Abstract: A device (1) is disclosed for in a vehicle adjusting the rotational damping of a steering device (2) such that the rotational damping varies depending on whether the rotational motion about a steering axis (SA) is caused by a force acting on the steering device (2) of the vehicle or a force acting on the part(s) (3) of the vehicle contacting the ground. The device comprises a steering damper (4) comprising a damming housing (4a) enclosing a main chamber which comprises hydraulic fluid and is partitioned into a first and a second damming chamber (CI, C2), for example by a delimiting part (11, 11') moveable in relation to the damming housing. The damming housing (4a) is fixed on an attaching part (5, 5') that couples together the part(s) (3) of the vehicle contacting the ground with the steering device (2). The present invention is characterized in that the flow of hydraulic fluid in the steering damper partly or wholly is adjusted by a main valve unit (HVU) that is coupled together with both the attaching part (5, 5') and the steering device (2). By means of this coupling the opening area (AI, A2) of the main valve unit is determined by a relative motion between the attaching part (5, 5') and the steering device (2) such that the flow of the hydraulic fluid in a direction from and to the respective damping chamber of the steering damper is controlled depending on the cause of the rotational movement. Furthermore, a steering device adapted to be arranged in a vehicle is disclosed.
STEERING DAMPER WITH ACTIVE ADJUSTMENT OF DAMPING CHARACTERISTICS

Technical field
The present invention relates to an adjustable steering damper intended to be used on a two or four-wheeled vehicle having a steering device comprising a handlebar or a steering wheel rotatable about a steering axis. Preferably the vehicle is a motorcycle, a snowmobile or an ATV. The steering damper is mounted at the steering device and is also coupled together with the frame or chassis by means of an attaching device. The damper is composed of an outer housing in which a main chamber is arranged, the main chamber comprising hydraulic fluid. The main chamber is partitioned into two chambers, for example by means of a delimiting part that is either rotatable about a first end or laterally displaceable in the chamber. The flow of the hydraulic fluid between the chambers is adjusted by a main valve and enables an adjustable damping of the relative motion between the steering device and the frame/chassis.

Background
A steering damper is mounted between the rotating handlebar or steering wheel of a vehicle and its fixed frame or chassis in order to damp shocks and violent movements that propagate from the front wheel(s) to the handlebar. When the steering damper is used on a motorcycle, the steering damper can also solve the problem of wobbling that may occur in a motorcycle at high speeds. Wobbling refers to the front wheel on the motorcycle beginning to oscillate about the steering axis with increasing amplitude. When the steering damper is used on a four-wheeled terrain vehicle, a so called ATV, the steering damper is primarily intended to damp the rapid steering movements caused by, for example, an asymmetric load on the wheels.

It has proven to be a problem to separate desired steering movements from undesired shocks caused by unevenness of the ground in a steering damper. In order to not create a delay in the steering movement when the
driver turns the handlebar, it is desirable that this desired rotational movement is undamped. At the same time undesired rotational movements caused by shocks from the ground should be damped as much as possible to minimize the risk of the handlebar being stricken from the hands of the driver. Thus, it is desirable to provide a steering damper that actively adapts the damping on basis of the cause of the movement.

In EP1 24801 3 the problem is solved by a steering damper that by means of electronics senses and controls the damping on the handlebar depending on whether the movement is caused by the driver or the ground.

A steering damper that solves this problem by means of a principally mechanical solution is not known.

Summary

It is with respect to the above considerations and others that the present invention has been made. The present invention seeks to mitigate, alleviate or eliminate one or more of the above-mentioned deficiencies and disadvantages singly or in combination. In particular, the inventor has realized that it would be desirable to achieve a device that enables separating the damping of desired steering movements from undesired shocks caused by unevenness of the ground in a steering damper. The inventor has further realized that it would be desirable to achieve a device that enables separating the damping of desired steering movements from undesired shocks caused by unevenness of the ground in a steering damper in a manner that does not require electronic components.

It is also desirable that the damper obtains a damping characteristics that is the same for different individuals. Furthermore, the final product should be relatively inexpensive and uncomplicated to manufacture.

To achieve this a device and a steering device having the features as defined in the independent claims are provided. Further advantageous embodiments of the present invention are defined in the dependent claims.

The present invention relates to a device for adjusting the rotational damping of a steering device in a vehicle such that the rotational damping varies depending on whether the rotational movement about a steering axis is
caused by a force acting on the steering device of the vehicle or by a force acting on the part(s) of the vehicle contacting the ground. By steering device it is referred to the handlebar, steering wheel or the like of the vehicle, and by parts of the vehicle contacting the ground it is referred to wheels, runners or similar arrangements that constitute the vehicle's points of contact against the ground. The present invention further relates to a steering device adapted to be arranged in a vehicle.

The device and steering device according to the present invention are for example intended to be used on a one, two, three or four-wheeled vehicle. According to a first aspect of the present invention, there is provided a device intended for a vehicle. The device comprises a steering device rotatable about a steering axis for adjusting the direction of the part(s) of the vehicle arranged for contacting ground, an attaching part that couples together the part(s) arranged for contacting ground with the steering device, and a steering damper. The attaching part rotates with the steering device and with the damping housing of the steering damper that encloses a main damping chamber. The main damping chamber comprises hydraulic fluid and is partitioned into a first and a second damping chamber, wherein flow of hydraulic fluid between the damping chambers of the steering damper is arranged to be adjusted by means of a main valve unit, mechanically coupled together with both the attaching part and the steering device, such as to adjust the rotational damping of the steering device. The amount of hydraulic fluid flowing through the main valve unit is determined by a relative movement between the attaching part and the steering device.

According to a second aspect of the present invention, there is provided a device intended for a vehicle. The device comprises a steering device rotatable about a steering axis for adjusting the direction of the part(s) of the vehicle arranged for contacting ground, an attaching part that couples together the part(s) arranged for contacting ground with the steering device, and a steering damper. The attaching part rotates with the steering device and with a delimiting part of the steering damper that partitions a main damping chamber which comprises hydraulic fluid into a first and a second damping chamber, wherein flow of hydraulic fluid between the damping
chambers of the steering damper is arranged to be adjusted by means of a main valve unit, mechanically coupled together with both the attaching part and the steering device, such as to adjust the rotational damping of the steering device. The amount of hydraulic fluid flowing through the main valve unit is determined by a relative movement between the attaching part and the steering device. In other words, by means of the main valve unit being coupled together with both the attaching part and the steering device, an opening area of the main valve unit may be determined by a relative motion between the attaching part and the steering device such that the flow of the hydraulic fluid in a direction from and to the respective damping chamber of the steering damper is controlled depending on the cause of the rotational movement. By such a configuration there may be enabled means for adjusting the rotational damping of a steering device in a vehicle, such that the rotational damping varies depending on whether the rotational movement about the steering axis is caused by a force acting on the steering device of the vehicle or by a force acting on the part(s) of the vehicle contacting the ground. In other words, the device according to the first and second aspects of the present invention may enable separating the damping of desired steering movements from undesired shocks caused by unevenness of the ground in a steering damper. This may be achieved by means of a substantially or completely mechanical arrangement. Thus, electronic components may not be required for achieving advantages of the present invention.

Thus, according to an aspect of the invention, there is provided a device intended for a vehicle comprising: a steering device rotatable about a steering axis for adjusting the direction of the part(s) of the vehicle arranged for contacting ground; a steering damper comprising a damping housing that encloses a main damping chamber which comprises hydraulic fluid and is partitioned into a first damping chamber and a second damping chamber by a delimiting part that is arranged in the main damping chamber and movable with respect to the damping housing; an attaching part that couples together the part(s) arranged for contacting ground with the steering device and a steering damper, wherein the attaching part rotates with the steering device.
and any one of the damping housing and the delimiting part; and a main valve unit (HVU) adapted to adjust a flow of hydraulic fluid between the damping chambers of the steering damper, said main valve unit (HVU) being mechanically coupled together with both the attaching part and the steering device, such as to adjust the rotational damping of the steering device, and wherein the amount of hydraulic fluid flowing through the main valve unit (HVU) is determined by a relative movement between said attaching part and the steering device.

According to a third aspect of the present invention, there is provided a steering damper adapted to be arranged in a vehicle comprising a steering device rotatable about a steering axis for adjusting the direction of the part(s) of the vehicle arranged for contacting ground, and an attaching part that couples together the part(s) arranged for contacting ground with the steering device. The steering damper comprises a damping housing and a main damping chamber defined by the damping housing. The main damping chamber comprises hydraulic fluid and is partitioned into a first and a second damping chamber. The steering device is mechanically connectable to the attaching part to enable rotation of the attaching part with the steering device and with the damping housing. A main valve unit is adapted to adjust a flow of hydraulic fluid between the damping chambers such as to adjust the rotational damping of the steering device, wherein the main valve unit can be mechanically coupled together with both the attaching part and the steering device. The steering damper is configured such that a relative movement between the attaching part and the steering device determines an amount of hydraulic fluid flowing through the main valve unit.

According to a fourth aspect of the present invention, there is provided a steering damper adapted to be arranged in a vehicle comprising a steering device rotatable about a steering axis for adjusting the direction of the part(s) of the vehicle arranged for contacting ground, and an attaching part that couples together the part(s) arranged for contacting ground with the steering device. The steering damper comprises a damping housing and a main damping chamber defined by the damping housing. The main damping chamber comprises hydraulic fluid and is partitioned into a first and a second
damping chamber by a delimiting part. The steering device is mechanically
connectable to the attaching part to enable rotation of the attaching part with
the steering device and with the delimiting part. A main valve unit is adapted
to adjust a flow of hydraulic fluid between the damping chambers such as to
adjust the rotational damping of the steering device, wherein the main valve
unit can be mechanically coupled together with both the attaching part and
the steering device. The steering damper is configured such that a relative
movement between the attaching part and the steering device determines an
amount of hydraulic fluid flowing through the main valve unit. In this manner,
the amount of hydraulic fluid flowing through the main valve unit is determined
by a relative movement between the attaching part and the steering device.
Thus, according to an aspect of the invention, there is provided a steering
damper adapted to be arranged in a vehicle comprising a steering device
rotatable about a steering axis (SA) for adjusting the direction of the part(s) of
the vehicle arranged for contacting ground, and an attaching part that
couples together the part(s) arranged for contacting ground with the steering
device, the steering damper comprising: a main damping chamber defined by
a damping housing, said main damping chamber comprising hydraulic fluid
and being partitioned into a first and a second damping chamber; wherein
said steering device is mechanically connectable to said attaching part to
enable rotation of said attaching part with said steering device and with any
one of said damping housing and said delimiting part, a main valve unit (HVU)
is adapted to adjust a flow of hydraulic fluid between the damping chambers
such as to adjust the rotational damping of the steering device, wherein said
main valve unit (HVU) can be mechanically coupled together with both the
attaching part and the steering device, and wherein a relative movement
between said attaching part and the steering device determines an amount of
hydraulic fluid flowing through the main valve unit (HVU).

The main damping chamber being defined by the damping housing
may for example refer to an arrangement wherein the damping housing
encloses the main damping chamber.

The main valve unit may be arranged integral with the steering device.
By a configuration in accordance with the second, third and fourth aspects of the present invention same or similar advantages as the advantages achieved by the device according to the first aspect may be achieved wholly or partly.

Advantageous exemplifying configurations for realizing the present invention are described in the following.

The steering device may be elastically coupled together with the attaching part. The relative movement between the attaching part and the steering device may according to one example occur only during a predetermined initial rotational movement of the steering device from a base position of the steering device.

It is understood that relative rotational movement between the attaching part and the steering device refers to relative movement about the steering axis or about another axis substantially in parallel to the steering axis. The main valve unit may comprise a first and a second main valve.

The device or the steering device may comprise a first main valve part and a second main valve part arranged in the first main valve, and a third main valve part and a fourth main valve part arranged in the second main valve. The first main valve part may be coupled together with the steering device and the second main valve part may be coupled together with the damping housing of the steering damper. The third main valve part may be coupled together with the steering device and the fourth main valve part may be coupled together with the damping housing of the steering damper. The first and the second, and the third and the fourth main valve parts, respectively, may be moveable with respect to each other such that they form a first and a second variable opening area through which the hydraulic fluid can flow.

The opening area of the first main valve may decrease and the opening area of the second main valve may increase when the positions of the first and the second, and the third and the fourth main valve parts, respectively, relatively each other are determined by a rotational motion in a first direction of the steering device or by a rotational motion in a second direction of the housing of the steering device.
The opening area of the first main valve may increase and the opening area of the second main valve may decrease when the positions of the first and the second, and the third and the fourth main valve parts, respectively, relatively each other are determined by a rotational motion in a second direction of the steering device or by a rotational motion in a first direction of the housing of the steering device.

The opening area of the first main valve may increase and the opening area of the second main valve may decrease when the positions of the first and the second, and the third and the fourth main valve parts, respectively, relatively each other are determined by a rotational motion in a second direction of the steering device or by a rotational motion in a first direction of the delimiting part of the steering damper.

The first and third main valve parts of the first and second main valve may move synchronously in relation to each other such that the opening area of the first main valve decreases substantially as much as the opening area of the second main valve increases, and vice versa.

The device or the steering device may comprise a first driver and a second driver, wherein the first main valve part may be coupled together with the steering device via the first driver and the third main valve part may be coupled together with the steering device via the second driver.

The first driver may be coupled together with the first main valve part by means of a first link and the second driver may be coupled together with the third main valve part by means of a second link, where the links are hinged in both ends.

The device or the steering device may comprise at least one spring element, wherein the first driver may be pressed against the first main valve part and the second driver may be pressed against the third main valve part by means of the at least one spring element.

The at least one spring element may be located between the first main valve part and the third main valve part such that the at least one spring element creates a pressing force acting on both valve parts.

The device may furthermore comprise a valve actuator being coupled together with the steering device for actuating the first and second main
valves during relative movement between the steering device and the attaching part, thereby altering a first and a second variable opening area of the main valve. In other words, the valve actuator is moved in response to movement of the steering device when the valve actuator is coupled to the steering device. The valve actuator may refer to a pin, dowel, bolt or the like. The valve actuator may be coupled to the steering device by means of direct connection or may be coupled to the steering device via an intermediate element which may be attachment means arranged for clamping the steering device to the attaching part. The valve actuator may also refer to an extending portion of the steering device or an extending portion of the intermediate element being coupled to the steering device. Put differently, the valve actuator may be a mechanical element intended to affect the main valve unit upon relative movement between the steering device and the attaching part, i.e. when the steering device is turned or when the attaching part is rotated by force acting on the part(s) of the vehicle contacting the ground.

The device may furthermore comprise a valve actuator being coupled together with the attaching part for actuating the first and second main valves during relative movement between the steering device and the attaching part, thereby altering a first and a second variable opening area of the main valve. In other words, the valve actuator is moved in response to movement of the attaching part when the valve actuator is coupled to the attaching part.

Put differently, the valve actuator may be a mechanical element intended to affect the main valve unit, in the sense that the hydraulic fluid flowing through the main valve unit is affected, upon relative movement between the steering device and the attaching part, i.e. when the steering device is turned or when the attaching part is rotated by force acting on the part(s) of the vehicle contacting the ground.

The opening area of the first main valve may decrease and the opening area of the second main valve may increase when the position of the valve actuator is determined by a rotational motion in a first direction of the steering device or by a rotational motion in a second direction of the attaching part. In other words, when the steering device is rotated in a first direction or when the attaching part is rotated in the opposite direction, the opening area
of the first valve may decrease and the opening area of the second valve may increase.

The opening area of the first main valve may increase and the opening area of the second main valve may decrease when the position of the valve actuator is determined by a rotational motion in a second direction of the steering device or by a rotational motion in a first direction of the attaching part. In other words, when the steering device is rotated in a second direction or when the attaching part is rotated in the opposite direction, the opening area of the first valve may increase and the opening area of the second valve may decrease. The device or the steering device may comprise at least one holding-up means arranged between the attaching part and the steering device, the at least one holding-up means being arranged to determine the magnitude of the initial rotational motion.

The steering device may be coupled together with the attaching part via a torsion bar for allowing relative rotational movement between the steering device and the attaching part about a centre axis of the torsion bar. It is understood that torsion bar refers to a metal element being substantially elastically twistable and that acts as a spring. The torsion bar may be arranged in parallel to the steering axis.

The centre axis of the torsion bar may be arranged at a distance from the steering axis. In other words, the steering device rotates relative to the attaching part about the centre axis of the torsion bar which is arranged at a distance from the steering axis.

The device may furthermore comprise at least two mechanical stops for limiting said relative movement between the attaching part and the steering device. Hereby it may be possible to avoid excessive rotational movement between the steering device and the attaching part which otherwise could result in a damages to the torsion bar. The two mechanical stops may refer to two mechanical elements such as two pins extending from the attaching part, thereby limiting the relative rotational movement. In other embodiments, the two mechanical stops may refer to mechanical devices involving at least two parts. The mechanical stops may interact with other portions of the attaching part or the steering device. The mechanical stops
may refer to portions of an intermediate element such as attachning means for clamping the steering wheel to the attaching part.

The two mechanical stops may comprise at least one element slideably arranged in an opening between two surfaces portions thereof, such that the element is moveable between said surface portions in order to limit said relative movement to rotational movement. Hereby it may be possible to avoid damaging the torsion bar if for example force is applied to the steering device in other directions than in the rotational direction. One such case may be during a motorcycle crash or during rough offroad driving. In one embodiment, an element is attached to one of the steering device and the attaching part and an opening is arranged in the other one of the steering device and the attaching part, in which opening the element is slidably arranged. The opening may be a hole, a slot, an aperture or the like. The opening may have dimensions relative to the element to achieve a play such that slideable operation is achieved. The element may have geometric properties such that axial relative movement between the steering device and the attaching part is limited. For example, the element may be shaped substantially as a bolt or screw, i.e. having a larger diameter in its one end. The attaching part may for example comprise a fork crown arranged at the front fork arrangement of a motorcycle.

The attaching part may comprise a cylindrical unit arranged around a steering connecting rod through which the steering axis runs. The attaching part may be divided into an upper and a lower cylindrical part coupled together by means of an elastic holding-up means which is arranged to determine the magnitude of the initial rotational motion.

The device or the steering device may comprise a delimiting part arranged in the main damping chamber, which delimiting part is moveable with respect to the damping housing.

The steering damper may be a linear damping device in which the delimiting part is a piston attached to a piston rod for reciprocal movement within said damping chamber. The steering damper may be arranged at least partly inside the attaching part for achieving a compact installation. The piston
rod may be hollow in order to achieve hydraulic fluid flow passages to the damping chambers.

The steering damper may be a rotational damping device, in which the delimiting part is a wing attached to a lever for reciprocal movement within said damping chamber. It is understood that lever refers to a mechanical element arranged for transferring rotational force to and from the wing. The rotational damping device may be of the type commonly referred to as a wing damper.

According to a fifth aspect of the present invention, there is provided a crown device adapted to be arranged in a vehicle comprising a steering device rotatable about a steering axis for adjusting the direction of the part(s) of the vehicle arranged for contacting ground. The crown device comprises a steering damper, an attaching part and a main valve unit. The steering damper comprises a damping housing that encloses a main damping chamber which comprises hydraulic fluid and is partitioned into a first damping chamber and a second damping chamber by a delimiting part that is arranged in the main damping chamber and moveable with respect to the damping housing. The attaching part is adapted to couple together the part(s) arranged for contacting ground with the steering device when the crown device is arranged in the vehicle. The attaching part is arranged to rotate with the steering device when the crown device is arranged in the vehicle. The main valve unit adapted to adjust a flow of hydraulic fluid between the damping chambers of the steering damper when the crown device is arranged in the vehicle. The main valve unit is coupled together with both the attaching part and the steering device when the crown device is arranged in the vehicle such as to adjust the rotational damping of the steering device. The amount of hydraulic fluid flowing through the main valve unit is determined by a relative movement between the attaching part and the steering device.

Thus, by allowing the steering device to move relative the attachment part, a relative movement is prodvided. Furthermore, by monitoring or measuring that relative movement between the steering device and the attachment part, the rotational damping of a steering device is adjustable
such that the rotational damping varies depending on whether the rotational movement about a steering axis is caused by a force acting on the steering device of the vehicle or by a force acting on the part(s) of the vehicle contacting the ground.

By a configuration in accordance with the fifth aspect of the present invention same or similar advantages as the advantages achieved by the device according to the first aspect may be achieved wholly or partly.

Advantageous exemplifying configurations for realizing the present invention are described in the following.

The crown device may comprise attachment means adapted to couple the steering device together with the attaching part when the crown device is arranged in the vehicle, wherein the attachment means is arranged to allow relative movement between the attaching part and the steering device when the crown device is arranged in the vehicle. In other words, the attachment means may be an intermediate element between the attaching part and the steering device allowing relative movement between the attaching part and the steering device. The relative movement may be realized between the attaching part and the attachment means, i.e. the steering device is fixed to the attachment means. Alternatively, the relative movement may be realized between the steering device and the attachment means, i.e. the attaching part is fixed to the attachment means.

The attachment means may be adapted to elastically couple the steering device together with the attaching part when the crown device is arranged in the vehicle, wherein the attachment means is arranged to elastically allow relative movement between the attaching part and the steering device when the crown device is arranged in the vehicle.

The main valve unit may be mechanically coupled together with both the attaching part and the steering device such as to adjust the rotational damping of the steering device. Hereby a mechanical crown device may be achieved which may not require electronics to achieve actuation of the main valve unit.

The crown device may furthermore comprise an electronic sensor adapted to measure said relative movement between the attaching part and
the steering device. Hereby the relative movement is measured and the steering damper may be controlled in a customized manner by for example and electronic control unit (ECU). Using an electronic sensor may also be advantageous compared to a mechanical actuating mechanism from a friction

5 perspective.

The electronic sensor may be selected from a group of sensors comprising a potentiometer, a hall effect sensor, and an optical sensor.

The electronic sensor may be arranged to measure the magnitude and the direction of the relative movement between the attaching part and the steering device when the crown device is arranged in the vehicle. This may be advantageous because the additional information provided by the electronic sensor, i.e. magnitude and direction may be used to achieve improved control of the steering damper. Further objects and advantages of the various embodiments of the present invention will be described below by means of exemplifying embodiments.

Brief description of the drawings

Exemplifying embodiments of the invention will be described below with reference to the accompanying drawings, in which:

20 Fig. 1 is a view of a first embodiment of the present invention where the invention is arranged on a motorcycle;

Fig. 2 is a sectional view of one of the attachment means;
Figs. 3a and 3b show holding-up means arranged in the attachment means;

25 Fig. 4 is a sectional view through a first type of steering damper;
Fig. 5 is a sectional view through a second type of steering damper;
Fig. 6 shows the valve arrangement according to a first embodiment;
Fig. 7 shows the valve arrangement according to a second embodiment;

30 Fig. 8a shows the function of the steering damper when the vehicle is driven straight forward and no disturbances act on the steering means;
Fig. 8b shows the function of the steering damper when the driver actively steers to the right or when a disturbance acts on the steering means from the left;

Fig. 8c shows the function of the steering damper when the driver actively steers to the left or when a disturbance acts on the steering means from the right;

Fig. 9 is a view of the steering damper according to the present invention arranged on a four-wheeled ATV; and

Fig. 10 is a sectional view of the steering damper mounted on an ATV.

Fig. 11 is a view of an embodiment of the device comprising a torsion bar.

Fig. 12 is a sectional view of the steering damper in Fig. 11.

Fig. 13 is a view of an embodiment of the device comprising a linear steering damper.

Fig. 14 is a view of another embodiment of the device comprising a linear steering damper. In the accompanying drawings, the same reference numerals denote the same or similar elements throughout the views.

Detailed description

The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplifying embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided by way of example so that this disclosure will convey the scope of the invention to those skilled in the art. Furthermore, like numbers refer to like or similar elements throughout.

Fig. 1 is a view of a first embodiment of the present invention where the invention is arranged on a vehicle in the form of a motorcycle having two parts 3 contacting the ground - one front wheel (not shown) coupled together with the chassis by means of a front fork having two fork legs 3a and a back wheel attached in the chassis by means of a swing arm (not shown).

According to the idea of the invention three wheels on this type of vehicle is
also possible. The joining between the front fork legs 3a of the motorcycle and the motorcycle frame's front chassis 6 takes place by means of one or several attaching parts 5 which in this case have the shape of fork crowns 5a, 5b. The fork crowns 5a, 5b are rotatable about a steering axis SA centered in a steering column 6 extending through both of the fork crowns 5a, 5b. The front wheel (not shown) of the motorcycle is located between the right fork leg and the symmetrically located left fork leg 3a so that rotation of front wheel, fork crowns 5a, 5b and fork legs 3a takes place about the steering axis SA. A steering device in the form of a handlebar 2 is attached in the upper fork crown 5a by means of a first 7a and second 7b attachment means. The attachment means 7a, 7b comprise two parts; an upper 7a1, 7b1 and a lower 7a2, 7b2, between which the handlebar 2 is clamped.

In addition to a handlebar, a steering wheel can also be used as steering device 2 for adjusting the direction of the vehicle's part(s) 3 contacting the ground. In Figs. 1 and 8a-8c the rotational movement of the steering device is shown by the arrows marked with ω_1, ω^\wedge. When the vehicle is advanced straight forward, the steering device can be thought of to be in a base position in which the handlebar or the steering wheel is set such that the vehicle's part(s) 3 contacting the ground are parallel with the direction of travel when no forces act on the wheel.

In Fig. 1 a steering damper 4 is mounted below the handlebar 2 between the attachment means 7a, 7b and attached to the upper 5a of the fork crowns 5. The steering damper 4 is coupled together with the lower part 7a2, 7b2 of the respective attachment means by means of a first and a second driver 11a, 11b. The steering damper 4 can also be mounted above the handlebar or at another position in proximity of the handlebar.

In Fig. 2 there is shown a sectional view of one of the attachment means 7a. Preferably both of the attachment means 7a, 7b are constructed in the same manner. A third attachment part 9a, 9b is arranged in the attaching part 5 which couples together the attachment means 7a, 7b and the attaching part 5. Between the lower attachments means part 7a2, 7b2 and the third attachment part 9a, 9b holding-up means 10a, 10b are arranged. These holding-up means 10a, 10b are constructed such that they are elastic in the
direction of rotation such that the lower attachment means part 7a2, 7b2 can rotate with an initial rotational movement with respect to the third attachment part 9a, 9b. The third attachment part 9a, 9b can be omitted and then the lower attachment means part 7a2, 7b2 is instead elastically attached directly in the attaching part 5 via the holding up-means 10a, 10b. Drivers 8a, 8b are extending from the lower attachment part 7a2, 7b2, which drivers 8a, 8b may be made of the same material or be a separate unit attached in the lower attachment part.

The holding-up means 10a, 10b can also be constructed such that they are more elastic when rotated compared to when bent. The holding-up means 10a, 10b can in that case be arranged in the attachment means in the manner shown in Fig. 3a. The holding-up means in that case have a waist, meaning that the central portion of the holding-up means is tapered. The tapering preferably is radial symmetric around the whole holding-up means, Fig. 3a, or mainly in a lateral direction, Fig. 3b, such that the pliancy of the holding-up means depends on how the holding-up means are mounted in the attachment means 7a, 7b. Thus, the lower attachment means part 7a2, 7b2, with which the handlebar 2 is coupled together, can to a larger degree be moved rotationally compared to horizontally with respect to the third attachment part 9a, 9b. In other words, the attachments means part 7a2, 7b2 and the third attachment part 9a, 9b may rotate in relation to each other within an initial rotational movement, but when the driver causes a force on the handlebar 2 in the direction of movement of the vehicle the coupling is mainly inelastic. Because the steering device 2 is elastically coupled together with the attaching part 5, rotation of the steering device 2 about the steering axis SA begins only after a predetermined initial rotational movement from the base position of the steering device has taken place.

A first and a second type of steering damper having an inner moveable delimiting part 11 are described in more detail in Figs. 4 and 5.

Fig. 4 is a sectional view through a first type of steering damper, a rotational steering damper, comprising an outer damping housing 4a enclosing a main damping chamber which comprises hydraulic fluid and is partitioned into two damping chambers C1, C2 by means of a delimiting part
11 in the form of a wing 11'. The wing 11' is rotatable about the steering axis SA at a first wing end. The main damping chamber may be arranged to be filled with hydraulic fluid. The hydraulic fluid preferably comprises oil, possibly comprising various additives. The outer surface of the wing end is rotating in a custom-made cut-out in the housing 4a and in the first wing end there is also attached a lever 12. The lever 12 rotates with the wing 11' in relation to the outer housing 4a and it is according to known techniques intended to couple together the steering damper 4, which rotates in relation to the steering device 2, with the frame/chassis 6 of the vehicle. By means of this fixture the movement of the attaching part 5 in the damping chamber mainly becomes related to the movement of the handlebar 2 and the wing 11' in relation to the frame 6 of the vehicle. It is also possible to attach the housing 4a of the steering damper in the chassis/frame 6 and couple together the wing 11' with the attaching part 5, which rotates in relation to the handlebar 2, and achieve the same function.

Fig. 5 shows a second type of steering damper, a linear steering damper, comprising an outer, cylindrically shaped housing 4a" partitioned into two damping chambers C1, C2 by means of a delimiting part in the form of a piston 11" attached to a piston rod 13. The piston rod 13 may either extend through the whole of the cylindrically shaped housing 4a" or be arranged on a side of the piston 11". The steering damper housing 4a" is coupled together with any of the attaching parts 5 rotating about the steering axis SA together with the handlebar 2 and the piston bar 13 is coupled together with the chassis/frame 6, or vice versa.

In both embodiments in Figs. 4 and 5 the relative motion between the parts rotating about the steering axis SA and the chassis is damped by the delimiting part 11 moving in relation to the steering damper housing 4 and pressing hydraulic fluid through one or several channels 14. The channel 14 is preferably arranged as a hole in the damping housing 4a and delimited by a valve arrangement 15.

The valve arrangement 15 is shown in detail in Fig. 6 and comprises at least one non-return valve 16, in this embodiment two non-return valves 16a, 16b, and a main valve unit HVU comprising one or several main valves 17, 18
mechanically coupled together with both the attaching part 5 and the steering device 2.

The first main valve comprises a first main valve part 17a and a second main valve part 17b. The first main valve part 17a is closely coupled together with the steering device 2 via a first link 19a to the first driver 8a and the second main valve part 17b is closely coupled together with the attaching part 5 via the damping housing 4a of the steering damper. The second main valve comprises a third main valve part 18a and a fourth main valve part 18b. The third main valve part 18a is via a second link closely coupled together with the steering device by means of the second driver 8b and the fourth main valve part 18b is closely coupled together with the attaching part 5 via the damping housing 4a of the steering damper as well. The first and the second 17a, 17b and the third and the fourth main valve parts 18a, 18b, respectively, move relatively to each other during the initial rotational movement. This creates a first and a second variable opening area A1, A2 through which the hydraulic fluid can flow when a pressure difference between the damping chambers C1, C2 is present and when no disturbance acts in a direction that is reverse to the intentional rotational movement of the steering means. By means of coordinated effect on the main valves' first and third valve parts 17a, 18a by respective adjustment devices, the opening area A1 of the first main valve 17 decreases while the opening area A2 of the second main valve 18 at the same time increases, and vice versa. An adjustment in the opening area results in that control of the flow of hydraulic fluid from and to the respective damping chamber C1, C2 of the steering damper is enabled and eventually completely flowing freely or being brought to a stop when the initial rotation has been finished.

In Fig. 7 there is shown an alternative embodiment of the valve arrangement 15. In this case the link 19a, 19b that couples together the drivers 8a, 8b and the first and the third main valve part 17a, 18a has been removed and replaced by one or several spring elements 22. The end of the first and the third main valve part 17a, 18a facing the respective driver 8a, 8b has a semispherical configuration in order to be able to accommodate certain lateral movements. The spring element 22 is located between the first main
valve part 17a and the third main valve part 18a so that the spring element creates a pressing force on both of the valve parts 17a, 18a and ensures that the first and the third main valve part 17a, 18a is pressed against the driver 8a, 8b with no play. Other than that, the valve arrangement in Fig. 7 is substantially identical to the valve arrangement in Fig. 6.

In Figs. 8a-8c the function of the steering damper is described in more detail. In all of the figures the damping chambers C1, C2 are hydraulically coupled together by means of the damping channel 14 and the flow between the chambers is delimited by the main valves HPV, i.e. 17, 18, and blocked by non-return valves 16a, 16b. The non-return valves 16a, 16b are positioned in series with the main valves in the damping channel 15 and prevent the flow in the respective flow direction Q1, Q2, which is determined by the rotational direction of the steering damper. According to a known construction, a pressurization reservoir 21 can be positioned in series with the main valves and the non-return valves. The pressurization reservoir ensures that at least a base pressure always is present in the damping chambers C1, C2 and that volume changes in the hydraulic fluid can be absorbed. The pressurization reservoir 21 is located such that if there is a higher pressure in the pressurization reservoir than in the damping chambers the reservoir 21 is always coupled together with respective damping chambers via the non-return valves 20a, 20b.

Fig. 8a shows the function of the steering damper when the vehicle is driven straight forward and no disturbances are acting on the steering means 2, that are neither caused by the driver nor the configuration of the ground.

The moveable delimiting part 11 of the steering damper is located such that the damping chambers are basically equally large. The opening between the first and the second valve part is open and a flow of hydraulic fluid can run between the damping chambers C1, C2 via the main valves 17, 18.

Fig. 8b shows the function of the steering damper when the driver is actively steering to the right, i.e. in the first direction ω1. The damping housing 4a is turned with the handlebar 2 to the left in the figure in relation to the delimiting part 11 so that the volume of the second damping chamber C2 decreases. The possible initial rotation between the handlebar 2 and the
attaching part 5 results in that the drivers 8a, 8b affect the main valves such that the first main valve 17 closes and the second main valve 18 opens. The hydraulic fluid flows between the damping chambers C2 and C1 in the direction Q1, also see the black/white arrow, via the channel 14 and through the completely open opening between the third and fourth main valve parts 18a, 18b of the second main valve 18. When a disturbance S1 that causes the wheel to turn to the left acts on the wheel, the flow Q2 of hydraulic fluid through the channel 14, also see the completely black arrow, is stopped both by the completely closed first main valve 17 and the first non-return valve 16a.

Fig. 8c shows the function of the steering damper when the driver is actively steering to the left or when a disturbance acts on the steering means from the right, i.e. in the second direction \(\omega_{2} \). The damping housing 4a is turned with the handlebar 2 to the right in the figure in relation to the delimiting part 11 so that the volume of the first damping chamber C1 decreases. In this case, the initial rotation results in that the drivers 8a, 8b affect the main valves such that the second main valve 18 closes and the first main valve 17 opens. The hydraulic fluid flows between the damping chambers C1 and C2 in the direction Q2, see also the completely black arrow, via the channel 14 and through the completely open opening between the first and second main valve parts 17a, 17b of the first main valve 17.

When a disturbance S2 that causes the wheel to turn to the right acts on the wheel, the flow Q1 of hydraulic fluid through the channel 14, also see the black/white arrow, is stopped both by the completely closed second main valve 18 and the second non-return valve 16b.

When the first and the second main valve 17, 18, respectively, is open, i.e. when the turning motion of the handlebar is caused by the driver, the hydraulic fluid basically flows freely between the damping chambers with no restriction and no damping of the steering motion takes place but the vehicle reacts just as quickly as if no steering damper were mounted. If a certain amount of damping is also desired when steering it may be achieved by an adjustment of the position of the first and second main valve parts 17a, 17b; 18a, 18b relatively each other. When shocks and impacts causes the wheel to
be turned against the driver's will the motion of the handlebar is blocked or strongly damped in the undesired turning direction as the main valves 17, 18 in that direction are closed and the flow between the damping chambers is prevented.

Fig. 9 shows the location of the steering damper on a four-wheeled ATV. In this case the damping housing is fixed to an attaching part 5 in the form of a cylinder 5' arranged concentrically around the steering axis. The cylinder 5' is divided into an upper and a lower part 5a', 5b' coupled together by means of an elastic holding-up means 10. The upper cylinder part 5a' is coupled together with the steering device 2, and the lower cylinder part 5b' is coupled together with the wheels 3 via one or several wheel suspension parts. In this embodiment the steering damper 4 is mounted in the lower cylinder part 5b' but the steering damper can also be mounted in the upper cylinder part 5a'. The steering damper housing 4a is fixed to a flange 19 protruding from the cylinder part, and hence moves together with the lower cylinder part 5b'. In this case, the delimiting part 8 that is moveable in the damping housing is coupled together with the fixed chassis parts 6 of the vehicle via the lever 12 so that the delimiting part 8 and the damping housing 4a move in relation to each other.

Of course, a linear steering damper such as the one shown in Fig. 10 can also be used in ATV applications.

Fig. 11 shows a view of an embodiment of the present invention suitable for use on for example a motorcycle. The attaching part 105 in this embodiment has the shape of a fork crown. The fork crown is of the triple clamp type which means that two front forks are attachable to the fork crown at either ends and a steering column is attachable in between said front forks. The fork crown 105 is rotatable about a steering axis SA, coinciding with the axis of a steering column when attached thereto. A steering device in the form of a handlebar is attachable in the fork crown 105 by means of a first attachment means 107a and second attachment means 107b. The attachment means 107a, 107b comprise two parts; an upper 107a1, 107b1 and a lower 107a2, 107b2, between which a handlebar is clampable. The attachment means 107a, 107b are coupled together via bars 107c, 107d. The
first bar, 107c is divided into two parts, 107c1, 107c2 between which a torsion bar 125 is disposed. The torsion bar 125 is attached in its upper end to the first bar 107c and it its lower end to the fork crown 105. The attachment means 107a, 107b are attached to the fork crown 105 via two elements 126a, 126b. The elements are slidably arranged in openings in the fork crown between two end surfaces of the openings, i.e. the elements are slidably arranged between two end positions defined by these end surfaces. The openings are larger in size relative to the elements, thereby allowing a slidable operation. In other embodiments, the elements are arranged in slots or holes in the fork crown. The elements are attached to the fork crown and the attaching part. Thereby, the attachment means are limited to rotational movement relative to the fork crown. On top of the fork crown 105 adjacent to the attachment means 107a, 107b, a main valve unit 115 is arranged.

Fig. 12 shows a sectional view of the device in Fig. 11. The sectional view is shown along a cross section of the main valve unit 115 and the steering damper 104. The main valve unit 115 is arranged on top of the fork crown 105 and the steering damper 104 is arranged substantially in parallel with the main valve unit 115 mostly inside the fork crown 105, extending partly through the bottom of the fork crown. The main valve unit 115 comprises a first and a second valve unit 117, 118. A valve actuator 130, being coupled to the attachment means 107a, 107b via the bar 107d, extends into the main valve unit 115. The steering damper 104 is of the linear damping type comprising a piston 111 partitioning the interior of the damping housing 104a, i.e. the damping chamber, into two damping chambers C1 and C2. The piston 11 is attached to a piston rod 113 which extends through the steering damper 104. The piston rod 113 is attached in both ends to the fork crown. In other embodiments, the piston rod may be attached in one end only.

Fig 13 shows a view from beneath of an embodiment of the present invention. The attaching part is in the form of a fork crown 105. The housing of the linear steering damper 104 is attached to the fork crown, and the piston
rod 113 is coupled via a link bar 140 to the rotating link 127c which in turn is attachable to the frame of the vehicle when mounted thereto.

Fig. 14 shows a view from beneath of an embodiment of the present invention. The attaching part is in the form of a fork crown 105. The housing of the linear steering damper 104 is coupled via a link bar 140 to the rotating link 127c which in turn is attachable to the frame of the vehicle via the links 127a, 127b when mounted thereto. The piston rod 113 extends through the steering damper 104, and the piston rod is attached in both ends to the fork crown 105.

In conclusion, a device is disclosed for in a vehicle adjusting the rotational damping of a steering device such that the rotational damping varies depending on whether the rotational motion about a steering axis is caused by a force acting on the steering device of the vehicle or a force acting on the part(s) of the vehicle contacting the ground. The device comprises a steering damper comprising a damping housing enclosing a main chamber which comprises hydraulic fluid and is partitioned into a first and a second damping chamber, for example by a delimiting part moveable in relation to the damping housing. The damping housing is fixed on an attaching part that couples together the part(s) of the vehicle contacting the ground with the steering device. The present invention is characterized in that the flow of hydraulic fluid in the steering damper partly or wholly is adjusted by a main valve unit that is coupled together with both the attaching part and the steering device. By means of this coupling the opening area of the main valve unit is determined by a relative motion between the attaching part and the steering device such that the flow of the hydraulic fluid in a direction from and to the respective damping chamber of the steering damper is controlled depending on the cause of the rotational movement.

Although exemplary embodiments of the present invention have been described herein, it should be apparent to those having ordinary skill in the art that a number of changes, modifications or alterations to the invention as described herein may be made. Thus, the above description of the various
embodiments of the present invention and the accompanying drawings are to be regarded as non-limiting examples of the invention and the scope of protection is defined by the appended claims. Any reference signs in the claims should not be construed as limiting the scope.
Itemised list

Item 1. A device intended for a vehicle comprising: a steering device (2) rotatable about a steering axis (SA) for adjusting the direction of the part(s) (3) of the vehicle contacting the ground, an attaching part (5, 5') that couples together the part(s) (3) contacting the ground with the steering device (2) and a steering damper (4) adjusting the rotational damping of the steering device (2) wherein the attaching part (5, 5') rotates with the steering device (2) and with the damping housing (4a) of the steering damper (4) that encloses a main damping chamber which comprises hydraulic fluid and is partitioned into a first and a second damping chamber (C1, C2) by a delimiting part (11, 11') that is arranged in the main damping chamber and moveable with respect to the damping housing (4a), characterized in that the rotational damping, and thus also the flow of hydraulic fluid (Q1, Q2) between the damping chambers (C1, C2) of the steering damper (4), is arranged to be adjusted by means of a main valve unit (HVU) mechanically coupled together with both the attaching part (5, 5') and the steering device (2) and where the amount of hydraulic fluid flowing through the main valve unit (HVU) is determined by a relative movement between said attaching part (5, 5') and the steering device (2).

Item 2. A device according to item 1, characterized in that the steering device (2) is elastically coupled together with the attaching part (5, 5') and wherein the relative movement between the attaching part (5, 5') and the steering device (2) occurs only during a predetermined initial rotational movement of the steering device (2) from its base position.

Item 3. A device according to item 1 or 2, characterized in that the main valve unit (HVU) comprises a first (17) and a second main valve (18).

Item 4. A device according to item 3, characterized in that in the first main valve (17) there is arranged a first main valve part (17a) coupled
together with the steering device (2) and a second main valve part (17b) coupled together with the damping housing (4a) of the steering damper and in that in the second main valve (18) there is arranged a third main valve part (18a) coupled together with the steering device (2) and a fourth main valve part (18b) coupled together with the damping housing (4a) of the steering damper, wherein the first (17a) and the second (17b) and the third (18a) and the fourth (18b) main valve parts, respectively, are moveable with respect to each other such that they form a first and a second variable opening area (A1, A2) through which the hydraulic fluid can flow.

Item 5. A device according to item 4, characterized in that the opening area (A1) of the first main valve (17) decreases and the opening area (A2) of the second main valve (18) increases when the positions of the first and the second (17a, 17b) and the third and the fourth (18a, 18b) main valve parts, respectively, relatively each other is determined by a rotational motion in a first direction (ωi) of the steering device (2) or by a rotational motion in a second direction (ωr) of the housing (4a) of the steering device and where the opening area (A1) of the first main valve (17) increases and the opening area (A2) of the second main valve (18) decreases when the positions of the first and the second (17a, 17b) and the third and the fourth (18a, 18b) main valve parts, respectively, relatively each other is determined by a rotational motion in a second direction (ωr) of the steering device (2) or by a rotational motion in a first direction (ωi) of the housing (4a) of the steering device.

Item 6. A device according to item 4 or 5, characterized in that the first and third main valve parts (17a, 18a) of the first (17) and second (18) main valve move synchronously in relation to each other such that the opening area (A1) of the first main valve decreases substantially as much as the opening area (A2) of the second main valve increases, and vice versa.

Item 7. A device according to item 4, 5 or 6, characterized in that the first main valve part (17a) is coupled together with the steering device (2) via...
a first driver (8a) and the third main valve part (18a) is coupled together with the steering device (2) via a second driver (8b).

Item 8. A device according to item 7, *characterized in that* the first driver (8a) is coupled together with the first main valve part (17a) by means of a first link (19a) and the second driver (8b) is coupled together with the third main valve part (18a) by means of a second link (19b), wherein the links (19a, 19b) are hinged in both ends.

Item 9. A device according to item 7 or 8, *characterized in that* the first driver (8a) is pressed against the first main valve part (17a) and the second driver (8b) is pressed against the third main valve part (18a) by means of one or several spring elements (22).

Item 10. A device according to item 9, *characterized in that* the spring element(s) is/are located between the first main valve part (17a) and the third main valve part (18a) and such that it/they creates a pressing force acting on both valve parts (17a, 18a).

Item 11. A device according to any one the preceding items, *characterized in that* between the attaching part (5, 5’) and the steering device (2) there is arranged one or several elastic holding-up means (10, 10a, 10b) arranged to determine the magnitude of the initial rotational motion (a).

Item 12. A device according to any one the preceding items, *characterized in that* the attaching part (5) is a fork crown (5) arranged at the front fork arrangement of a motorcycle.

Item 13. A device according to any one of items 1-10, *characterized in that* the attaching part (5) is a cylindrical unit (5’) arranged around a steering connecting rod through which the steering axis (SA) runs.
Item 14. A device according to item 13, characterized in that the attaching part (5') is divided into an upper and a lower cylindrical part (5a', 5b') coupled together by means of an elastic holding-up means (10) which is arranged to determine the magnitude of the initial rotational motion (a).
Claims

1. A device intended for a vehicle comprising; a steering device (2) rotatable about a steering axis (SA) for adjusting the direction of the part(s) (3) of the vehicle arranged for contacting ground, an attaching part (5, 5') that couples together the part(s) (3) arranged for contacting ground with the steering device (2) and a steering damper (4, 104), wherein the attaching part (5, 5', 105) rotates with the steering device (2) and with the damping housing (4a, 104a) of the steering damper (4, 104) that encloses a main damping chamber which comprises hydraulic fluid and is partitioned into a first and a second damping chamber (C1, C2), wherein a main valve unit (HVU) is adapted to adjust a flow of hydraulic fluid (Q1, Q2) between the damping chambers (C1, C2) of the steering damper (4, 104), said main valve unit (HVU) being mechanically coupled together with both the attaching part (5, 5', 105) and the steering device (2), such as to adjust the rotational damping of the steering device (2), and wherein the amount of hydraulic fluid flowing through the main valve unit (HVU) is determined by a relative movement between said attaching part (5, 5', 105) and the steering device (2).

2. A device intended for a vehicle comprising; a steering device (2) rotatable about a steering axis (SA) for adjusting the direction of the part(s) (3) of the vehicle arranged for contacting ground, an attaching part (5, 5', 105) that couples together the part(s) (3) arranged for contacting ground with the steering device (2) and a steering damper (4, 104), wherein the attaching part (5, 5', 105) rotates with the steering device (2) and with a delimiting part (11, 11', 11'', 111) of the steering damper (4, 104) that partitions a main damping chamber which comprises hydraulic fluid into a first and a second damping chamber (C1, C2), wherein a main valve unit (HVU) is adapted to adjust a flow of hydraulic fluid (Q1, Q2) between the damping chambers (C1, C2) of the steering damper (4, 104), said main valve unit (HVU) being mechanically coupled together with both the attaching part (5, 5', 105) and the steering device (2), such as to adjust the rotational damping of the steering device (2), and wherein the amount of hydraulic fluid flowing through the main valve unit
(HVU) is determined by a relative movement between said attaching part (5, 5', 105) and the steering device (2).

3. A device according to claim 1 or 2, wherein the steering device (2) is elastically coupled together with the attaching part (5, 5', 105).

4. A device according to claim 1 or 2, wherein the steering device (2) is elastically coupled together with the attaching part (5, 5', 105) and wherein the relative movement between the attaching part (5, 5', 105) and the steering device (2) occurs only during a predetermined initial rotational movement of the steering device (2) from a base position.

5. A device according to any one of the preceding claims, wherein the main valve unit (HVU) comprises a first (17, 117) and a second main valve (18, 118).

6. A device according to claim 5, further comprising a first main valve part (17a) and a second main valve part (17b) arranged in the first main valve (17), the first main valve part (17a) being coupled together with the steering device (2) the second main valve part (17b) being coupled together with the damping housing (4a) of the steering damper, the device further comprising a third main valve part (18a) and a fourth main valve part (18b) arranged in the second main valve (18), the third main valve part (18a) being coupled together with the steering device (2) and the fourth main valve part (18b) being coupled together with the damping housing (4a) of the steering damper, wherein the first (17a) and the second (17b) and the third (18a) and the fourth (18b) main valve parts, respectively, are moveable with respect to each other such that they form a first and a second variable opening area (A1, A2) through which the hydraulic fluid can flow.

7. A device according to claim 6 as dependent on claim 1, 3 or 5, wherein the opening area (A1) of the first main valve (17) decreases and the opening area (A2) of the second main valve (18) increases when the positions of the...
first and the second (17a, 17b, 117a, 117b) and the third and the fourth (18a, 18b) main valve parts, respectively, relatively each other is determined by a rotational motion in a first direction (ω_1) of the steering device (2) or by a rotational motion in a second direction (ω_2) of the housing (4a) of the steering device, and where the opening area (A1) of the first main valve (17) increases and the opening area (A2) of the second main valve (18) decreases when the positions of the first and the second (17a, 17b) and the third and the fourth (18a, 18b) main valve parts, respectively, relatively each other is determined by a rotational motion in a first direction (ω_1) of the steering device (2) or by a rotational motion in a second direction (ω_2) of the steering device (2) or by a rotational motion in a first direction (ω_1) of the housing (4a) of the steering device.

8. A device according to claim 6 as dependent on claim 2, 3 or 4, wherein the opening area (A1) of the first main valve (17) decreases and the opening area (A2) of the second main valve (18) increases when the positions of the first and the second (17a, 17b) and the third and the fourth (18a, 18b) main valve parts, respectively, relatively each other is determined by a rotational motion in a first direction (ω_1) of the steering device (2) or by a rotational motion in a second direction (ω_2) of the delimiting part (11.111) of the steering damper, and where the opening area (A1) of the first main valve (17) increases and the opening area (A2) of the second main valve (18) decreases when the positions of the first and the second (17a, 17b) and the third and the fourth (18a, 18b) main valve parts, respectively, relatively each other is determined by a rotational motion in a second direction (ω_2) of the steering device (2) or by a rotational motion in a first direction (ω_1) of the delimiting part (11.111) of the steering damper.

9. A device according to claim 6, 7 or 8, wherein the first and third main valve parts (17a, 18a) of the first (17) and second (18) main valve move synchronously in relation to each other such that the opening area (A1) of the first main valve decreases substantially as much as the opening area (A2) of the second main valve increases, and vice versa.
10. A device according to any one of the claims 6-9, further comprising a first driver (8a) and a second driver (8b), wherein the first main valve part (17a) is coupled together with the steering device (2) via the first driver (8a) and the third main valve part (18a) is coupled together with the steering device (2) via the second driver (8b).

11. A device according to claim 10, wherein the first driver (8a) is coupled together with the first main valve part (17a) by means of a first link (19a) and the second driver (8b) is coupled together with the third main valve part (18a) by means of a second link (19b), wherein the links (19a, 19b) are hinged in both ends.

12. A device according to claim 10 or 11, further comprising at least one spring element (22), wherein the first driver (8a) is pressed against the first main valve part (17a) and the second driver (8b) is pressed against the third main valve part (18a) by means said at least one spring element (22).

13. A device according to claim 12, wherein the at least one spring element is located between the first main valve part (17a) and the third main valve part (18a) and such that the at least one spring element creates a pressing force acting on both valve parts (17a, 18a).

14. A device according to any one of the claims 3-5, further comprising a valve actuator being coupled together with the steering device (2) for actuating said first and second main valves (17, 18, 117, 118) during relative movement between said steering device (2) and said attaching part (5, 5', 105), thereby altering a first and a second variable opening area (A1, A2) of said main valve.

15. A device according to any one of the claims 3-5, further comprising a valve actuator being coupled together with the attaching part (5, 5', 105) for actuating said first and second main valves (17, 18) during relative movement between said steering device (2) and said attaching part (5, 5', 105), thereby
altering a first and a second variable opening area \((A_1, A_2)\) of said main valve.

16. A device according to claim 14 or 15, wherein the opening area \((A_1)\) of the first main valve \((17)\) decreases and the opening area \((A_2)\) of the second main valve \((18)\) increases when the position of the valve actuator part is determined by a rotational motion in a first direction \((\omega_1)\) of the steering device \((2)\) or by a rotational motion in a second direction \((\omega_2)\) of the attaching part \((5, 5')\), and where the opening area \((A_1)\) of the first main valve \((17)\) increases and the opening area \((A_2)\) of the second main valve \((18)\) decreases when the position of the valve actuator part is determined by a rotational motion in a second direction \((\omega_2)\) of the steering device \((2)\) or by a rotational motion in a first direction \((\omega_1)\) of the attaching part \((5, 5')\).

17. A device according to any one the preceding claims as dependent on claim 3 or 4, further comprising at least one holding-up means \((10, 10a, 10b)\) arranged between the attaching part \((5, 5')\) and the steering device \((2)\), the at least one elastic holding-up means \((10, 10a, 10b)\) being arranged to determine the magnitude of the initial rotational motion \((a)\).

18. A device according to any one of the claims 1-16, wherein the steering device \((2)\) is coupled together with the attaching part \((5, 5')\) via a torsion bar for allowing relative rotational movement between said steering device and said attaching part about a centre axis of the torsion bar.

19. A device according to claim 18, wherein said centre axis of the torsion bar is arranged at a distance from the steering axis \((SA)\).

20. A device according to claim 18 or 19, further comprising at least two mechanical stops for limiting said relative movement between the attaching part \((5, 5')\) and the steering device \((2)\).

21. A device according to claim 20, wherein said two mechanical stops comprises at least one element slideably arranged in an opening between two surfaces portions thereof, such that the element is moveable between said
surface portions in order to limit said relative movement to rotational movement.

22. A device according to any one the preceding claims, wherein the attaching part (5) comprises a fork crown (5) arranged at the front fork arrangement of a motorcycle.

23. A device according to any one of claims 1-15, wherein the attaching part (5) comprises a cylindrical unit (5') arranged around a steering connecting rod through which the steering axis (SA) runs.

24. A device according to claim 23 as dependent on claim 3 or 4, wherein the attaching part (5') is divided into an upper and a lower cylindrical part (5a', 5b') coupled together by means of an elastic holding-up means (10) which is arranged to determine the magnitude of the initial rotational motion (a).

25. A device according to any one of the preceding claims as dependent on claim 1, further comprising a delimiting part (11, 11', 11'', 111) arranged in the main damping chamber and moveable with respect to the damping housing (4a).

26. A device according to any one of the preceding claims, wherein said steering damper is a linear damping device, and wherein said delimiting part (11) is a piston (111) attached to a piston rod (113) for reciprocal movement within said damping chamber.

27. A device according to any one of the preceding claims, wherein said steering damper is a rotational damping device, and wherein said delimiting part (11) is a wing (11', 11'') attached to a lever (12) for reciprocal movement within said damping chamber.

28. A steering damper (4) adapted to be arranged in a vehicle comprising a steering device (2) rotatable about a steering axis (SA) for adjusting the direction of the part(s) (3) of the vehicle arranged for contacting ground, and
an attaching part (5, 5') that couples together the part(s) (3) arranged for contacting ground with the steering device (2), the steering damper (4) comprising:

 a damping housing (4a); and

 a main damping chamber defined by said damping housing (4a), said main damping chamber comprising hydraulic fluid and being partitioned into a first and a second damping chamber (C1, C2);

wherein said steering device (2) is mechanically connectable to said attaching part (5, 5') to enable rotation of said attaching part (5, 5') with said steering device (2) and with said damping housing (4a), a main valve unit (HVU) is adapted to adjust a flow of hydraulic fluid (Q1, Q2) between the damping chambers (C1, C2) such as to adjust the rotational damping of the steering device (2), wherein said main valve unit (HVU) can be mechanically coupled together with both the attaching part (5, 5') and the steering device (2), and wherein a relative movement between said attaching part (5, 5') and the steering device (2) determines an amount of hydraulic fluid flowing through the main valve unit (HVU).

29. A steering damper (4) adapted to be arranged in a vehicle comprising a steering device (2) rotatable about a steering axis (SA) for adjusting the direction of the part(s) (3) of the vehicle arranged for contacting ground, and an attaching part (5, 5') that couples together the part(s) (3) arranged for contacting ground with the steering device (2), the steering damper (4) comprising:

 a damping housing (4a); and

 a main damping chamber defined by said damping housing (4a), said main damping chamber comprising hydraulic fluid and being partitioned into a first and a second damping chamber (C1, C2) by a delimiting part (11, 11', 11", 111)

wherein said steering device (2) is mechanically connectable to said attaching part (5, 5') to enable rotation of said attaching part (5, 5') with said steering device (2) and with said delimiting part (11, 11', 11", 111) when the steering damper is arranged in a vehicle, a main valve unit (HVU) is adapted
to adjust a flow of hydraulic fluid \((Q_1, Q_2)\) between the damping chambers
\((C_1, C_2)\) such as to adjust the rotational damping of the steering device (2),
wherein said main valve unit (HVU) can be mechanically coupled together
with both the attaching part \((5, 5')\) and the steering device (2), and wherein a
relative movement between said attaching part \((5, 5')\) and the steering device
(2) when the steering damper is arranged in a vehicle determines an amount
of hydraulic fluid flowing through the main valve unit (HVU).

30. A crown device adapted to be arranged in a vehicle comprising a steering
device (2) rotatable about a steering axis (SA) for adjusting the direction of
the part(s) (3) of the vehicle arranged for contacting ground, said device
comprising:

- a steering damper (4) having a damping housing \((4a, 4a', 104a)\) that
encloses a main damping chamber which comprises hydraulic fluid and is
partitioned into a first damping chamber \((C_1)\) and a second damping chamber
\((C_2)\) by a delimiting part \((11, 11', 11'', 111)\) that is arranged in the main
damping chamber and moveable with respect to the damping housing \((4a, 4a'', 104a)\);

- an attaching part \((5, 5')\) adapted to couple together the part(s) (3)
arranged for contacting ground with the steering device (2) when the crown
device is arranged in the vehicle, wherein the attaching part \((5, 5')\) is arranged
to rotate with the steering device (2) when the crown device is arranged in the
vehicle; and

a main valve unit (HVU) adapted to adjust a flow of hydraulic fluid \((Q_1, Q_2)\)
when the crown device is arranged in the vehicle, said main valve unit (HVU)
being coupled together with both the attaching part \((5, 5')\) and the steering
device (2) when the crown device is arranged in the vehicle such as to adjust
the rotational damping of the steering device (2), and wherein the amount
of hydraulic fluid flowing through the main valve unit (HVU) is determined by a
relative movement between said attaching part \((5, 5')\) and the steering device
(2).
31. A device according to claim 30, wherein said crown device further comprises attachment means adapted to couple the steering device together with the attaching part when the crown device is arranged in the vehicle, wherein the attachment means is arranged to allow relative movement between said attaching part (5, 5’) and the steering device (2) when the crown device is arranged in the vehicle.

32. A device according to claim 31, wherein said attachment means is adapted to elastically couple the steering device together with the attaching part when the crown device is arranged in the vehicle, wherein the attachment means is arranged to elastically allow relative movement between said attaching part (5, 5’) and the steering device (2) when the crown device is arranged in the vehicle.

33. A device according to any one of the claims 30-32, wherein said main valve unit (HVU) is mechanically coupled together with both the attaching part (5, 5’) and the steering device (2) such as to adjust the rotational damping of the steering device (2).

34. A device according to any one of the claims 30-32, wherein said crown device further comprises an electronic sensor adapted to measure said relative movement between the attaching part (5, 5’) and the steering device (2).

35. A device according to claim 34, wherein said electronic sensor is selected from a group of sensor comprising:

- a potentiometer,
- a hall effect sensor, and
- an optical sensor.
36. A device according to any one of the claims 34-35, wherein said electronic sensor is arranged to measure the magnitude and the direction of the relative movement between the attaching part (5, 5') and the steering device (2) when the crown device is arranged in the vehicle.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. B62K21/08 F16F9/14 F16F9/512 B62K21/04

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B62K F16F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2007/134703 AI (BAYERISCHE MOTOREN WERKE AG [DE] ; SEIDL JOSEF [DE]) 29 November 2007 (2007-11-29) page 2, line 1 - line 25; figures 1, 2</td>
<td>1, 2, 30</td>
</tr>
</tbody>
</table>

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "*" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "F" document member of the same patent family

Date of the actual completion of the international search: 31 March 2011

Date of mailing of the international search report: 06/04/2011

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Jung, Wolfgang
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6 145 637 A (HOPEY TIMOTHY C [US]) 14 November 2000 (2000-11-14) the whole document</td>
<td>1,2, 28-30</td>
</tr>
<tr>
<td>A</td>
<td>US 4 773 514 A (GUSTAFSSON LEIF [SE]) 27 September 1988 (1988-09-27) column 3, line 4 - column 6, line 2; figures 1-6</td>
<td>1,2, 28-30</td>
</tr>
<tr>
<td>A</td>
<td>US 4 961 482 A (POHLENZ HANS [DE] ET AL) 9 October 1990 (1990-10-09) the whole document</td>
<td>1,2, 28-30</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 409 094 A (STABILUS GMBH [DE]) 23 January 1991 (1991-01-23) the whole document</td>
<td>1,2, 28-30</td>
</tr>
<tr>
<td>A</td>
<td>EP 1 248 013 A (HONDA MOTOR CO LTD [JP]) cited in the application the whole document</td>
<td>1,2, 28-30</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wo 2006137788 A I</td>
<td>28-12-2006</td>
<td>AT 438552 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1893466 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 528841 C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 0501416 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009314570 Al</td>
</tr>
<tr>
<td>wo 2007134703 A I</td>
<td>29-11-2007</td>
<td>CN 101389524 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102006024327 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2038166 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009537389 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009076684 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1635968 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 03070551 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003237672 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005151341 Al</td>
</tr>
<tr>
<td>JP 2007016979 A</td>
<td>25-01-2007</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2004046351 A</td>
<td>11-03-2004</td>
<td>NONE</td>
</tr>
<tr>
<td>US 6145637 A</td>
<td>14-11-2000</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 354786 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0240499 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2593461 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 62500925 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 862787 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 8603267 Al</td>
</tr>
<tr>
<td>US 4961482 A</td>
<td>09-10-1990</td>
<td>DE 3813402 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2630514 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1233210 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1316535 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2804071 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5892690 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3923512 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2045671 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2947889 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3051544 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5042625 A</td>
</tr>
<tr>
<td>wo 2007053944 A</td>
<td>18-05-2007</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1386669 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2307679 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003040179 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20020079396 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 539639 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002157909 Al</td>
</tr>
</tbody>
</table>