(54) 发明名称
电动推杆的释放装置
(57) 摘要
本发明一种电动推杆的释放装置，其中该电动推杆上设有线性位移的伸缩管组，并于伸缩管组一端设有连接部，且伸缩管组与连接部之间结合有释放装置，而释放装置所具有的衔接套筒一端处于结合于伸缩管组，并于衔接套筒另一端处于结合于连接部上的固定套筒，其衔接套筒外侧所套接的离合套环一端处为设有啮合于固定套筒外环面上的环齿部形成卡制定位的多个卡齿部，且位于固定套筒外侧所套接的旋动结构件的对称结构内壁面处设有顶推部，即旋动于对称结构内壁面处对应的推移部作轴向位移，使离合套环的卡齿部与固定套筒的环齿部分离形成释放状态，以使伸缩管组在无电力或故障时用主动旋转的方式作缩短位移的动作。
1. 一种电动推杆的释放装置，其特征在于包括有电动推杆及释放装置，其中：该电动推杆所具有的座体内部为收容有供驱动部带动的齿轮组，并于齿轮组上连接有具导螺杆的传动机构，其导螺杆上螺接有朝座体内部作线性位移的伸缩管组，且伸缩管组一侧处设有一连结部；
该释放装置为结合于电动推杆上的伸缩管组与连结部之间，并包括有衔接套筒，其衔接套筒一侧处结合于伸缩管组上，且衔接套筒的另侧处套接有结合于连结部上的固定套筒，而固定套筒外环面上则设有多个环齿部，并于衔接套筒外部套接的离合套环侧边处设有啮合于环齿部上形成卡定位的多个卡齿部，且离合套环外环面上为设有一个或一个以上的推移部，另于固定套筒外部为套接有旋转构件至少一个供转动呈一角度旋转的对接套环，并于对接套环内壁面处设有一个或一个以上旋转推顶于推移部上使离合套环轴向位移而卡齿部与固定套筒上的环齿部形成分离的顶推部。

2. 如权利要求1所述的电动推杆的释放装置，其特征在于，该电动推杆驱动部所具有的一端为设有啮合于齿轮组上的驱动轴，而伸缩管组为具有伸缩套管，并由伸缩套管一侧处所设的螺接部螺接于传动机构的导螺杆上，且伸缩套管外接套接有外套管。

3. 如权利要求1所述的电动推杆的释放装置，其特征在于，该释放装置的衔接套筒一侧处为设有结合定位在伸缩管组上的接合孔，并于衔接套筒的另侧处设有固定套筒活动套接的接合孔，且接合孔底部为凸伸有一轴柱。

4. 如权利要求1所述的电动推杆的释放装置，其特征在于，该释放装置的衔接套筒外环面为设有环状排列的多个凸轨及位于各相邻凸轨间且弹性撑抵于离合套环上的多个弹性元件，且于离合套环内壁面处设有供凸轨活动嵌卡的多个滑槽。

5. 如权利要求1所述的电动推杆的释放装置，其特征在于，该释放装置离合套环的卡齿部侧边处为形成有旋转扣合于固定套筒的环齿部上的向内转折段差状面。

6. 如权利要求1所述的电动推杆的释放装置，其特征在于，该释放装置离合套环的推移部侧边处为形成有供旋转构件的顶推部旋转推动使卡齿部与固定套筒的环齿部形成分离的斜向抵持面。

7. 如权利要求1所述的电动推杆的释放装置，其特征在于，该释放装置离合套环的多个推移部为呈一环状排列，且各相邻推移部之间为形成有多个间隔槽，而对接套环的各相邻推移部之间则设有位于间隔槽内限制其顶推部滑动抵持于离合套环的推移部上的预定角度与距离范围的抵持部。

8. 如权利要求1所述的电动推杆的释放装置，其特征在于，该释放装置旋转构件的对接套环上的多个顶推部为呈一环状排列，且对接套环外环面上形成有波浪状、凸齿状或连续段差状的转动部。
电动推杆的释放装置

技术领域
[0001] 本发明提供一种电动推杆的释放装置，尤其是电动推杆上的伸缩管组与伸缩管组一侧的连结部之间为结合有释放装置，即可由动于固定套简外部所套接的旋转构件旋转推顶于衔接套筒外部所套接的离合套环轴向位移，同时使离合套环与固定套简分离形成释放状态，以供伸缩管组在无电力或故障时可用手动旋转的方式作缩短位移的动作。

背景技术
[0002] 现今推杆装置的使用相当的普通，且不同型式的推杆装置则有不同机构设计与传动的方式，并可应用于电动床、按摩椅、健身与复健相关器材上使用，而一般推杆装置在马达动力传输的过程中，可带动其延伸套管伸缩位移，使电动床或按摩椅可作高低位置调整，当紧急状况发生时，用户可操作推杆装置内部的离合结构或装置进行释放，并使延伸套管上所连结推动的升降机构的连杆或支架快速下降，但因传统离合结构或装置会完全释放，而在推杆装置瞬间下降的过程中，便会造成使用者感受到不舒适性，或者是物品因受到过大冲击、碰撞而造成毁损的情况发生且相当的危险。
[0003] 请参阅图12所示，为现有释放机构的立体分解图，由图中可清楚看出，其将第一套筒A与推杆装置D可由螺杆（图中未示出）带动伸缩位移的延伸套管D1对接结合，并以第二套筒B一侧轴接于可与外部装置（如电动床、按摩椅等）相连接的连接部D2上，再将第二套筒B的侧活动套接于第一套筒A上，而第二套筒B上则结合定位有离合模块C所具的套环C1及可相互枢接的第一拨盘C2与第二拨盘C3，当使用者未释放于第二拨盘C3时，该套环C1内壁面处的二凸部C11与延伸套管D1外表面上的四部D11相互嵌卡，而使延伸套管D1可带动连接部D2来推动于外部装置作升降或不同角度的调整。
[0004] 当离合模块C于释放后，即可使套环C1的二凸部C11与延伸套管D1的四部D11形成分离，便可通过延伸套管D1受到外部装置重力的推顶作用沿着螺杆反转缩短位移，使外部装置迅速下降，不过当外部装置所承重的使用者或物品较重时，则将反向推顶于延伸套管D1上缩短位移，并造成整体瞬间下降的速度过快，导致用户便会受到惊吓而影响当下情绪，甚至会产生有使用安全上的疑虑，或是物品因过大冲击、碰撞所造成的损坏，让使用者的生命财产都受到严重的损失或伤害，则有待从事于此行业者重新设计来加以有效解决。

发明内容
[0005] 有鉴于现有电动推杆的问题与缺失，发明人乃搜集相关数据经由多方评估及考虑，并利用从事于此行业的多年研发经验不断试作与修改，始设计出此种电动推杆的释放装置的发明诞生。
[0006] 本发明的主要目的在于电动推杆上为设有可朝座体外部作线性位移的伸缩管组，并于伸缩管组一侧处设有连结部，且伸缩管组与连结部之间结合有释放装置，而释放装置所具有的衔接套筒一侧面为结合于伸缩管组，并于衔接套筒另侧处套接有结合于连结部
上的固定套筒，其衔接套筒与其它套接的离合套环侧边处为设有啮合于固定套筒外环面上的环齿部形成卡制位定的多个卡齿部，且位于固定套筒外部所套接的旋转内套环内壁面处设有顶推部，即能带动于对称套环上使顶推部旋转位于离合套环外环面上对应的位置均作轴向位移，同时使离合套环的卡齿部与固定套筒的环齿部分裂形成释放状态，以供伸缩管组在无外力或膛阻时可用手动旋转的方式作缩短位移的动作。

【0007】本发明的次要目的乃在于当用户弹动于非释放装置的旋转内套环上时，可使对接套环的顶推部旋转位于离合套环上对应的位置均作轴向位移，同时通过接触套筒及离合套环相接面处的凸起于滑槽相互活动嵌卡，使离合套环的顶推部受到顶推的作用后只能作轴向位移，并由离合套环抵持于接触套筒上的多个弹性元件具有适当弹性阻力，以避免离合套环受到外力影响时所产生有轴向位移的情况发生。

【0008】本发明的另一目的乃在于旋转内套环旋转过程中，其对接套环外壁面处的抵持部便会位于离合套环上各相邻顶推部间之间隔槽内旋转位移，且待对接套环的抵持部为由间隔槽一侧处抵持至另一侧壁面处，便可限制对接套环旋转时的预定角度与距离范围，以防止因对接顶推部脱离于离合套环的顶推部所导致故障的情况发生。

【0009】本发明的再一目的乃在于当使用者多次弹动与释放旋转内套环时，可使离合套环的卡齿部与固定套筒的环齿部形成分离，或是衔接套筒的旋转内套环旋转上的轴向位移至原位置后相互啮合形成卡制位，且旋转内套环的顶推部沿着离合套环顶推部的导引面滑动抵持位移而旋转堆复归至原位置，进而达成可针对人体或物品轻小重量进行释放装置预定释放速度的调整，并具有操作简易的效果。

【0010】本发明的又一目的乃在于释放装置为结合于电动推杆的伸缩管组与连结部之间，而不会占用到电动推杆内部的空间，亦不需更改原电动推杆规格或针对其开发不同尺寸模具，使整体体积缩小且更为小型化，以此释放装置的模块化结构设计，不但可应用于既有使用中或不同型式的电动推杆上，也可有效降低模具设计及制造上的困难与成本，更具产品的竞争力。

附图说明

【0011】图 1 为本发明的立体外观图。
【0012】图 2 为本发明的立体分解图。
【0013】图 3 为本发明释放装置的立体分解图。
【0014】图 4 为本发明释放装置另一视角的立体分解图。
【0015】图 5 为本发明的侧视剖面图。
【0016】图 6 为本发明的立体剖面图。
【0017】图 7 为本发明释放装置扳动前的局部侧视图。
【0018】图 8 为本发明释放装置扳动前的立体剖面图。
【0019】图 9 为本发明释放装置扳动后的局部侧视图。
【0020】图 10 为本发明释放装置扳动后的立体剖面图。
【0021】图 11 为本发明较佳实施例的侧视剖面图。
【0022】图 12 为现有释放机构的立体分解图。
【0023】【符号说明】
1. 电动推杆
10. 容置空间
11. 座体
111. 齿轮组
12. 驱动部
121. 马达
122. 驱动轴
13. 传动机构
131. 导螺杆
14. 伸缩管组
141. 伸缩套管
142. 螺接部
143. 外套管
15. 连结部
16. 定位部
2. 释放装置
21. 衔接套筒
211. 接合孔
212. 套接孔
2121. 轴柱
2122. 摩擦片
213. 凸轨
214. 弹性元件
22. 固定套筒
221. 环齿部
23. 离合套环
231. 滑槽
232. 卡齿部
2321. 挡止面
2322. 抵持面
233. 推移部
2331. 导引面
234. 间隔槽
24. 旋动构件
241. 对接套环
242. 顶推部
243. 抵持部
244. 扳动部
A. 第一套筒
具体实施方式

为达成上述目的及功效，本发明所采用的技术手段及其构造，兹绘图就本发明的较佳实施例详加说明其构造与功能如下，俾利完全了解。

请参阅图 1 至图 6 所示，分别为本发明的立体外观图、立体分解图、释放装置的立体分解图、释放装置另一视角的立体分解图、侧视剖面图及立体剖面图，由图中可清楚看出，本发明为包括有电动推杆 1 及释放装置 2，故就本案的主要构件及特征详述如后，其中：

该电动推杆 1 为具有一座体 11，并于座体 11 内部的容置空间 10 收容有齿轮组 111，其座体 11 上结合有限位达 121 的驱动部 12，且马达 121 一侧处设有插入于座体 11 内部并啮合于齿轮组 111 带动其呈一转动的驱动轴 122，再于齿轮组 111 上连接有传动机构 13，而传动机构 13 上则具有垂直或平行于马达 121 的驱动轴 122 且可供齿轮组 111 带动其呈一转动的导螺杆 131，并于导螺杆 131 上螺接有朝座体 11 外部作线性传动位移的伸缩管组 14，另电动推杆 1 的伸缩管组 14 一侧处为设有一连结部 15，且位于座体 11 相对于伸缩管组 14 的另一侧处设有定位部 16.

再者，上述的伸缩管组 14 为具有伸缩套管 141、螺接部 142（如图 5 所示）及外套管 143，并由伸缩套管 141 一侧处所设的螺接部 142 螺接于导螺杆 131 上，且伸缩套管 141 外部套接有一外套管 143，以供伸缩套管 141 相对于导螺杆 131 作线性传动位移之作用，但该电动推杆 1 各家制造厂商的规格皆不相同，且因电动推杆 1 结构设计的方式很多，并可依实际的应用予以变更，所以在本说明书中仅作较佳的可行实施例说明而已，并非用以限定本发明的申请专利范围，凡其它未脱离本发明所揭示的技艺精神下所完成的均等变化与修饰变更，均应同理包含于本发明的专利范围内。

该释放装置 2 为结合于电动推杆 1 上的伸缩管组 14 与连结部 15 之间，并包括有衔接套筒 21、固定套筒 22、离合套环 23 及旋动构件 24，其中衔接套筒 21 一侧处为设有结合定位在伸缩管组 14 的伸缩套管 141 上的接合孔 211，并于衔接套筒 21 的另一侧处设有可供固定套筒 22 活动套接的接合孔 212，且固定套筒 22 为结合定位于连结部 15 上，而衔接套筒 21 的接合孔 212 底部为凹设有一轴柱 2121，其轴柱 2121 上设有一相互固定接触的摩擦片 2122，并于衔接套筒 21 外环面上设有环状排列的多个凸轨 213 及位于各相邻凸轨 213 间的多个弹性元件 214，再于固定套筒 22 外环面上设有环状排列的多个环齿部 221。

然而，上述的离合套环 23 为套接于衔接套筒 21 外部，并于离合套环 23 内壁面处
环状排列有可供凸轮 213 活动嵌卡的多个滑槽 231，而离合套环 23 位于滑槽 231 前方侧边处则设有环状排列的多个卡齿部 232，且卡齿部 232 为啮合于固定套管 22 上对应的环齿部 221 形成卡制定位，并于卡齿部 232 侧边处依序形成有向内转折段差状的挡止面 2321 及由挡止面 2321 处所朝外斜向延伸的渐缩状抵持面 2322；另，离合套环 23 的外环面上为设有 一个或一个以上环状排列的推移部 233 及位于各相邻推移部 233 间所形成的多个间隔槽 234，并于推移部 233 前方侧边处形成有斜向的导引面 2331；又，旋动构件 24 为套接于固定套管 22 外部，并具有至少一个可供扳动的对接套环 241，其中对接套环 241 内壁面处设有 一个或一个以上环状排列的顶推部 242，且顶推部 242 为抵持于离合套环 23 上对应的推移部 233，而旋动构件 24 的对接套环 241 上位于各相邻推移部 233 之间则设有位于间隔槽 234 内的抵持部 243，且对旋转套环 241 外环面上形成有波浪状、凸齿状或连续段差状的扳动部 244。

【0079】此外，本发明释放装置 2 的衔接套管 21 为以接合孔 211 套接于电动推杆 1 伸缩管组 14 的伸缩套管 141 外部，并利用定位销（图中未示出）穿设固定的方式结合成为一体，且该固定套管 22 与连接部 15 于套接后亦可利用定位销穿设固定的方式结合成为一体，但于实际应用时，也可利用键与键槽、螺纹接合、焊接固定等结合方式进行组装，而旋动构件 24 较佳实施为包括有二对接套环 241，且二对接套环 241 的相接面处设有相互嵌卡的多个凸柱与凹孔（图中未示出），再利用螺旋锁固的方式结合成为一体。

【0080】请参看图 7 至图 11 所示，分别为本发明释放装置扳动前的局部侧视图、立体剖面图及扳动后的局部侧视图、立体剖面图及较佳实施例的侧视剖面图，由图中可清楚看出，本发明电动推杆的释放装置为应用于外部装置（如电动床、按摩椅等）、升降机构或其它相关装置或设备的连接或支架上，便可将电动推杆 1 与之侧处的连接部 15、定位部 16 利用螺旋锁固的方式分别与连接杆或支架结合成为一体，且因释放装置 2 为结合于电动推杆 1 的伸缩管组 14 与连接部 15 之间，而也会占用电动推杆 1 内部的空间，亦不需更改原电动推杆 1 规格或是针对其开发不同尺寸模具，使整体更为小型化，以此释放装置 2 模块化的结构设计，不但可应用于既有使用中或不同型式的电动推杆 1 上，也可有效降低模具设计及制造上的困难与成本。

【0081】由于释放装置 2 接合套管 21 的各弹性元件 214 为抵持于离合套环 23 后侧壁面上对应的限位孔（图中未示出）内部，即可透过弹性元件 214 弹性撑抵于离合套环 23 上，使离合套环 23 的各卡齿部 232 为轴向往啮合于固定套管 22 上对应的环齿部 221 形成卡制定位，其卡齿部 232 侧边处所向内转折段差状的挡止面 2321 便会旋动扣持于环齿部 221 上，并使离合套环 23 无法再轴向旋转，亦可利用衔接套管 21 及离合套环 23 相接面处的多个凸轴 213 与滑槽 231 活动嵌卡不会产生轴向旋转而具有良好的制动效果，同时使衔接套管 21 结合的伸缩管组 14 无法再作转动，便可通过驱动部 12 的马达 121 驱动于驱动轴 122 上啮合的齿轮组 111 呈一转动，再由齿轮组 111 带动传动机构 13 的导螺杆 131 旋动推移于伸缩管组 14 朝轴体 11 外部作线性传动伸长或缩短位移的动作，并连动于连接部 15 来推动外部装置（图中未示出）作升降高度或不同角度的调整。

【0082】当本发明于使用时，先扳动于释放装置 2 旋动构件 24 的扳动部 244 上，其对接套环 241 便会朝顺时针方向呈一角度旋动，并使顶推部 242 旋动推顶于离合套环 23 上对应的推移部 233 沿着导引面 2331 滑动位移，同时通过衔接套管 21 及离合套环 23 相接面处的凸轴 213 与滑槽 231 相互活动嵌卡，使离合套环 23 的推移部 233 受到推顶的作用后只能朝电
动推杆 1 的伸缩管组 14 作轴向位移, 并推动于衔接套筒 21 上的多个弹性元件 214 呈一弹性变形, 而具有适当的弹性阻力, 以避免因离合套环 23 受到外力的影响时所产生的轴向滑动位移的情况发生。

【0083】当旋动构件 24 的顶推部 242 沿着导引面 2331 旋动推顶于离合套环 23 的推移部 233 时, 可使离合套环 23 的卡齿部 232 为逐渐分离于固定套筒 22 上对应的环齿部 221 形成释放状态, 且因离合套环 23 不会受到固定套筒 22 的箍制作用, 所以当外部装置受到自重或外力的影响反向推顶于连结部 15 上时, 便可通过固定套筒 22 来推顶于衔接套筒 21, 并连动于伸缩套筒 141 一侧处的螺接部 142 沿着导螺杆 131 缩短位移, 使电动推杆 1 的伸缩管组 14 在无电力或故障时可手动旋转的方式作缩短位移的动作, 由此可提供紧急的状况发生时, 使外部装置（如电动床、按摩椅等）可调整下降, 进而提升其整体使用上的安全性。

【0084】而旋动构件 24 于旋动的过程中, 其另一对接合环 241 内壁表面的抵持部 243 便会位于离合套环 23 上各相邻推移部 233 间之间隔槽 234 内旋动位移, 且待对接合环 241 的抵持部 243 为由间隔槽 234 一侧处抵持至另一侧壁表面处后, 便可限制对接合环 241 旋动时的预定角度与距离范围, 以防止因对接合环 241 的顶推部 242 脱离于离合套环 23 的推移部 233 所导致故障的情况发生, 当使用者多次扳动与释放旋动构件 24 时, 可使离合套环 23 的卡齿部 232 与固定套筒 22 的环齿部 221 形成分离, 或者是衔接套筒 21 的弹性元件 214 弹性撑抵于离合套环 23 上轴向位移至原位置后相互啮合形成卡制定位, 且旋动构件 24 的顶推部 242 沿着离合套环 23 推移部 233 的导引面 2331 滑动抵持位移而旋动复归至原位置, 进而达成可针对人体或物品轻重大小来实现依各种用途及使用场所进行释放装置 2 预定释放速度的调整, 并具有操作简易的效果。

【0085】上述详细说明为针对本发明一种较佳的可行实施例说明而已, 但该实施例并非用以限定本发明的申请专利范围, 凡其它未脱离本发明所揭示的技艺精神下所完成的均等变化与修饰变更, 均应包含于本发明所涵盖的专利范围中。

【0086】综上所述, 本发明上述的电动推杆的释放装置于使用时为确实能达到其功效及目的, 故本发明诚为一实用性优异的发明, 实符合发明专利的申请要求, 依法提出申请。
图 4