a2 United States Patent

Grosz

US010901903B2

US 10,901,903 B2
Jan. 26, 2021

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)
(73)

")
@
(22)

(65)

(1)

(52)

(58)

FLASH MEMORY PERSISTENT CACHE
TECHNIQUES

Applicant: Micron Technology, Inc., Boise, ID

(US)
Inventor: Nadav Grosz, Broomfield, CO (US)
Assignee: Micron Technology, Inc., Boise, ID
(US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 76 days.

Appl. No.: 16/230,423
Filed: Dec. 21, 2018

Prior Publication Data

US 2020/0201772 Al Jun. 25, 2020

Int. CL.

GO6F 12/0866 (2016.01)

GO6F 3/06 (2006.01)

GO6F 12/02 (2006.01)

U.S. CL

CPC ... GO6F 12/0866 (2013.01); GOGF 3/0629

(2013.01); GOGF 12/0246 (2013.01); GO6F
12/0292 (2013.01)
Field of Classification Search
CPCcccc... GOGF 12/0866; GOGF 3/0629; GOGF
12/0246; GOGF 12/0292
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,026,470 A * 2/2000 Arimilli GO6F 12/0864
711/118

8,352,690 B2* 1/2013 Forhan GO6F 13/14
711/103

2006/0288170 Al* 12/2006 Varma ... GO6F 12/0888
711/122

2010/0082903 Al* 42010 Kurashige GO6F 12/0246
711/118

2018/0210832 Al* 7/2018 Tangcccoce.. GOG6F 12/128

* cited by examiner

Primary Examiner — David Yi

Assistant Examiner — Tahilba O Puche

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

Devices and techniques are disclosed herein for implement-
ing, in addition to a first cache, a second, persistent cache in
amemory system coupled to a host. The memory system can
include flash memory. In certain examples, the first cache
and the second cache are configured to store mapping
information. In some examples, the mapping information of
the second persistent cache is determined by the host using
a persistence flag of memory requests provided to the
memory system.

20 Claims, 3 Drawing Sheets

o

MAINTAIN A PORTION OF A MAPPING TABLE OF A MEMORY
SYSTEM IN A FIRST CACHE OF THE MEMORY SYSTEM

201

Vs

|

RECEIVE A FIRST WRITE REQUEST HAVING A
PERSISTENCE FLAG IN A FIRST STATE

f203

|

SAVE FIRST WRITE INFORMATICN TO FLASH
MEMORY OF THE MEMORY SYSTEM

f 205

|

SAVE FIRST MAPPING INFORMATION TO A SECOND f 27
CACHE OF THE MEMCRY SYSTEM IN RESPCNSE TO
THE FIRST STATE OF THE PERSISTENCE FLAG

l

RECE!VE A SECOND WRITE REQUEST HAVING
THE PERSISTENCE FLAG IN A SECOND STATE

209
f

|

SAVE SECOND WRITE INFORMATION TO FLASH
MEMORY OF THE MEMORY SYSTEM

|

SAVE SECOND MAPPING INFORMATION TO THE
MAPPING TABLE IN RESPONSE TO THE SECOND
STATE OF THE PERSISTENCE FLAG

U.S. Patent Jan. 26, 2021 Sheet 1 of 3 US 10,901,903 B2
115
MEMORY CONTROLLER 25
100 125 7
A TTWJ MANAGEMENT | | CONIROL |
(Eccy [
i/ p—

S CACHE 1. 161

CACHE 2 167

U.S. Patent Jan. 26, 2021 Sheet 2 of 3 US 10,901,903 B2

200

e

v

MAINTAIN A PORTION OF AMAPPING TABLE OF AMEMORY |/~ 201
SYSTEM IN A FIRST CACHE OF THE MEMORY SYSTEM

\:

RECEIVE A FIRST WRITE REQUEST HAVING A f203
PERSISTENCE ELAG IN A FIRST STATE

A4

SAVE FIRST WRITE INFORMATION TO FLASH fZOS
MEMORY OF THE MEMORY SYSTEM

A4

SAVE FIRST MAPPING INFORMATION TC A SECOND f 207
{CACHE OF THE MEMORY SYSTEM IN RESPONSE TO
THE FIRST STATE OF THE PERSISTENCE FLAG

A 4

RECEIVE A SECOND WRITE REQUEST HAVING | /~ 209
THE PERSISTENCE FLAG IN A SECOND STATE

A

SAVE SECOND WRITE INFORMATION TO FLASH f 211
MEMORY OF THE MEMORY SYSTEM

Y

SAVE SECOND MAPPING INFORMATION TO THE 213
MAPPING TABLE IN RESPONSE TO THE SECOND f
STATE OF THE PERSISTENCE FLAG

FIG. 2

U.S. Patent Jan. 26, 2021 Sheet 3 of 3 US 10,901,903 B2

p— 300

PROCESSING DEVICE //

30 le——>p |¢——p STATICMEMORY
INSTRUCTIONS
318
304 -
MAIN MEMORY DATA STORAGE DEVICE
326 | \ [
INSTRUCTIONS MACHE;:&ESE@DAELE
2 e , - 326
308 |@ INSTRUCTIONS
NETWORK INTERFACE
DEVICE R
~ 320

¢ NETWORK \/

FIG. 3

US 10,901,903 B2

1

FLASH MEMORY PERSISTENT CACHE
TECHNIQUES

BACKGROUND

Memory devices are typically provided as internal, semi-
conductor, integrated circuits in computers or other elec-
tronic devices. There are many different types of memory
including volatile and non-volatile memory. Volatile
memory can require power to maintain data and includes
random-access memory (RAM), dynamic random-access
memory (DRAM), and synchronous dynamic random-ac-
cess memory (SDRAM), among others. Non-volatile
memory can provide persistent data by retaining stored data
when not powered and can include NAND flash memory,
NOR flash memory, read only memory (ROM), Electrically
Erasable Programmable ROM (EEPROM), Erasable Pro-
grammable ROM (EPROM), and resistance variable
memory such as phase change random access memory
(PCRAM), resistive random-access memory (RRAM), and
magnetoresistive random access memory (MRAM), 3D
XPoint™ memory, among others.

Memory cells are typically arranged in a matrix or an
array. Multiple matrices or arrays can be combined into a
memory device, and multiple devices can be combined to
form a storage volume of a memory system, such as a
solid-state drive (SSD), a Universal Flash Storage (UFS™)
device, a MultiMediaCard (MMC) solid-state storage
device, an embedded MMC device (eMMC™), etc.

A memory system can include one or more processors or
other memory controllers performing logic functions to
operate the memory devices or interface with external
systems. The memory matrices or arrays can include a
number of blocks of memory cells organized into a number
of physical pages. The memory system can receive com-
mands from a host in association with memory operations,
such as read or write operations to transfer data (e.g., user
data and associated integrity data, such as error data and
address data, etc.) between the memory devices and the host,
erase operations to erase data from the memory devices, or
perform one or more other memory operations.

Memory is utilized as volatile and non-volatile data
storage for a wide range of electronic applications, includ-
ing, for example, personal computers, portable memory
sticks, digital cameras, cellular telephones, portable music
players such as MP3 players, movie players, and other
electronic devices. Memory cells can be arranged into
arrays, with the arrays being used in memory devices.

Many electronic devices include several main compo-
nents: a host processor (e.g., a central processing unit (CPU)
or other main processor); main memory (e.g., one or more
volatile or non-volatile memory device, such as dynamic
RAM (DRAM), mobile or low-power double-data-rate syn-
chronous DRAM (DDR SDRAM), etc.); and a storage
device (e.g., non-volatile memory (NVM) device, such as
flash memory, read-only memory (ROM), an SSD, an
MMC, or other memory card structure or assembly, or
combination of volatile and non-volatile memory, etc.). In
certain examples, electronic devices can include a user
interface (e.g., a display, touch-screen, keyboard, one or
more buttons, etc.), a graphics processing unit (GPU), a
power management circuit, a baseband processor or one or
more transceiver circuits, etc.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale,
like numerals may describe similar components in different

10

15

20

25

30

35

40

45

50

55

60

65

2

views. Like numerals having different letter suffixes may
represent different instances of similar components. The
drawings illustrate generally, by way of example, but not by
way of limitation, various embodiments discussed in the
present document.

FIG. 1 illustrates an example system an environment
including a memory device upon which one or more
examples of the present subject matter may be implemented.

FIG. 2 illustrates generally a flowchart of an example
method for implementing memory operations at a flash
memory system having a persistent cache.

FIG. 3 illustrates a block diagram of an example machine
upon which any one or more of the techniques (e.g., meth-
odologies) discussed herein may perform.

DETAILED DESCRIPTION

Flash memory based storage devices such as NAND
memory can use a Flash Translation Layer (FTL) to translate
logical addresses of I/O requests, often referred to as logical
block addresses (LBAs), to corresponding flash memory
addresses which are stored in one or more FTL mapping
tables. LBAs can be the logical addresses used by a host for
managing data. Mobile storage devices typically have a
cache but often lack memory to store an entire mapping
table. Therefore, portions of the mapping table(s) can be
retrieved from the flash memory on demand. However, flash
memory is generally much slower than options suitable for
cache memory, therefore, retrieving portions of a mapping
table can cause random read performance degradation.

FIG. 1 illustrates an example of an environment 100
including a host 105 and a memory device 110 configured to
communicate over a communication interface. The host 105
or the memory device 110 may be included in a variety of
products 150, such as IoT devices (e.g., a refrigerator or
other appliance, sensor, motor or actuator, mobile commu-
nication device, automobile, mobile phone, drone, etc.) to
support processing, communications, or control of the prod-
uct 150.

The memory device 110 includes a memory controller 115
and a memory array 120 including, for example, one or more
individual memory die (e.g., a stack of three-dimensional
(3D) NAND die). In 3D architecture semiconductor memory
technology, vertical structures are stacked in multiple tiers,
and coupled to form physical pages, to increase the storage
density of a memory device (e.g., a storage device) in a
given footprint (i.e. form factor). In an example, the memory
device 110 can be a discrete memory device. In certain
examples, one or more memory arrays 120 can include a
complete copy of the entire FTL mapping table 160.

One or more communication interfaces 111 can be used to
transfer data between the memory device 110 and one or
more other components of the host 105, such as a Serial
Advanced Technology Attachment (SATA) interface, a
Peripheral Component Interconnect Express (PCle) inter-
face, a Universal Serial Bus (USB) interface, a UFS inter-
face, an eMMC™ interface, or one or more other connectors
or interfaces. The host 105 can include a host system, an
electronic device, a processor, a memory card reader, or one
or more other electronic devices external to the memory
device 110. In some examples, the host 105 may be a
machine having some portion, or all, of the components
discussed in reference to the machine 400 of FIG. 4. Data
may be transferred between the memory device 110 and
other components over an input/output (I/O) bus that may

US 10,901,903 B2

3

include one or more latches for temporarily storing the data
as it is being transferred (e.g., before being read or written
from/to a memory array).

The memory controller 115 can receive instructions from
the host 105, and can communicate with the memory array,
such as to transfer data to (e.g., write or erase) or from (e.g.,
read) one or more of the memory cells, planes, sub-blocks,
blocks, or pages of the memory array. The memory control-
ler 115 can include, among other things, circuitry or firm-
ware, including one or more components or integrated
circuits. For example, the memory controller 115 can
include one or more memory control units, circuits, control
circuitries, or components configured to control access
across the memory array 120 and to provide a translation
layer between the host 105 and the memory device 110. The
memory controller 115 can include one or more I/O circuits
(and corresponding latches), caches, lines, or interfaces to
transfer data to or from the memory array 120. The memory
controller 115 can include a memory manager 125 and an
array controller 135.

The array controller 135 can include, among other things,
circuitry or components configured to control memory
operations associated with writing data to, reading data
from, or erasing one or more memory cells of the memory
device 110 coupled to the memory controller 115. The
memory operations can be based on, for example, host
commands received from the host 105, or internally gener-
ated by the memory manager 125 (e.g., in association with
wear leveling, error detection or correction, etc.).

The array controller 135 can include an error correction
code (ECC) component 140, which can include, among
other things, an ECC engine or other circuitry configured to
detect or correct errors associated with writing data to or
reading data from one or more memory cells of the memory
device 110 coupled to the memory controller 115. ECC
component 140, for example, may detect or compute a
bit-error-rate (BER) associated with performing a number of
memory operations. The BER may correspond to bit errors
occurring in latches of an I/O bus, internal errors of memory
controller 115, errors occurring in one or more of the NAND
arrays, or any one or more of the multi-level cell(s) (MLC)
of the memory device 110. The memory controller 115 can
be configured to actively detect and recover from error
occurrences (e.g., bit errors, operation errors, crash condi-
tions, stalls, hang ups, etc.) associated with various opera-
tions or storage of data, while maintaining integrity of the
data transferred between the host 105 and the memory
device 110, or maintaining integrity of stored data (e.g.,
using redundant RAID storage, etc.), and can remove (e.g.,
retire) failing memory resources (e.g., memory cells,
memory arrays, pages, blocks, etc.) to prevent future errors.
Array controller 135 may transmit detected BER informa-
tion to memory manager 125 for storage and tracking. The
memory controller 115 may include a command queue (not
shown) that tracks memory commands received from a host.
Commands in the queue may be executed by memory
controller 115 in a first-in first-out (FIFO) manner, stack
manner, out of sequence, according to priority, or in any
other suitable order.

In certain examples, the memory device 110 can include
one or more caches 161, 162 in association with the memory
array 120. In certain examples, the caches 161, 162 can
include first cache 161 to store a portion of the FTL table
160. In certain examples, memory requests from the host can
include logical block addresses of the host memory system
that, over an interval of time, can be accessed, in the memory
device 110 via a host memory request, more often than other

10

15

20

25

30

35

40

45

50

55

60

65

4

groups of logical block addresses. If the portion of the FTL
table 160 stored within the first cache 161 includes a logical
block address that matches corresponding information
included with a memory request from the host, the data area
of the flash memory of memory device can be accessed
much quicker than if the FTL table 160 of the flash memory
array 120 is accessed to find matching information.

In certain examples, the memory device can include a
second cache, also referred to as a persistent cache 162. The
persistent cache 162 can include specific FTL map infor-
mation. In certain examples, the FTL map information
stored in the persistent cache 162 can include mapping
information that is anticipated to be accessed more often
than other mapping information over a given interval of time
or, for example, over the entire interval of operation of the
host and memory device. In certain examples, the FTL
information stored in the persistent cache 162 can map to
basic operating system data of the host and can prevent
intermittent reloads of the first cache 161.

For example, in a conventional memory device with a
single cache, if the single cache includes first FTL informa-
tion for a range of logical block addresses the host is
currently working with and the host receives an interrupt
that is known to occur relatively often, the conventional
system accesses the flash memory to overwrite the single
cache with second FTL information required to service the
interrupt. Upon completion of servicing the interrupt, the
conventional system accesses the flash memory to reload the
single cache with the first FTL information to continue
operations in-progress before the interrupt. Each access of
the flash memory is relatively slow compared to using
information already in the single cache.

The present inventor has recognized that a second, per-
sistent cache 162 can eliminate some memory array accesses
including and in addition to those described above. In certain
examples, the host can control at least some operations of
the persistent cache. In certain examples, some of the
operations under exclusive control of the host can include
specifying the specific flash translation information to be
stored in the persistent cache and controlling the erasure or
replacement of stored flash translation information of the
persistent cache. In certain examples, the persistent cache
can be volatile, therefore, the exclusive control operations of
the host do not include retention of information within the
persistent cache during power-down events of the memory
device, during power-up events of the memory device, and
between a power-down event and an immediately subse-
quent power-up event. In general, each cache 160, 161 can
include a type of memory having an access time that is less
than the access time of the flash memory of the memory
device.

In certain examples, the access time of the persistent
cache is less than 80% of the access time of the flash
memory of the memory device. In certain examples, the
access time of the persistent cache is less than 60% of the
access time of the flash memory of the memory device. In
certain examples, the access time of the persistent cache is
less than 40% of the access time of the flash memory of the
memory device. In certain examples, the access time of the
persistent cache is less than 10% of the access time of the
flash memory of the memory device. In certain examples,
the access time of the persistent cache is less than 2% of the
access time of the flash memory of the memory device.

The memory manager 125 can include, among other
things, circuitry or firmware, such as a number of compo-
nents or integrated circuits associated with various memory
management functions. For purposes of the present descrip-

US 10,901,903 B2

5

tion, example memory operation and management functions
will be described in the context of NAND memory. Persons
skilled in the art will recognize that other forms of non-
volatile memory may have analogous memory operations or
management functions. Such NAND management functions
include wear leveling (e.g., garbage collection or reclama-
tion), error detection (e.g., BER monitoring) or correction,
block retirement, or one or more other memory management
functions. The memory manager 125 can parse or format
host commands (e.g., commands received from a host) into
device commands (e.g., commands associated with opera-
tion of a memory array, etc.), or generate device commands
(e.g., to accomplish various memory management functions)
for the array controller 135 or one or more other components
of the memory device 110.

The memory manager 125 can include a set of manage-
ment tables 130 configured to maintain various information
associated with one or more components of the memory
device 110 (e.g., various information associated with a
memory array or one or more memory cells coupled to the
memory controller 115 and can include an FTL table). For
example, the management tables 130 can include informa-
tion regarding block age, block erase count, error history,
error parameter information, host reset timeout value,
memory operation command latencies, or one or more error
counts (e.g., a write operation error count, a read bit error
count, a read operation error count, an erase error count, etc.)
for one or more blocks of memory cells coupled to the
memory controller 115. In certain examples, if the number
of detected errors for one or more of the error counts (e.g.,
an error parameter) is above a threshold (e.g., an allowable
error threshold), the bit error can be referred to as an
uncorrectable bit error. The management tables 130 can
maintain a count of correctable or uncorrectable bit errors,
among other things.

The memory array 120 can include multiple memory cells
arranged in, for example, a number of devices, planes,
sub-blocks, blocks, or pages. As one example, a 48 GB TLC
NAND memory device can include 18,592 bytes of data per
page (16,384+2208 bytes), 1536 pages per block, 548 blocks
per plane, and 4 or more planes per device. As another
example, a 32 GB MLC memory device (storing two bits of
data per cell (i.e., 4 programmable states)) can include
18,592 bytes (B) of data per page (16,384+2208 bytes), 1024
pages per block, 548 blocks per plane, and 4 planes per
device, but with half the required write time and twice the
program/erase (P/E) cycles as a corresponding TLC memory
device. Other examples can include other numbers or
arrangements. In some examples, a memory device, or a
portion thereof, may be selectively operated in SLC mode,
or in a desired MLLC mode (such as TL.C, QLC, etc.).

In operation, data is typically written to or read from the
memory device 110 in pages and erased in blocks. However,
one or more memory operations (e.g., read, write, erase, etc.)
can be performed on larger or smaller groups of memory
cells, as desired. The data transfer size of a memory device
110 is typically referred to as a page, whereas the data
transfer size of a host is typically referred to as a sector.

Different types of memory cells or memory arrays 120 can
provide for different page sizes or may require different
amounts of metadata associated therewith. For example,
different memory device types may have different bit error
rates, which can lead to different amounts of metadata
necessary to ensure integrity of the page of data (e.g., a
memory device with a higher bit error rate may require more
bytes of error correction code data than a memory device
with a lower bit error rate). As an example, a MLC NAND

10

15

20

25

30

35

40

45

50

55

60

65

6

flash device may have a higher bit error rate than a corre-
sponding single-level cell (SLC) NAND flash device. As
such, the MLL.C device may require more metadata bytes for
error data than the corresponding SL.C device. In certain
examples, the memory controller or memory manager can
perform internal operations to optimize performance, opera-
tion, or longevity of the flash memory. Such internal opera-
tions can include, but are not limited to, garbage collection
and wear leveling, and can move data that had been previ-
ously mapped. The memory controller or the memory man-
ager can modify FTL information of either the first cache or
the persistent cache to update and keep accurate the mapping
information considering the internal operations of the
memory device.

FIG. 2 illustrates generally a flowchart of an example
method 200 for implementing memory operations at a flash
memory system having a persistent cache. At 201, the
method can include maintaining a first portion of a mapping
table of a memory system in a first cache of the memory
system. As discussed above, flash memory is generally
slower than some other forms of memory, yet each memory
command received from the host generally is parsed to find
or assign a physical address of the memory system corre-
sponding to a logical block address of the host, where the
logical block address is typically included with the memory
command. Memory devices can include fast memory, or
cache memory, to facilitate translating the logical block
address to the physical address for a mapping table and to
store at least a portion of the mapping table such that
memory requests can have a chance of being serviced faster
compared to accessing the flash memory to retrieve mapping
information in addition to accessing the flash memory to
handle the memory request data. Only a portion of a
mapping table is typically stored in the first cache because
additional fast memory space would sacrifice non-volatile
memory capacity of the memory device. As such, the first
cache is often written over with a different portion of the
mapping table when a logical block address of a memory
request is not found in the current cached portion of the
mapping table.

At 203, the memory device can receive a first write
request from the host. The first write request can include a
first logical block address of the host system, first write
information, and a persistence flag in a first state. In certain
examples, the first state of the persistence flag indicates that
the mapping data for the first write information should be
saved to a second, persistent cache. At 205, the first write
information is saved to flash memory of the memory system.
At 207, first mapping information is saved to the second
cache of the memory system in response to the first state of
the persistence flag. In certain examples, the first mapping
information can include the first logical block address
received with the first write commend. In certain examples,
in addition to saving the first mapping information to the
persistent second cache, the first mapping information can
be saved to the mapping table.

At 209, a second write request from the host can be
received at the memory system. The second write request
can include a second logical block address of the host
system, second write information, and the persistence flag of
the write command in a second state. In certain examples,
the second state of the persistence flag indicates that the
mapping data for the first write information can be saved to
the first cache or directly to the flash memory mapping table.
At 211, the second write information can be saved to the
flash memory of the memory system. At 213, second map-
ping information can be saved to the mapping table in

US 10,901,903 B2

7

response to the second state of the flag. In certain examples,
the second mapping information can include the second
logical block address.

The second, persistent cache can allow a more efficient
operation of the overall system that includes the host and the
memory system. The second cache can be used by the host
to store mapping information associated with data that the
host will access relatively often, for clarity, such data is
referred to herein as “high-use” data. If the memory system
includes a single undivided cache, there is a strong prob-
ability that the portion of the mapping table in the cache
when the host accesses the “high-use” data will not include
mapping information for the “high-use” data. When the
portion of the mapping table in the cache does not include
mapping information associated with a host memory
request, the memory system can access the slower flash
memory to retrieve the portion of the mapping table corre-
sponding to the host memory request. Such flash memory
accesses have a significant cost in terms of time. Having a
second cache according to the present subject matter can
eliminate some accesses to the flash memory, such as when
mapping information for “high-use” data is stored in a
second, persistent cache of the memory system.

In certain examples, a difference between the first cache
of the memory system and the second cache of the memory
system is the configured control of when mapping informa-
tion in each cache is erased or overwritten. Regarding the
first cache, the memory system, or a memory controller or
memory manager of the memory system, can initiate erasing
and overwriting the mapping information of the first cache.
Regarding the second, persistent cache, the memory system,
or a memory controller or memory manager of the memory
system, erases or overwrites mapping information in
response to a command from the host. In certain examples,
a memory controller or memory manager of the memory
system, can update mapping information of the persistent
cache to accommodate internal operations such as garbage
collection and wear leveling.

In certain examples, the host can configure the size of the
persistent cache. In support of such operations, the memory
system can receive and respond to inquiries from the host.
Such inquiries can include total cache size of both the first
cache and the persistent cache, total size of the persistent
cache, the size of unused space available in the persistent
cache. In certain examples, such as a Universal Flash
Storage (UFS) compliant memory system or device, a
memory request can include among other things, a com-
mand field that a host can set to a value for a particular
memory request, and a group field. In certain examples, the
group field can include the persistence flag.

In certain examples, the memory device can transfer
contents of the second, persistent cache to non-volatile
memory prior to a power cycle of the system or the memory
device. Upon power-up of the system or the memory device,
the content of the persistent cache can be repopulated from
the non-volatile memory. In certain examples, such a feature
can allow the mapping table of the “high-use” data to
survive power cycles and allow for faster wake-up of the
system, especially when the “high-use” data is associated
with an operating system of the host, for example.

FIG. 3 illustrates a block diagram of an example machine
300 upon which any one or more of the techniques (e.g.,
methodologies) discussed herein may perform. In alternative
embodiments, the machine 300 may operate as a standalone
device or may be connected (e.g., networked) to other
machines. In a networked deployment, the machine 300 may
operate in the capacity of a server machine, a client machine,

10

15

20

25

30

35

40

45

50

55

60

8

or both in server-client network environments. In an
example, the machine 300 may act as a peer machine in
peer-to-peer (P2P) (or other distributed) network environ-
ment. The machine 300 may be a personal computer (PC),
a tablet PC, a set-top box (STB), a personal digital assistant
(PDA), a mobile telephone, a web appliance, an IoT device,
automotive system, or any machine capable of executing
instructions (sequential or otherwise) that specify actions to
be taken by that machine. Further, while only a single
machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein, such as cloud computing, software as a service
(SaaS), other computer cluster configurations.

Examples, as described herein, may include, or may
operate by, logic, components, devices, packages, or mecha-
nisms. Circuitry is a collection (e.g., set) of circuits imple-
mented in tangible entities that include hardware (e.g.,
simple circuits, gates, logic, etc.). Circuitry membership
may be flexible over time and underlying hardware vari-
ability. Circuitries include members that may, alone or in
combination, perform specific tasks when operating. In an
example, hardware of the circuitry may be immutably
designed to carry out a specific operation (e.g., hardwired).
In an example, the hardware of the circuitry may include
variably connected physical components (e.g., execution
units, transistors, simple circuits, etc.) including a computer-
readable medium physically modified (e.g., magnetically,
electrically, moveable placement of invariant massed par-
ticles, etc.) to encode instructions of the specific operation.
In connecting the physical components, the underlying
electrical properties of a hardware constituent are changed,
for example, from an insulator to a conductor or vice versa.
The instructions enable participating hardware (e.g., the
execution units or a loading mechanism) to create members
of the circuitry in hardware via the variable connections to
carry out portions of the specific tasks when in operation.
Accordingly, the computer-readable medium is communi-
catively coupled to the other components of the circuitry
when the device is operating. In an example, any of the
physical components may be used in more than one member
of more than one circuitry. For example, under operation,
execution units may be used in a first circuit of a first
circuitry at one point in time and reused by a second circuit
in the first circuitry, or by a third circuit in a second circuitry
at a different time.

The machine (e.g., computer system) 300 (e.g., the host
105, the memory device 110, etc.) may include a processing
device 302 (e.g., a hardware processor, a central processing
unit (CPU), a graphics processing unit (GPU), a hardware
processor core, or any combination thereof, such as a
memory controller of the memory device 110, etc.), a main
memory 304 (e.g., read-only memory (ROM), flash
memory, dynamic random-access memory (DRAM) such as
synchronous DRAM (SDRAM) or Rambus DRAM
(RDRAM), etc.), a static memory 306 (e.g., flash memory,
static random-access memory (SRAM), etc.), and a data
storage system 318, some or all of which may communicate
with each other via an interlink (e.g., bus) 330.

The processing device 302 can represent one or more
general-purpose processing devices such as a microproces-
sor, a central processing unit, or the like. More particularly,
the processing device can be a complex instruction set
computing (CISC) microprocessor, reduced instruction set
computing (RISC) microprocessor, very long instruction
word (VLIW) microprocessor, or a processor implementing

US 10,901,903 B2

9

other instruction sets, or processors implementing a combi-
nation of instruction sets. The processing device 302 can
also be one or more special-purpose processing devices such
as an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
302 can be configured to execute instructions 326 for
performing the operations and steps discussed herein. The
computer system 300 can further include a network interface
device 308 to communicate over a network 320.

The data storage system 318 can include a machine-
readable storage medium 324 (also known as a computer-
readable medium) on which is stored one or more sets of
instructions 326 or software embodying any one or more of
the methodologies or functions described herein. The
instructions 326 can also reside, completely or at least
partially, within the main memory 304 or within the pro-
cessing device 302 during execution thereof by the computer
system 300, the main memory 304 and the processing device
302 also constituting machine-readable storage media. The
machine-readable storage medium 324, the data storage
system 318, or the main memory 304 can correspond to the
memory device 110 of FIG. 1.

In one implementation, the instructions 326 include
instructions to implement functionality corresponding to
implementing a second persistent cache as discussed above
with respect to FIG. 2 or FIG. 3. While the machine-readable
storage medium 324 is shown in an example implementation
to be a single medium, the term “machine-readable storage
medium” should be taken to include a single medium or
multiple media that store the one or more sets of instruc-
tions. The term “machine-readable storage medium” shall
also be taken to include any medium that is capable of
storing or encoding a set of instructions for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the present disclosure. The
term “machine-readable storage medium” shall accordingly
be taken to include, but not be limited to, solid-state memo-
ries, optical media, and magnetic media. In an example, a
massed machine-readable medium comprises a machine-
readable medium with a plurality of particles having invari-
ant (e.g., rest) mass. Accordingly, massed machine-readable
media are not transitory propagating signals. Specific
examples of massed machine-readable media may include:
non-volatile memory, such as semiconductor memory
devices (e.g., Electrically Programmable Read-Only
Memory (EPROM), Electrically Erasable Programmable
Read-Only Memory (EPROM)) and flash memory devices;
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and CD-ROM and DVD-
ROM disks.

The machine 300 may further include a display unit, an
alphanumeric input device (e.g., a keyboard), and a user
interface (UI) navigation device (e.g., a mouse). In an
example, one or more of the display unit, the input device,
or the Ul navigation device may be a touch screen display.
The machine a signal generation device (e.g., a speaker), or
one or more sensors, such as a global positioning system
(GPS) sensor, compass, accelerometer, or one or more other
sensor. The machine 300 may include an output controller,
such as a serial (e.g., universal serial bus (USB), parallel, or
other wired or wireless (e.g., infrared (IR), near field com-
munication (NFC), etc.) connection to communicate or
control one or more peripheral devices (e.g., a printer, card
reader, etc.).

The instructions 326 (e.g., software, programs, an oper-
ating system (OS), etc.) or other data are stored on the data

10

15

20

25

30

35

40

45

50

55

60

65

10

storage device 318 can be accessed by the main memory 304
for use by the processing device 302. The main memory 304
(e.g., DRAM) is typically fast, but volatile, and thus a
different type of storage than the data storage device 318
(e.g., an SSD), which is suitable for long-term storage,
including while in an “off” condition. The instructions 326
or data in use by a user or the machine 300 are typically
loaded in the main memory 304 for use by the processing
device 302. When the main memory 304 is full, virtual space
from the data storage device 318 can be allocated to supple-
ment the main memory 304; however, because the data
storage device 318 device is typically slower than the main
memory 304, and write speeds are typically at least twice as
slow as read speeds, use of virtual memory can greatly
reduce user experience due to storage device latency (in
contrast to the main memory 304, e.g., DRAM). Further, use
of'the data storage device 318 for virtual memory can greatly
reduce the usable lifespan of the data storage device 318.

In contrast to virtual memory, virtual memory compres-
sion (e.g., the Linux™ kernel feature “ZRAM”) uses part of
the memory as compressed block storage to avoid paging to
the data storage device 318. Paging takes place in the
compressed block until it is necessary to write such data to
the data storage device 318. Virtual memory compression
increases the usable size of the main memory 304, while
reducing wear on the data storage device 318.

Storage devices optimized for mobile electronic devices,
or mobile storage, traditionally include MMC solid-state
storage devices (e.g., micro Secure Digital (microSD™)
cards, etc.). MMC devices include a number of parallel
interfaces (e.g., an 8-bit parallel interface) with a host (e.g.,
a host device), and are often removable and separate com-
ponents from the host. In contrast, eMMC™ devices are
attached to a circuit board and considered a component of
the host, with read speeds that rival serial ATA™ (Serial AT
(Advanced Technology) Attachment, or SATA) based SSD
devices. However, demand for mobile device performance
continues to increase, such as to fully enable virtual or
augmented-reality devices, utilize increasing networks
speeds, etc. In response to this demand, storage devices have
shifted from parallel to serial communication interfaces.
Universal Flash Storage (UFS) devices, including control-
lers and firmware, communicate with a host using a low-
voltage differential signaling (LVDS) serial interface with
dedicated read/write paths, further advancing greater read/
write speeds.

The instructions 324 may further be transmitted or
received over a network 320 using a transmission medium
via the network interface device 308 utilizing any one of a
number of transfer protocols (e.g., frame relay, internet
protocol (IP), transmission control protocol (TCP), user
datagram protocol (UDP), hypertext transfer protocol
(HTTP), etc.). Example communication networks may
include a local area network (LAN), a wide area network
(WAN), a packet data network (e.g., the Internet), mobile
telephone networks (e.g., cellular networks), Plain Old Tele-
phone (POTS) networks, and wireless data networks (e.g.,
Institute of FElectrical and Electronics Engineers (IEEE)
802.11 family of standards known as Wi-Fi®, IEEE 802.16
family of standards known as WiMax®), IEEE 802.15.4
family of standards, peer-to-peer (P2P) networks, among
others. In an example, the network interface device 308 may
include one or more physical jacks (e.g., Ethernet, coaxial,
or phone jacks) or one or more antennas to connect to the
network 320. In an example, the network interface device
308 may include a plurality of antennas to wirelessly com-
municate using at least one of single-input multiple-output

US 10,901,903 B2

11

(SIMO), multiple-input multiple-output (MIMO), or mul-
tiple-input single-output (MISO) techniques. The term
“transmission medium” shall be taken to include any intan-
gible medium that is capable of storing, encoding, or car-
rying instructions for execution by the machine 300, and
includes digital or analog communications signals or other
intangible medium to facilitate communication of such
software.

ADDITIONAL NOTES AND EXAMPLES

Example 1 is a method comprising: maintaining a first
portion of a mapping table of a memory system in a first
cache of the memory system; receiving a first write request
from a host at the memory system, the first write request
including a first logical block address of the host, first write
information, and a persistent flag in a first state; saving the
first write information to flash memory of the memory
system; saving first mapping information to a second per-
sistent cache of the memory system in response to the first
state of the persistence flag, the first mapping information
including the first logical block address, wherein the second
persistent cache is a persistent cache; receiving a second
write request from the host, the second write request includ-
ing a second logical block address of the host, second write
information, and a persistence flag in a second state; saving
the second write information to the flash memory of the
memory system; and saving second mapping information to
the first cache of the memory system in response to the
second state of the persistent flag, the second mapping
information including the second logical block address.

In Example 2, the subject matter of Example 1 includes,
wherein the memory system does not overwrite the first
logical block address in the second cache without receiving
a specific command from the host to overwrite the first
logical block address within the second cache.

In Example 3, the subject matter of Examples 1-2
includes, maintaining the mapping table in flash memory of
the memory system; and updating the mapping table in the
flash memory with the first mapping information.

In Example 4, the subject matter of Examples 1-3
includes, receiving a first inquiry from the host at the
memory system; and providing an indication of a size of
persistent in response to the first inquiry.

In Example 5, the subject matter of Examples 1-4
includes, receiving a first inquiry from the host at the
memory system; and providing an indication of a size of
unused space of the second persistent cache in response to
the first inquiry.

In Example 6, the subject matter of Examples 1-5
includes, receiving a second command from the host at the
memory system, the second command including a cache
size; and allocating a size of the second persistent cache
commensurate with the cache size in response to the second
command.

In Example 7, the subject matter of Examples 1-6
includes, receiving a second command from the host as the
memory system; and erasing at least a portion of the second
persistent cache in response to the second command,
wherein the at least a portion includes the first logical block
address.

In Example 8, the subject matter of Examples 1-7
includes, wherein a group number of the first write request
includes the persistence flag.

In Example 9, the subject matter of Examples 1-8
includes, receiving a read request from the host at the
memory system, wherein the read request includes a third

10

25

40

45

50

55

12

logical block address; and determining a persistence flag of
the read request is in the first state.

In Example 10, the subject matter of Example 9 includes,
matching the third logical block address with one logical
block address of a plurality of logical block addresses of the
second persistent cache; identifying a first physical address
stored with the one logical block address in the second
cache; reading read information from the flash memory of
the memory system using the first physical address; and
providing the read information to the host in response to the
read request.

In Example 11, the subject matter of Examples 9-10
includes, not matching the third logical block address with
one logical block address of a plurality of logical block
addresses of the second persistent cache; and providing error
information to the host in response to the read request,
wherein the error information indicates failure to match a
logical block address of the second cache with the third
logical block address.

In Example 12, the subject matter of Examples 9-11
includes, receiving a second read request from the host at the
memory system, wherein the second read request includes a
fourth logical block address; and determining a persistence
flag of the second read request is in the second state.

In Example 13, the subject matter of Example 12
includes, matching the fourth logical block address with one
logical block address of a plurality of logical block
addresses of the first cache; identifying first physical address
stored with the one logical block address in the first cache;
reading second read information from the flash memory of
the memory system using the first physical address of the
first cache; and providing the second read information to the
host in response to the second read request.

In Example 14, the subject matter of Example 13
includes, wherein the third logical block address is the same
as the first logical block address.

In Example 15, the subject matter of Examples 13-14
includes, wherein the fourth logical block address is the
same as the second logical block address.

In Example 16, the subject matter of Examples 12-15
includes, failing to match the fourth logical block address
with one logical block address of a plurality of logical block
addresses of the first cache; overwriting the first portion of
the mapping table in the first cache with a second portion of
the mapping table retrieved from the flash memory of the
memory system; matching the fourth logical block address
with one logical block address of a plurality of logical block
addresses of the second portion of the mapping table within
the first cache; identifying a first physical address stored
with the one logical block address in the first cache; reading
second read information from the flash memory of the
memory system using the first physical address of the first
cache; and providing the second read information to the host
in response to the second read request.

Example 17 is a memory device comprising: a first cache
configured to hold a portion of a mapping table of the
memory device; a second cache configured to hold persistent
mapping information of the memory device, wherein the
persistent mapping information is indicated via a persistence
flag of a write request received from a host; flash memory
configured to store and retrieve user data of a host, and to
store the mapping table of the memory device; and a
controller configured to: maintaining a first portion of a
mapping table of a memory system in a first cache of the
memory system; receive a first write request from the host,
the first write request including a first logical block address
of the host, a size of first write information, and the

US 10,901,903 B2

13

persistence flag in a first state; save the first write informa-
tion to flash memory of the memory system; save first
mapping information to the second cache of the memory
system in response to the first state of the persistence flag,
the first mapping information including the first logical
block address; receive a second write request from the host,
the second write request including a second logical block
address of the host, a size of second write information, and
the persistence flag in a second state; saving the second write
information to the flash memory of the memory system; and
saving second mapping information to the first cache of the
memory system in response to the second state of the
persistence flag, the second mapping information including
the second logical block address.

In Example 18, the subject matter of Example 17
includes, wherein the controller is not configured overwrite
the first logical block address in the second cache without
receiving a specific command from the host to overwrite the
first logical block address within the second cache.

In Example 19, the subject matter of Examples 17-18
includes, wherein the controller is configured to maintain the
mapping table in flash memory of the memory system, and
to update the memory table in the flash memory with the first
mapping information.

In Example 20, the subject matter of Examples 17-19
includes, wherein the controller is configured to receive a
first inquiry from the host, and to provide an indication of a
size of the second cache in response to the first inquiry. The
above detailed description includes references to the accom-
panying drawings, which form a part of the detailed descrip-
tion. The drawings show, by way of illustration, specific
embodiments in which the invention can be practiced. These
embodiments are also referred to herein as “examples”. Such
examples can include elements in addition to those shown or
described. However, the present inventors also contemplate
examples in which only those elements shown or described
are provided. Moreover, the present inventors also contem-
plate examples using any combination or permutation of
those elements shown or described (or one or more aspects
thereof), either with respect to a particular example (or one
or more aspects thereof), or with respect to other examples
(or one or more aspects thereof) shown or described herein.

In this document, the terms “a” or “an” are used, as is
common in patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or” is
used to refer to a nonexclusive or, such that “A or B” may
include “A but not B,” “B but not A,” and “A and B,” unless
otherwise indicated. In the appended claims, the terms
“including” and “in which” are used as the plain-English
equivalents of the respective terms “comprising” and
“wherein”. Also, in the following claims, the terms “includ-
ing” and “comprising” are open-ended. A system, device,
article, or process that includes elements in addition to those
listed after such a term in a claim are still deemed to fall
within the scope of that claim. Moreover, in the following
claims, the terms “first,” “second,” and “third,” etc. are used
merely as labels, and are not intended to impose numerical
requirements on their objects.

In various examples, the components, controllers, proces-
sors, units, engines, or tables described herein can include,
among other things, physical circuitry or firmware stored on
a physical device. As used herein, “processor” means any
type of computational circuit such as, but not limited to, a
microprocessor, a microcontroller, a graphics processor, a

10

15

20

25

30

35

40

45

50

55

60

65

14

digital signal processor (DSP), or any other type of proces-
sor or processing circuit, including a group of processors or
multi-core devices.

Operating a memory cell, as used herein, includes reading
from, writing to, or erasing the memory cell. The operation
of placing a memory cell in an intended state is referred to
herein as “programming,” and can include both writing to or
erasing from the memory cell (e.g., the memory cell may be
programmed to an erased state).

Each flash memory cell in a NOR or NAND architecture
semiconductor memory array can be programmed individu-
ally or collectively to one or a number of programmed states.
For example, a single-level cell (SL.C) can represent one of
two programmed states (e.g., 1 or 0), representing one bit of
data. However, flash memory cells can also represent one of
more than two programmed states, allowing the manufacture
of higher density memories without increasing the number
of memory cells, as each cell can represent more than one
binary digit (e.g., more than one bit). Such cells can be
referred to as multi-state memory cells, multi-digit cells, or
multi-level cells (MLCs). In certain examples, MLLC can
refer to a memory cell that can store two bits of data per cell
(e.g., one of four programmed states), a triple-level cell
(TLC) can refer to a memory cell that can store three bits of
data per cell (e.g., one of eight programmed states), and a
quad-level cell (QLC) can store four bits of data per cell.
Unless otherwise clearly indicated by express language or
context, MLC is used herein in its broader context, to refer
to memory cells that can store more than one bit of data per
cell (i.e., that can represent more than two programmed
states).

According to one or more embodiments of the present
disclosure, a memory controller (e.g., a processor, controller,
firmware, etc.) located internal or external to a memory
device, is capable of determining (e.g., selecting, setting,
adjusting, computing, changing, clearing, communicating,
adapting, deriving, defining, utilizing, modifying, applying,
etc.) a quantity of wear cycles, or a wear state (e.g.,
recording wear cycles, counting operations of the memory
device as they occur, tracking the operations of the memory
device it initiates, evaluating the memory device character-
istics corresponding to a wear state, etc.)

According to one or more embodiments of the present
disclosure, a memory access device may be configured to
provide wear cycle information to the memory device with
each memory operation. The memory device control cir-
cuitry (e.g., control logic) may be programmed to compen-
sate for memory device performance changes corresponding
to the wear cycle information. The memory device may
receive the wear cycle information and determine one or
more operating parameters (e.g., a value, characteristic) in
response to the wear cycle information.

Method examples described herein can be machine,
device, or computer-implemented at least in part. Some
examples can include a computer-readable medium, a
device-readable medium, or a machine-readable medium
encoded with instructions operable to configure an elec-
tronic device to perform methods as described in the above
examples. An implementation of such methods can include
code, such as microcode, assembly language code, a higher-
level language code, or the like. Such code can include
computer readable instructions for performing various meth-
ods. The code may form portions of computer program
products. Further, the code can be tangibly stored on one or
more volatile or non-volatile tangible computer-readable
media, such as during execution or at other times. Examples
of these tangible computer-readable media can include, but

US 10,901,903 B2

15

are not limited to, hard disks, removable magnetic disks,
removable optical disks (e.g., compact discs and digital
video disks), magnetic cassettes, memory cards or sticks,
random access memories (RAMs), read only memories
(ROMs), solid state drives (SSDs), Universal Flash Storage
(UFS) device, embedded MMC (eMMC) device, and the
like.

The above description is intended to be illustrative, and
not restrictive. For example, the above-described examples
(or one or more aspects thereof) may be used in combination
with each other. Other embodiments can be used, such as by
one of ordinary skill in the art upon reviewing the above
description. It is submitted with the understanding that it will
not be used to interpret or limit the scope or meaning of the
claims. Also, in the above Detailed Description, various
features may be grouped together to streamline the disclo-
sure. This should not be interpreted as intending that an
unclaimed disclosed feature is essential to any claim. Rather,
inventive subject matter may lie in less than all features of
a particular disclosed embodiment. Thus, the following
claims are hereby incorporated into the Detailed Descrip-
tion, with each claim standing on its own as a separate
embodiment, and it is contemplated that such embodiments
can be combined with each other in various combinations or
permutations. The scope of the invention should be deter-
mined with reference to the appended claims, along with the
full scope of equivalents to which such claims are entitled.

The invention claimed is:
1. A method comprising:
maintaining a first portion of a mapping table of a memory
system in a first cache of the memory system;

receiving a first write request from a host at the memory
system, the first write request including a first logical
block address of the host, first write information, and a
persistent flag in a first state;

saving the first write information to flash memory of the

memory system,

saving first mapping information to a second cache of the

memory system in response to the first state of the
persistence flag, the first mapping information includ-
ing the first logical block address, wherein the second
cache is a persistent cache;

receiving a second write request from the host, the second

write request including a second logical block address
of the host, second write information, and a persistence
flag in a second state;

saving the second write information to the flash memory

of the memory system; and

saving second mapping information to the first cache of

the memory system in response to the second state of
the persistent flag, the second mapping information
including the second logical block address.

2. The method of claim 1, wherein the memory system
does not overwrite the first logical block address in the
second cache without receiving a specific command from
the host to overwrite the first logical block address within the
second cache.

3. The method of claim 1, including maintaining the
mapping table in flash memory of the memory system; and

updating the mapping table in the flash memory with the

first mapping information.

4. The method of claim 1, including:

receiving a first inquiry from the host at the memory

system; and

providing an indication of a size of the second cache in

response to the first inquiry.

10

15

20

25

30

35

40

45

50

55

60

16

5. The method of claim 1, including:

receiving a first inquiry from the host at the memory

system; and

providing an indication of a size of unused space of the

second cache in response to the first inquiry.

6. The method of claim 1, including receiving a second
command from the host at the memory system, the second
command including a cache size; and

allocating a size of the second cache commensurate with

the cache size in response to the second command.

7. The method of claim 1, including receiving a second
command from the host at the memory system; and

erasing at least a portion of the second cache in response

to the second command, wherein the at least a portion
includes the first logical block address.

8. The method of claim 1, wherein a group number of the
first write request includes the persistence flag.

9. The method of claim 1, including:

receiving a read request from the host at the memory
system, wherein the read request includes a third logi-
cal block address; and

determining a persistence flag of the read request is in the

first state.

10. The method of claim 9, including matching the third
logical block address with one logical block address of a
plurality of logical block addresses of the second cache;

identifying a first physical address stored with the one

logical block address in the second cache;

reading read information from the flash memory of the

memory system using the first physical address; and
providing the read information to the host in response to
the read request.

11. The method of claim 9, including not matching the
third logical block address with one logical block address of
a plurality of logical block addresses of the second cache;
and

providing error information to the host in response to the
read request, wherein the error information indicates
failure to match a logical block address of the second
cache with the third logical block address.

12. The method of claim 9, including receiving a second
read request from the host at the memory system, wherein
the second read request includes a fourth logical block
address; and

determining a persistence flag of the second read request

is in the second state.

13. The method of claim 12, including:
matching the fourth logical block address with one logical
block address of a plurality of logical block addresses
of the first cache;
identifying first physical address stored with the one
logical block address in the first cache;
reading second read information from the flash memory
of the memory system using the first physical address
of the first cache; and
providing the second read information to the host in
response to the second read request.
14. The method of claim 13, wherein the third logical
block address is the same as the first logical block address.
15. The method of claim 13, wherein the fourth logical
block address is the same as the second logical block
address.

US 10,901,903 B2

17

16. The method of claim 12, including:

failing to match the fourth logical block address with one
logical block address of a plurality of logical block
addresses of the first cache;

overwriting the first portion of the mapping table in the
first cache with a second portion of the mapping table
retrieved from the flash memory of the memory system;

matching the fourth logical block address with one logical
block address of a plurality of logical block addresses
of the second portion of the mapping table within the
first cache;

identifying a first physical address stored with the one
logical block address in the first cache;

reading second read information from the flash memory
of the memory system using the first physical address
of the first cache; and

providing the second read information to the host in
response to the second read request.

17. A memory device comprising:

a first cache configured to hold a portion of a mapping
table of the memory device;

a second cache configured to hold persistent mapping
information of the memory device, wherein the persis-
tent mapping information is indicated via a persistence
flag of a write request received from a host;

flash memory configured to store and retrieve user data of
a host, and to store the mapping table of the memory
device; and

a controller configured to:
maintain a first portion of the mapping table of the

memory device in the first cache;
receive a first write request from the host, the first write
request including a first logical block address of the

25

18

host, a size of first write information, and the per-
sistence flag in a first state;

save the first write information to flash memory of the
memory device;

save first mapping information to the second cache in
response to the first state of the persistence flag, the
first mapping information including the first logical
block address;

receive a second write request from the host, the second
write request including a second logical block
address of the host, a size of second write informa-
tion, and the persistence flag in a second state;

save the second write information to the flash memory
of the memory device; and

save second mapping information to the first cache in
response to the second state of the persistence flag,
the second mapping information including the sec-
ond logical block address.

18. The memory device of claim 17, wherein the control-
ler is not configured overwrite the first logical block address
in the second cache without receiving a specific command
from the host to overwrite the first logical block address
within the second cache.

19. The memory device of claim 17, wherein the control-
ler is configured to maintain the mapping table in flash
memory of the memory device, and to update the memory
table in the flash memory with the first mapping information.

20. The memory device of claim 17, wherein the control-
ler is configured to receive a first inquiry from the host, and
to provide an indication of a size of the second cache in
response to the first inquiry.

#* #* #* #* #*

