201. In alternative
embodiments, the storage administrator 204 and index data-
base 205 can reside in kernel space 202, accessible through
system calls. All other components of the invention reside in
kernel space 202. The preferred embodiment of the present
invention implements the kernel space 202 components using
kernel loadable modules, but alternative embodiments could
embed the functionality within the kernel code, modify exist-
ing filesystem code or implement user space applications 203.

US 8,667,274 B2

5

User space applications 203 store and access electronic
data files using the storage administrator 204. Since there is
no disk directory structure, the storage administrator 204
maintains an index database 205 with a cross-reference
between file identification and file location. The file identifi-
cation is a value known to the user space 201 applications,
such as document name or email headers. The file location
contains information used to locate the on-box inode or off-
box file. For on-box files, the location includes the filesystem
1D, the allocation group ID and the inode ID.

In the preferred embodiment, the storage administrator 204
accesses files using the virtual file system interface (VFS) 206
implemented in most UNIX operating systems. The operating
system’s VFS 206 layer forwards the file or filesystem opera-
tion to the data encryption\compression layer 208 of the
WORM VFES 207 by calling the layer’s registered callback
function for the operation. If the file or filesystem operation is
not supported, the call returns with an error. Otherwise,
operation is verified as coming from the storage administrator
204 using the key the WORM VFS 207 received when the
filesystem was mounted (FIG. 8A), which is included in the
operation’s data.

The data encryption\compression layer 208 handles any
data processing needed and determines where the file is
located. If off-box, the data encryption\compression layer
208 accesses the appropriate off-box WORM storage 213
mounted locally using an NFS or SAN 212 connection. If
on-box, the data encryption\compression layer 208 forwards
the processed data and operation data to the WORM filesys-
tem layer 209. The WORM filesystem layer 209 records the
operation in the non-volatile RAM backed journal 210. The
WORM filesystem layer 209 then performs the requested
operation and returns the operation’s result back up the chain
to the storage administrator 204 and finally to the user space
application 203.

The WORM filesystem layer 209 lies on top of the logical
volume manager 211. The logical volume manager 211 is
used to group a set of physical disks 214 into a logical volume.
The set of physical disks 214 that a logical volume comprises
is transparent to the WORM filesystem layer 209, it only
knows about the logical volume. The logical volume manager
211 maintains each logical volume and notifies the storage
administrator 204 about any important events, such as disk
failures or disk full, so that human operators can be alerted. In
the preferred embodiment, the logical volume manager 211 is
implemented using Vinum, a UNIX operating system com-
ponent and employs mirrored drives, but alternative embodi-
ments could implement the logical volume manager 211 as a
VFS layer or embedded within the kernel and use non-mir-
rored drives or storage arrays.

The diagrams and illustrative examples in FIG. 3A, FIG.
3B, FIG.3C,FIG. 3D, FIG. 3E, FIG. 3F and FIG. 3G describe
the operation of the preferred embodiment of the storage
administrator 204 component of the present invention. It
should be understood, however, that the invention is not lim-
ited to use within storage networks. For example, alternative
embodiments could employ the WORM storage appliance
outside a storage network, using only internal disk storage or
use disk arrays.

FIG. 3A shows an example of a storage network containing
the invention (WORM storage appliance) and multiple stor-
age locations. The diagram shows three data centers, in Lon-
don 301, Boston 308 and New York 305. The WORM storage
appliance 306 is located on the New York network. The Lon-
don data center 301 has one storage network 302. The Boston
data center 308 has one storage network 307. The New York
data center 305 has two storage networks, 303 and 304. Each

20

25

30

35

40

45

50

55

60

65

6

storage network can contain a mixture of NFS storage, SAN
storage and WORM storage appliances. All of the storage
networks are accessible to the WORM storage appliance 306
via the Internet 309. The WORM storage appliance 306 also
has internal WORM storage available, as described in FIG. 2.

FIG. 3B shows an example of data hashing for storage
location. This method is used to determine where to store the
electronic data file so that only one copy is saved, which
reduces the amount of storage used by a company. A hash 322
of the complete electronic data file 321 is created using a
standard algorithm such as MDS5 or SHA. The hash 322 of the
electronic data file 321 is used to determine the storage loca-
tion, much like hashes are used to sort items into buckets 323.
In this example, the electronic data file 321 would be placed
into the “0002” bucket 324 using the first four values of the
hash 322.

FIG. 3C shows an example of a network storage informa-
tion table 330 of the preferred embodiment of the present
invention. This table is used to determine where an electronic
data file is to be stored, where to later look for the electronic
data file and whether the IT administrator should be notified
of storage problems. The table is made up of rows, which
represent a storage unit, and columns, which represent the
attributes of a storage unit.

The network storage information table 330 includes eight
columns of information. The first column, start date 331,
specifies the date of the first electronic data file in the storage
unit. The ID start 332 and ID stop 333 columns specify the
range of hashes that can be stored in the storage unit, using a
portion of the computed hash. This range must be unique and
not overlap with the hash range of any other storage unit for
writable storage units. All hash ranges must be present in the
network storage information table 330, so that for any com-
puted hash of an electronic data file, it can be written to one
and only storage unit, to prevent duplicate copies of electronic
data files.

The location 334 and storage partition 335 columns are
used to identify the physical location of a storage unit. As seen
in FIG. 3A, the location 334 corresponds to a storage net-
work, for example the first row shows a location of London1
302. The storage partition 335 corresponds to a portion of that
storage network. Using location 334 and storage partition
335, the available storage networks can be broken up into a
grid of storage units.

The state column 336 holds the current state of the storage
unit. Typical states include offline, ready, read only and full.
The free MB column 337 shows the amount of free space
available. Column 338 shows the current access time in ms,
used in staging electronic data file retrievals.

Rows 339 show examples of read only storage units. These
storage units are no longer used for new electronic data files.
This is needed to allow changes to the storage grid. While
using a storage network such as SAN allows the addition of
additional storage without modifying the actual network con-
figuration, there are times when a modification of the storage
grid is desired, such as when adding remote storage networks
or moditfying the balance of the storage. After modifying the
network storage information table 330 to reflect the new
storage grid, new electronic data files will go to the desired
storage unit, but old electronic data files will hash to the
wrong storage unit. One solution is to move all the old elec-
tronic data files to the storage unit it hashes in a secure
manner. The preferred embodiment of the invention simply
leaves the old electronic data files on the original storage unit,
but list the storage unit in the network storage information
table 330 as read only. File retrieval will then search each

US 8,667,274 B2

7

storage unit, whose ID range matches the electronic data file
that describes its location, using the start date column 331 as
a hint.

It should be understood that each instance of the present
invention within the storage network will contain a duplicate
copy of the network storage information table 330 within its
storage administrator 204. Included within the network stor-
age information table 330 will be the on-box WORM VFS
volumes, each of which will have a unique location 334 and
storage partition 335 pair.

Whenever an electronic data file is received by the storage
administrator 204, it first hashes the file’s contents to deter-
mine which network storage unit to archive the file to. If the
selected location is controlled by the storage administrator
204, it then converts the electronic data file into a structured
file; otherwise it transmits the electronic data file to the
WORM storage appliance that controls the selected location.
The purpose of converting the electronic data file into a struc-
tured format is to allow searches and holds to be based on well
defined parts of the electronic data instead of solely on infor-
mation about the file. For example, deletion holds can be
performed based on the recipient of emails or the authors of
Word documents.

FIG. 3D generally illustrates the structured message for-
mat 340 produced by the storage administrator 204. At the
beginning of the structure is Meta Data 341 that describes the
electronic data file. FIG. 3F shows a granular view of the
contents of the Meta Data 350 section. Among other things, it
contains the structure format version 351, the file type 352, a
set of flags 353 to signal special characteristics of the file,
such as violations, the time the file was created 354, the
retention period 355, the original size of the file 356 before
compression and the number of related files (attachments,
jpegs, etc.) 357. The Meta Data 350 section may contain
additional information 358.

In FIG. 3D, after the Meta Data 341 section is the item
headers 342 section. The item headers 342 describe where to
find file parts (headers and body) in the structured file 340.
FIG. 3E shows the format of each Item Header entry 346.
Each consists of an Item Type 347, followed by the Item
Offset 348 and an Item Length 349. There is a unique item
type 347 for each type of header and body element. The Item
Offset 348 is the distance from the beginning of the structured
message the item type is located. A special item type is used
to signal the end of the item headers.

After the item headers 342 section is the List of Related
Hashes 343 unless the file has no related files, as indicted by
the number of related files 357 in the Meta Data 350 section
of FIG. 3F. After the List of Related Hashes 343 is the File
Headers 344 section and at the end of the structured file 340
is the File Body 345.

After the unstructured electronic data file is converted into
a structured electronic data file, it is transferred to the WORM
VES, which in turn either writes the file to off-box network
attached storage or the on-box WORM storage.

At regular intervals, a process is run within the storage
administrator 204 to delete electronic data files that have
passed their retention period. Each electronic data file has an
absolute retention period embedded in its file when created.
The electronic data file cannot be deleted during this retention
period, but an electronic data file cannot be prevented from
deleting off even past its retention period. This might be
necessary if a regulatory investigation or legal action requires
a hold on file deletions.

FIG. 3G shows an example of a deletion holds table 360 of
the preferred embodiment of the present invention. The dele-
tion holds table 360 is stored within the storage administrator

20

25

30

35

40

45

50

55

60

65

8

204 and is modified by IT administrators to place or remove
deletion holds. Examples of holds are illustrated by rows 362,
363, 364, 365 and 366. As the storage administrator 204
searches its index database 205 for files available for deletion,
it will try to match each file with the conditions 361 for each
row in the deletion holds table 360. This may require reading
in the electronic data file’s metadata to determine if the rule
matches. FIG. 8D describes the deletion process in more
detail.

FIG. 4 shows the components of the data
encryption\compression layer 402 of the preferred embodi-
ment of the present invention. The operating system’s virtual
file system (VFS) 401 layer forwards all storage administra-
tor 204 file and filesystem operations to the data
encryption\compression layer 402. All operations except file
reads and writes are passed on to the appropriate storage
location, either off-box NFS/SAN 403 or on-box WORM FS
404, after authenticating the caller was the storage adminis-
trator 204. The data encryption\compression layer 402 pro-
cesses file reads and writes before passing the data onwards.

Since most electronic data files are expected to be fairly
small, it is possible to accumulate all the blocks of the files
(delayed allocation) before they are passed on to the lower
layer. Even for large files, the data can be broken to extents
appropriate for the file type. This allows for more efficient
writes and reads, since a large part or the entire file can be
contiguous. Since archived data is normally retrieved in its
entirety or just its Metadata (if performing a search), the
filesystem is optimized to retrieve either the electronic data
file’s inode or its entire contents.

The block accumulator 405 is responsible for accumulat-
ing blocks of write data until the file is closed or an extent is
filled. The blocks are then run through compression 406 and
encryption 407 before being written to either oft-box NFS/
SAN 403 or on-box WORM FS 404 by the file reader\writer
408. In a like manner, blocks of data is read from either
off-box NFS/SAN 403 or on-box WORM FS 404 by the file
reader\writer 408, passed through decryption 409 and decom-
pression 410 and then accumulated by the block accumulator
405 before being passed to the storage administrator 204 via
the VFS 401 layer. Block diagrams illustrating methods of the
present invention for file reading and writing are included as
FIG. 8B and FIG. 8C.

FIG. 5A shows the components of the WORM FS layer 502
of the preferred embodiment of the present invention. The
WORM FS layer 502 lies below and receives operations from
the data encryption\compression layer 501 and uses physical
storage provided by the lower logical volume manager 503.
The WORM FS layer 502 has four components: the Space
Manager 504, the Encryption Unit 506, the Journal Manager
507 and the Buffer Cache 505.

The Space Manager 504 manages free extents and inodes.
Free inodes and extents are stored in B+ trees. There are two
extent B+ trees, one sorted by extent size and the other sorted
by block number. Each extent entry contains the allocation
group number, the block offset within that group and the
number of blocks in the extent. The Space Manager’s infor-
mation is stored in the allocation group headers and the free
disk inodes between boots.

The Encryption Unit 506 handles encryption and decryp-
tion of inodes (data is encrypted in the data
encryption\compression layer 501).

The Journal Manager 507 handles the recovery journal. In
order to recover from power failures or other system crashes,
each Inode modification is written to a journal before the
transaction is committed. On power up, the journal is checked
to see if a proper shutdown occurred. If not, each recorded

US 8,667,274 B2

9

transaction (file create, file delete, audit update, etc.) is
checked to see if it completed successfully. Files created, but
not fully written will be removed.

The journal entries are stored in a ring buffer on non-
volatile memory, preferably battery backed RAM. FIG. 5C
shows an example of a journaling ring buffer 520 of the
preferred embodiment of the present invention. FIG. 5B
shows the format of each journal entry 510. Each entry will
store the operation type 511, inode location 512, and the entry
data 513 needed to roll back the transaction. The block dia-
gram in FIG. 5D describes how the journaling ring buffer 520
is processed during recovery.

The Buffer Cache 505 stores recently used inodes and data
blocks to improve performance. It does this by employing a
set of B+ trees to store most recently used inodes and disk
blocks in block number order.

FIG. 5D is a is a block diagram illustrating a method of the
present invention for recovery using the journaling ring buffer
520. On startup, each entry in the journaling ring buffer 520,
starting at the current entry 521, is processed 530. If it’s a file
write entry 532, the inode is checked 535 to see if the entire
file was written. If not, the file inode and its related data
extents are released back to the space manager’s free list 536.
Otherwise the next entry is checked. Ifit’s a file creation entry
531, the inode is checked 535 to see if the entire file was
written. If not, the file inode and its related data extents are
released back to the space manager’s free list 536. Otherwise
the next entry is checked. If it’s a file delete entry 533, the file
inode and its related data extents are released back to the
space manager’s free list 536. If it’s a file audit entry 534, the
audit information is added to the file inode 537.

The diagrams and illustrative examples in FIG. 6A, FIG.
6B, FIG. 6C, FIG. 6D and FIG. 6E describe the layout of the
filesystem of the preferred embodiment of the present inven-
tion. FIG. 6A generally illustrates the volume layout 601 of
WORM VEFS filesystem (note that this is a logical volume, as
presented by the underlying logical volume manager 211). At
the beginning of each volume is the volume boot block 602.
The volume boot block 602 contains a WORM VFS filesys-
tem identity marker, a unique volume ID and a volume full
status. After the volume boot block 602 is a copy of the public
key certificate 603 used to encrypt the volume’s superblock
and allocation group lockboxes. Next is the volume super-
block. The rest of the volume is divided into equal sized
allocation groups (AG) 605, 606. Allocation groups 605, 606
are used because each group can be accessed independently,
allowing simultaneous reads and writes. Each allocation
group has its own AG header 607 and sets of inode and data
blocks 608.

FIG. 6B generally illustrates the superblock layout 610 of
WORM VFS filesystem. The superblock consists of filesys-
tem statistics 611 (such as amount of free space and number
of files), filesystem information 612 (such as the allocation
group sizes and volume characteristics) and allocation group
information 613 (such as the location of each allocation group
and its extent size). Two copies of the filesystem superblock
are stored contiguously on the volume, in case one gets cor-
rupted. There is also an in-core copy to which updates are
made. The filesystem statistics 611 portion of in-core super-
block is written to disk on a regular basis. The filesystem
information 612 and allocation group information 613 are
written for new volumes only and are used mostly for filesys-
tem mounts.

FIG. 6C generally illustrates the layout of each allocation
group (AG) header 620 of the WORM VFES filesystem. The
AGheader 620 consists of AG metadata 621, a free extents list
622, a free inodes list 623 and a key lockbox 624. AG meta-

20

25

30

35

40

45

50

55

60

65

10

data 621 contains the location of the root inode (from which
all other inodes can be found), the number inodes in use and
other AG specific data. The free extents list 622 and free
inodes list 623 is maintained by the Space Manager 504 for
each AG, for use between system boots. The lockbox 624
contains session keys used by the Encryption Unit 506 to
encrypt the AG’s inodes before volume writes. Like the super-
block, there is both an on-disk and in-core copy of each AG
header 620. Updates are written to the in-core AG header,
which is written to disk encrypted, using the public certifi-
cate, on a regular basis, but not later than a full traversal of the
journal ring buffer. Modifications to the AG headers are spin-
locked to ensure consistency.

FIG. 6D generally illustrates the layout of each inode 630
of'the WORM VFS filesystem. Sections 636, 637, 638 are the
same sections from FIG. 3D of the structured file format 340
passed down from the storage administrator 204. Each inode
starts with an inode header 631 which contains a version
number and any volume specific information. Each inode is
part of a linked list of all in use inodes. The linked list of used
inodes is doubly linked using the previous\next pointers 632.
Nextis a block of extent pointers 633 to the file’s data. A small
section holds audit or annotation data 634 (such as whether a
file has been reviewed for compliance, who last accessed the
file, etc) within the inode. If additional audit data space is
needed, space for an audit block pointer 625 is included. The
rest of the inode 639, after sections 636, 637, 638, is used to
either store the entire body of the electronic data file or the
partial block comprising the tail of the file. This reduces disk
usage and increases performance, as small files can be com-
pletely read by just accessing the inode and larger files will
not be wasting partial data blocks. Since archived files are
usually read in its entirety, reading the tail along with the
inode data also helps performance. Besides the on-disk inode
630, there will be an in-core copy of the inode while it is open
for create or read.

FIG. 6E shows an example of a logical layout of a file in the
WORM VEFS filesystem. The inode 650 format is the same as
thatdescribed in FIG. 6D, but some fields are not shown for to
clarify the illustration. As before, the inode starts with an
inode header and inode linked list pointers 651. The extent
pointers 652 are next, followed by other inode fields 653 not
detailed for this example. The space at the end of the inode is
used for the file’s tail 654 (last few bytes), but could be used
for the entire file’s data in other instances. The extent pointers
652 point to several direct extents 655 that contain the file’s
data. Each extent is made up several contiguous data blocks.
The number and size of data blocks are optimized by volume
and the values are stored in the filesystem information portion
of the superblock. If the file runs out of pointers to direct
extents 655, the last extent pointer points to a data block 656
instead of an extent. This data block contains a list of indirect
extent pointers 656. Each pointer in this block points to an
indirect extent 657, except for the last pointer, which will
point to an extent which is partially used 658. The inode
header 650 stores the information about how many direct and
indirect extents are used and which blocks in the last extent
are used. Unused blocks in the last extent are returned to the
Space Manager 504, which can subsequently allocate the
blocks to the end of a new file.

FIG. 7 shows an example of the logical volume manager
701 of the preferred embodiment of the present invention.
The logical volume manager 701 is designed to group a set of
physical disks 702,703, 704 into a single volume. It should be
understood that this example is for illustrative purposes only;
there can be any number of disks in a volume, there can be any
number of volumes in a system and they don’t have to be

US 8,667,274 B2

11

mirrored. It should also be understood that the system could
comprise of a single physical disk, in which case the logical
volume would be the same as the physical disk.

Besides grouping physical disks into logical volumes, logi-
cal volume manager 701 handles several normal events, such
as disk failures, disk full and disk insertion, so that human
operators can be alerted.

If a disk in the volume has errors or fails completely, the
logical volume manager 701 will notify the operator via the
storage administrator 204 and flag the disk as corrupt. The
operator can then put the disk offline, replace it and put it back
online. The logical volume manager 701 (or RAID) will
mirror the new drive.

When a volume nears its capacity, the logical volume man-
ager 701 will notify the storage administrator 204. When the
volume is at its maximum capacity (some room is left for
audit messages), the logical volume manager 701 will flag the
volume as read only, not allowing more electronic data files to
be added to the volume. If no new volumes are available, the
system is signaled to not allow new electronic data files.

The operator can put online a previously written volume
for analysis. The logical volume manager 701 will detect this
and tell the storage administrator 204 to scan the inodes and
load the metadata into the index database 205.

FIG. 8A is a block diagram illustrating a method of the
present invention for mounting a volume containing a
WORM VEFS filesystem. After the boot block is read, the
volume’s public key certificate is read 801 for later encryp-
tion of the volume’s superblock and allocation group lock-
boxes as they are modified. The matching private key certifi-
cate is fetched 802, either from a hardware dongle or other
means. A new storage administrator key is created by the
WORM VFES filesystem using random data generated by the
storage administrator 204, encrypted with the public key cer-
tificate and passed within the mount function call. This same
key is created by the storage administrator 204. This key is
subsequently included in all file system operations to verity
that it came from the storage administrator. The superblock is
read, decrypted with the private key certificate and verified
804, and used to locate each allocation group. Each allocation
group is processed in turn 805. The allocation group’s header
is read in and decrypted with the private key certificate 806.
The space manger adds B+ trees for the list of free inodes and
free extents 807. When all allocation groups have been pro-
cessed, journal recovery is run 808 as described in FIG. 5D.
Finally, the filesystem statistics are updated and the storage
administrator 204 is notified the volume is ready for use 809.

FIG. 8B is a block diagram illustrating a method of the
present invention for creating a new on-box file within the
WORM VFS filesystem. A user application first calls the
storage administrator 204 to open a new file for creation 810.
The storage administrator 204 performs a VFS call to the
WORM VEFS to create a new inode and reserve its first extent
of data blocks 811. A journal entry is written in case of later
recovery 812. In a loop 813 while file data is being written by
the storage administrator 204 via VFS calls, data blocks are
accumulated 814. When enough file data blocks are accumu-
lated, they are compressed 815 and encrypted 816. The
encrypted binary data is written to extent blocks 817. Each
extent write generates a journal entry in case of later recovery
818. If all the blocks in the current extent are used 819, a new
extent is allocated 820 and the inode is updated. Once all the
file data is written out, the file inode, the allocation group
header and the filesystem statistics are updated 821. The
storage administrator 204 is notified, which updates the index
database 205 with the file identification and file location 822.

20

25

30

35

40

45

50

55

60

65

12

FIG. 8C is a block diagram illustrating a method of the
present invention for reading an existing on-box file within
the WORM VFS filesystem. A user application first calls the
storage administrator 204 to open an existing file for read 830.
The storage administrator 204 looks up the file location using
the file identification 831. The storage administrator 204 then
performs a VFS call to the WORM VFS to open in the existing
file inode for reading 832. After the file is opened, the storage
administrator 204, via VFS calls, starts reading the file data in
a loop 833. If this is the first read 834, the file’s metadata
stored in the inode is returned 835. Subsequent calls read data
from the file’s extent blocks 836, decrypt the data 837,
decompress the data 838 and return the file data blocks 839.
Note that sequential reads are only supported, random access
is not supported.

FIG. 8D is a block diagram illustrating a method of the
present invention for deleting an existing on-box file within
the WORM VFS filesystem. At regular intervals, a process is
run within the storage administrator 204 to delete electronic
data files that have passed their retention period. The storage
administrator 204 first queries the index database 205 for alist
of'files eligible for deletion 850. In a loop 851, each file in the
list is checked to see if a deletion hold matches it and is then
deleted if no deletion hold is in place. To perform this, the
storage administrator 204 reads in the file’s metadata (first
read access) 852. It then checks the rules 853 in the deletion
holds table 360 and sees if there is a match 854. If there is, the
file is skipped. If not, a delete call 863 is made to the WORM
VFS via the VFS interface. The WORM VF'S filesystem first
checks if the file inode exists 858. If not, an error is returned
857 to the storage administrator 204. If the file inode exists, its
retention period stored in the inode is checked 860. If the
retention period is not over, an error is returned 857 to the
storage administrator 204. This ensures files are never deleted
before its retention period has passed. If the retention period
has lapsed, the file inode and its related data extents are
released back to the space manager’s free list 861 and a
journal entry is written in case of later recovery 862. Upon
return from the delete call to the WORM VEFS, the storage
administrator 204 checks for file deletion errors 856. If no
error occurred, the file identification and file location record is
removed 855 from the index database 205.

What is claimed is:

1. A method for storing data in a file system providing write
once, read many times (WORM) characteristics, comprising
the steps of:

creating a public key certificate and corresponding private

key certificate; and

creating a logical file system volume, comprising of:

providing a volume boot block containing a file system
identity marker and volume information; and
providing a block containing said public key certificate;
and
providing a superblock encrypted using the said public
key certificate, containing information about alloca-
tion groups and statistics relating to said file system;
and
providing said allocation groups, each allocation group
within said allocation groups comprising of:
providing an allocation group header containing a
free extents list, a free inodes list, metadata, a file
inode list and statistical information relating to said
allocation group; and
providing an allocation group lockbox encrypted
using the said public key certificate, containing
copies of session keys used to encrypt inodes and
extents contained within said allocation group; and

US 8,667,274 B2

13

providing a set of inodes encrypted using said session
keys, each said inode comprising of:
providing an inode header containing information
about said inode; and
providing a set of pointers to the previous and next
inodes in either the said free inode list or the said
file inode list; and
providing a set of pointers to the extents, in order,
that are used by the said inode; and
providing a set of meta data fields used to describe
the data stored in the said extents used by the said
inode; and
providing a set of pointers to inodes that have a
relationship to the said inode;
wherein the said inode holds all information related to
a unique logical file; and
providing a set of extents, each said extent consisting
of a set of contiguous data blocks encrypted using
said session keys;
wherein said allocation group provides an encrypted
allocation group format incompatible with well-
known file system formats and unreadable without
said private key certificate;
wherein said logical file system volume provides volume
format incompatible with said well-known file system
formats and unreadable without said private key certifi-
cate; and
providing an interface to said file system that supports a
restricted file creation operation that doesn’t allow
modifications after creation by computer applications;
and
providing tamper-proof storage of said private key certifi-
cate such that the said private key certificate is only
accessible to said file system; and
storing said data in said logical file system volume, com-
prising the steps of:
invoking the said restricted file creation operation of the
said interface to said file system with said data; and
reading said private key certificate from said tamper-
proof storage; and
decrypting said superblock with said private key certifi-
cate; and
locating said allocation group using said information
about said allocation groups in said superblock; and
decrypting said allocation group header and said alloca-
tion group lockbox with said private key certificate;
and
allocating a new said inode from said free inodes list in
said allocation group header; and
allocating a number of said extents from said free extents
list in said allocation group header equal to the storage
requirements of said data; and
writing said data to said extents; and
updating the said meta data fields of the said inode to
describe the data stored in the said extents used by the
said inode; and
updating the said set of pointers to the previous and next
inode of the said inode to insert the said inode into the
said file inode list; and
updating the said set of pointers to the extents of the said
inode to point to the said extents allocated to the said
inode; and
generating a new session key; and
encrypting said inode and said extents related to said
inode with said session key; and
storing said session key in said allocation group lock-
box; and

w

20

25

30

35

40

45

50

55

60

65

14

updating said allocation group header with modified
said free inodes list and modified said file inodes list;
and
encrypting said allocation group header and said alloca-
tion group lockbox with said public key certificate;
wherein said data is stored, such that said data and said
inode within said logical file system volume cannot be
modified after said data is written to said logical file
system volume, due to the said volume format being
incompatible with well-known file system formats, due
to the said encryption of the said inodes, said data
blocks, said superblock and said lockboxes, and due to
the limits said restricted file creation operation of the
said interface to the said file system places on the said
computer applications.

2. A method of claim 1, wherein the last pointer in the said
set of pointers to the extents of the said inode is used to point
to a data block containing an additional said set of pointers to
extent, if the said data cannot fit entirely in the first said set of
extents.

3. A method of claim 1, providing a set of item headers that
follows the said set of meta data fields in the said inode, which
are used to locate the start of defined sections within the said
data stored in the said extents.

4. A method of claim 1, wherein the said private key cer-
tificate is stored on a hardware dongle.

5. A method of claim 1, wherein the said logical file system
volume is created on an array of physical disk drives.

6. A method of claim 1, providing the arbitrary calculation
of'the size of each said allocation group when the said logical
volume is initialized, with the said size of each said allocation
group stored in the said encrypted superblock.

7. A method of claim 1, wherein the said public key cer-
tificate is not part of the said logical volume, but is provided
to the said file system when the said logical volume is
mounted.

8. A method of claim 1, wherein the said inode comprises
of:

providing an inode header containing information about

said inode; and

providing a set of pointers to the previous and next inodes

in either the said free inode list or the said file inode list;
and

providing a set of pointers to the extents, in order, that are

used by the said inode.

9. A method of claim 1, wherein the said inode provides
space after the said set of pointers to inodes that have a
relationship to the said inode, providing storage for either the
entire said data or its last partial said data block, depending on
the size of the said data.

10. A method of claim 1, wherein contemporaneous with
the allocation of said inode and contemporaneous with the
insertion of the said inode into said file inodes list, a journal
entry is created inside a journaling ring buffer store in non-
volatile RAM.

11. A method of claim 1, including the step of:

reading said data from the said logical file system volume,

comprising the steps of:

invoking the said restricted file read operation of the said
interface to said file system with a reference to said
inode relating to said data; and

reading said private key certificate from said tamper-
proof storage; and

decrypting said superblock with said private key certifi-
cate; and

US 8,667,274 B2

15

locating said allocation group containing said inode
using said reference and said information about said
allocation groups in said superblock; and

decrypting said allocation group header and said alloca-
tion group lockbox with said private key certificate;
and

locating said inode using said reference and said file
inodes list in said allocation group header; and

reading said session key related to said inode from said
allocation group lockbox; and

reading said inode from said allocation group ; and

decrypting said inode with said session key; and

reading all said extents allocated to the said inode; and

decrypting all said extents allocated to said inode with
said session key; and

returning said inode and all said extents allocated to the
said inode to the invoker of the file read operation of
the said interface to said file system;

wherein the all said extents allocated to the said inode,

along with the said inode, is returned in one file opera-
tion.

12. A method of claim 11, wherein the said interface to said
file system only supports the said file read operation and the
said file creation operation.

13. A method of claim 11, including the step of:

providing a periodic task to delete expired said inodes in

said logical file system volume, comprising the steps of:
reading said private key certificate from said tamper-
proof storage; and
decrypting said superblock with said private key certifi-
cate; and
processing each said allocation group in said super-
block, as follows:
decrypting said allocation group header and said allo-
cation group lockbox with said private key certifi-
cate; and
processing each said inode in said file inodes list in
said allocation group header as follows:
reading said inode in said allocation group; and
reading said session key related to said inode from
said allocation group lockbox; and
decrypting said inode with said session key; and
flagging said inode if the current time is greater
than the retention period stored in said inode;
and
inserting all said extents allocated to said inode into
said free extents list if said inode was flagged;
and
removing said inode from said file inodes listif said
inode was flagged; and
inserting said inode into said free inodes list if said
inode was flagged.

14. A method of claim 13, wherein if the said inode is
matched against a deletion holds table, said inode is not
flagged even if the said current time is greater than the said
retention period stored in said inode.

15. A method of claim 1, wherein the said inode and its
related said extents contain only the said data received in the

20

25

30

35

40

45

50

55

16

said restricted file creation operation and are prevented from
modification by the said file system after the said restricted
file creation operation steps are completed.

16. A method for implementing a write once, read many
times (WORM) file system, comprising:

providing a physical file system stored on one or more

physical disks; and

providing an operating system to translate file system calls

into VFS operations and transferring said VFS operation
to the WORM virtual filesystem (VES); and

providing said WORM VFS to manage said physical file

system, comprising the steps of:
intercepting a request for said VFS operation from the
said operating system; and
analyzing said VFS operation, comprising the steps of:
designating the said VFS operation as supported if
said VFS operation is a filesystem mount, filesys-
tem statistics or volume statistics operation; and
designating the said VFS operation as supported if
said VFS operation is a file creation or file reading
operation; and
designating the said VFS operation as unsupported if
said VFS operation is a directory operation; and
designating the said VFS operation as unsupported if
said VFS operation is a file deletion operation or
any operation involving modifying the contents of
a file;
wherein said VFS operation is designated to be either
supported or unsupported; and
notifying said operating system of an error condition if
said VFS operation is designated to be unsupported;
and
executing said VFS operation against said physical file
system and returning the results of said VFS operation
to said operating system, if said VFS operation is
designated to be supported;

whereby files in said WORM file system are prevented

from being modified or deleted due to the lack of support
for file operations providing for file modification and file
deletion; and the lack of support for directory opera-
tions.

17. A method of claim 16, designating the said VFS opera-
tion as supported if said VFS operation is a file attribute
retrieval or file attribute modification operation.

18. A method of claim 16, designating the said VFS opera-
tion as supported if said VFS operation is a file deletion
operation, but only if the retention period for the file has
elapsed.

19. A method of claim 16, wherein the said directory opera-
tion is a directory creation, directory listing, directory dele-
tion or directory modification operation.

20. A method of claim 16, designating the said VFS opera-
tion as unsupported if said VFS operation is not a filesystem
mount, filesystem statistics, volume statistics, file creation or
file reading operation.

#* #* #* #* #*

