(12) STANDARD PATENT (11) Application No. AU 2013308885 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(43)

(44)

(71)

(72)

(74)

(56)

Title
Graph query logic

International Patent Classification(s)
GOG6F 17/30 (2006.01)

Application No: 2013308885 (22) Date of Filing: 2013.08.28
WIPO No: WO014/036054

Priority Data

Number (32) Date (33) Country
13/601,769 2012.08.31 us
Publication Date: 2014.03.06

Accepted Journal Date: 2017.07.20

Applicant(s)
Facebook, Inc.

Inventor(s)
Schrock, Nicholas Hage;Byron, Lee Williams;Schafer, Daniel L.

Agent / Attorney
Cotters Patent & Trade Mark Attorneys, GPO Box 469, Sydney, NSW, 2001, AU

Related Art
US 20100153412 A1
US 20120110560 A1

wo 2014/036054 A 1[I I/ N0FV 000 0O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/036054 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

6 March 2014 (06.03.2014) WIPOIPCT
International Patent Classification:
GO6F 17/30 (2006.01)
International Application Number:
PCT/US2013/056940

International Filing Date:
28 August 2013 (28.08.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/601,769 31 August 2012 (31.08.2012) US

Applicant: FACEBOOK, INC. [US/US]; 1601 Willow
Road, Menlo Park, CA 94025 (US).

Inventors: SCHROCK, Nicholas Hage; 1601 Willow
Road, Menlo Park, CA 94025 (US). BYRON, Lee Willi-
ams; 1601 Willow Road, Menlo Park, CA 94025 (US).
SCHAFER, Daniel L.; 1601 Willow Road, Menlo Park,
CA 94025 (US).

Agent: CHOL Hogene, L.; Baker Botts L.L.P., 2001 Ross
Avenue, Suite 600, Dallas, TX 75201 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(84)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(34

Title: GRAPH QUERY LOGIC

RECEIVE

3 (QUTFRY FOR SPECIFIC
DATA FTEMS STORED IN GRAPHS

220 =

RETRIEVE NODES CONTAINING THE
REGUESTED DATA [TEMS FROM
THE GRAPHS

FIGUREZ

| OUTPUTTHE REQUESTED DATA
ITEMS

(57) Abstract: In one embodiment, a method Includes storing one or more graphs, each graph comprising one or more nodes ar -
ranged in a hierarchical format, each node representing one or more data items; accessing a query requesting one or more specific
data items in the graphs, the query being expressed in a language having a hierarchical format; retrieving the specific data items from
the graphs; arranging the specific data items in a hierarchical format; and outputting the specific data items in response to the query.

09 Jun 2017

2013308885

GRAPH QUERY LOGIC

TECHNICAL FIELD

[1] This disclosure generally relates to information management, including

information storage, retrieval, and processing.

BACKGROUND

[2] Data or information may be organized and stored according to specific
formats. Thereafter, specific pieces of stored data or information may be retrieved from
storage. The actual means for retrieving the stored data or information may depend on the
specific format used for organizing and storing the data or information. For example, if the
data is organized and stored according to tabular format (e.g., in a table having columns,
rows, and cells), to retrieve specific pieces of data, it may be necessary to identify the specific

columns, rows, or cells where the desired pieces of data are stored.

BRIEF DESCRIPTION OF THE DRAWINGS

[3] FIGURE 1 illustrates an example graph having a hierarchical structure.

[4] FIGURE 2 illustrates an example method for retrieve specific data items from
hierarchical graphs.

[5] FIGURE 3 illustrates an example method for validating a version of an
Application Programming Interface based on schemas.

[6] FIGURE 4 illustrates an example method for retrieving data items from
hierarchical graphs based on introspection queries.

[7] FIGURE 5 illustrates an example computer system.

SUMMARY

[7a] In a first aspect, the present disclosure provides a computer-implemented
method comprising:

storing one or more graphs associated with a social-networking system, each graph
comprising one or more nodes arranged in a hierarchical format, the one or more nodes

representing one or more data items, respectively, each data item being of a particular data

09 Jun 2017

2013308885

la

type of a plurality of data types;

receiving, from a third-party system, a call to an API, the call comprising a first query
requesting a definition of the first data type, the first query being expressed in a language
having a first hierarchical format;

sending, to the third-party system in response to the first query, the definition of the
first data type, wherein the definition comprises (1) a name for the first data type, (2) a
description for the first data type, and (3) for each of one or more fields of the first data type,
a name and description of the field;

receiving, from the third-party system, a second query, the second query requesting
one or more of the data items associated with the first data type;

retrieving the requested data items of the first data type from the graphs;

validating the retrieved data items by determining whether the retrieved data items are
associated with the first data type;

arranging the requested data items of the first data type in a second hierarchical
format; and

sending, to the third-party system in response to the second query, the requested data

items of the first data type arranged in the second hierarchical format.

[7b] In a second aspect, the present disclosure provides one or more computer-
readable non-transitory storage media embodying software that is operable when executed to:

store one or more graphs associated with a social-networking system, each graph
comprising one or more nodes arranged in a hierarchical format, the one or more nodes
representing one or more data items, respectively, each data item being of a particular data
type of a plurality of data types;

receive, from a third-party system, a call to an API comprising a first query requesting
a definition of the first data type, the first query being expressed in a language having a first
hierarchical format;

sending, to the third-party system in response to the first query, the definition of the
first data type, wherein the definition comprises (1) a name for the first data type, (2) a
description for the first data type, and (3) for each of one or more fields of the first data type,
a name and description of the field;

receive, from the third-party system, a second query, the second query requesting one
or more of the data items associated with the first data type;

retrieve the requested data items of the first data type from the graphs;

09 Jun 2017

2013308885

Ib

validate the retrieved data items by determining whether the retrieved data items are
associated with the first data type;

arrange the requested data items of the first data type in a hierarchical format; and

send, to the third-party system in response to the second query, the requested data
items of the first data type arranged in the second hierarchical format.

[7c] In a third aspect, the present disclosure provides a system comprising: one or
more processors; and a memory coupled to the processors comprising instructions executable
by the processors, the processors operable when executing the instructions to:

store one or more graphs associated with a social-networking system, each graph
comprising one or more nodes arranged in a hierarchical format, the one or more nodes
representing one or more data items, respectively, each data item being of a particular data
type of a plurality of data types;

receive, from a third-party system, a call to an API comprising a first query requesting
a definition of the first data type, the first query being expressed in a language having a first
hierarchical format;

retrieve, using the first query, the definition of the first data type, wherein the
definition comprises (1) a name for the first data type, (2) a description for the first data type,
and (3) for each of one or more fields of the first data type, a name and description of the
field;

receive, from the third-party system, a second query, the second query requesting one
or more of the data items associated with the first data type;

retrieve the requested data items of the first data type from the graphs;

validate the retrieved data items by determining whether the retrieved data items are
associated with the first data type;

arrange the requested data items of the first data type in a hierarchical format; and

send, to the third-party system in response to the second query, the requested data
items of the first data type arranged in the second hierarchical format.

[8] Particular embodiments, data items may be organized and stored in one or
more hierarchical graphs, where each graph may include any number of nodes arranged in a
hierarchy. Relationships may exist among specific nodes in a graph, which may reflect the
relationships existing among data items represented by the corresponding nodes.

Consequently, the structure of a graph may reflect the relationships among the individual data

09 Jun 2017

2013308885

items contained in that graph.

9] In particular embodiments, an Application Programming Interface (API) may
be provided for querying the graphs for the data stored therein and for retrieving specific data
items from the graphs. Furthermore, a query for specific data items stored in the graphs may
be expressed in a language having a hierarchical structure. The retrieved data items are also
organized in a hierarchy structure.

[10] In particular embodiments, the API may have any number of versions. There
may be any number of query schemas associated with each version of the API. The query
schemas may include various data types available in the graphs and how different types of
data may be retrieved from the graph. The query schemas may be used to test and validate
different versions of the APIL

[11] In particular embodiments, data item stored in the graphs may have various
data types. An application may query the API about data types and data structures of data

items to be returned from the APIL

DESCRIPTION OF EXAMPLE EMBODIMENTS

[12] In particular embodiments, data may be organized and stored in any number of
graphs, each having a hierarchical structure. Each graph may include any number of nodes
arranged in a hierarchy. That is, there may be any number of levels in a graph, and at each
level, there may be any number of nodes. Each node may represent or may be used to store
some specific data items. Relationships may exist between specific nodes in a graph, which
may reflect relationships between specific data items represented by these corresponding
nodes. Consequently, the structure of a graph may reflect the relationships among the
individual data items contained in that graph. In particular embodiments, the data items may
have various types.

[13] In particular embodiments, an Application Programming Interface (API) may
be provided for querying the graphs for the data stored therein and for retrieving specific data
items from the graphs. In particular embodiments, a query for specific data items stored in
the graphs may be expressed in a language having a hierarchical structure. Thus, the query
itself has a hierarchical structure. In particular embodiments, if the desired data items, as

specified by the query, are found in the graphs, the data items, or more specifically, the nodes

09 Jun 2017

2013308885

representing or containing these data items, are retrieved from the graphs in response to the
query. The retrieved data items are also organized in a hierarchy structure.

[14] In particular embodiments, the API may have any number of versions. As an
example, from time to time, the API may be updated from an older version to a newer
version. As another example, there may be different versions of the API developed for
different platforms (e.g., mobile, desktop, web-based). In particular embodiments, there may
be any number of query schemas associated with each version of the API. The query
schemas may include various data types available in the graphs and how different types of
data may be retrieved from the graph.

[15] In particular embodiments, given a first version of the API that is known to
function correctly, a second version of the APl may be tested using the query schemas
associated with the first and second versions, respectively, to ensure that the second version
also functions correctly. The query schemas associated with the second version of the API
may be compared against the query schemas associated with the first version to ensure that,
for example, all the data types existing in the query schemas associated with the first version
also exist in the query schemas associated with the second version, and querying and
retrieving various types of data from the graphs using the query schemas associated with the
second version yields the same result as using the query schemas associated with the first
version.

[16] In particular embodiments, data item stored in the graphs may have various
data types. An application may query the API about data types and data structures of data
items to be returned from the APIL. In particular embodiments, an application may generate
an introspection query for a specific data type (i.e., a request to examine content or data
structure of the specific data type). The application may submit the introspective query to the
API and retrieve from the graphs a data structure of the specific data type. The application
may construct a data query requesting data items with the specific data type from the graphs
based on the data structure retrieved by the introspective query.

[17] FIGURE 1 illustrates an example graph 100 having a hierarchical structure.
Graph 100 may include any number of nodes arranged in a hierarchy of any number of levels.
At each level of the hierarchy, there may be one or more of the nodes. Various types of

relationships may exist between specific nodes, which may be reflected in the structure of the

09 Jun 2017

2013308885

hierarchy. For example, a parent-child relationship may exist between two specific nodes. In
FIGURE 1, node 110A may be the parent of nodes 110B, 110C, and 110D; conversely, nodes
110B, 110C, and 110D may each be a child of node 110A. Note that in general, a node may
have any number of children or parents. As another example, a sibling relationship may exist
between two specific nodes. In FIGURE 1, nodes 110B, 110C, and 110D may be siblings as
they share a common parent node 110A. As a third example, a connection may exist between
two specific nodes. In FIGURE 1, a connection exists between nodes 110A and 110E.

[18] In particular embodiments, data may be organized and stored in a hierarchical
graph, such as graph 100. Each node in the graph may represent or contain some specific
data items. The structure of the graph reflects the relationships among the nodes and
consequently the relationships among the specific data items represented by or contained in
these nodes.

[19] In particular embodiments, data or information associated with a social-
networking system may be stored in any number of hierarchical graphs. There may be
various types of data associated with the social-networking system, and specific data items
may be represented by or contained in specific nodes. For example, some of the nodes may
represent individual users of the social-networking system. Two of such nodes may be
connected if the two corresponding users are “friends” in the social-networking system.
Some of the nodes may represent activities (e.g., online or offline) performed by specific
users. A node representing a user and a node representing an activity performed by that user
may be connected. Furthermore, the node representing the user may be considered the parent
of the node representing the activity performed by that user, reflecting the relationship
between the user and the activity (i.e., the user performs the activity). Some of the nodes
may represent contents (e.g., images, videos, posts, messages, feeds) associated with specific
users. A node and its child nodes may represent a photo album and specific photos belonging
to that photo album, respectively. In this case, a connection may exist between the node
representing the photo album and each node representing an image belonging to that photo
album. Another node and its child nodes may represent a user and photo albums uploaded by
that user, respectively.

[20] In particular embodiments, graphs containing data (e.g., data associated with a

social-networking system) may be stored (e.g., in data stores or memory) so that specific data

09 Jun 2017

2013308885

items may be retrieved from the graphs whenever desirable. In particular embodiments, an
API may be provided for querying the graphs for the data stored therein and for retrieving
specific data items from the graphs.

[21] FIGURE 2 illustrates an example method for retrieving specific data items
from hierarchical graphs. Suppose that, in particular embodiments, data are stored in
hierarchical graphs, where each node in a graph contains or represents one or more specific
data items. A user may use the API to query specific data items stored in these hierarchical
graphs.

[22] In particular embodiments, the method illustrated in FIGURE 2 may start at
step 210, where a user may send a query that identifies specific data items to be retrieved
from the hierarchical graphs. For example, the query may be sent from a user device (e.g.,
mobile or non-mobile user device) to a computing system (e.g., server) managing the graphs
over appropriate computer or communication connections (e.g., wireless or wireline
connections). In particular embodiments, an appropriate API call may be invoked by the user
device to send the query to the server.

[23] In particular embodiments, a query may be expressed in a language having a
hierarchical structure. Furthermore, in particular embodiments, the language may have a

predefined syntax. The following illustrates an example query.

me () {
id,
name,
my_objects.first (10) {
nodes {
actors {id, name, profile_pic_image},
message {text, ranges},
with {id, name, profile_pic_image},
application {id, name, profile_pic_image},
explicit_place {id, name, location {latitude,
longitudel},
attachments {

id,

09 Jun 2017

2013308885

image,

owner,
message,
created_time,
modified time,
feedback {

like sentence, likers {count}, comments {count}

}

In this example, “me” is the user submitting the query; and “id” is a unique identifier
associated with an object (e.g., a user or a data item). This example query requests the first
10 data items of a specific type “my_objects”. As this example query illustrates, the
query has a hierarchical structure. At the top level of the hierarchy is “me”. At the second
level nested in “me” are “id”, “name”, and “my_objects”. At the third level nested in
“my_objects”is “nodes”. And so on.

[24] In particular embodiments, at step 220, data items specified in the query may
be retrieved from the groups. More specifically, the nodes that represent or contain the
specified data items may be identified from the groups and the data items may be retrieved
from these nodes. Specific data items may be identified in the query by their unique
identifiers, their data types, or any other applicable means (e.g., data items that satisfy one or
more criteria).

[25] In particular embodiments, a data item may have a specific data type. For
example, one type of data items may be “user’; another type of data items may be “message
post”; a third type of data items may be “image”; and so on. This disclosure contemplates
any applicable data types. In particular embodiments, new data types may be defined and
added as needed (e.g., by system managers or users or third-party developers). The
definitions of these data types may form a schema for the API and the graphs. The definition

of a specific data type may specify how that type of data items may be queried and retrieved

09 Jun 2017

2013308885

from the graphs. The following illustrates an example definition of a data type called

“node”. The definition describes the data type “node” and may be included in the schema.

final class NodelInterface extends InterfaceDefinition {
public function getTypeName () {
return 'node';

}

protected function fields (FieldDefiner S$field def) {
return array (
'id' => S$field def->string(),
'url' => $field def->url (),
)i

public function getDescription() {
return 'An object which itself can be queried from the
graph.';
}

protected function fieldDescriptions () {
return array (

'id' => 'The unique ID representing this object. Supply
to the "node () root expression to retrieve this object
directly.',

'url' => 'The unique URL representing this object which
can be accessed via a web browser. For example, the url for a
‘user’ would be his or her profile page.',

)

}

For this example data type, as defined by its definition, the name of the type is “node”. The
fields of the type include “id” and “url”. In addition, the descriptions of the data type itself
and each of its fields may also be included in the definition (e.g., as a part of the API code).
[26] In particular embodiments, a user may invoke an appropriate API call to query
a specific data type defined in the schema for information concerning that data type. For

example, to query for “node”, the user may submit a query such as:

type (node) {name, description, fields {name, description}}

The query requests the name and description of type “node” itself as well as the name and

description of the fields of type “node”. This query may result in the following response:

{

"node": {

09 Jun 2017

2013308885

"name": "node",
"description": "An object which itself can be queried from
the graph.",
"fields": |
{
"name": "id",
"description": "The unigue ID representing this

object. Supply to the "node() root expression to retrieve
this object directly."
}I
{
"name": "url",
"description": "The unique URL representing this
object which can be accessed via a web browser. For example,
the url for a "user would be his or her profile page."

}

}

The response includes the name and description of the type “node” and each of its fields
(ie., “1d” and “url”), as defined in the definition of “node” illustrated above.
Furthermore, the response is arranged in a hierarchy structure as well, corresponding to the
hierarchical structure of the query.

[27] As this example illustrates, in particular embodiments, information describing
a specific data type may be included in the definition of that data type. The description of a
data type may be queried using the API, similar as querying a data item using the API. In
this sense, the API is self-documenting. That is, the documentation of a data type is included
in the schema as part of its definition.

[28] In particular embodiments, there may be privacy protection associated with
some or all of the data items stored in the hierarchical graphs. A data item may only be
accessed by a specific list of users and not by other users. For example, when a user posts a
photograph (i.e., a data item), the user may specify that the photograph can only be viewed by
his social friends. In this case, other users who are not friends with this user are not
authorized to access this specific photograph.

[29] In particular embodiments, when retrieving data items in response to a query,
the privacy protection associated with specific data items are taken into consideration. As an

example, suppose that a first user, through a query, requests 10 messages most recently

09 Jun 2017

2013308885

posted by a second user (e.g., a friend of the first user). When retrieving these messages for
the first user in response to the query, each message posted by the second user may be
analyzed to determine whether the first user is authorized to access that message. Suppose
that among the 10 messages most recently posted by the second user, 3 of them can only be
viewed by a third user while 7 of them can be viewed by all users including the first user
(e.g., as specified by the second user). In this case, only the 7 messages are retrieved in
response to the first user’s query. The 3 messages that can only be viewed by the third user
are not retrieved for the first user, since the first user is not authorized to view these specific
messages. Instead, to make up for the 10 messages as requested by the first user’s query, 3
slightly older messages posted by the second user (e.g., identified in reverse chronological
order), which the first user is authorized to view, are retrieved and combined with the 7
messages. On the other hand, if it is the third user who requests the 10 messages most
recently posted by the second user, all 10 newest messages may be retrieved in response to
the third user’s query since the third user is authorized to view all of these messages. As this
example illustrates, because of privacy protection associated with data items, when two users
submit the same query, they may receive different results in response.

[30] In particular embodiments, retrieving a large number of data items may be
performed in response to a series of queries. This may be helpful in terms of improving
performance for certain types of user devices, such as mobile devices. As an example,
suppose that a user wishes to retrieve and view 100 photos most recently posted by all of his
social friends. Instead of submitting a single query for 100 photos, the user may submit a
series of 10 queries, where each query requests 10 photos at a time. This way, the user may
begin viewing some photos while other photos are being retrieved and sent to the user’s
device. In addition, the user may view some photos at one time and other photos at another
time (e.g., as opposed to viewing all 100 photos together).

[31] In particular embodiments, queries submitted by a user and their responses
may be recorded. In the above example, when the user submits the first query for the 10
photo most recently posted by his friends, 10 most recent photos accessible to the users may
be retrieved from the graphs and sent to the user. In addition, the 10 photos or the last one of
the 10 photos sent to the user may be recorded. Then, when the user submits the second

query for another 10 photos, the second 10 most recent photos, starting from after the

09 Jun 2017

2013308885

10

previous 10 photos in reverse chronological order, accessible to the users may be retrieved
from the graphs and sent to the user. Again, the last one of the 10 photos now sent to the user
may be recorded. When the user submits the third query for yet another 10 photos, the third
10 most recent photos, starting from after the previous 10 photos in reverse chronological
order, accessible to the users may be retrieved from the graphs and sent to the user. And so
on. This way, the data retrieval process automatically handles pagination for the user.

[32] At step 230, the retrieved data items may be organized according to a
hierarchical format and sent to the user submitting the query. Sometimes, the nodes
representing or containing the requested data items may belong to different graphs. In this
case, the data items may be retrieved from appropriate nodes in appropriate graphs and
arranged in a single hierarchical structure.

[33] In particular embodiments, the hierarchical structure of the outputted data
items may correspond to the hierarchical structure of the query. As illustrated in the above
example where a query requests the name and description of type “node” itself followed by
the name and description of the fields of type “node”, the outputted data items are arranged
in a hierarchical structure. At one level is the type “node”. At the next level nested within
“node” are the name, description, and fields of the type “node”. At the further next level
nested within “fields” are the name and description of each of the fields in type “node”.
The arrangement of the outputted data items corresponds to the arrangement of the query.

[34] In particular embodiments, the definitions of individual data types may form
one or more schemas. These definitions may be included in the API so that data items may
be queried and retrieved based on their definitions. Often, there may be different versions of
the API. For example, from time to time, the API may be updated from an older version to a
newer version. Different versions of the API may be implemented for different platforms
(e.g., mobile vs. non-mobile, different operating systems) so that each version includes code
especially suitable to a corresponding platform.

[35] In particular embodiments, the schemas may be used to test and validate a
particular version of the API. FIGURE 3 illustrates an example method for validating a
version of the API using schemas. Suppose that there is a first version of the API that is
known to function correctly. One or more schemas may be associated with the first version

of the API, and these schemas may include the definitions of all the data types available (e.g.,

09 Jun 2017

2013308885

11

the data types to which the data items stored in the hierarchical graphs belong). Further
suppose that a second version of the API becomes available.

[36] At step 310, the schemas associated with the first version of the API may be
recorded. Then, the second version of the API may be used to retrieve data items from the
groups (e.g., for testing and validation). In particular embodiments, at step 320, the schemas
associated with the second version of the API may be compared against the schemas
associated with the first version to ensure that, for example, all the definitions of data types in
the schemas associated with the first version are also found in the schemas associated with
the second version (i.e., no data type is missing from the second version), or the definition of
a specific data type found in the schemas associated with the second version is the same as
that found in the schemas associated with the first version, or using the second version of the
API to retrieve data items in response to a specific query produces the same result as using
the first version (i.e., using a query expressed according to the schemas associated with the
first version and a query expressed according to the schemas associated with the second
version for the same data items produce the same result).

[37] If the second version of the API functions correctly based on the schemas,
then the second version may be released. Otherwise, the errors in the second version (e.g.,
missing data type definitions or incorrect data type definitions) need to be corrected first
before it can be released.

[38] As described earlier, data item stored in the hierarchical graphs may have
various data types. Ordinarily, an application (or a programmer writing the application’s
codes) may need definition of a particular data type prior to querying and retrieving from a
database (e.g., a hierarchical graph) data items of the particular type (or validating a retrieved
data item’s data type). Particular embodiments may retrieve data items from hierarchical
graphs based on introspection queries. Particular embodiments may submit an introspection
query to the API of the graphs to retrieve a data structure of a specific data type. Particular
embodiments may then submit to the API a data query for data items of the specific data type
based on the data structure retrieved by the introspection query. Particular embodiments may
also validate a response to the data query by comparing the response’s data structure to the
retrieved data structure.

[39] FIGURE 4 illustrates an example method for retrieving data items from

09 Jun 2017

2013308885

12

hierarchical graphs based on introspection queries. In particular embodiments, the method
illustrated in FIGURE 4 may start at step 410, where an application may send a first query
(an introspection query) that requests a data structure of a specific data type. In particular
embodiments, at step 420, the application may retrieve the data structure of the specific data
type from the graphs. For example, the introspection query may be sent by an application
hosted by a user’s client device to one or more computing systems (e.g., servers) managing
the graphs over appropriate computer or communication connections (e.g., wireless or
wireline connections). In particular embodiments, an appropriate API call may be invoked
by the application to send the introspection query to the server and retrieve the results from
the server. In particular embodiments, a query requesting a data structure of a specific data
type may be expressed in a language having a hierarchical structure. Furthermore, in
particular embodiments, the language may have a predefined syntax. The following

illustrates an example introspection query:

type (my_objects) {name, type{fields{name, fields}}}

The query requests (as indicated by the prefix “type”) the name and fields of a data type
“my_objects”. The query also requests the names and fields of one or more child data
structures, if any, of the fields of the data type “my_obJjects”. The retrieved data structure
(i.e., response to the introspection query) may be expressed in JavaScript Object Notation

(JSON) format. For example, the query may result in the following response:

{
“my_objects”: {
“name”: “my_objects”,
“fields”: [
{
“name”: “id”,
“Yname” : “comment_count”,
“actors”: {
“name”: “actors”,
“field”: [
{

\\namell : \\idl/,

09 Jun 2017

2013308885

13

“name”: “friends”

}

The response includes the name of the data type “my_objects” and the names of each of
its fields (i.e., “1d”, “comment_count”, and “actors”). The response also includes the
names of each of the fields of the field “actors” (i.e., “id” and “friends”). That is, the
data type “my_objects” has a hierarchical data structure comprising “name”, “id”,
“comment_count”, and “actors” at the top level, while “id” and “friends” are
nested in “actors” at the second level.

[40] In particular embodiments, at step 430, the application may generate a second
query (a data query) that requests one or more specific data items having the specific data
type. In particular embodiments, the data query may be expressed in a format corresponding
to the retrieved data structure of the specified data type. The following illustrates an example

data query:

me () |
id,
my_objects.first (3) {
id,
comment_count,

actors{id, friends}

}

In the example, the application may submit the query based on a request from a user “me”
with a unique identifier “id”. The query above requests the first 3 data items of the specific
data type “my_obJjects”. The query is expressed in a hierarchical format corresponding to

the retrieved data structure of the specified data type “my_objects”: the query requests

09 Jun 2017

2013308885

14

bRl 13

results in “1d”, “comment_count”, and “actors” at the top level, and results in “id”
and “friends” nested in “actors” at the second level.

[41] In some embodiments, the application may generate a second query (a data
query) with some but not all the fields in the retrieved data structure of the specified data type

“my_objects”. The following illustrates another example data query:

me () |
id,
my_objects.first (3) {
id,

actors{id, friends}

}

The query requests results in “1d” and “actors” at the top level, and results in “id” and
“friends” nested in “actors” at the second level. The field “comment count” at the
top level of the retrieved data structure of the specified data type “my_objects” is omitted
in the query. In particular embodiments, at step 440, the application may retrieve the specific
data items from the graph. The retrieved data items may be expressed in JSON format. For

example, the query may result in the following response:

{

\\idII: \\012311,
“Yactors”:

{
“id”: “0123457,

“friends”: “John, Mary, Bob”

\\idII: \\234511,
“Yactors”:

{

09 Jun 2017

2013308885

15

“id”: “2540697,

“profile pic_img”: “https://www.example.com/9876. jpg”

\\idII: \\678911,
“Yactors”:

{
“id”: “5028397,

“friends”: “Susan, Charlie, Liza, Katie, Brandon”

}

The response includes 3 results with “id” being “0123”, “2345”, and “67897,
respectively.

[42] As the data query completely describes the data structure of a response,
particular embodiments may validate a response against the data query’s data structure
(which is based on the retrieved data structure of the specific data type). In particular
embodiments, the application may validate the retrieved data items based on the retrieved
data structure of the specific data type. The application may compare the retrieved data items
against the retrieved data structure of the specific data type by inspecting the retrieved data
items with a recursive parsing algorithm. For example, the application may determine that
the results above with “id” of “0123” and “6789” have a data structure consistent with the
retrieved data structure: “id” and “actors” being at the top level, while “id” and
“friends” being nested in “actors” at the second level. The application may determine
that the result above with “id” of “2345” does not have a data structure consistent with the
retrieved data structure. The result with “1d” of “2345” has “1d” and “actors” at the top
level of its data structure, however, it has “id” and “profile_pic_img” nested in
“actors” at the second level of its data structure. Since the result with “id” of “2345”
may be an erroneous result as having an unexpected data structure, the application may

discard the result with “id” of “2345”. The application may also submit another data query

09 Jun 2017

2013308885

16

to the API to retrieve from the graphs one or more data items of the specific data type.

[43] Particular embodiments may repeat the steps of the method of FIGURE 4,
where appropriate. Moreover, although this disclosure describes and illustrates particular
steps of the method of FIGURE 4 as occurring in a particular order, this disclosure
contemplates any suitable steps of the method of FIGURE 4 occurring in any suitable order.
Furthermore, although this disclosure describes and illustrates particular components,
devices, or systems carrying out particular steps of the method of FIGURE 4, this disclosure
contemplates any suitable combination of any suitable components, devices, or systems
carrying out any suitable steps of the method of FIGURE 4.

[44] Particular embodiments may be implemented on one or more computer
systems. FIGURE 5 illustrates an example computer system 500. In particular embodiments,
one or more computer systems 500 perform one or more steps of one or more methods
described or illustrated herein. In particular embodiments, one or more computer systems
500 provide functionality described or illustrated herein. In particular embodiments, software
running on one or more computer systems 500 performs one or more steps of one or more
methods described or illustrated herein or provides functionality described or illustrated
herein. Particular embodiments include one or more portions of one or more computer
systems 500.

[45] This disclosure contemplates any suitable number of computer systems 500.
This disclosure contemplates computer system 500 taking any suitable physical form. As
example and not by way of limitation, computer system 500 may be an embedded computer
system, a system-on-chip (SOC), a single-board computer system (SBC) (such as, for
example, a computer-on-module (COM) or system-on-module (SOM)), a desktop computer
system, a laptop or notebook computer system, an interactive kiosk, a mainframe, a mesh of
computer systems, a mobile telephone, a personal digital assistant (PDA), a server, or a
combination of two or more of these. Where appropriate, computer system 500 may include
one or more computer systems 500; be unitary or distributed; span multiple locations; span
multiple machines; or reside in a cloud, which may include one or more cloud components in
one or more networks. Where appropriate, one or more computer systems 500 may perform
without substantial spatial or temporal limitation one or more steps of one or more methods

described or illustrated herein. As an example and not by way of limitation, one or more

09 Jun 2017

2013308885

17

computer systems 500 may perform in real time or in batch mode one or more steps of one or
more methods described or illustrated herein. One or more computer systems 500 may
perform at different times or at different locations one or more steps of one or more methods
described or illustrated herein, where appropriate.

[46] In particular embodiments, computer system 500 includes a processor 502,
memory 504, storage 506, an input/output (I/O) interface 508, a communication interface
510, and a bus 512. Although this disclosure describes and illustrates a particular computer
system having a particular number of particular components in a particular arrangement, this
disclosure contemplates any suitable computer system having any suitable number of any
suitable components in any suitable arrangement.

[47] In particular embodiments, processor 502 includes hardware for executing
instructions, such as those making up a computer program. As an example and not by way of
limitation, to execute instructions, processor 502 may retrieve (or fetch) the instructions from
an internal register, an internal cache, memory 504, or storage 506; decode and execute them;
and then write one or more results to an internal register, an internal cache, memory 504, or
storage 506. In particular embodiments, processor 502 may include one or more internal
caches for data, instructions, or addresses. This disclosure contemplates processor 502
including any suitable number of any suitable internal caches, where appropriate. As an
example and not by way of limitation, processor 502 may include one or more instruction
caches, one or more data caches, and one or more translation lookaside buffers (TLBs).
Instructions in the instruction caches may be copies of instructions in memory 504 or storage
506, and the instruction caches may speed up retrieval of those instructions by processor 502.
Data in the data caches may be copies of data in memory 504 or storage 506 for instructions
executing at processor 502 to operate on; the results of previous instructions executed at
processor 502 for access by subsequent instructions executing at processor 502 or for writing
to memory 504 or storage 506; or other suitable data. The data caches may speed up read or
write operations by processor 502. The TLBs may speed up virtual-address translation for
processor 502. In particular embodiments, processor 502 may include one or more internal
registers for data, instructions, or addresses. This disclosure contemplates processor 502
including any suitable number of any suitable internal registers, where appropriate. Where

appropriate, processor 502 may include one or more arithmetic logic units (ALUs); be a

09 Jun 2017

2013308885

18

multi-core processor; or include one or more processors 502. Although this disclosure
describes and illustrates a particular processor, this disclosure contemplates any suitable
processor.

[48] In particular embodiments, memory 504 includes main memory for storing
instructions for processor 502 to execute or data for processor 502 to operate on. As an
example and not by way of limitation, computer system 500 may load instructions from
storage 506 or another source (such as, for example, another computer system 500) to
memory 504. Processor 502 may then load the instructions from memory 504 to an internal
register or internal cache. To execute the instructions, processor 502 may retrieve the
instructions from the internal register or internal cache and decode them. During or after
execution of the instructions, processor 502 may write one or more results (which may be
intermediate or final results) to the internal register or internal cache. Processor 502 may
then write one or more of those results to memory 504. In particular embodiments, processor
502 executes only instructions in one or more internal registers or internal caches or in
memory 504 (as opposed to storage 506 or elsewhere) and operates only on data in one or
more internal registers or internal caches or in memory 504 (as opposed to storage 506 or
elsewhere). One or more memory buses (which may each include an address bus and a data
bus) may couple processor 502 to memory 504. Bus 512 may include one or more memory
buses, as described below. In particular embodiments, one or more memory management
units (MMUSs) reside between processor 502 and memory 504 and facilitate accesses to
memory 504 requested by processor 502. In particular embodiments, memory 504 includes
random access memory (RAM). This RAM may be volatile memory, where appropriate.
Where appropriate, this RAM may be dynamic RAM (DRAM) or static RAM (SRAM).
Moreover, where appropriate, this RAM may be single-ported or multi-ported RAM. This
disclosure contemplates any suitable RAM. Memory 504 may include one or more memories
504, where appropriate. Although this disclosure describes and illustrates particular memory,
this disclosure contemplates any suitable memory.

[49] In particular embodiments, storage 506 includes mass storage for data or
instructions. As an example and not by way of limitation, storage 506 may include an HDD,
a floppy disk drive, flash memory, an optical disc, a magneto-optical disc, magnetic tape, or a

Universal Serial Bus (USB) drive or a combination of two or more of these. Storage 506 may

09 Jun 2017

2013308885

19

include removable or non-removable (or fixed) media, where appropriate. Storage 506 may
be internal or external to computer system 500, where appropriate. In particular
embodiments, storage 506 is non-volatile, solid-state memory. In particular embodiments,
storage 506 includes read-only memory (ROM). Where appropriate, this ROM may be
mask-programmed ROM, programmable ROM (PROM), erasable PROM (EPROM),
electrically erasable PROM (EEPROM), electrically alterable ROM (EAROM), or flash
memory or a combination of two or more of these. This disclosure contemplates mass
storage 506 taking any suitable physical form. Storage 506 may include one or more storage
control units facilitating communication between processor 502 and storage 506, where
appropriate. Where appropriate, storage 506 may include one or more storages 506.
Although this disclosure describes and illustrates particular storage, this disclosure
contemplates any suitable storage.

[S0] In particular embodiments, 1/O interface 508 includes hardware, software, or
both providing one or more interfaces for communication between computer system 500 and
one or more I/O devices. Computer system 500 may include one or more of these 1/O
devices, where appropriate. One or more of these I/O devices may enable communication
between a person and computer system 500. As an example and not by way of limitation, an
I/0 device may include a keyboard, keypad, microphone, monitor, mouse, printer, scanner,
speaker, still camera, stylus, tablet, touch screen, trackball, video camera, another suitable 1I/0
device or a combination of two or more of these. An I/O device may include one or more
sensors. This disclosure contemplates any suitable I/O devices and any suitable 1/0O
interfaces 508 for them. Where appropriate, I/O interface 508 may include one or more
device or software drivers enabling processor 502 to drive one or more of these I/O devices.
I/O interface 508 may include one or more I/O interfaces 508, where appropriate. Although
this disclosure describes and illustrates a particular I/O interface, this disclosure contemplates
any suitable I/O interface.

[51] In particular embodiments, communication interface 510 includes hardware,
software, or both providing one or more interfaces for communication (such as, for example,
packet-based communication) between computer system 500 and one or more other computer
systems 500 or one or more networks. As an example and not by way of limitation,

communication interface 510 may include a network interface controller (NIC) or network

09 Jun 2017

2013308885

20

adapter for communicating with an Ethernet or other wire-based network or a wireless NIC
(WNIC) or wireless adapter for communicating with a wireless network, such as a WI-FI
network. This disclosure contemplates any suitable network and any suitable communication
interface 510 for it. As an example and not by way of limitation, computer system 500 may
communicate with an ad hoc network, a personal area network (PAN), a local area network
(LAN), a wide area network (WAN), a metropolitan area network (MAN), or one or more
portions of the Internet or a combination of two or more of these. One or more portions of
one or more of these networks may be wired or wireless. As an example, computer system
500 may communicate with a wireless PAN (WPAN) (such as, for example, a BLUETOOTH
WPAN), a WI-FI network, a WI-MAX network, a cellular telephone network (such as, for
example, a Global System for Mobile Communications (GSM) network), or other suitable
wireless network or a combination of two or more of these. Computer system 500 may
include any suitable communication interface 510 for any of these networks, where
appropriate. Communication interface 510 may include one or more communication
interfaces 510, where appropriate. Although this disclosure describes and illustrates a
particular communication interface, this disclosure contemplates any suitable communication
interface.

[52] In particular embodiments, bus 512 includes hardware, software, or both
coupling components of computer system 500 to each other. As an example and not by way
of limitation, bus 512 may include an Accelerated Graphics Port (AGP) or other graphics bus,
an Enhanced Industry Standard Architecture (EISA) bus, a front-side bus (FSB), a
HYPERTRANSPORT (HT) interconnect, an Industry Standard Architecture (ISA) bus, an
INFINIBAND interconnect, a low-pin-count (LPC) bus, a memory bus, a Micro Channel
Architecture (MCA) bus, a Peripheral Component Interconnect (PCI) bus, a PCI-Express
(PCle) bus, a serial advanced technology attachment (SATA) bus, a Video Electronics
Standards Association local (VLB) bus, or another suitable bus or a combination of two or
more of these. Bus 512 may include one or more buses 512, where appropriate. Although
this disclosure describes and illustrates a particular bus, this disclosure contemplates any
suitable bus or interconnect.

[S3] Herein, reference to a computer-readable non-transitory storage medium may

include a semiconductor-based or other integrated circuit (IC) (such, as for example, a field-

09 Jun 2017

2013308885

21

programmable gate array (FPGA) or an application-specific IC (ASIC)), a hard disk drive
(“HDD”), a hybrid hard drive (HHD), an optical disc, an optical disc drive (ODD), a
magneto-optical disc, a magneto-optical drive, a floppy disk, a floppy disk drive (FDD),
magnetic tape, a holographic storage medium, a solid-state drive (SSD), a RAM-drive, a
SECURE DIGITAL card, a SECURE DIGITAL drive, or another suitable computer-readable
non-transitory storage medium or a suitable combination of these, where appropriate.This
disclosure contemplates one or more computer-readable storage media implementing any
suitable storage. In particular embodiments, a computer-readable storage medium
implements one or more portions of processor 502 (such as, for example, one or more
internal registers or caches), one or more portions of memory 504, one or more portions of
storage 506, or a combination of these, where appropriate. In particular embodiments, a
computer-readable storage medium implements RAM or ROM. In particular embodiments, a
computer-readable storage medium implements volatile or persistent memory. In particular
embodiments, one or more computer-readable storage media embody software. Herein,
reference to software may encompass one or more applications, bytecode, one or more
computer programs, one or more executables, one or more instructions, logic, machine code,
one or more scripts, or source code, and vice versa, where appropriate. In particular
embodiments, software includes one or more application programming interfaces (APIs).
This disclosure contemplates any suitable software written or otherwise expressed in any
suitable programming language or combination of programming languages. In particular
embodiments, software is expressed as source code or object code. In particular
embodiments, software is expressed in a higher-level programming language, such as, for
example, C, Perl, or a suitable extension thereof. In particular embodiments, software is
expressed in a lower-level programming language, such as assembly language (or machine
code). In particular embodiments, software is expressed in JAVA, C, or C++. In particular
embodiments, software is expressed in Hyper Text Markup Language (HTML), Extensible
Markup Language (XML), or other suitable markup language.

[S4] Herein, a computer-readable non-transitory storage medium or media may
include one or more semiconductor-based or other integrated circuits (ICs) (such, as for
example, field-programmable gate arrays (FPGAs) or application-specific ICs (ASICs)), hard
disk drives (HDDs), hybrid hard drives (HHDs), optical discs, optical disc drives (ODDs),

09 Jun 2017

2013308885

22

magneto-optical discs, magneto-optical drives, floppy diskettes, floppy disk drives (FDDs),
magnetic tapes, solid-state drives (SSDs), RAM-drives, SECURE DIGITAL cards or drives,
any other suitable computer-readable non-transitory storage media, or any suitable
combination of two or more of these, where appropriate. A computer-readable non-transitory
storage medium may be volatile, non-volatile, or a combination of volatile and non-volatile,
where appropriate.

[S5] Herein, “or” is inclusive and not exclusive, unless expressly indicated
otherwise or indicated otherwise by context. Therefore, herein, “A or B” means “A, B, or
both,” unless expressly indicated otherwise or indicated otherwise by context. Moreover,
“and” is both joint and several, unless expressly indicated otherwise or indicated otherwise by
context. Therefore, herein, “A and B” means “A and B, jointly or severally,” unless
expressly indicated otherwise or indicated otherwise by context.

[S6] This disclosure encompasses all changes, substitutions, variations, alterations,
and modifications to the example embodiments herein that a person having ordinary skill in
the art would comprehend. Moreover, although this disclosure describes and illustrates
respective embodiments herein as including particular components, elements, functions,
operations, or steps, any of these embodiments may include any combination or permutation
of any of the components, elements, functions, operations, or steps described or illustrated
anywhere herein that a person having ordinary skill in the art would comprehend.
Furthermore, reference in the appended claims to an apparatus or system or a component of
an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to,
operable to, or operative to perform a particular function encompasses that apparatus, system,
component, whether or not it or that particular function is activated, turned on, or unlocked,
as long as that apparatus, system, or component is so adapted, arranged, capable, configured,

enabled, operable, or operative.

09 Jun 2017

2013308885

23

The claims defining the invention are as follows:

1. A computer-implemented method comprising:

storing one or more graphs associated with a social-networking system, each graph
comprising one or more nodes arranged in a hierarchical format, the one or more nodes
representing one or more data items, respectively, each data item being of a particular data
type of a plurality of data types;

receiving, from a third-party system, a call to an API, the call comprising a first query
requesting a definition of the first data type, the first query being expressed in a language
having a first hierarchical format;

sending, to the third-party system in response to the first query, the definition of the
first data type, wherein the definition comprises (1) a name for the first data type, (2) a
description for the first data type, and (3) for each of one or more fields of the first data type,
a name and description of the field;

receiving, from the third-party system, a second query, the second query requesting
one or more of the data items associated with the first data type;

retrieving the requested data items of the first data type from the graphs;

validating the retrieved data items by determining whether the retrieved data items are
associated with the first data type;

arranging the requested data items of the first data type in a second hierarchical
format; and

sending, to the third-party system in response to the second query, the requested data

items of the first data type arranged in the second hierarchical format.

2. The computer-implemented method of Claim 1, wherein retrieving the
requested data items of the first data type from the graphs comprises:

identifying one or more specific nodes representing the requested data items of the
first data type from the graphs; and

retrieving the requested data items of the first data type from the specific nodes.

09 Jun 2017

2013308885

24

3. The computer-implemented method of either one of Claim 1 and Claim 2,
wherein:
the first and second query are submitted by a user;
the second query requests one or more data items that satisfy one or more criteria; and
retrieving the requested data items of the first data type from the graphs comprises
iteratively,
locating the data item from the graphs that satisfies the criteria;
determining whether the user is authorized to access the data item;
if the user is authorized to access the data item, then including the data item as
one of the data items to be outputted; and
if the user is not authorized to access the data item, then discarding the data
item,

until the one or more data items are located.

4. The computer-implemented method of any one of Claims 1 to 3, wherein:
the second query requests one or more first data items that satisfy one or more
criteria; and
retrieving the requested data items of the first data type from the graphs comprises:
identifying the one or more data items from the graphs that satisfy the criteria;
and

recording the last one of the one or more data items identified.

5. The computer-implemented method of Claim 4, further comprising:

accessing a third query requesting one or more second data items that satisfy the
criteria, the third query being expressed in the language having the hierarchical format;

identifying the one or more second data items from the graphs that satisfy the criteria
beginning after the last one of the one or more first data items identified in response to the
second query;

arranging the one or more second data items in a hierarchical format; and

outputting the one or more second data items in response to the third query.

09 Jun 2017

2013308885

25

6. One or more computer-readable non-transitory storage media embodying
software that is operable when executed to:

store one or more graphs associated with a social-networking system, each graph
comprising one or more nodes arranged in a hierarchical format, the one or more nodes
representing one or more data items, respectively, each data item being of a particular data
type of a plurality of data types;

receive, from a third-party system, a call to an API comprising a first query requesting
a definition of the first data type, the first query being expressed in a language having a first
hierarchical format;

sending, to the third-party system in response to the first query, the definition of the
first data type, wherein the definition comprises (1) a name for the first data type, (2) a
description for the first data type, and (3) for each of one or more fields of the first data type,
a name and description of the field;

receive, from the third-party system, a second query, the second query requesting one
or more of the data items associated with the first data type;

retrieve the requested data items of the first data type from the graphs;

validate the retrieved data items by determining whether the retrieved data items are
associated with the first data type;

arrange the requested data items of the first data type in a hierarchical format; and

send, to the third-party system in response to the second query, the requested data

items of the first data type arranged in the second hierarchical format.

7. The media of Claim 6, wherein retrieve the requested data items of the first
data type from the graphs comprises:

identify one or more specific nodes representing the requested data items of the first
data type from the graphs; and

retrieve the requested data items of the first data type from the specific nodes.

8. The media of either one of Claim 6 and Claim 7, wherein:
the first and second query are submitted by a user;

the second query requests one or more data items that satisfy one or more criteria; and

09 Jun 2017

2013308885

26

retrieve the requested data items of the first data type from the graphs comprises
iteratively,
locate the data item from the graphs that satisfies the criteria;
determine whether the user is authorized to access the data item;
if the user is authorized to access the data item, then include the data item as
one of the data items to be outputted; and
if the user is not authorized to access the data item, then discard the data item,

until the one or more data items are located.

9. The media of any one of Claims 6 to 8, wherein:
the second query requests one or more first data items that satisfy one or more
criteria; and
retrieve the requested data items of the first data type from the graphs comprises:
identify the one or more data items from the graphs that satisfy the criteria;
and

record the last one of the one or more data items identified.

10. The media of Claim 9, wherein the software is further operable when executed
to:

access a third query requesting one or more second data items that satisfy the criteria,
the third query being expressed in the language having the hierarchical format;

identify the one or more second data items from the graphs that satisfy the criteria
beginning after the last one of the one or more first data items identified in response to the
second query;

arrange the one or more second data items in a hierarchical format; and

output the one or more second data items in response to the third query.

11. A system comprising: one or more processors; and a memory coupled to the
processors comprising instructions executable by the processors, the processors operable
when executing the instructions to:

store one or more graphs associated with a social-networking system, each graph

09 Jun 2017

2013308885

27

comprising one or more nodes arranged in a hierarchical format, the one or more nodes
representing one or more data items, respectively, each data item being of a particular data
type of a plurality of data types;

receive, from a third-party system, a call to an API comprising a first query requesting
a definition of the first data type, the first query being expressed in a language having a first
hierarchical format;

retrieve, using the first query, the definition of the first data type, wherein the
definition comprises (1) a name for the first data type, (2) a description for the first data type,
and (3) for each of one or more fields of the first data type, a name and description of the
field;

receive, from the third-party system, a second query, the second query requesting one
or more of the data items associated with the first data type;

retrieve the requested data items of the first data type from the graphs;

validate the retrieved data items by determining whether the retrieved data items are
associated with the first data type;

arrange the requested data items of the first data type in a hierarchical format; and

send, to the third-party system in response to the second query, the requested data

items of the first data type arranged in the second hierarchical format.

12. The system of Claim 11, wherein retrieve the requested data items of the first
data type from the graphs comprises:

identify one or more specific nodes representing the requested data items of the first
data type from the graphs; and

retrieve the requested data items of the first data type from the specific nodes.

13. The system of either one of Claim 11 and Claim 12, wherein:

the first and second query are submitted by a user;

the second query requests one or more data items that satisfy one or more criteria; and

retrieve the requested data items of the first data type from the graphs comprises
iteratively,

locate the data item from the graphs that satisfies the criteria;

09 Jun 2017

2013308885

28

determine whether the user is authorized to access the data item;

if the user is authorized to access the data item, then include the data item as
one of the data items to be outputted; and

if the user is not authorized to access the data item, then discard the data item,

until the one or more data items are located.

14. The system of any one of Claims 11 to 13, wherein:
the second query requests one or more first data items that satisfy one or more
criteria; and
retrieve the requested data items of the first data type from the graphs comprises:
identify the one or more data items from the graphs that satisfy the criteria;
and

record the last one of the one or more data items identified.

13- The system of Claim 14, wherein the processors are further operable when
executing the instructions to:

access a third query requesting one or more second data items that satisfy the criteria,
the third query being expressed in the language having the hierarchical format;

identify the one or more second data items from the graphs that satisfy the criteria
beginning after the last one of the one or more first data items identified in response to the
second query;

arrange the one or more second data items in a hierarchical format; and

output the one or more second data items in response to the third query.

Facebook, Inc.
By Patent Attorneys for the Applicant

(©COTTERS

Patent & Trade Mark Attorneys

WO 2014/036054 PCT/US2013/056940

1/3

FIGURE 1

210 -~ | RECEIVE A QUERY FOR SPECIFIC
DATA [TEMS STORED IN GRAPHS

RETRIEVE NODES CONTAINING THE
REGUESTED DATA ITEMS FROM
THE GRAFHS

220

I3} QUTPUT THE REQUESTED DATA
ITEMS

FIGURE 2

WO 2014/036054

2/3

310

| RECORD THE SCHEMAS OF AFIRST

VHERSION OF AN AP

COMPARE THE SCHEMAS OF A
SECOND VERSION OF THE APL
AGAINST THE SCHEMAS OF THE

FIRST VERSION OF THE APL

320 |
FIGURE 3
4 i W“’\\,\

GENERATE A FIRST QUERY FOR A
DATA STRUCTURE OF A SPECIFIC
DATATYPE

420

RETRIEVE THE DATA STRUCTURE
FROM THE GRAPHS

430

GENERATE A SHCOND QUERY FOR
DATA ITEMS WITH THE SPECIFIC
DATATYPE

RETRIEVE THE DATA ITEMS FROM
THE GRAPHS

FIGURE 4

PCT/US2013/056940

WO 2014/036054 PCT/US2013/056940

3/3

a 590

[e s et e MaiA A A AR s ARRRL NRNRR RN
i COMPUTER SYSTEM
!

512 w4
! ’ g 813
g w—p PROCESSOR
: !
E i
| | b 504
g PR MEMORY !
P — !
3 {
b 506
i PO STORAGE =
| {
| , i
e 508
| ¢pl VOINTERFACE |
{
E |
}
f) COMMUNICATION | oy 510
; TR INTERFACE |
! ¥ §
! 4

AAAA AnaNA nmmn AR GEOOD MWW WRARY MR WAL WA AMM A Anans RaRse astas wemss

FIGURE 5

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

