Abstract: A power terminal connector (102) having a terminal body (150) that has a socket (168) configured to receive, and be electrically connected to, a pin of a power terminal. A spring clip (156) is coupled to the terminal body (150). The spring clip is movable between a locking position and a clearance position. The spring clip is configured to engage the pin of the power terminal in the locking position to secure the power terminal connector to the power terminal. The spring clip is configured to be disengaged from the pin of the power terminal in the clearance position. A cap (158) is coupled to the terminal body. The cap is coupled to the spring clip to move the spring clip between the locking position and the clearance position as the cap is actuated.
POWER TERMINAL CONNECTOR AND SYSTEM

[0001] The subject matter herein relates generally to connector systems having power terminal connectors.

[0002] Power terminal connectors are used in different types of connector systems. One application is an automotive application, such as for connection to a battery of a vehicle. In some applications, spacing around the battery, such as above the battery, in front of the battery, to one side or the other of the battery, may be limited. There may not be room for a power terminal connector to extend into such space, or there may not be room around the battery to get a tool for connecting and un-connecting the power terminal connector to the power terminal of the battery. Additionally, connecting and un-connecting the power terminal connector to the power terminal of the battery may be time consuming or require special, expensive tools.

[0003] The solution is provide by a power terminal connector as described herein having a terminal body that has a socket configured to receive, and be electrically connected to, a pin of a power terminal. A spring clip is coupled to the terminal body and is movable between a locking position and a clearance position. The spring clip is configured to engage the pin of the power terminal in the locking position to secure the power terminal connector to the power terminal. The spring clip is configured to be disengaged from the pin of the power terminal in the clearance position. A cap is coupled to the terminal body. The cap is coupled to the spring clip to move the spring clip between the locking position and the clearance position as the cap is actuated.

[0004] The invention will now be described by way of example with reference to the accompanying drawings in which:

[0005] Figure 1 illustrates a connector system formed in accordance with an exemplary embodiment.
Figure 2 illustrates a portion of a battery and header for use with the connector system shown in Figure 1.

Figure 3 is an exploded view of a power terminal connector of the connector system shown in Figure 1.

Figure 4 is a partial assembled view of the power terminal connector shown in Figure 3.

Figure 5 is a cross-sectional view of the power terminal connector shown in Figure 3 being coupled to a power terminal.

Figure 6 is another cross-sectional view of the power terminal connector being coupled to the power terminal showing the power terminal connector during an intermediate stage of assembly.

Figure 7 is another cross-sectional view of the power terminal connector and the power terminal showing the power terminal connector in a seated and locked state.

Figure 8 is another cross-sectional view of the power terminal connector and the power terminal showing the power terminal connector unlocked from the power terminal.

Figure 9 is a top view of a portion of the power terminal connector in a locked state.

Figure 10 is a top view of a portion of the power terminal connector in an unlocked state.

Figure 11 is a top perspective view of the power terminal connector showing a cap in an unactuated position.

Figure 12 is a top perspective view of the power terminal connector showing a cap in an actuated position.
Figure 13 is an exploded view of a power terminal connector formed in accordance with an exemplary embodiment.

Figure 14 illustrates a spring clip for the power terminal connector shown in Figure 13.

Figure 15 illustrates a cap for the power terminal connector shown in Figure 13.

Figures 16 is a cross-sectional view of the power terminal connector showing the cap and spring clip in an unactuated position.

Figures 17 is a cross-sectional view of the power terminal connector showing the cap and spring clip in an actuated position.

Figures 18 is a cross-sectional view of the power terminal connector showing the cap and spring clip in an unactuated position.

Figures 19 is a cross-sectional view of the power terminal connector showing the cap and spring clip in an actuated position.

Figure 1 illustrates a connector system 100 formed in accordance with an exemplary embodiment. The connector system 100 includes a power terminal connector 102 that is terminated to a power terminal 104 (shown in Figure 2) of a component, such as a battery 106. The power terminal connector 102 is terminated to an end of a cable 108. The battery 106 may be any voltage battery used in a vehicle. Optionally, the vehicle may be an electrical or hybrid electric vehicle and the battery 106 may be used as part of the power system for the electric vehicle or hybrid electrical vehicle.

The power terminal connector 102 is a quick connect/quick disconnect type of connector that may be easily and quickly terminated to the power terminal 104. The power terminal connector 102 has a very low profile so as to conserve space around the battery 106.
[0026] The battery 106 includes a top 110, a front 112 perpendicular to the top 110, and a side 114 perpendicular to the top 110 and the front 112. The top 110, front 112 and side 114 generally meet at a corner of the battery 106. In an exemplary embodiment, the battery 106 includes a notched-out area 116 at the corner. The notched-out area 116 is recessed below the top 110, behind the front 112, and inward from the side 114. The notched-out area 116 defines a window or envelope defined by planes extending along the top 110, front 112 and side 114.

[0027] The power terminal 104 and power terminal connector 102 are positioned within the notched-out area 116. The battery 106 includes a mounting pad 118 at the bottom of the notched-out area 116. The power terminal 104 extends from the mounting pad 118. A header 120 is coupled to the mounting pad 118. The power terminal connector 102 is coupled to the header 120. In an exemplary embodiment, the header 120 is received in the notched-out area 116 such that the header 120 does not extend beyond the top 110, the front 112 or the side 114. The power terminal connector 102 is coupled to the power terminal 104 and the header 120 such that the power terminal connector 102 does not extend beyond (e.g., above) the top 110. The power terminal connector 102 is coupled to the power terminal 104 and the header 120 such that the power terminal connector 102 does not extend beyond (e.g., outward from) the side 114. A portion of the power terminal connector 102 and/or the cable 108 extends from the front 112. As such, other components, such as another battery may be positioned immediately adjacent the side 114 without interference from the header 120 or the power terminal connector 102. Another component, such as a cover or lid may extend along the top 110 without interference from the header 120 or the power terminal connector 102.

[0028] In an alternative embodiment, rather than having the cable 108 and the power terminal connector 102 extending from the front 112, the cable 108 and the power terminal connector 102 may extend from the side 114. In such embodiment, the power terminal connector 102 may not extend beyond the (e.g., forward of) the front 112. In other alternative embodiments, the power terminal connector 102 may be coupled to a battery or other component that is not recessed or that does not include a header.
[0029] Figure 2 illustrates a portion of the battery 106 showing the notched-out area 116 with the header 120 coupled to the battery 106 at the notched area 116. In an exemplary embodiment, the header 120 is a fixed connector of the battery 106 providing an interface for the power terminal connector 102 (shown in Figure 1). The header 120 includes the power terminal 104.

[0030] The power terminal 104 includes a buss bar 122 and a pin 124 extending from, and electrically coupled to, the buss bar 122. The pin 124 extends along a pin axis 126 that is generally parallel to the front 112 and the side 114. In the illustrated embodiment, the buss bar 122 is generally planar and extends parallel to the top 110. The buss bar 122 is provided at the mounting pad 118.

[0031] The header 120 includes a header shroud 128 that partially surrounds the power terminal 104. The header shroud 128 includes a plurality of shroud walls 130. In an exemplary embodiment, the shroud walls 130 may be box-shaped. The header shroud 128 has an open top 132 and an open front side 134. The shroud walls 130 surround the other sides of the power terminal 104, such as the back side, the inner side and the outer side of the power terminal 104. In an exemplary embodiment, the shroud walls 130 are non-conductive and protect against inadvertent touching of the power terminal 104.

[0032] The pin 124 includes an outer contact surface 136. The pin 124 extends to a distal end 138. In an exemplary embodiment, a groove 140 is defined proximate to the distal end 138. A pin head 142 is defined above the groove 140 such that the pin 124 has a larger diameter portion above the groove 140. The groove 140 is a smaller diameter portion of the pin 124. Optionally, the pin head 142 may be plastic to make the pin 124 touch safe.

[0033] During assembly, the power terminal connector 102 is loaded into the header shroud 128 through the open top 132. When the power terminal connector 102 is connected to the power terminal 104, the terminal power connector 102 extends from the header shroud 128 through the open front side 134. When the power terminal connector 102 is coupled to the power terminal 104, a portion of the
power terminal connector 102 is received in the groove 140 to secure the power terminal connector 102 to the pin 124. In an exemplary embodiment, the power terminal connector 102 cannot be inadvertently released from the power terminal 104. Rather, a deliberate action is taken to release the power terminal connector 102 from the groove 140, after which the power terminal connector 102 may be lifted off the pin 124 in a direction parallel to the pin axis 126.

[0034] Figure 3 is an exploded view of the power terminal connector 102. The power terminal connector 102 includes a terminal body 150 that is configured to be electrically connected to the power terminal 104 (shown in Figure 2). The terminal body 150 is configured to be terminated to the end of the cable 108. The power terminal connector 102 includes a contact spring 152 that is received in the terminal body 150. The contact spring 152 is used to electrically connect the terminal body 150 to the pin 124 (shown in Figure 2). The power terminal connector 102 includes a housing 154 that at least partially surrounds the terminal body 150. The housing 154 protects the terminal body 150 from inadvertent touching by a person or a tool, which could cause electrical shock that could injure the person or the power terminal connector 102. The power terminal connector 102 includes a spring clip 156 that is used to secure the power terminal connector 102 to the pin 124. The power terminal connector 102 includes a cap 158 that is configured to be rotatably coupled to the terminal body 150. The cap 158 is used to actuate the spring clip 156 to unlock the power terminal connector 102 from the pin 124, as described in further detail below. Optionally, the power terminal connector 102 may include a sleeve 160 that is coupled to the cable 108 and is configured to cover a portion of the terminal body 150. The sleeve 160 protects the terminal body 150 from inadvertent touching by a person or a tool, in a similar manner as the housing 154. Optionally, the sleeve 160 may be a heat shrink tube.

[0035] The terminal body 150 extends between a terminating end 162 and a mating end 164. The terminating end 162 is configured to be terminated to the cable 108. In an exemplary embodiment, the terminating end 162 includes a crimp ferrule that may be crimped to the cable 108. The terminating end 162 may be terminated to the cable 108 by other means in alternative embodiments, such as
soldering to the end of the cable 108. The terminal body 150 includes a base 166 extending between the terminating end 162 and the mating end 164.

[0036] A socket 168 extends from the base 166 at the mating end 164. In an exemplary embodiment, the socket 168 includes a hollow chamber 170. Optionally, the chamber 170 may be open at both ends thereof for receiving the pin 124 through the bottom end of the socket 168. In an exemplary embodiment, the outer surface of the socket 168, as well as the inner surface defining the chamber 170, are generally cylindrical in shape. Other shapes are possible in alternative embodiments. In an exemplary embodiment, the chamber 170 is open at the base 166 for receiving the contact spring 152 and the pin 124 (shown in Figure 2). The top of the socket 168 includes an opening 171 that is open to the chamber 170 such that the pin 124 may extend through the opening 171. The socket 168 includes a pocket 172 that receives a portion of the spring clip 156. In the illustrated embodiment, the pocket 172 is provided at the top of the socket 168 and extends generally parallel to a longitudinal axis of the socket 168.

[0037] The contact spring 152 extends between a first end 174 and a second end 176. The contact spring 152 has a circumferential band at the first end 174 and another circumferential band at the second end 176. A plurality of spring beams 178 extend between the circumferential bands at the first and second ends 174, 176. In the illustrated embodiment, the spring beams 178 are inwardly tapered towards the middle of the contact spring 152. The contact spring 152 is necked-down at the middle of the contact spring 152. The contact spring 152 has a smaller diameter at the middle of the contact spring 152 and larger diameters at the first and second ends 174, 176. The necked-down portion of the contact spring 152 is configured to engage the pin 124. The first and second ends 174, 176 are configured to engage the socket 168 when the contact spring 152 is loaded into the chamber 170. In an exemplary embodiment, the spring beams 178 are deflectable and may be deflected outward when the pin 124 is loaded into the contact spring 152. The contact spring 152 defines an electrical path between the pin 124 and the terminal body 150.
The spring clip 156 has a curved shape and extends between a first end 180 and a second end 182. The spring clip 156 has an open side 184 with the first and second ends 180, 182 opposing one another at the open side 184. The spring clip 156 has a closed side 186 opposite the open side 184. The spring clip 156 has a first arm 188 and a second arm 190 joined at the closed side 186. The first arm 188 extends to the first end 180. The second arm 190 extends to the second end 182. An opening 191 is created between the first and second arms 188, 190.

In an exemplary embodiment, the first and second end 180, 182 may be moved away from one another to spread the first and second arms 188, 190 apart from one another. When the first and second arms 188, 190 are spread apart from one another, the size of the opening 191 therebetween is enlarged.

The spring clip 156 is movable between a locking position and a clearance position. The spring clip 156 is configured to engage the pin 124 in the locking position to secure to the power terminal connector 102 to the power terminal 104. The spring clip 156 is configured to be disengaged from the pin 124 in the clearance position. Optionally, in the locking position, the first and second ends 180, 182 are relatively close to one another. The first and/or second end 180, 182 are moved away from one another to enlarge the size of the opening of the spring clip 156 as the spring clip 156 is moved to the clearance position. The spring clip 156 is elastically deformed as the spring clip 156 is moved from the locking position to the clearance position. When the first and second ends 180, 182 are no longer forced apart from one another, the spring clip 156 returns to the normal locking position.

In an exemplary embodiment, the first end 180 is configured to be securely coupled to the terminal body 150. In an exemplary embodiment, the first end 180 is configured to be received in the pocket 172. The first end 180 is fixed in position relative to the socket 168 when the first end 180 is received in the pocket 172. The second end 182 is configured to be coupled to the cap 158. As the cap 158 is rotated, the second end 182 is moved with respect to the first end 180 to move the spring clip 156 from the locking position to the clearance position.
[0042] In the illustrated embodiment, the second end 182 extends radially outward, while the first end 180 extends axially outward. The first end 180 is oriented generally perpendicular with respect to the second end 182. Other orientations of the first and second ends 180, 182 are possible in alternative embodiments. The first end 180 may be secured to the terminal body 150 by alternative means in alternative embodiments.

[0043] The cap 158 includes a top 192 and a bottom 194. The cap 158 is hollow and is configured to be placed over the socket 168. The cap 158 includes a rim 196 at the bottom 194. The cap 158 is configured to be rotatably coupled to the terminal body 150. In an exemplary embodiment, the housing 154 is used to secure the cap 158 in position with respect to the terminal body 150 and the spring clip 156. The cap 158 is rotatable with respect to the housing 154.

[0044] The housing 154 is coupled to the terminal body 150. The housing 154 is manufactured from a dielectric material, such as a plastic material. The housing 154 surrounds the terminal body 150 to prevent inadvertent touching of the terminal body 150 by a person or another component such as a tool, a wire and the like. In the illustrated embodiment, the housing 154 is a two part housing including a main housing 200 and a spacer 202 (shown in Figure 4). The spacer 202 is placed over the terminal body 150 proximate to the terminating end 162. The spacer 202 is configured to be placed alongside the socket 168 on top of the base 166. The main housing 200 is coupled to the opposite side of the terminal body 150 and extends along the base 166 and the socket 168. The main housing 200 includes a pocket 204 that is configured to receive the rim 196 of the cap 158. The cap 158 is captured in the pocket 204 to secure the cap 158 to the terminal body 150. The cap 158 is rotatable within the pocket 204.

[0045] Figure 4 is a partial assembled view of the power terminal connector 102. During assembly, the heat shrink tube 160 is fed over the end of the cable 108. The terminal body 150 is terminated to the end of the cable 108. For example, the terminating end 162 may be crimped to the end of the cable 108. The heat shrink tube 160 is then positioned over the cable 108 and the terminating end 162
of the terminal body 150. The heat shrink tube 160 covers the interface between the terminating end 162 and the cable 108.

[0046] During assembly, the spring clip 156 is coupled to the terminal body 150 at the socket 168. For example, the first end 180 of the spring clip 156 is loaded into the pocket 172 (shown in Figure 3) at the top of the socket 168. Optionally, the spring clip 156 may be positioned immediately above the top of the socket 168. The opening of the spring clip 156 is aligned with the opening 171 in the top of the socket 168.

[0047] During assembly, the spacer 202 is positioned on the terminal body 150 between the heat shrink tube 160 and the socket 168. The cap 158 may then be mounted to the terminal body 150. The cap 158 is loaded onto the socket 168. The second end 182 of the spring clip 156 is coupled to the cap 158. For example, the second end 182 may be received in a slot or channel in the cap that retains the second end 182. The main housing 200 is coupled to the terminal body 150. The main housing 200 captures the spacer 202 and the cap 158 when coupled to the terminal body 150. The main housing 200 is secured to the terminal body 150, such as by an interference fit or by using a latching feature or other type of securing feature. For example, the terminal body 150 may include a locking lance or barb that engages the main housing 200 to secure the terminal body 150 in the main housing 200.

[0048] Figure 5 is a cross-sectional view of the power terminal connector 102 being coupled to the power terminal 104. The power terminal connector 102 is loaded onto the pin 124 along the pin axis 126. The power terminal connector 102 is loaded in a loading direction, shown by arrow A.

[0049] When the power terminal connector 102 is assembled, the spring clip 156 is coupled to the terminal body 150 and to the cap 158. The contact spring 152 is loaded into the chamber 170 of the socket 168. In an exemplary embodiment, the contact spring 152 is held in the chamber 170 by an interference fit. For example, the first and second ends 174, 176 may be biased against the socket 168.
The spring beams 178 extend inward into the chamber 170. The spring beams 178 are configured to engage the contact surface 136 of the pin 124.

[0050] The cap 158 extends over the top of the socket 168. The rim 196 of the cap 158 is captured in the pocket 204. In an exemplary embodiment, the cap 158 includes a tab 206 extending from the bottom 194. The tab 206 is received in a channel 208 formed in the spacer 202. The channel 208 guides the tab 206 as the cap 158 is rotated to actuate the spring clip 156.

[0051] In an exemplary embodiment, the terminal body 150 includes a locking lance 210 extending downward from the base 166. The locking lance 210 extends into a corresponding opening in the main housing 200 to secure the terminal body 150 in the main housing 200.

[0052] Figure 6 is a cross section view of the power terminal connector 102 being coupled to the power terminal 104. Figure 6 shows an intermediate stage of assembly. The power terminal connector 102 is electrically connected to the power terminal 104, however the power terminal connector 102 is in an unseated position. The power terminal connector 102 should be fully seated and locked for proper use.

[0053] In the unseated position, the power terminal connector 102 is loaded onto the pin 124 such that the pin 124 is received in the chamber 170. The contact surface 136 engages the spring beams 178 of the contact spring 152. The pin 124 extends through the upper opening 171 of the socket 168, however, the distal end 138 of the pin 124 engages the spring clip 156. The spring clip 156 interferes with the distal end 138, stopping the pin 124 from being fully loaded into the power terminal connector 102. The width of the opening 191 between the first and second arms 188, 190 is narrower than the diameter of the distal end 138. In order for the pin 124 to pass through the spring clip 156, and thus allowing the power terminal connector 102 to move to the fully seated position, the spring clip 156 must be moved to the clearance position. The cap 158 is rotated to move the second end 182 (shown in Figure 3) with respect to the first end 180 (shown in Figure 3) to spread the second
arm 190 apart from the first arm 188 to widen the opening 191, allowing the power terminal connector 102 to be fully seated on the power terminal 104. The cap 158 may be moved in other ways to seat the power terminal connector 102. For example, the cap 158 may be pressed downward to apply a vertical down force on the power terminal connector 102, which may force the spring clip 156 to slide along the large radius of the pin 124 until the spring clip 156 clears the distal end 138. The spring clip 156 may be spread apart to the clearance position by the interaction with the pin 124 when the power terminal connector 102 is pressed in a vertically downward direction on the pin 124.

[0054] Figure 7 is a cross-sectional view of the power terminal connector 102 and power terminal 104 in a seated and locked state. In the fully seated state, the pin 124 is fully loaded into the chamber 170. The contact spring 152 engages the contact surface 136 of the pin 124. The contact spring 152 electrically interconnects the pin 124 and the terminal body 150. The distal end 138 of the pin 124 extends through the upper opening 171 and through the spring clip 156 into the cap 158. In the seated state, the spring clip 156 is captured in the groove 140.

[0055] The spring clip 156 is in the locking position, in which the first and second arms 188, 190 are positioned in the groove 140, which has a smaller radius than the pin head 142, below the pin head 142. The pin head 142 captures the spring clip 156 to lock the relative position of the power terminal connector 102 with respect to the power terminal 104.

[0056] Figure 8 is a cross-sectional view of the power terminal connector 102 in an unlocked position with respect to the power terminal 104. In the unlocked position, the spring clip 156 is moved to the clearance position. For example, the cap 158 is rotated to rotate the second end 182 (shown in Figure 3) with respect to the first end 180, which is fixed in position with respect to the socket 168. Rotation of the cap 158 spreads the second arm 190 apart from the first arm 188 and widens the opening 191 at least as wide as the pin head 142. The spring clip 156 is disengaged from the pin 124 in the clearance position. Once the power terminal connector 102 is in the unlocked position and the spring clip 156 is in the clearance.
position, the power terminal connector 102 may be unconnected from the power terminal 104 by lifting the power terminal connector 102 off of the pin 124 in a direction parallel to the pin axis 126, such as in the direction of arrow B.

[0057] Figures 9 and 10 are top views of a portion of the power terminal connector 102 with the cap 158 (shown in Figure 3) removed for clarity. Figure 9 illustrates the power terminal connector 102 in a locked state. Figure 10 illustrates the power terminal connector 102 in an unlocked state. Figure 9 illustrates the spring clip 156 in a locking position. Figure 10 illustrates the spring clip 156 in a clearance position.

[0058] The second end 182 of spring clip 156 extends radially outward and is configured to be captured in the cap 158. For example, the cap 158 may include a slot 220 (shown in phantom in Figure 9) that receives the second end 182. The second end 182 is captured in the slot 220 such that, as the cap 158 is rotated, the second end 182 is rotated with the cap 158.

[0059] The spring clip 156 changes shape when the cap 158 is rotated. For example, in the illustrated embodiment, in the locking position, the spring clip 156 has a generally oval shape, and in the clearance position, the spring clip 156 has an open sided ring shape. The width of the opening 191 is increased as the spring clip 156 is moved from the locking position to the clearance position.

[0060] The spring clip 156 is oriented with the open side 184 opposite the closed side 186. The distance between the first and second arms 188, 190 is more narrow than the distance between the open side 184 and the closed side 186. In the illustrated embodiment, the distance between the open side 184 and the closed side 186 is wider than the diameter of the pin head 142, while the width between the first and second arms 188, 190 approximately midway between the open side 184 and the closed side 186 is narrower than the diameter of the pin head. As such, the first and second arms 188, 190 are captured in the groove 140 (shown in Figure 2) by the pin head 142. In the locking position, the first arm 188 engages one
side 226 of the pin 124 while the second arm 190 engages an opposite side 228 of the pin 124.

[0061] In the locking position, the first and second ends 180, 182 are positioned relatively close to one another and are separated by a distance 222. In the clearance position, the second end 182 is moved away from the first end 180 as the cap 158 is rotated. The second end 182 is positioned a distance 224 from the first end 180 that is greater than the distance 222. In other embodiments, the first and second arms 188, 190 may be forced to slide along the large radius of distal end 138, thereby spreading the first and second arms 188, 190 wider to clear the distal end 138.

[0062] Figures 11 and 12 are perspective views of the power terminal connector 102. Figure 11 illustrates the cap 158 in an unactuated position. Figure 12 illustrates the cap 158 in an actuated position. The cap 158 is rotated between the unactuated and the actuated positions. Rotation of the cap 158 causes the spring clip 156 to move from the locking position to the clearance position.

[0063] The cap 158 includes stops 230 extending radially outward therefrom. The stops 230 define rotation limits for the cap 158. The stops 230 engage shoulders 232 of the main housing 200 to stop rotation of the cap 158. In the illustrated embodiment, the stops 230 are positioned approximately 90° with respect to one another. The stops 230 allow approximately 90° of rotation for the cap 158. The stops 230 may be positioned at any angular position with respect to one another. While the stops 230 are illustrated as being external of the cap 158, the stops 230 may be positioned elsewhere in alternative embodiments. For example, the stops 230 may extend downward from the bottom 194 to engage the spacer 202 and/or the main housing 200 to limit rotation of the cap 158.

[0064] The power terminal connector 102 is configured for quick connection and disconnection from the power terminal 104 (shown in Figure 2). During connection, the spring clip 156 can be forced to slide along the larger radius of the pin head 142, to be spread apart, and then further moved downward along the pin 124 to the groove 140, where the spring clip 156 snaps back to the locking position.
Rotation of the cap 158 easily transfers the spring clip 156 between the locking position and the clearance position, allowing the power terminal connector to be removed from the power terminal 104.

[0065] Figure 13 is an exploded view of a power terminal connector 302 formed in accordance with an exemplary embodiment. The power terminal connector 302 may be coupled to the power terminal 104 (shown in Figure 2). The power terminal connector 302 includes a different means for actuating a spring clip for securing the power terminal connector 302 to the power terminal 104.

[0066] The power terminal connector 302 includes a terminal body 350 that is configured to be electrically connected to the power terminal 104. The terminal body 350 is configured to be terminated to the end of the cable 308. The power terminal connector 302 includes a contact spring therein, which may be similar to the contact spring 152 (shown in Figure 3). The power terminal connector 302 includes a housing 354 that at least partially surrounds the terminal body 350. The housing 354 protects the terminal body 350 from inadvertent touching by a person or a tool, which could cause electrical shock that could injure the person or the power terminal connector 302. The power terminal connector 302 includes a spring clip 356 (shown in Figure 14) that is used to secure the power terminal connector 302 to the pin 124 (shown in Figure 2) of the power terminal 104. The power terminal connector 302 includes a cap 358 that is configured to be coupled to the terminal body 350. Optionally, the cap 358 may be coupled to the terminal body 350 using the housing 354. The cap 358 is used to actuate the spring clip 356 to unlock the power terminal connector 302 from the pin 124, as described in further detail below.

[0067] The housing 354 is coupled to the terminal body 350. The housing 354 is manufactured from a dielectric material, such as a plastic material. The housing 354 covers the terminal body 350 to prevent inadvertent touching of the terminal body 350 by a person or another component such as a tool, a wire and the like. In the illustrated embodiment, the housing 354 is a two part housing including an upper housing 360 and a lower housing 362. The upper housing holds and supports the spring clip 356 and the cap 358.
Figure 14 illustrates the spring clip 356. The spring clip 356 has a curved shape and extends between a first end 380 and a second end 382. The spring clip has a ring 384 that is configured to receive the pin 124. Optionally, the ring 384 may be elongated. The ring 384 may be oval shaped. The spring clip 356 has a closed side 386 at one side of the ring 384 that defines a pocket that receives the pin 124. The spring clip 356 has a first arm 388 and a second arm 390, both generally opposite the closed side 386 and both extending generally parallel to one another and vertically spaced apart from one another. The first and second arms 388, 390 may be movable with respect to one another. The first and second arms 388, 390 may be generally equidistant from the closed side 386. The first arm 388 extends to the first end 380. The second arm 390 extends to the second end 382. In the illustrated embodiment, the first and second arms 388, 390 are L-shaped with the first and second ends 380, 382 extending generally perpendicular to the other portions of the first and second arms 388, 390.

The spring clip 356 is movable between a locking position and a clearance position. The spring clip 356 is configured to engage the pin 124 in the locking position to secure to the power terminal connector 302 to the power terminal 104. The spring clip 356 is configured to be disengaged from the pin 124 in the clearance position. The spring clip 356 is movable from the locking position to the clearance position by pushing the first and second arms 388, 390 using the cap 358 (shown in Figure 15), which changes the position of the ring 384 with respect to the pin 124, such that a wider portion of the ring 384 may be aligned with the pin 124 and the spring clip 356 may be lifted off of the pin 124. The spring clip 356 may be at least partially elastically deformed as the spring clip 356 is moved from the locking position to the clearance position.

Figure 15 illustrates the cap 358. The cap 358 includes a top 392 and a bottom 394. The cap includes an actuation end 396 between the top 392 and the bottom 394. The cap 358 includes an upper pushing surface 400 and a lower pushing surface 402. The upper pushing surface 400 includes a forward wall 404 and an angled wall 406 angled rearward from the forward wall 404. The lower pushing surface 402 includes a forward wall 408 and an angled wall 410 angled rearward from
the forward wall 408. The upper and lower pushing surfaces 400, 402 engaging the first and second arms 388, 390 (shown in Figure 14), respectively.

[0071] Figures 16 and 17 are cross-sectional views of the power terminal connector 302 showing the cap 358 and spring clip 356 in unactuated and actuated positions, respectively. When the cap 358 is unactuated, the spring clip 356 is in the locking position. When the cap 358 is actuated, the spring clip 356 is in the clearance position. In an exemplary embodiment, the cap 358 is actuated by pressing the cap 358 in a direction toward the terminal body 350, such as in the direction of arrow C. The spring clip 356 is shifted with the cap 358 to move the spring clip 356 relative to the pin 124.

[0072] Figures 18 and 19 are cross-sectional views of the power terminal connector 302 coupled to the pin 124 of the power terminal 104, showing the cap 358 and spring clip 356 in unactuated and actuated positions, respectively. The path of the spring clip 356 with respect to the pin 124 is illustrated by the dashed lines 420, 422 in Figures 18 and 19, respectively.

[0073] When the cap 358 is unactuated, the spring clip 356 is in the locking position. As can be seen from the path 420 of the spring clip 356, the spring clip 356 is located in the groove 140 under the pin head 142 (both shown in Figure 2). When the cap 358 is actuated, the spring clip 356 is in the clearance position. As can be seen from the path 422 of the spring clip 356, wider portion of the ring 384 of the spring clip 356 is aligned with the pin 124 such that the spring clip 356 may be lifted off of the pin 124.

[0074] When the cap 358 is actuated, the upper pushing surface 400 presses against the first arm 388. Part of the first arm 388 extends along and is pushed by the forward wall 404 and part of the first arm extends along and is pushed by the angled wall 406. The first arm 388 is deflected as the spring clip 356 is pushed forward. For example, because the first end 380 is fixed in the upper housing 360, the first arm 388 is bent as the spring clip 356 is pushed forward. The shape of the spring clip 356 changes as the cap 358 and spring clip 356 are actuated. The second arm 390
(shown in Figure 14), is angled and deflected in a similar manner, however is angled in the opposite direction as the second end 382 is fixed at the opposite side of the housing.
WHAT IS CLAIMED IS:

1. A power terminal connector (102) comprising:

 a terminal body (150) having a socket (168) configured to receive, and be electrically connected to, a pin of a power terminal;

 a spring clip (156) coupled to the terminal body (150), the spring clip (156) being movable between a locking position and a clearance position, the spring clip being configured to engage the pin of the power terminal in the locking position to secure the power terminal connector to the power terminal, the spring clip being configured to be disengaged from the pin of the power terminal in the clearance position; and

 a cap (158) coupled to the terminal body (150), the cap (158) being coupled to the spring clip (156) to move the spring clip between the locking position and the clearance position as the cap is actuated.

2. The power terminal connector (102) of claim 1, wherein the spring clip (156) changes shape when the cap (158) is actuated.

3. The power terminal connector of claim 1, wherein the spring clip (156) includes a first arm (188) and a second arm (190), the first arm being spread apart from the second arm when the cap (158) is pressed onto the pin (124).

4. The power terminal connector of claim 1, wherein the spring clip (156) includes a first end (180) and a second end (182), the first end being securely coupled to the terminal body (150), the second end being securely coupled to the cap (158), the first end remaining fixed in position when the cap is actuated, the second end being moved with the cap when the cap is actuated.

5. The power terminal connector (302) of claim 1, further comprising a housing (354) surrounding the terminal body (350), the cap (358) being movable with respect to the housing, the spring clip (356) having a first end (380) and a second end (382) and a ring (384) between the first and second ends, the ring being
configured to wrap at least partially around the pin in the locking position, the first and second ends being coupled to, and fixed in position with respect to, the housing, the ring moving laterally with the cap when the cap is actuated.

6. The power terminal connector (102) of claim 1, wherein the spring clip (156) includes a first end (180) and a second end (182), the first end being securely coupled to the terminal body (150), the second end being securely coupled to the cap (158), the spring clip having a curved shaped with an open side (184), the first and second ends opposing one another at the open side of the spring clip, the second end being moved away from the first end as the cap is actuated to move the spring clip to the clearance position.

7. The power terminal connector (102) of claim 1, wherein the spring clip (156) has a first arm (188) and a second arm (190) joined at a closed side (186) of the spring clip, the first arm extends to a first end (180), the second arm extends to a second end (182), the first end being securely coupled to the terminal body (150), the second end being securely coupled to the cap (158).

8. The power terminal connector (102) of claim 1, wherein the spring clip (156) has a first arm (188) and a second arm (190) joined at a closed side (186) of the spring clip, the first arm extends to a first end (180), the second arm extends to a second end (182), the first arm engaging one side of the pin in the locking position, the second arm engaging an opposite side of the pin in the locking position.

9. The power terminal connector (102) of claim 1, wherein the spring clip (156) has a first arm (188) and a second arm (190) joined at a closed side (186) of the spring clip, the first arm extends to a first end (180), the second arm extends to a second end (182), as vertical down force is applied to the terminal body (150), the spring clip is forced to slide along the pin, thereby spreading the first arm apart from the second arm to move the spring clip to the clearance position.

10. The power terminal connector of claim 1, wherein the spring clip (156) has a first arm (188) and a second arm (190) joined at a closed side (186) of the spring clip, the first arm extends to a first end (180), the second arm extends to a
second end (182), the first arm being spread apart from the second arm as the cap (158) is actuated and the spring clip is moved from the locking position to the clearance position.

11. A connector system (100) comprising:

a header (120) having a power terminal (104), the power terminal (104) having a pin (124); and

a power terminal connector (102) coupled to the power terminal (104) of the header (120), the power terminal connector (102) comprising:

a terminal body (150) having a socket (168) for receiving, and being electrically connected to, the pin (124) of the power terminal (102);

a spring clip (156) coupled to the terminal body (150), the spring clip (156) being movable between a locking position and a clearance position, the spring clip (156) engaging the pin (124) of the power terminal (104) in the locking position to secure the power terminal connector (102) to the power terminal (104), the spring clip (156) being disengaged from the pin (124) of the power terminal (104) in the clearance position; and

a cap (158) coupled to the terminal body (150), the cap (158) being coupled to the spring clip (156) to move the spring clip between the locking position and the clearance position as the cap is actuated.
A. CLASSIFICATION OF SUBJECT MATTER
INV. H01R11/28 H01R13/627
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 439 610 A2 (TYCO ELECTRONICS AMP GMBH [DE]) 21 July 2004 (2004-07-21) paragraphs [0017], [0020]; figures 1,2,4,5,6</td>
<td>1-3,5, 8-11</td>
</tr>
<tr>
<td>X</td>
<td>FR 2 696 505 A1 (BOSCH GMBH ROBERT [DE]) 8 April 1994 (1994-04-08) page 7 - page 14; figures 1-9</td>
<td>1-4,6,7</td>
</tr>
<tr>
<td>X</td>
<td>US 5 398 664 A (BETZ DIETER [DE]) 21 March 1995 (1995-03-21) the whole document</td>
<td>1-4,6-10</td>
</tr>
<tr>
<td>A</td>
<td>EP 2 290 752 A1 (STEQUAL [FR]) 2 March 2011 (2011-03-02)</td>
<td>1,11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) on which it is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* "A" document member of the same patent family

Date of the actual completion of the international search: 11 December 2012
Date of mailing of the international search report: 18/12/2012

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax. (+31-70) 340-3016

Authorized officer: Vautrin, Florent
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 1439610</td>
<td>21-07-2004</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1089381 AI</td>
<td>04-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3490675 B2</td>
<td>26-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001118564 A</td>
<td>27-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6409553 BI</td>
<td>25-06-2002</td>
</tr>
<tr>
<td>FR 2696505</td>
<td>08-04-1994</td>
<td>DE 4232951 AI</td>
<td>07-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2068770 A2</td>
<td>16-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2696505 AI</td>
<td>08-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1272687 B</td>
<td>26-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2696788 AI</td>
<td>15-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT MI932079 AI</td>
<td>08-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6213127 A</td>
<td>02-08-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5398664 A</td>
<td>21-03-1995</td>
</tr>
<tr>
<td>EP 2290752</td>
<td>02-03-2011</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>