Office de la Propriete Canadian CA 2802225 A1 2011/10/20

Intellectuelle Intellectual Property
du Canada Office (21) 2 802 225
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
13) A1
(86) Date de dépbt PCT/PCT Filing Date: 2011/03/25 (51) Cl.Int./Int.Cl. GO6F 9/06 (2006.01),
(87) Date publication PCT/PCT Publication Date: 2011/10/20 GO6F 9/44 (2006.01)

. . : _ (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2012/09/17 MICROSOFT CORPORATION. US

(86) N° demande PCT/PCT Application No.: US 2011/030063
(72) Inventeurs/Inventors:
(87) N publication PCT/PCT Publication No.: 2011/129989 BYKOV, EVGUENI N.. US:

(30) Priorité/Priority: 2010/04/15 (US12/760,565) FINDIK, FERIT, US;
BENSON, RYAN S, US;

OTRYSHKO, VOLODYMYR V., US
(74) Agent: SMART & BIGGAR

(54) Titre : COMPOSITION DE PRESENTATION INDEPENDANTE D'UNE PLATEFORME
(54) Title: PLATFORM INDEPENDENT PRESENTATION COMPOSITION

HO ST] ¢ &4 HO STN

110

OQUTPUT
COMPOSITION

108

COMPOSITION
ENGINE

~ 104

COMPONENT
DEEFINITIONS

DEFINITIONS

FIG. 1

(57) Abrégée/Abstract:
Architecture that includes a platform independent, configuration driven, presentation composition engine. The composition engine
that allows dynamic generation of multiplatform user experience (UX) based on a data contract. By composition, the user can

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2802225 A1 2011/10/20

en 2 802 225
13) A1

(57) Abrege(suite)/Abstract(continued):

select the parts, interactions, and constraints between the Interaction and parts, as well as the placement with respect to each
other. The UX Is dynamically composed from components that are targeted to particular data classes. At runtime, platform
dependent component implementations are automatically selected by the engine based on the execution platform of the
composition host. A user can create or customize the UX without writing code by composing from a wide variety of presentation
widgets that access a wide variety of data sources that can work on many platforms. Compositions are targeted to both a data
class and presentation type and can be either predefined or generated.

CA 02802225 2012-09-17

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
20 October 2011 (20.10.2011)

(10) International Publication Number

WO 2011/129989 A3

(51)

(21)

(22)

(25)

(26)
(30)

(71)

(72)

International Patent Classification:
GO6F 9/06 (2006.01) GO6LF 9/44 (2006.01)

International Application Number:
PCT/US2011/030068

International Filing Date:
25 March 2011 (25.03.2011)

Filing Language: English
Publication Language: English
Priority Data:

12/760,565 15 April 2010 (15.04.2010) US

Applicant (for all designated States except US). MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: BYKOYV, Evgueni N.; c/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoit Way,
Redmond, Washington 98052-6399 (US). FINDIK, Fer-
it; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington

(81)

(84)

98052-6399 (US). BENSON, Ryan S.; ¢/0 Microsoft
Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).
OTRYSHKO, Volodymyr V., c/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AQO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
/M, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

[Continued on next page]

(54) Title: PLATFORM INDEPENDENT PRESENTATION COMPOSITION

(57) Abstract: Architecture that includes a platform mmdependent, con-
y— 100 figuration driven, presentation composition engine. The composition
engine that allows dynamic generation of multiplatform user experience

HOST, HOSTy

_| 110

OUTPUT
COMPOSITION

—~—
O\

|
[108

COMPOSITION
ENGINE

s 104 s 106
COMPONENT | | DATA
DEFINITIONS DEFINITIONS

STORE

wo 2011/129989 A3 I P AV RAOL ARV 0 AR R A

FIG. 1

(UX) based on a data contract. By composition, the user can select the
parts, interactions, and constraints between the interaction and parts, as
well as the placement with respect to each other. The UX 1s dynamical-
ly composed from components that are targeted to particular data class-
es. At runtime, platform dependent component implementations are au-
tomatically selected by the engine based on the execution platform of
the composition host. A user can create or customize the UX without
writing code by composing from a wide variety of presentation widgets
that access a wide variety of data sources that can work on many plat-
forms. Compositions are targeted to both a data class and presentation
type and can be either predefined or generated.

CA 02802225 2012-09-17

WO YV /A Ya3A4 AY BRI « v 1Y v aca A ac Rl Tl

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Published:

FE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, — before the expiration of the time limit for amending the

GW, ML, MR, NE, SN, TD, TG). claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

Declarations under Rule 4.17:

: licant's entit] ‘e] 7 b (od (88) Date of publication of the international search report:
as to applicant’s entitlement to apply for and be grante 19 January 2012

a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

10

15

20

25

30

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

PLATFORM INDEPENDENT PRESENTATION COMPOSITION

BACKGROUND
[0001] The quality of a user experience (UX) 1s based on how well the UX 1s aligned with
the user expectations. Having to deal with many data types, many data sources, and many
UX platforms, designers have to make a choice from unattractive approaches that include
writing presentation code for a specific persona that consumes specific data from data
sources for a specific UX platform, or providing a broadly targeted UX that does not meet
the needs of any single persona.
[0002] For example, existing UX composition systems such as HTML (hypertext markup
language), XAML (extensible application markup language), and XSLT (extensible
stylesheet language transformations) are designed such that the markup code be developed
for a specific platform. If the developer wants the code to work on several platforms a
custom logic 1s to be built in the code to handle the platform differences. Morecover,
existing UX composition systems require specific presentation be explicitly defined for
cvery data interface element. The functionality that allows dynamic generation of UX
clements based on underlying data structures the elements represent 1s limited to
nonexistent, especially 1f the data structures are complex and/or inheritable.
[0003] As a result of these limitations, the mass market (¢.g., email) may have been
served, but the smaller communities of users (e.g., the exchange administrator or the CRM
(customer relationship management) service owner) are underserved.

SUMMARY

[0004] The following presents a simplified summary 1n order to provide a basic
understanding of some novel embodiments described herein. This summary 18 not an
extensive overview, and it 18 not intended to 1dentify key/critical elements or to delineate
the scope thercof. Its sole purpose 1s to present some concepts in a simplified form as a
prelude to the more detailed description that 1s presented later.
[0005] The disclosed architecture includes a platform independent configuration-driven
presentation composition engine. The composition engine allows dynamic generation of
multiplatform user experience (UX) based on a data contract. By composition, the user
can sclect the parts, interactions, and constraints between the interaction and parts, as well
as the placement with respect to each other.
[0006] The UX 1s dynamically composed from components that are targeted to particular

data classes. At runtime, platform dependent component implementations are

10

15

20

25

30

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

automatically selected by the engine based on the execution platform of the composition
host.
[0007] The disclosed architecture allows a user to create or customize a UX without
writing code by composing from multiple presentation widgets that can access many data
sources that work on many platforms. Compositions are targeted to both a data class and
presentation type and can be either predefined or generated.
[0008] To the accomplishment of the foregoing and related ends, certain illustrative
aspects are described herein in connection with the following description and the annexed
drawings. These aspects are indicative of the various ways in which the principles
disclosed herein can be practiced and all aspects and equivalents thereof are intended to be
within the scope of the claimed subject matter. Other advantages and novel features will
become apparent from the following detailed description when considered 1n conjunction
with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG. 1 illustrates a visualization system 1n accordance with the disclosed
architecture.
[0010] FIG. 2 illustrates an alternative visualization system 1n accordance with the
disclosed architecture.
[0011] FIG. 3 1illustrates an exemplary composition composed by the composition engine.
[0012] FIG. 4 1llustrates a parent component that includes data context and a visual base
component of a composition system.
[0013] FIG. 5 1llustrates a component definition.
[0014] FIG. 6 1llustrates a component registry for finding or selecting components.
[0015] FIG. 7 1llustrates a declarative diagram that represents the use of variables in the
composition enginge.
[0016] FIG. & 1llustrates a visualization method 1n accordance with the disclosed
architecture.
[0017] FIG. 9 1llustrates further aspects of the method of FIG. 8.
[0018] FIG. 10 1llustrates an alternative visualization method.
[0019] FIG. 11 illustrates further aspects of the method of FIG. 10.
[0020] FIG. 12 1llustrates a method of obtaining components in the composition engine.
[0021] FIG. 13 1llustrates a more detailed method of obtaining components 1n the

composition enginge.

10

15

20

25

30

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

[0022] FIG. 14 illustrates a block diagram of a computing system that executes
composition 1n accordance with the disclosed architecture.

DETAILED DESCRIPTION
[0023] The disclosed architecture 1s a presentation composition engine. The composition
engine 1s a generic composition framework which 1s exposed as a set of services that
allows the user to “glue” together (compose) different components, and the composition
(output composition of the engine) of the component(s). By composition, the user can
select the parts, interactions, and constraints between the mteraction and parts, as well as
the placement of the parts with respect to each other. The engine 18 a presentation-neutral
framework for both UI (user interface) and non-UI components.
[0024] A component 1s the smallest reusable building block of UI declaration for the
composition engine, and that 1s 1dentifiable by name, and optionally, targeted to a data
type. A component can be a base component (unit component) or a container component
(composite component). Data context 1S an instance of target data for a component. In
other words, the data context 1s a name/value pair set that represents data associated with a
component. Data context entries support change notifications, and compositions can
initiate changes and/or listen to the changes initiated by other compositions. The
composition engine assembles components for a particular host as a user experience that 18
platform independent. The virtualization host 1s the execution environment of the
composition for a particular platform (runtime).
[0025] Compositions are targeted to both a data class and presentation type and can be
cither predefined or generated. While there can be multiple components composed, the
component chain ends at the concrete base component (¢.g., a TextBox control, database
query component, etc.).
[0026] The composition engine allows the dynamic generation of multiplatform UX (user
experience) based on a data contract. The UX 1s dynamically composed from components
that are targeted to a particular data classes. At runtime, platform dependent component
implementations are automatically selected by the engine based on the execution platform
of the composition host.
[0027] Reference 1s now made to the drawings, wherein like reference numerals are used
to refer to like elements throughout. In the following description, for purposes of
explanation, numerous specific details are set forth in order to provide a thorough
understanding thercof. It may be evident, however, that the novel embodiments can be

practiced without these specific details. In other instances, well known structures and

10

15

20

25

30

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

devices are shown 1n block diagram form in order to facilitate a description thercof. The
intention 18 to cover all modifications, equivalents, and alternatives falling within the spirit
and scope of the claimed subject matter.

[0028] FIG. 1 illustrates a visualization system 100 1n accordance with the disclosed
architecture. The system 100 mcludes a store 102 of store definitions that include
component definitions 104 and data definitions 106 for components and data associated
with a user experience. The component definitions 104 can include definitions for base
component, container components, and compositions of base and container components.
In this way, an existing composition of the components 1s readily available for dynamic
selection and composition into the output component 110.

[0029] A composition engine 108 that automatically and declaratively composes an
instance of an output component 110 based on a store definition. The output component 18
specific to a user experience of a visualization host of different hosts 112.

[0030] The output component 110 includes a base component, a container component, or
a combination of base and contaimner components. The output component 110 1s composed
based on a target data type of the user experience. The system 100 can further comprise a
component registry via which a component 1s secarched based on the target data type. The
output component binds associated component properties to data context elements to link
child components. The composition engine 108 includes global variables that enable data
exchange between output components 1n unrelated data contexts.

[0031] FIG. 2 illustrates an alternative visualization system 200 1n accordance with the
disclosed architecture. The system 200 includes the entities of the system 100 of FIG. 1,
as well as data context 202, a personalization (private) override 204, and component
implementation 206. The output component 110 can be composed based on the data
context 202 rather than an existing component definition. That 1s, based on the data, a
customized component can be created and output purely based on the context data 202
(instance of data 1n the target UX). The composition engine 108 employs the
personalization override 204 that 1s composed with a selected component definition to
override a global variable with a private variable.

[0032] FIG. 3 1llustrates an exemplary composition 300 composed by the composition
engine. Here, the composition 300 1s described 1n terms of based components (¢.g., a
StackPanel base component 302) and a container component 304. Here, the base

component 302 includes two text box base components: a first text box base component

10

15

20

25

30

35

4()

45

50

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

showing text “ABC” and a second text box base component showing text “DEF”. The
base component 302 also includes a button base component.

[0033] The base component 1s a concrete implementation targeted to specific platforms,
the leaf node of the composition process, and can be visual or non-visual. Following 1s an
example of a base component definition (1n terms of component type rather than

component type).

<ComponentType ID="EventQuery">
<Parameters>
<Parameter Name="Scope" Type="String" />
<Parameter Name="Qutput" Type="IEnumerable" />
</Parameterss
</ComponentType>
<ComponentImplementation Typeld="EventQuery"s>
<SupportedPlatforms>
<Platform>WPF<«/Platform>
</SupportedPlatforms>
<Unit>
<MetftFactory>

<ContractName>Company .EnterpriseManagement . EventQuery</ContractName>
</MefFactory>
<Propertiess>
<Property Name="QueryVerb" Direction="In">Events</Property>
<Property Name="Scope"
Direction="In">SParameter/ScopeS</Propertys>
<Property Name="Output™"
Direction="0ut">SParameter/OutputS</Propertys>
</Propertiess>
</Units>
</ComponentImplementations>

The MEF (managed extensibility framework) factory calls an MEF runtime to pull
corresponding types from registered Ul assemblies. Note that MEF 1s just one way
cxample implementation; other Factory implementations can be employed as well.
[0034] The container component (also, composite component) 18 the container for the base
components (also, unit components), does not have a custom implementation, and 1s

platform independent. Following 1s an example of a composite component definition.

<ComponentImplementation Typeld="SampleComponent">
<SupportedPlattforms>
<Platform>All</Platform>
</SupportedPlatformss
<Composites
<Variables>
<Variable Id="abc" Type="String" />
</Variables>
<Component Typeld="SampleContainerComponent"s>
<Parameter Id="Childl">
<Component Typeld="SampleComponentl":>
<Parameter Id="Bla">SVariable/abcS</Parameters>
</Component >
</Parameter>

10

15

20

25

30

35

4()

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

<Parameter Id="Child2">

<Component Typeld="SampleComponent2":
<Parameter Id="Bla">SVariable/abcS</Parameters>

< /Component >

</Parameters>

</Component >
</Composites
</ComponentImplementations>

[0035] In FIG. 3, the container component 304 combines the base components, as

illustrated in the following code, where PropertyA 1s “ABC” and PropertyB 1s “DEF”.

<Component Typeld="StackPanel">
<Parameter Name="Child">
<Component Typeld="Edit">
<Target>sTarget/propertyAS</Target>
< /Component >
<Component Typeld="Edit">
<Target>STarget /propertyBS</Target>
</Component >
<Component Typeld="Button">
</Component >
</Parameters>

[0036] Each component (base or container) 1s backed with a data context (Data Context)
instance. Data Context 1s a key(string)-value(object) pair collection which supports
property changed notification and error set notification. The component can bind 1ts
properties to data context elements to link child components together.

[0037] FIG. 4 illustrates a parent component 400 that includes data context 402(as
DataContext elements) and a visual base component 404 (¢.g., StackPanel base component
302 of FIG. 3) of a composition system. Here, the data context 402 includes three
properties: PropertyA, PropertyB and PropertyC, with corresponding values “ABC”,
“DEF”, and “XYZ”. The visual base component 404 includes bindings to PropertyA and
PropertyB via corresponding 2-way databinds, while multiple data components 406 of a
view model 408 are bound to PropertyB and PropertyC. In other words, the parent
component 400 1s composed that includes bindings of properties to child components (the
text box base components) and bindings of the properties to the data components 406.
[0038] FIG. 5 1llustrates an component definition 500. The component definition 500
comprises two parts: a type declaration 502 and an implementation definition 504. Each
component has a name, and optional target type attributes that can be used to look up a

relevant component. An example type declaration (1in component terms) 1s the following:

<ComponentType ID="SampleComponent" Target="String"
Accessibility="Internal">

10

15

20

25

30

35

4()

45

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

[0039] A component can also include a Parameters subnode which defines the datashape

(e.g., string) expected to be passed, as 1llustrated below (1n component terms):

<ComponentType ID="AnotherComposition"s>
<Parameters>
<Parameter Name="Parameterl" Type="String" />
<Parameter Name="SelectedText" Type="String" BindingDirection="Both"

/>

</Parameters>

[0040] FIG. 6 1llustrates a component registry 600 for finding or selecting components.
The registry 600 maintains a list of all defined components and component compositions.
For example, the base component (¢.g., StackPanel/Button/Edit of FIG. 3) can be looked
up (searched) based on Typeld and TargetType (target data type). The output is then the
base component that corresponds to the TargetType, or Typeld and TargetType.

[0041] To sct a property on an component, a “Parameter’” node 1s used, as shown in the

following sample code:

<Component Id="EventView">
<Parameter Id="Scope">Microsoft.SystemCenter.SglDB <«/Parameters

[0042] In this case, the property “Scope” of component “EventView’ 18 set to text
“Company.SystemCenter.SqIDB”. Oftentimes, however, parameters are not static, but are
bound to other elements. In general, reference 18 1n the form $<protocols/<protocol -
specific strings.

[0043] For example, two components are bound to a variable “abc™:

<ComponentImplementation Typeld="SampleComponent">
<SupportedPlattforms>
<Platform>2All</Platform>
</SupportedPlatforms>
<Composite>
<Variables>
<Variable Id="abc" Type="String" />
</Variables>
<Component Typeld="SampleComponentl":>
<Parameter Id="A">SVariable/abcS</Parameters>
< /Component >
<Component Typeld="SampleComponent2":
<Parameter Id="A">SVariable/abcS</Parameters>
</Component >
</Composite>
</ComponentImplementations

[0044] Following 1s an example list of reference protocols in a Parameter node:

SParameter/<propertyName>$S Parameter passed to component
SVariable/<propertyName>$ Variable declared in component

sTarget/<propertyName>S Property of a target instance passed to
component
STarget$ Target i1nstance

10

15

20

25

30

35

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

[0045] Global variables can be used to enable data exchange between compositions (base
components and/or container components) 1n non-related data contexts. First, a global

variable 1s declared:

<GlobalVariable ID="GlobalSelectedItem" Type="String"/>

The variable can be referenced 1in base component and container components using
SGlobalVariable/<variable name>S.

[0046] Any given component (e.g., base, container) can override the variable with a
private implementation so that component children see a private copy of the variable,

illustrated in the following example code:

<Variables>

<GlobalVariableOverride GlobalVariableId="GlobalSelectedItem" />
</Variables>

[0047] FIG. 7 illustrates a declarative diagram 700 that represents the use of variables in
the composition engine. At 702, a global variable “A” 1s declared. At 704, a parameter
name “Blah” 1s passed to an component. At 706, a local copy of the global variable 1s
created. At 708 and 710, local copies of the variable are used rather than the global
variable.

[0048] Included heremn 1s a set of flow charts representative of exemplary methodologies
for performing novel aspects of the disclosed architecture. While, for purposes of
stmplicity of explanation, the one or more methodologies shown herein, for example, 1n
the form of a flow chart or flow diagram, are shown and described as a series of acts, 1t 18
to be understood and appreciated that the methodologies are not limited by the order of
acts, as some acts may, 1in accordance therewith, occur 1n a different order and/or
concurrently with other acts from that shown and described herein. For example, those
skilled 1n the art will understand and appreciate that a methodology could alternatively be
represented as a series of interrelated states or events, such as in a state diagram.
Moreover, not all acts 1llustrated 1n a methodology may be required for a novel
implementation.

[0049] FIG. & 1llustrates a visualization method 1n accordance with the disclosed
architecture. At 800, a request 18 recerved for a component to be employed 1n an
execution environment. At 802, a component definition associated with the component 18
scarched. At 804, one or more data definitions are selected for a found component

definition. At 806, the one or more data definitions are automatically composed with the

10

15

20

25

30

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

component definition to output the component 1n the execution environment at
environment runtime.

[0050] FIG. 9 1llustrates further aspects of the method of FIG. 8. At 900, the component
definition is searched based on a data type of the requested component when the
component definition 1s not found. At 902, a custom component 1s created based on
absence of the component requested. At 904, a global variable 1s applied to the
component to enable data exchange between unrelated data contexts. At 906, a global
variable 1s overridden with a private variable to impose the private variable on child
components of the component. At 908, a container component 1s created when the
requested component 18 not found. At 910, the container component 1s loaded with base
components associate data type properties. At 912, the container component 1s output as
the component.

[0051] FIG. 10 1llustrates an alternative visualization method. At 1000, a request for a
component based 1s received on a component execution environment. At 1002, a
component definition associated with the component 1s searched. At 1004, one or more
data definitions for the component definition are selected 1f the component definition 1s
found. At 1006, a custom component 1s created based on a data type related to the
requested component when the component definition 1s not found. At 1008, a global
variable 1s applied to the component or custom to enable data exchange between unrelated
data contexts. At 1010, the one or more data definitions are automatically composed with
the component definition to output the component 1n the execution environment at
environment runtime.

[0052] FIG. 11 illustrates further aspects of the method of FIG. 10. At 1100, the global
variable 1s overridden with a private variable to impose the private variable on child
components of the component. At 1102, a container component 1s created when the
requested component 1S not found. At 1104, the container component 1s loaded with base
components associate data type properties. At 1106, the container component 18 output as
the component. At 1108, data to be passed to the component 1s defined via a parameter
node. At 1110, a parent component 1s composed that includes bindings of properties to
child components and bindings of the properties to data components.

[0053] FIG. 12 1llustrates a method of obtaining components in the composition engine.
At 1200, a component 1s obtained (e.g., via a “get component™ call). At 1202, the target
data type 1s obtained. At 1204, a check 1s made to determine of a component exists for the

target data type. If not, flow 1s to 1206 to create a component container. The component

10

15

20

25

30

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

can have one or more associated data properties. At 1208, property types are obtained for
the component. At 1210, a call “get component”™ 1s made for the property types. At 1212,
the component 1s added to the container. Flow 1s back to 1208 to continue until
completed. After all data properties and types have been applied to the container, flow 1s
to 1214 to return the results. At 1204, 1f the check determines that a component exists for
the target data type, flow 1s to 1216 to select the component, and then return the results, at
1216.

[0054] FIG. 13 1llustrates a more detailed method of obtaining components 1n the
composition engine. At 1300, function parameters such as target type and data type are
received. At 1302, a check 1s made for a component defined for the target type and name.
If so, flow 1s to 1304 to verify the interface. Alternatively, 1f no component exists for the
target type and names, flow 1s to 1306 such that for every property using the type system
lookup, 1s a component defined for the data type. If yes, flow 1s to 1304 to verify the
interface. Access to the type system 1308 18 provided to make the check and verify the
interface. Once the interface 1s verified, flow 1s to 1310 to check for the component type.
If a unit component, flow 1s to 1312 to create an instance of the unit component for the
correct platform and pass all declared parameters to the unit component. At 1314, the
loader can load an assembly for the UX composition system (¢.g., XAML, MEF, ¢tc).
[0055] If the component type, at 1310, 18 a composite component, flow 1s to 1316 to walk
the child nodes 1n a configuration (e.g., written 1n XML) setting the values on the
components of the composition. This includes receiving parameter values from parameter
node(s) 1318, parameters from component node(s) 1320, and a parameter set from child
nodes, as provided from build data from parameters at 1322. The typelD 1s sent from the
component node 1320 to build data 1322. At 1324, the component referenced by the
target as data and name, as the name for lookup, based on name and target information
received from the component node 1320.

[0056] Onec or more components can reside within a process and/or thread of execution,
and a component can be localized on one computer and/or distributed between two or
more computers. The word “exemplary’” may be used herein to mean serving as an
example, instance, or illustration. Any aspect or design described herein as “exemplary”™
1S not necessarily to be construed as preferred or advantageous over other aspects or
designs.

[0057] Referring now to FIG. 14, there 1s 1llustrated a block diagram of a computing

system 1400 that executes composition 1n accordance with the disclosed architecture. In

10

10

15

20

25

30

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

order to provide additional context for various aspects thercof, FIG. 14 and the following
description are intended to provide a brief, general description of the suitable computing
system 1400 1n which the various aspects can be implemented. While the description
above 18 1n the general context of computer-executable instructions that can run on one or
more computers, those skilled in the art will recognize that a novel embodiment also can
be implemented 1n combination with other program modules and/or as a combination of
hardware and software.

[0058] The computing system 1400 for implementing various aspects includes the
computer 1402 having processing unit(s) 1404, a computer-readable storage such as a
system memory 1406, and a system bus 1408. The processing unit(s) 1404 can be any of
various commercially available processors such as single-processor, multi-processor,
single-core units and multi-core units. Moreover, those skilled 1n the art will appreciate
that the novel methods can be practiced with other computer system configurations,
including minicomputers, mainframe computers, as well as personal computers (e.g.,
desktop, laptop, ctc.), hand-held computing devices, microprocessor-based or
programmable consumer electronics, and the like, each of which can be operatively
coupled to one or more associated devices.

[0059] The system memory 1406 can include computer-readable storage (physical storage
media) such as a volatile (VOL) memory 1410 (e.g., random access memory (RAM)) and
non-volatile memory (NON-VOL) 1412 (¢.g., ROM, EPROM, EEPROM, etc.). A basic
input/output system (BIOS) can be stored in the non-volatile memory 1412, and includes
the basic routines that facilitate the communication of data and signals between
components within the computer 1402, such as during startup. The volatile memory 1410
can also include a high-speed RAM such as static RAM for caching data.

[0060] The system bus 1408 provides an interface for system components including, but
not limited to, the system memory 1406 to the processing unit(s) 1404. The system bus
1408 can be any of several types of bus structure that can further interconnect to a memory
bus (with or without a memory controller), and a peripheral bus (e.g., PCI, PCle, AGP,
LPC, etc.), using any of a varicty of commercially available bus architectures.

[0061] The computer 1402 further includes machine readable storage subsystem(s) 1414
and storage mterface(s) 1416 for interfacing the storage subsystem(s) 1414 to the system
bus 1408 and other desired computer components. The storage subsystem(s) 1414

(physical storage media) can include one or more of a hard disk drive (HDD), a magnetic

floppy disk drive (FDD), and/or optical disk storage drive (¢.g., a CD-ROM drive DVD

11

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

drive), for example. The storage interface(s) 1416 can include interface technologies such
as EIDE, ATA, SATA, and IEEE 1394, for example.

[0062] One or more programs and data can be stored in the memory subsystem 1406, a
machine readable and removable memory subsystem 1418 (¢.g., flash drive form factor
technology), and/or the storage subsystem(s) 1414 (e.g., optical, magnetic, solid state),
including an operating system 1420, one or more application programs 1422, other
program modules 1424, and program data 1426.

[0063] The one or more application programs 1422, other program modules 1424, and
program data 1426 can include the entities and components of the system 100 of FIG. 1,
the entitics and components of the system 200 of FIG. 2, the composition 300 of FIG. 3,
the parent component 400 of FIG. 4, the component definition 500 of FIG. 3, the registry
600 of FIG. 6, the diagram 700 of FIG. 7, and the methods represented by the tflowcharts
of Figures 8-13, for example.

[0064] Generally, programs include routines, methods, data structures, other software
components, ¢tc., that perform particular tasks or implement particular abstract data types.
All or portions of the operating system 1420, applications 1422, modules 1424, and/or
data 1426 can also be cached in memory such as the volatile memory 1410, for example.
It 1s to be appreciated that the disclosed architecture can be implemented with various
commercially available operating systems or combinations of operating systems (e.g., as
virtual machines).

[0065] The storage subsystem(s) 1414 and memory subsystems (1406 and 1418) serve as
computer readable media for volatile and non-volatile storage of data, data structures,
computer-executable instructions, and so forth. Such instructions, when executed by a
computer or other machine, can cause the computer or other machine to perform one or
more acts of a method. The instructions to perform the acts can be stored on one medium,
or could be stored across multiple media, so that the instructions appear collectively on the
on¢ or more computer-readable storage media, regardless of whether all of the instructions
arc on the same media.

[0066] Computer readable media can be any available media that can be accessed by the
computer 1402 and includes volatile and non-volatile internal and/or external media that 1s
removable or non-removable. For the computer 1402, the media accommodate the storage
of data 1n any suitable digital format. It should be appreciated by those skilled 1n the art

that other types of computer readable media can be employed such as zip drives, magnetic

12

10

15

20

25

30

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

tape, flash memory cards, flash drives, cartridges, and the like, for storing computer
executable mstructions for performing the novel methods of the disclosed architecture.
[0067] A user can interact with the computer 1402, programs, and data using external user
input devices 1428 such as a keyboard and a mouse. Other external user input devices
1428 can include a microphone, an IR (infrared) remote control, a joystick, a game pad,
camera recognition systems, a stylus pen, touch screen, gesture systems (e.g., e€ye
movement, head movement, ¢tc.), and/or the like. The user can interact with the computer
1402, programs, and data using onboard user input devices 1430 such a touchpad,
microphone, keyboard, ctc., where the computer 1402 1s a portable computer, for example.
These and other imnput devices are connected to the processing unit(s) 1404 through
input/output (I/O) device interface(s) 1432 via the system bus 1408, but can be connected
by other interfaces such as a parallel port, IEEE 1394 serial port, a game port, a USB port,
an IR interface, etc. The I/O device interface(s) 1432 also facilitate the use of output
peripherals 1434 such as printers, audio devices, camera devices, and so on, such as a
sound card and/or onboard audio processing capability.

[0068] One or more graphics interface(s) 1436 (also commonly referred to as a graphics
processing unit (GPU)) provide graphics and video signals between the computer 1402
and external display(s) 1438 (e.g., LCD, plasma) and/or onboard displays 1440 (e.g., for
portable computer). The graphics interface(s) 1436 can also be manufactured as part of
the computer system board.

[0069] The computer 1402 can operate 1in a networked environment (e.g., IP-based) using
logical connections via a wired/wireless communications subsystem 1442 to one or more
networks and/or other computers. The other computers can include workstations, servers,
routers, personal computers, microprocessor-based entertainment appliances, peer devices
or other common network nodes, and typically include many or all of the elements
described relative to the computer 1402. The logical connections can include
wired/wireless connectivity to a local arca network (LAN), a wide arca network (WAN),
hotspot, and so on. LAN and WAN networking environments are commonplace 1n offices
and companies and facilitate enterprise-wide computer networks, such as intranets, all of
which may connect to a global communications network such as the Internet.

[0070] When used 1n a networking environment the computer 1402 connects to the
network via a wired/wireless communication subsystem 1442 (e.g., a network mterface
adapter, onboard transceiver subsystem, etc.) to communicate with wired/wireless

networks, wired/wireless printers, wired/wireless mput devices 1444, and so on. The

13

10

15

20

25

30

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

computer 1402 can include a modem or other means for establishing communications over
the network. In a networked environment, programs and data relative to the computer
1402 can be stored in the remote memory/storage device, as 1s associated with a
distributed system. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the computers
can be used.

[0071] The computer 1402 1s operable to communicate with wired/wireless devices or
entities using the radio technologies such as the IEEE 802.xx family of standards, such as
wireless devices operatively disposed m wireless communication (¢.g., IEEE 802.11 over-
the-air modulation techniques) with, for example, a printer, scanner, desktop and/or
portable computer, personal digital assistant (PDA), communications satellite, any piece of
cquipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news
stand, restroom), and telephone. This includes at least Wi-Fi1 (or Wireless Fidelity) for
hotspots, WiMax, and Bluetooth™ wireless technologies. Thus, the communications can
be a predefined structure as with a conventional network or simply an ad hoc
communication between at least two devices. Wi-F1 networks use radio technologies
called IEEE 802.11x (a, b, g, etc.) to provide secure, reliable, fast wireless connectivity. A
Wi-F1 network can be used to connect computers to each other, to the Internet, and to wire
networks (which use IEEE 802.3-related media and functions).

[0072] The 1llustrated and described aspects can be practiced in distributed computing
environments where certain tasks are performed by remote processing devices that are
linked through a communications network. In a distributed computing environment,
program modules can be located 1n local and/or remote storage and/or memory system.
[0073] What has been described above includes examples of the disclosed architecture. It
1S, of course, not possible to describe every concervable combination of components
and/or methodologies, but one of ordinary skill in the art may recognize that many further
combinations and permutations are possible. Accordingly, the novel architecture 1s
intended to embrace all such alterations, modifications and variations that fall within the
spirit and scope of the appended claims. Furthermore, to the extent that the term
“includes” 1s used in either the detailed description or the claims, such term is intended to
be inclusive 1n a manner stmilar to the term “comprising™ as “comprising’ 18 interpreted

when employed as a transitional word 1n a claim.

14

10

15

20

25

30

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

CLAIMS

1. A computer-implemented visualization system having computer readable media
that store executable instructions executed by a processor, comprising:

a store of store definitions that include component definitions and data definitions
for components and data associated with a user experience; and

a composition engine that automatically and declaratively composes an instance of
an output component based on a store definition, the output component specific to a user
experience of a visualization host.
2. The system of claim 1, wherein the output component includes a base component,
a container component, or a combination of base and container components.
3. The system of claim 1, wherein the output component 1s composed based on a
target data type of the user experience.
4. The system of claim 3, further comprising a component registry via which an

component 1s searched based on the target data type.

3. The system of claim 1, wherein the output component 1s composed based on a data
context.
0. The system of claim 1, wherein the output component binds associated component

properties to data context elements to link child components.
7. The system of claim 1, wherein the composition engine includes global variables
that enable data exchange between output components 1n unrelated data contexts.
8. The system of claim 1, wherein the composition engine employs a personalization
override that 1s composed with a selected component definition to override a global
variable with a private variable.
9. A computer-implemented visualization method executable via a processor and
memory, comprising:
recerving a request for an component to be employed 1n an execution environment;
searching for an component definition associated with the component;
selecting one or more data definitions for a found component definition; and
automatically composing the one or more data definitions with the component
definition to output the component 1n the execution environment at environment runtime.
10. The method of claim 9, further comprising searching for the component definition
based on a data type of the requested component when the component definition 1s not

found.

15

10

15

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

11. The method of claim 9, further comprising creating a custom component based on
absence of the component requested.
12. The method of claim 9, further comprising applying a global variable to the
component to enable data exchange between unrelated data contexts.
13. The method of claim 9, further comprising overriding a global variable with a
private variable to impose the private variable on child components of the component.
14. The method of claim 9, further comprising:
creating a container component when the requested component 1s not found;
loading the container component with base components associate data type
properties; and
outputting the container component as the component.
15. The method of claim 9, further comprising composing a parent component that
includes bindings of properties to child components and bindings of the properties to data

components.

16

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

1/14

HOST, oo HOSTy

110

OUTPUT

COMPOSITION

108

COMPOSITION
ENGINE

102

104 106

COMPONENT DATA
DEFINITIONS DEFINITIONS

STORE

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

2/14
200
112 ~
HOST;, HOSTx
110

OUTPUT

COMPOSITION

108

DATA COMPOSITION

CONTEXT ENGINE
104 106

DATA
DEFINITIONS

COMPONENT
DEFINITIONS

204

COMPOSITION
PERSONALIZATION
OVERRIDE

206

COMPONENT

IMPLEMENTATION

FIG. 2

CA 02802225 2012-09-17

WO 2011/129989

PCT/US2011/030068

3/14

304

CONTAINER OBJECT

Textbox Base Component

Textbox Base Component

Button Base Component

302

ABC

DEF

(BUTTON)

STACKPANEL BASE COMPONENT

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

4/14

400

404

402

VISUAL BASE
COMPONENT

< 408

DATA

COMPONENT

DATA CONTEXT

VIEW MODEL

PARENT COMPONENT

FIG. 4

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

5/14

<ComponentType ID="SampleComponent"> 502
<Parameters />
</ComponentType>

<ComponentImplementation TypelD="SampleComponent">
<SupportedPlatforms>
<Platform>ALL</Platform>
</SupportedPlatforms>
<Composite>
<Component TypelD="AnotherSampleComponent'>
<Parameter ID="Bla">Foo</Parameter>
</Component> 504
</Composite>
<Unit> OR
<AssemblyFactory>
<Assembly>BlaAssembly,Version=1x.2x.y.y</Assembly>

<Type>Surtace.Controls.FooControl</Type>
</AssemblyFactory>
</Unit>
</ComponentImplementation>

FIG. 5

CA 02802225 2012-09-17

WO 2011/129989 PCT/US2011/030068
6/14
600
—1YPEID
nggfs)?iy COMPONENT—>»
—TARGETTYPE

FIG. 6

CA 02802225 2012-09-17

PCT/US2011/030068

WO 2011/129989

7114

 ANIONZNOLLISOdWod |“
|
|
" <IoRWeIR]/>$ V] 2[qBLEATEGO[D§<, UP[H,,~OWEN JIIOWEIed> " AdOD TVIOT 4501
< T o
Z.

AdOD TVIOT AS[]
| 80L

A TdVIdVA
TVHOTO dHL 40 AdOD TVIOT V ALVHd)

90L

oL

IIIIIIIIIIIIII J@@E&N\HIIIIIIIII 0L

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

8/14

START

RECEIVE REQUEST FOR COMPONENT

TO BE EMPLOYED IN EXECUTION 500
ENVIRONMENT
SEARCH FOR AN COMPONENT 307
DEFINITION ASSOCIATED WITH
COMPONENT
SELECT ONE OR MORE DATA 304

DEFINITIONS FOR A FOUND
COMPONENT DEFINITION

AUTOMATICALLY COMPOSE ONE OR
MORE DATA DEFINITIONS WITH THE
COMPONENT DEFINITION TO OUTPUT 306
THE COMPONENT IN THE EXECUTION
ENVIRONMENT AT ENVIRONMENT
RUNTIME

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

9/14

FIG. &8

900

SEARCH FOR COMPONENT DEFINITION
BASED ON A DATA TYPE OF REQUESTED

COMPONENT WHEN COMPONENT
DEFINITION IS NOT FOUND

902

CREATE CUSTOM COMPONENT BASED ON
ABSENCE OF THE COMPONENT REQUESTED

904

APPLY GLOBAL VARIABLE TO COMPONENT
TO ENABLE DATA EXCHANGE BETWEEN
UNRELATED DATA CONTEXTS

906

OVERRIDE GLOBAL VARIABLE WITH A
PRIVATE VARIABLE TO IMPOSE THE PRIVATE
VARIABLE ON CHILD COMPONENTS OF THE
COMPONENT

908

CREATE CONTAINER COMPONENT WHEN THE
REQUESTED COMPONENT IS NOT FOUND

910

LOAD CONTAINER COMPONENT WITH BASE
COMPONENTS ASSOCIATE DATA TYPE
PROPERTIES

912
OUTPUT CONTAINER COMPONENT AS THE

COMPONENT

STOP

FIG. 9

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

10/14

START

RECEIVE REQUEST FOR AN COMPONENT
BASED ON AN COMPONENT EXECUTION
ENVIRONMENT

1000

SEARCH FOR AN COMPONENT DEFINITION 1002
ASSOCIATED WITH THE COMPONENT

SELECT ONE OR MORE DATA DEFINITIONS
FOR THE COMPONENT DEFINITION IF THE
COMPONENT DEFINITION IS FOUND

1004

CREATE CUSTOM COMPONENT BASED ON A
DATA TYPE RELATED TO THE REQUESTED 1006
COMPONENT WHEN THE COMPONENT
DEFINITION IS NOT FOUND

APPLY GLOBAL VARIABLE TO THE
COMPONENT OR CUSTOM TO ENABLE DATA 1008
EXCHANGE BETWEEN UNRELATED DATA
CONTEXTS

AUTOMATICALLY COMPOSE ONE OR MORE
DATA DEFINITIONS WITH THE COMPONENT
DEFINITION TO OUTPUT THE COMPONENT IN
THE EXECUTION ENVIRONMENT AT
ENVIRONMENT RUNTIME

STOP

1010

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

11/14

FI1G. 10

1100

OVERRIDE GLOBAL VARIABLE WITH A
PRIVATE VARIABLE TO IMPOSE THE PRIVATE

VARIABLE ON CHILD COMPONENTS OF THE
COMPONENT

1102

CREATE CONTAINER COMPONENT WHEN THE
REQUESTED COMPONENT IS NOT FOUND

1104

LOAD CONTAINER COMPONENT WITH BASE
COMPONENTS ASSOCIATE DATA TYPE

PROPERTIES

1106

OUTPUT CONTAINER COMPONENT AS THE

COMPONENT

1108

DEFINE DATA TO BE PASSED TO THE
COMPONENT VIA A PARAMETER NODE
1110

COMPOSE PARENT COMPONENT THAT
INCLUDES BINDINGS OF PROPERTIES TO CHILD
COMPONENTS AND BINDINGS OF THE
PROPERTIES TO DATA COMPONENTS

STOP

CA 02802225 2012-09-17
WO 2011/129989 PCT/US2011/030068

12/14

START
1200
OBTAIN COMPONENT

1202
OBTAIN TARGET DATA
TYPE
1204
1216
COMPONENT v
DEFINED FOR DATA COMPONENT
TYPE?
N 1206
1214
CREATE COMPONENT RETURN
CONTAINER RESULT

1208

FOR EACH DATA
PROPERTY

1210

CALL “"GET COMPONENT™
FOR PROPERTY TYPE

1212

ADD COMPONENT TO

CONTAINER

FIG. 12

CA 02802225 2012-09-17

PCT/US2011/030068

WO 2011/129989

13/14

ANIAHAd LHDUV.L
UNV HINVN

d[12100T 404 HINVN
SV AINVN ANV VLVA SV LHdDUV.L
Ad QHONHIAAAYE LOHIHO dS[1

749!
[
(S)AAON JAON : AANIIAd SYALANV IV .
YALANV IV LNANOJINOD AIAdAL NOYd VIvVd aling
C [
S81¢t1 0Ct1 cctl
IV TVA OL TOYLNOD LNV.LINSTY
MATTANVIV 1AS LNANOJINOD OL YHALANVIVI 1AS
NO SANTVA DONILLLAS SHAON A 1IHD INO¥A
TANX DIANOD NI LAS YHILANVIVd a1INg
SHAON A THD YIVM
T LI OL SYALANVIVd dadv1Dad
oLt ALISOJINOD LNANOJINOD LINA A1V Snved UINV ACOAHLY Id

01t1

SI LVHM

HOVAIALNI
AATIHA

(ddAL VLVA d0d

ANIJHA LNAINOdINOD

V SI ‘dNY0071
INALSAS AdAL ONISN

"ALYAddOdd AYIAA 404

90¢1

SHA

- HINVIN
ANV HdALLADYUV L

dOd AANIAAdA
LNANOdINOD

Otl

LOHTHOD 404 LNANOJNOD
O HONV.LSNI HLVA YD

Cltl .

(JIN “TAVX “89)
ATANASSY
NAAVO]

it

UIMHdAL
v.ivd

HdALLAD UV L
SUAALHANV IV
NOILLONI(1A4

00t1

WO 2011/129989

CA 02802225 2012-09-17

1408

14/14

1402

REMOVABLE
MEMORY

SUBSYSTEM

PROCESSING
UNIT(S)

MEMORY
SUBSYSTEM

1410
1412

STORAGE
INTERFACE(S)

GRAPHICS
INTERFACE(S)

1/0 DEVICE
INTERFACE(S)

1404

1406

1416

1418

||_____||

1422
| p— 2
| L _APPS ||

|
1424
|r——/-— |

I -
LMODULES 1

|| DATA ||
| — - - =

S—

14201
=3

1414

STORAGE

SUBSYSTEM(S)

1442

WIRE/WIRELESS
COMMUNICATIONS
SUBSYSTEM

1436

1432

1440

ONBOARD
DISPLAY

1430

ONBOARD
USER INPUT

DEVICES

“«~—————>

PCT/US2011/030068

1400
e

1444

NETWORKS,
COMPUTERS,
WIRELESS
PERIPHERALS,

WIRELESS
INPUT
DEVICES,...

1438

EXTERNAL
DISPLAY(S)

1428

EXTERNAL
USER INPUT

DEVICES
1434

OUTPUT
PERIPHERALS

HOST] il HOSTN

9w

OUTPUT
COMPOSITION

—~ X

108

COMPOSITION
ENGINE

A A

s 102

~ 104 ~ 106

COMPONENT DATA
DEFINITIONS DEFINITIONS

STORE

FIG. 1

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - abstract drawing

