

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : A61K 37/00, 37/02, C07K 5/00 C07K 7/00		A1	(11) International Publication Number: WO 92/19254 (43) International Publication Date: 12 November 1992 (12.11.92)
(21) International Application Number:	PCT/US92/03119	(74) Agents:	ANDERSON, Elizabeth, M.; Warner-lambert Company, 2800 Plymouth Road, Ann Arbor, MI 48105 (US) et al.
(22) International Filing Date:	15 April 1992 (15.04.92)	(81) Designated States:	AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent), SE (European patent).
(30) Priority data:	24 April 1991 (24.04.91) US 852,086 20 March 1992 (20.03.92) US	(71) Applicant:	WARNER-LAMBERT COMPANY [US/US]; 2800 Plymouth Road, Ann Arbor, MI 48105 (US).
(72) Inventors:	HORWELL, David, Christopher ; 8 West Hill, Foxton, Cambridge CBS 0HT (GB). HUGUES, John ; Stocks Barn East, Swaffram Prior, Cambridge CB5 OHT (GB). RICHARDSON, Reginald, Stewart ; 9 Rockall Close, Haverhill, Suffolk CB9 OLV (GB). HOWSON, William ; Brook Cottage, 46 Chapel Road, Weston Green, Weston Colville, Cambridge Shire (GB).	Published	<i>With international search report.</i>

(54) Title: **α -SUBSTITUTED POLYPEPTIDES HAVING THERAPEUTIC ACTIVITY****(57) Abstract**

The compounds of the invention are α -substituted mono-, di-, tri-, tetra-, and pentapeptides useful in treating obesity, anxiety, gastrointestinal ulcers, pain, stroke, and inflammation. They are also useful in blocking the reaction caused by withdrawal from drug or alcohol use and in reducing gastric acid secretion. They are further useful as agents in hypertension, heart failure, stroke, cognition, memory enhancement, spasticity, depression, diabetes, cancer, asthma, bladder dysfunction, psychosis, and arthritis and/or inflammatory pain. Pharmaceutical compositions, novel intermediates, and processes are also included.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	RU	Russian Federation
CG	Congo	KP	Democratic People's Republic of Korea	SD	Sudan
CH	Switzerland	KR	Republic of Korea	SE	Sweden
CI	Côte d'Ivoire	LI	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
DE	Germany	MC	Monaco	TG	Togo
DK	Denmark			US	United States of America

-1-

α -SUBSTITUTED POLYPEPTIDES
HAVING THERAPEUTIC ACTIVITY

5

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part application of United States Serial Number 07/690,755, filed April 24, 1991.

10

BACKGROUND OF THE INVENTION

Peptides form the main messenger systems within and between cells and they number more than a 15 thousand. Over a hundred peptides are known to act as hormone, neurohormones, or neurotransmitters, and this number is growing rapidly. The potential for drug development is therefore vast. However, the great majority of peptide messengers are not suitable 20 for use as pharmaceuticals in their natural state.

The problems of natural peptides as drugs are lack of oral activity, failure to penetrate the 25 blood-brain barrier, rapidly metabolized, no selectivity for receptor subclasses, antigenic properties, and expensive to make.

The vast majority of small peptide messengers are not suitable as drugs, particularly where an orally administered and possibly centrally active drug is required. In this situation the development 30 of modified peptides offer significant opportunities. The α,α -disubstituted amino acids are non-genetically coded synthetic analogues of natural mammalian α -amino acids and are incorporated at least once into the neuropeptides of this patent.

-2-

Some examples of therapeutic applications of these modified peptides (peptoids) are given in Table I below.

5

TABLE I

	Endogenous Peptide	Peptoid Type*	Therapy
	Angiotensin	ANT	Hypertension Heart Failure
	Atrial Natriuretic Factor	AG	Heart Failure
10	Thyrotropin Releasing Factor	AG	Stroke Cognition Spasticity Depression
	Neuropeptide-Y	ANT	Hypertension Depression Obesity
	Glucagon	ANT	Diabetes
	Insulin	AG	Diabetes
15	Gastrin	ANT	Gastric Ulcer Cancer
	Bombesin	ANT	Cancer
	Tachykinins SP, NKA, NKB	ANT	Antipsychotic Analgesic Antiinflammatory Antiasthmatic

* ANT = Antagonist; AG = Agonist

20

25

These offer completely novel approaches to drug treatment. For example, all of the major tranquilizers block central dopaminergic function indiscriminately. An antipsychotic modified peptide designed to act through the mesolimbic CCK-neuropeptide/Dopamine system may be considerably more selective. An improvement in quality through the ability to modify drug resistant characteristics

-3-

is also expected. In psychosis the blunting of affect leading to general impoverishment of social interactions with schizophrenics is expected to be susceptible to alternate modified peptide therapies.

5 The highly selective behavioral responses elicited by individual neuropeptides is shown in the Table II below.

10

TABLE II
Behavioral Responses to Peptides

15

20

	Peptide	Behavior
	Angiotensin-II	Dipsogenesis
	Cholecystokinin	Cessation of Feeding Drowsiness Enhanced Memory
	Adrenocorticotrophic Hormone	Enhanced Alertness Enhanced Cognition
15	β-Endorphin	Decreased Awareness Amnesia Reward Analgesia
	Dynorphin	Decreased Reward Drowsiness Analgesia
	Luteinizing Hormone Releasing Factor	Increased Sexual Receptivity
	Corticotrophin Releasing Factor	Anxiety Enhanced Vigilance
	Thyrotropin Releasing Factor	Increased Activity Enhanced Awareness
	SP or NKA	A dopamine behavioral syndrome, i.e., increased locomotion, rearing
	SP	Antidipsogenic activity

25

-4-

SUMMARY OF THE INVENTION

The invention relates to novel compounds of formula

5

10

and the pharmaceutically acceptable salts thereof wherein R^1 , R^2 , R^3 , and R^4 are as defined hereinbelow.

15

In commonly assigned copending application 07/609,754, filed on April 24, 1991, by Horwell, et al, the disclosure of which is incorporated by reference, CCK analogues containing α,α -disubstituted amino acids are disclosed.

20

The invention also relates to a pharmaceutical composition containing an effective amount of a compound according to formula I in combination with a pharmaceutically acceptable carrier in unit dosage form for appetite suppression. The invention also relates to a method for suppressing appetite in a mammal.

25

The compounds of the invention are also useful for blocking the reaction caused by withdrawal from drug or alcohol use. The compounds of the invention are also useful in reducing gastric acid secretion, in treating gastrointestinal ulcers, in treating pain, treating and/or preventing stroke, treating inflammation, and in treating anxiety.

30

The compounds of the invention are also useful in treating cognitive deficits, small cell lung cancer, colonic cancer, peptic ulcers, and are useful in contraception.

-5-

The invention also relates to a pharmaceutical composition for reducing gastric acid secretion containing an effective amount of a compound of formula I in combination with a pharmaceutically acceptable carrier in unit dosage form effective for 5 reducing gastric acid secretion.

The invention also relates to a method for reducing gastric acid secretion in mammals which comprises administering an amount effective for 10 gastric acid secretion reduction of the composition described above to a mammal in need of such treatment.

The invention also relates to a pharmaceutical composition containing an effective amount of a 15 compound of formula I in combination with a pharmaceutically acceptable carrier in unit dosage form effective for reducing anxiety.

The invention also relates to a method for reducing anxiety in mammals which comprises 20 administering an amount effective for anxiety reduction of the composition described above to a mammal in need of such treatment.

The invention also relates to a pharmaceutical composition containing an effective amount of a 25 compound of formula I in combination with a pharmaceutically acceptable carrier in unit dosage form effective for treating gastrointestinal ulcers.

The invention further relates to a method for treating gastrointestinal ulcers in mammals which comprises administering an amount effective for 30 gastrointestinal ulcer treatment of the composition as described above to a mammal in need of such treatment.

The invention also relates to a pharmaceutical 35 composition containing an effective amount of a

-6-

compound of formula I in combination with a pharmaceutically acceptable carrier in unit dosage form effective for treating inflammation.

5 The invention further relates to a method for treating inflammation in mammals which comprises administering an amount effective of a composition as described above to a mammal in need of such treatment.

10 The invention also relates to a pharmaceutical composition for preventing the withdrawal response produced by chronic treatment or abuse of drugs or alcohol.

15 The invention further relates to a method for treating the withdrawal response produced by withdrawal from chronic treatment or withdrawal from abuse of drugs or alcohol. Such drugs include benzodiazepines, especially diazepam, cocaine, caffeine, opioids, alcohol, and nicotine. Withdrawal symptoms are treated by administration of an effective withdrawal treating amount of a compound of 20 the instant invention.

25 This invention also relates to a pharmaceutical composition containing a therapeutically effective amount of a compound according to formula I in combination with a pharmaceutically acceptable carrier in unit dosage form for treating psychosis.

30 The invention also relates to a method for treating psychosis in mammals which comprises administering an amount effective for treatment of the composition described above to a mammal in need of such treatment.

This invention also relates to a pharmaceutical composition containing a therapeutically effective amount of a compound according to formula I in

-7-

combination with a pharmaceutically acceptable carrier in unit dosage form for treating asthma.

The invention also relates to a method for treating asthma in mammals which comprises 5 administering an amount effective for treatment of the composition described above to a mammal in need of such treatment.

This invention also relates to a pharmaceutical composition containing a therapeutically effective 10 amount of a compound according to formula I in combination with a pharmaceutically acceptable carrier in unit dosage form for treating bladder dysfunction.

The invention also relates to a method for 15 treating bladder dysfunction in mammals which comprises administering an amount effective for treatment of the composition described above to a mammal in need of such treatment.

This invention also relates to a pharmaceutical 20 composition containing a therapeutically effective amount of a compound according to formula I in combination with a pharmaceutically acceptable carrier in unit dosage form for treating arthritis and/or inflammatory pain.

The invention also relates to a method for 25 treating arthritis and/or inflammatory pain in mammals which comprises administering an amount effective for treatment of the composition described above to a mammal in need of such treatment.

The invention further relates to methods of 30 treating hypertension, heart failure, stroke, cognition, memory enhancement, spasticity, depression, and diabetes.

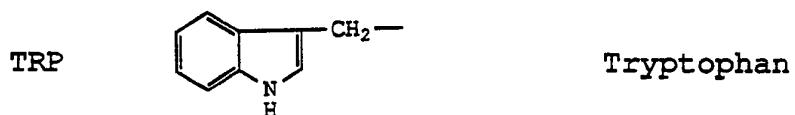
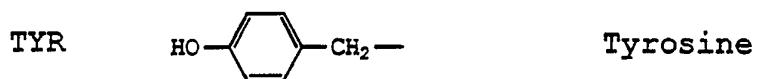
The invention further provides processes for the 35 preparation of compounds of formula I.

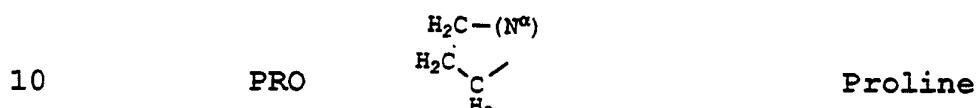
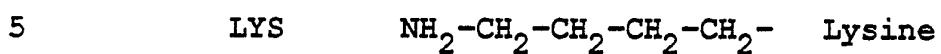
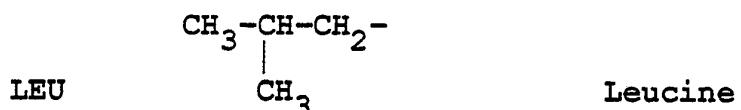
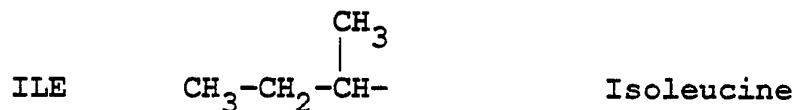
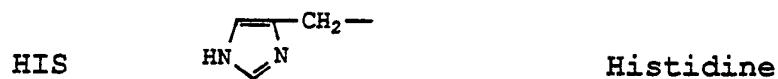
-8-

The invention further provides novel intermediates useful in the preparation of compounds of formula I and also provides processes for the preparation of the intermediates.

5 The invention also relates to a pharmaceutical composition for treating pain and to a method of using a compound of formula I for treating pain.

10 The invention also relates to a pharmaceutical composition for treating and/or preventing stroke and to a method of using a compound of formula I for treating and/or preventing stroke.






DETAILED DESCRIPTION

15 The following provides a dictionary of the terms used in the description of the invention.

	<u>Abbreviation</u>	<u>Side Chain</u>	<u>Amino Acid</u>
	ALA	CH ₃ -	Alanine
20	ARG	$\begin{array}{c} \text{NH} \\ \\ \text{NH}_2-\text{C}-\text{NH}-\text{CH}_2-\text{CH}_2-\text{CH}_2- \end{array}$	Arginine
	ASN	$\begin{array}{c} \text{O} \\ \\ \text{NH}_2-\text{C}-\text{CH}_2- \end{array}$	Asparagine
	ASP	HOOC-CH ₂ -	Aspartic Acid
	CYS	HS-CH ₂ -	Cysteine
	GLU	HOOC-CH ₂ -CH ₂ -	Glutamic Acid
25	GLN	$\begin{array}{c} \text{O} \\ \\ \text{NH}_2-\text{C}-\text{CH}_2-\text{CH}_2- \end{array}$	Glutamine

-9-

<u>Abbreviation</u>	<u>Side Chain</u>	<u>Amino Acid</u>
---------------------	-------------------	-------------------

-10-

<u>Abbreviation</u>	<u>Side Chain</u>	<u>Amino Acid</u>
---------------------	-------------------	-------------------

VAL	$ \begin{array}{c} \text{CH}_3-\text{CH}- \\ \\ \text{CH}_3 \end{array} $	Valine
-----	---	--------

N-Terminal Protecting Group

<u>Abbreviation</u>	<u>N-Terminal Protecting Group</u>
---------------------	------------------------------------

5	H	Hydrogen
	BOC	Tert-butyloxycarbonyl
	CBZ (or Z)	Benzylloxycarbonyl
	IBU	Isobutyryl
10	IVA	Isovaleryl
	NVA	n-Valeryl
	1-Adoc	1-Adamantyloxycarbonyl
	2-Adoc	2-Adamantyloxycarbonyl
	Fmoc	9-Fluorenylmethoxycarbonyl

15

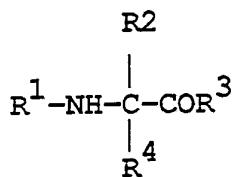
C-Terminal Substituent/ Side Chain Protecting Group

<u>Abbreviation</u>	<u>C-Terminal Substituent/ Side Chain Protecting Group</u>
---------------------	--

$-\text{NH}_2$	Amide
$-\text{OCH}_3$	Methyl ester

-11-

<u>Abbreviation</u>	<u>C-Terminal Substituent/ Side Chain Protecting Group</u>
-OCH ₂ Ph	Benzyl ester/ether
-OC(CH ₃) ₃	<u>Tert</u> -butyl ester/ether


5

The term "N-terminal protecting" as used herein refers to those groups known to the art intended to protect the N-terminus of an amino acid or peptide or to protect an amino group against undesirable reactions during a synthetic procedure or to prevent the attack of exopeptidases on the compounds or to increase the solubility of the compounds and includes, but is not limited to, sulfonyl, acetyl, pivaloyl, t-butyloxycarbonyl (Boc), benzyloxycarbonyl (Cbz), benzoyl, or an L- or D-aminoacyl residue, which may itself be N-protected similarly.

The term "C-terminal protecting group" as used herein refers to those groups known to the art intended to protect the C-terminus of an amino acid or peptide, these include but are not limited to an amide, methyl ester, benzyl ester/ether, tert-butyl ester/ether. Other examples of side chains and protecting groups are those known in the art. Any of those could be used.

25 The compounds of the invention are represented by formula

-12-

I

5

and the pharmaceutically acceptable salts thereof,
wherein

10 R^1 is an N-terminal blocking group or from 0 to
 4 amino acid residues or hydrogen;

15 R^2 is a sidechain of a genetically coded amino
 acid except glycine;

20 R^3 is a C-terminal blocking group or from 0 to
 4 amino acid residues, or -OH, or OR^n where
 R^n is straight or branched alkyl or
 cycloalkyl of 1 to 6 carbon atoms;

25 R^4 is a sidechain of a genetically coded amino
 acid, except glycine, or
 $-\text{HC}=\text{CH}_2$,
 $-\text{C}\equiv\text{CH}_2$,
 $-\text{CH}_2-\text{CH}=\text{CH}_2$,
 $-\text{CH}_2\text{C}\equiv\text{CH}_2$,
 $-\text{CH}_2\text{Ar}_2$,
 $-\text{CH}_2\text{OR}_2$,
 $-\text{CH}_2\text{OAr}_2$,
 $-(\text{CH}_2)_n\text{CO}_2\text{R}$,
 $-(\text{CH}_2)_n\text{NR}^5\text{R}^6$ wherein n is an integer of from
 0 to 3, R is hydrogen or lower alkyl,
 Ar is a mono- or polycyclic
 unsubstituted or substituted carbo- or
 heterocyclic aromatic or hydroaromatic
 moiety;

30 neither R^2 nor R^4 can be hydrogen;
 R^1 plus R^3 cannot be greater than
 4 amino acid residues in total.

35

-13-

Preferred compounds of the invention are those of formula I selected from:

5 Formyl-MeMet-Leu-Phe-Obzl,
 Formyl-Met-MeLeu-Phe-OBzl,
 Formyl-Met-Leu-MePhe-OBzl,
 Ac-MeLeu-Leu-Arginal,
 Ac-Leu-MeLeu-Arginal,
 MeTyr-Arg,
 Tyr-MeArg,
10 MeTyr-Pro-Phe-Pro-NH₂,
 Tyr-MePro-Phe-Pro-NH₂,
 Tyr-Pro-MePhe-Pro-NH₂,
 Tyr-Pro-Phe-MePro-NH₂,
 Me-Arg-Lys-Asp-Val-Tyr,
15 Arg-MeLys-Asp-Val-Tyr,
 Arg-Lys-MeAsp-Val-Tyr,
 Arg-Lys-Asp-MeVal-Tyr,
 Arg-Lys-Asp-Val-MeTyr,
 MeArg-Lys-Glu-Val-Tyr,
20 Arg-MeLys-Glu-Val-Tyr,
 Arg-Lys-MeGlu-Val-Tyr,
 Arg-Lys-Glu-MeVal-Tyr,
 Arg-Lys-Glu-Val-MeTyr,
 MeAsp-Leu-Asp-Pro-Arg,
25 Asp-MeLeu-Asp-Pro-Arg,
 Asp-Leu-MeAsp-Pro-Arg,
 Asp-Leu-Asp-MePro-Arg,
 Asp-Leu-Asp-Pro-MeArg,
 MeLys-Trp-Lys,
30 Lys-MeTrp-Lys,
 Lys-Trp-MeLys,
 MePhe-Met-Arg-Phe-NH₂,
 Phe-MeMet-Arg-Phe-NH₂,
 Phe-Met-MeArg-Phe-NH₂,
35 Phe-Met-Arg-MePhe-NH₂,

-14-

MeGlp-His-Pro,
Glp-MeHis-Pro,
Glp-His-MePro,
MeArg-Tyr-Leu-Pro-Thr,
5 Arg-MeTyr-Leu-Pro-Thr,
Arg-Tyr-MeLeu-ProThr,
Arg-Tyr-Leu-MePro-Thr,
Arg-Tyr-Leu-Pro-MeThr,
MeThr-Lys-Pro-Arg,
10 Thr-MeLys-Pro-Arg,
Thr-Lys-MePro-Arg,
Thr-Lys-Pro-MeArg,
MeThr-Pro-Arg-Lys,
Thr-MePro-Arg-Lys,
15 Thr-Pro-MeArg-Lys,
Thr-Pro-Arg-MeLys,
MeThr-Val-Leu,
Thr-MeVal-Leu, and
Thr-Val-MeLeu.

20 More preferred compounds of the invention are those of formula I selected from:

Me-Tyr-Gly-Gly-Phe-Met,
MeTyr-Gly-Gly-Phe-Met-NH₂,
MeTyr-Gly-Gly-Phe-Leu-NH₂,
25 Tyr-Gly-Gly-MePhe-Met,
Tyr-Gly-Gly-MePhe-Met-NH₂,
Tyr-Gly-Gly-MePhe-Leu-NH₂,
Tyr-Gly-Gly-Phe-MeMet,
Tyr-Gly-Gly-Phe-MeMet-NH₂,
30 Tyr-Gly-Gly-Phe-MeLeu-NH₂,
Z-DMePhe-Phe-Gly,
Z-DPhe-MePhe-Gly,
MeArg-Pro-Tyr-Ile-Leu,
Arg-MePro-Tyr-Ile-Leu,
35 Arg-Pro-MeTyr-Ile-Leu,

-15-

Arg-Pro-Tyr-MeIle-Leu,
Arg-Pro-Tyr-Ile-MeLeu,
MeLeu-Asp-Ile-Ile-Trp,
Leu-MeAsp-Ile-Ile-Trp,
5 Leu-Asp-MeIle-Ile-Trp,
Leu-Asp-Ile-MeIle-Trp,
Leu-Asp-Ile-Ile-MeTrp,
MeGlu-Cys-Tyr-Phe,
Glu-MeCys-Val-Tyr-Phe,
10 Glu-Cys-MeVal-Tyr-Phe,
Glu-Cys-Val-MeTyr-Phe, and
Glu-Cys-Val-Tyr-MePhe.

Most preferred compounds of the invention are those of formula I selected from:

15 MeLys-Trp-Asp-Asn-Gln,
Lys-MeTrp-Asp-Asn-Gln,
Lys-Trp-MeAsp-Asn-Gln,
Lys-Trp-Asp-MeAsn-Gln,
Lys-Trp-Asp-Asn-MeGln,
20 MeVal-Gly-His-Leu-Met-NH₂,
Val-Gly-MeHis-Leu-Met-NH₂,
Val-Gly-His-MeLeu-Met-NH₂,
Val-Gly-His-Leu-MeMet-NH₂,
MeGlp-His-Trp-Ser-Tyr,
25 Glp-MeHis-Trp-Ser-Tyr,
Glp-His-MeTrp-Ser-Tyr,
Glp-His-Trp-MeSer-Tyr,
Glp-His-Trp-Ser-MeTyr,
Gly-MeLeu-Arg-Pro-Gly-NH₂,
30 Gly-Leu-MeArg-Pro-Gly-NH₂,
Gly-Leu-Arg-MePro-Gly-NH₂,
MeTyr-Pro-Ser-Lys-Pro,
Tyr-MePro-Ser-Lys-Pro,
Tyr-Pro-MeSer-Lys-Pro,
35 Tyr-Pro-Ser-MeLys-Pro,

-16-

Tyr-Pro-Ser-Lys-MePro,
MeThr-Arg-Gln-Arg-Tyr-NH₂,
Thr-MeArg-Gln-Arg-Tyr-NH₂,
Thr-Arg-MeGln-Arg-Tyr-NH₂,
5 Thr-Arg-Gln-MeArg-Tyr-NH₂,
Thr-Arg-Gln-Arg-MeTyr-NH₂,
Gly-MeTrp-Thr-Leu-Asn,
Gly-Trp-MeThr-Leu-Asn,
Gly-Trp-Thr-MeLeu-Asn,
10 Gly-Trp-Thr-Leu-MeAsn,
MeLeu-Tyr-Gly-Leu-Ala-NH₂,
Leu-MeTyr-Gly-Leu-Ala-NH₂,
Leu-Tyr-Gly-MeLeu-Ala-NH₂,
Leu-Tyr-Gly-Leu-Aib-NH₂,
15 MePhe-Phe-Trp-Lys-Thr,
Phe-MePhe-Trp-Lys-Thr,
Phe-Phe-MeTrp-Lys-Thr,
Phe-Phe-Trp-MeLys-Thr,
Phe-Phe-Trp-Lys-MeThr,
20 MePhe-Phe-Gly-Leu-Met-NH₂,
Phe-MePhe-Gly-Leu-Met-NH₂,
Phe-Phe-Gly-MeLeu-Met-NH₂,
Phe-Phe-Gly-Leu-MeMet-NH₂,
and the N^α-4-hydroxyphenylacetyl derivatives and
25 the NH₂-CO-(CH₂)₄-CO- derivatives of the above four
compounds,
N-[(4-Chlorophenyl)methoxy]carbonyl]-L-
tryptophyl- α -methyl-DL-phenylalaninamide,
N-[[[4-(Trifluoromethyl)phenyl]methoxy]-
30 carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide,
N-[(1,1'-Biphenyl)-4-ylmethoxy]carbonyl]-
L-tryptophyl- α -methyl-DL-phenylalaninamide,
N-[(9-Anthracyenylmethoxy)carbonyl]-L-tryptophyl-
 α -methyl-DL-phenylalaninamide,

-17-

N-[(1-Naphthalenylmethoxy)carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide,

N-[(1-Naphthalenylmethoxy)carbonyl]-L-tryptophyl- α -methyl-L-phenylalaninamide,

5 N-[(1-Naphthalenylmethoxy)carbonyl]-L-tryptophyl- α -methyl-D-phenylalaninamide,

N-[[[4-(Propoxycarbonyl)phenyl]-methoxy]carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide,

10 N-[(Phenylmethoxy)carbonyl]-L-tryptophyl- α -methyl-DL-phenylalanyl glycinate,

N-[(1-Naphthalenylmethoxy)carbonyl]-L-tryptophyl- α -methyl-DL-phenylalanyl glycinate,

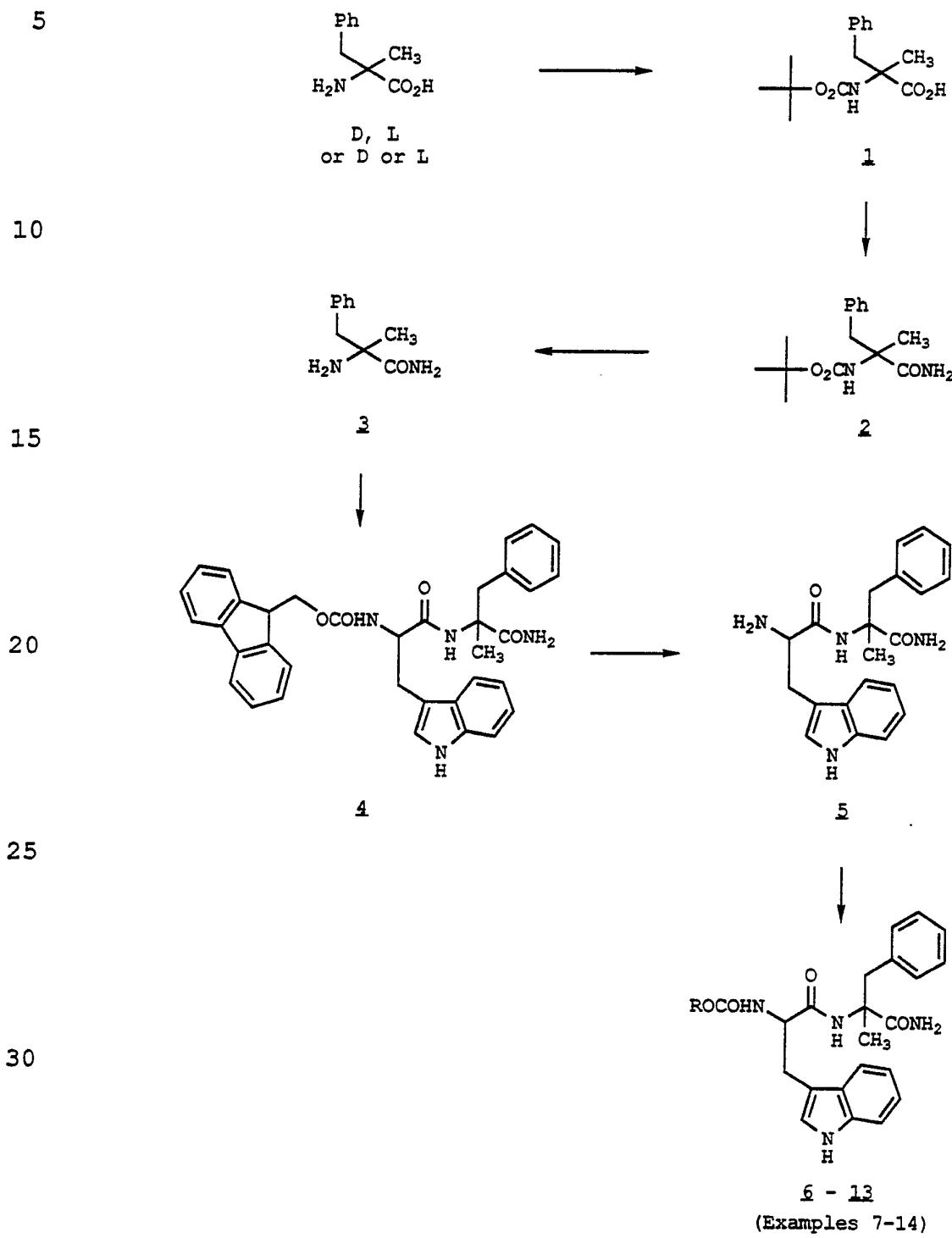
15 N-[(1-Naphthalenylmethoxy)carbonyl]-L-tryptophyl- α -methyl-L-phenylalanyl glycinate, and

N-[(2,3-Dimethoxyphenyl)methoxy]carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide.

20 The compounds include solvates, hydrates, and pharmaceutically acceptable salts of the compounds of formula I above.

The compounds of the present invention may exist as diastereomers, mixtures of diastereomers, or as the mixed or the individual optical enantiomers. The present invention contemplates all such forms of the 25 compounds. The mixtures of diastereomers are typically obtained as a result of the reactions described more fully below. Individual diastereomers may be separated from mixtures of the diastereomers by conventional techniques such as column chromatography or repetitive recrystallizations. Individual enantiomers may be separated by conventional methods well known in the art such as conversion to a salt with an optically active 30 compound, followed by separation by chromatography or

-18-

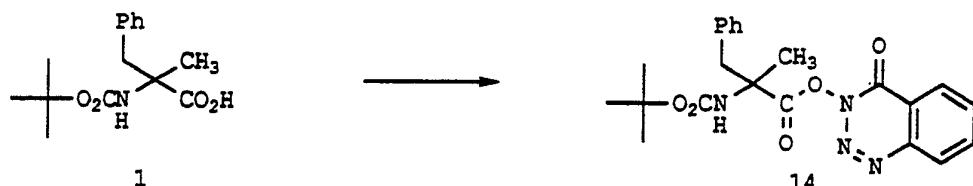

recrystallization and reconversion to the nonsalt form.

The compounds of the present invention may be formed by coupling individual substituted α -amino acids by methods well known in the art. (See, for example, standard synthetic methods discussed in the multi-volume treatise The Peptides, Analysis, Synthesis, Biology, by Gross and Meienhofer, Academic Press, New York). If known, the individual substituted alpha amino acid starting materials are synthesized by methods within the skill of the art. (Synthesized racemic [DL]- α -methyl tryptophan methyl ester - see Braña, M. F., et al, J. Heterocyclic Chem., 1980.

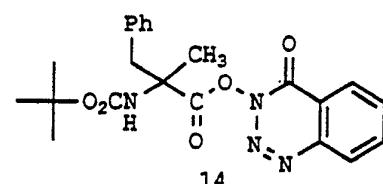
In Scheme I below, the α -MePhe was N-terminally protected with $(BOC)_2O$ to afford BOC α -MePhe. (1) Compound 1 was then activated with DCCI and HOBr and reacted with $NH_3(g)$ to give the amide. (2) Removal of the BOC group with TFA gave the amine (3), which was reacted with FMOC-L-TrpOPfp to afford the dipeptide. (4) A further deprotection with piperidine in DMF gave the amine (5), which was reacted with the appropriate chloroformate to give the Examples 7 through 14. (6-13)

-19-

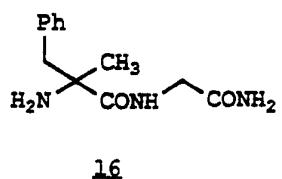
SCHEME 1
(Examples 2-13)

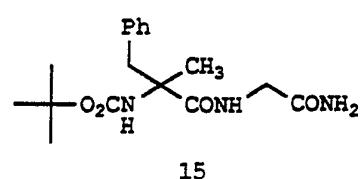


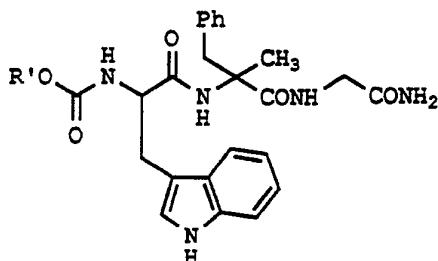
-20-


In Scheme 2 below, Compound 1 was activated with DCCI and HODhbt to give 14, which was reacted with CTlyNH₂ in EtOAc to afford the N-protected dipeptide. (15) Removal of the BOC group with TFA gave the amine (16), which was reacted with ROCO(L) Trp activated with HBTU to give the Examples 18 and 19. (17,18)

²¹
SCHEME 2
(Examples 2, 14, and 16-19)


5


10


15

16

20

25

17, 18

(Examples 18 and 19)

30

35

-22-

For preparing pharmaceutical compositions from the compounds of this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include 5 powders, tablets, dispersible granules, capsules, cachets, and suppositories.

A solid carrier can be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, 10 or tablet disintegrating agents; it can also be an encapsulating material.

In powders, the carrier is a finely divided solid which is in a mixture with the finely divided active component. In tablets, the active component 15 is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.

For preparing suppository preparations, a low-melting wax such as a mixture of fatty acid 20 glycerides and cocoa butter is first melted and the active ingredient is dispersed therein by, for example, stirring. The molten homogeneous mixture is then poured into convenient sized molds and allowed to cool and solidify.

The powders and tablets preferably contain 5% to 25 about 70% of the active component. Suitable carriers are magnesium carbonate, magnesium stearate, talc, lactose, sugar, pectin, dextrin, starch, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, a low-melting wax, cocoa butter, and the like.

The term "preparation" is intended to include 30 the formulation of the active component with encapsulating material as a carrier providing a capsule in which the active component (with or 35 without other carriers) is surrounded by a carrier

-23-

which is thus in association with it. Similarly, cachets are included.

Tablets, powders, cachets, and capsules can be used as solid dosage forms suitable for oral 5 administration.

Liquid form preparations include solutions, suspensions, and emulsions. Sterile water or water-propylene glycol solutions of the active compounds may be mentioned as an example of liquid 10 preparations suitable for parenteral administration. Liquid preparations can also be formulated in solution in aqueous polyethylene glycol solution.

Aqueous solutions for oral administration can be prepared by dissolving the active component in water and adding suitable colorants, flavoring agents, 15 stabilizers, and thickening agents as desired. Aqueous suspensions for oral use can be made by dispersing the finely divided active component in water together with a viscous material such as natural synthetic gums, resins, methyl cellulose, 20 sodium carboxymethyl cellulose, and other suspending agents known to the pharmaceutical formulation art.

Preferably the pharmaceutical preparation is in unit dosage form. In such form, the preparation is 25 in unit dosage form. In such form, the preparation is divided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of the preparation, for example, packeted tablets, capsules, and powders 30 in vials or ampoules. The unit dosage form can also be a capsules, cachet, or tablet itself, or it can be the appropriate number of any of these packaged forms.

-24-

Some of the peptides of the invention were constructed on solid-phase resins designed to produce C-terminal amides either by treatment of the resin with ammonia in methanol or by direct cleavage of an 5 appropriately substituted resin using trifluoroacetic acid, with the required scavengers, giving the amides directly. The latter protocol was used with DuPont RapidAmide® or Nova Biochem Ultrasyn C® resins either in a simple bubbler apparatus (DuPont resin) or 10 automated synthesizer (Nova Biochem resin).

Using a Pharmacia 4170 automated peptide synthesizer and Bioplus® software the peptides were constructed from the C-terminus using Fmoc amino acid pentafluorophenyl or DHBT esters and HOBt catalysis. 15 Each residue was present in a fivefold excess to ensure rapid and complete acylation. On a 0.095 mmol scale the peptide was isolated following TFA cleavage (94% TFA, 5% anisole, 1% ethanedithiol) from the resin (2 hours, room temperature).

20 The two isomers were separated by RP-HPLC (250 x 25 mm column, gradient elution, Solvent A 0.1% aqueous TFA, Solvent B 0.1% FFA in MeCN, gradient 20% to 80% B over 20 minutes. The peptides of the invention can be made by the above method. Although 25 any compatible resin may be used or, alternatively, solution phase synthesis may be used.

Such peptides include but are not limited to the short chemotactic peptides, for example, 30 formyl-Met-Leu-Phe-OBz, Met-enkephalin, enkephalinamides, leupeptin (Ac-Leu-Leu-Arginol), Kyotorphin (Tyr-Arg), Morphiceptin (Tyr-Pro-Phe-Pro-NH₂), Thymopoetin II (Arg-Lys-Asp-Val-Tyr), Splenopentin (Arg-Lys-Glu-Val-Tyr), Hamburger pentapeptide 35 (Asp-Leu-Asp-Pro-Arg), virus replication inhibiting

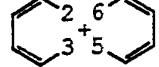
-25-

peptide (Z-DPhe-Phe-Gly), DNA binding peptide (Lys-Trp-Lys), Molluscan cardioexcitatory peptide (Phe-Met-Arg-Phe-NH₂ and all FMRF-amide analogues), TRH (pGlu-His-Pro), Proctolin (Arg-Tyr-Leu-Pro-Thr),
5 Tuftsin, (Thr-Lys-Pro-Arg), Kentsin (Thr-Pro-Arg-Lys), schizophrenia-related peptide (Tnr-Val-Leu) and short polypeptides or 5-residues or less which are fragments of longer peptides.

Preferred compounds are:

10 LTyr-Gly-Gly- α -MePhe-LLeu (isomer 1) and LTyr-Gly-Gly- α -MePhe-LLeu (isomer 2) whose full chemical names are N-[α -methyl-N-[N-(N-L-tyrosylglycyl)glycyl]-L-phenylalanyl]-L-leucine trifluoroacetate (1:1 salt) and N-[α -methyl-N-[N-(N-L-tyrosylglycyl)glycyl]-D-phenylalanyl]-L-leucine trifluoroacetate (1:1 salt).

15


Some of the compounds were evaluated in three tachykinin binding assays:

20 For the NK₁ receptor - measurement of the binding of [¹²⁵I]-Bolton Hunter labeled substance P (0.1 nM) to guinea pig cerebral cortex membranes, and for the NK₃ receptor - measurement of the binding of [³H]-senktide (2 nM) to guinea pig cerebral cortex membranes. See Lee, C. M., et al, Eur. J. Pharmacol.
25 130:209 (1986), and Guard, S., et al, Brit. J. Pharmacol. 99:767 (1990).

30 For the NK₂ receptor - measurement of the binding of [¹²⁵I]-iodohistidyl neurokinin A (0.1 nM) to hamster urinary bladder membranes. See Buck and Shatzer, Life Sci. 42:2701 (1988).

-26-

TABLE III. Structure of Results

Ex.	X	Y	Stereo-chemistry at α -Me-Phe	Binding IC50 (nM)		
				NK ₁	NK ₂	NK ₃
15	7 4-CL	NH ₂	D,L	>10 ⁵	98	>10 ⁵
	8 4-CF ₃	NH ₂	D,L	>10 ⁵	188	>10 ⁵
	9 4-Ph	NH ₂	D,L	>10 ⁵	94	>10 ⁵
	10	NH ₂	D,L	>10 ⁵	68	>10 ⁵
20	11	NH ₂	D,L	>10 ⁵	73	>10 ⁵
	12	NH ₂	L	~10 ⁵	48	>10 ⁵
	13	NH ₂	D	>10 ⁵	1850	>10 ⁵
25	14 4-CO ₂ -n-Pr	NH ₂	D,L	>10 ⁵	144	>10 ⁵
	18 H	NHCH ₂ CONH ₂	D,L	~10 ⁵	20	>10 ⁵
	19	NHCH ₂ CONH ₂	D,L	>10 ⁵	14	>10 ⁵
	20	NHCH ₂ CONH ₂	L	~10 ⁵	6	>10 ⁵
	21 2,3-di-OCH ₃	NH ₂	D,L	2900	45	>10 ⁵

-27-

The data in Table III show that the compounds are selective NK₂ receptor ligands. The compounds of Examples 18 and 19 illustrate NK₂ receptor antagonism. See Table IV. Therefore, they are 5 expected to be useful in treating disorders mediated by tachykinins, e.g., respiratory disorders, inflammation, gastrointestinal disorders, ophthalmic diseases, allergies, pain, circulatory insufficiency, diseases of the central nervous system, and migraine.

10

NK₂ Functional Data Summary

Tissue	Agonist	Antagonist	Conc.	Dose\k ratio	pKa
Rat Colon	Eledoisin	Example 18	1 μ M	3.1	6.5
		Example 19	1 μ M	7.7	6.8
		L659,874	10 μ M	10.3	7.0
Hamster Bladder Urinary	NKA	Example 18	3 μ M	30	7.0
		Example 19	3 μ M	29	6.9
		L659,874	3 μ M	29	6.9
Hamster Trachea	NKA	Example 18	1 μ M	11	6.9
		Example 18	3 μ M	46	7.2
		Example 19	3 μ M	31	6.9
		Example 19	10 μ M	472	7.2
		L659,874	1 μ M	11	7.0
		L659,874	3 μ M	41	7.1

^a L659,874 is a standard NK₂ antagonist. Its chemical name is Glycinamide, N-acetyl-L-leucyl-L-methionyl-L-glutaminyl-L-tryptophyl-L-phenylalanyl-Ac-LLeu-LMet-LGln-LTrp-LPhe-Gly-NH₂

35 For the hamster trachea, see Maggi, C. A., Patacchini, R., Rovero, P., and Meri, A. Eur. J. Pharmacol., 1989;166:435-440.

40 For the hamster urinary bladder, see Mizrahi, J., Dion, S., D'Orleans-Juste, P., Escher, B., Drapeau, G., and Regoli, D., Eur. J. Pharmacol., 1985;118:25-36.

-28-

For the rat colon, see Bailey, S. J. and Jordan, C. C., Br. J. Pharmacol., 1984; 82:441-451.

The following examples illustrate the instant invention but are not intended to limit it in any way.

EXAMPLE 1

Tyr-Gly-Gly- α MePhe-Leu

The peptide was prepared and separated as described above, using solid-phase methodology.

Isomer 1 (L,D,L or L,L,L), LTyr-Gly-Gly- α MePhe-LLeu NMR (D_2O) δ 0.89 (6H, br d), 1.41 (3H, s), 1.57 (3H, br m), 3.18 (2H, 2bq), 3.12 (2H, d), 3.92 (4H, m), 4.25 (2H, m), 6.88 (2H, d), 7.18 (4H, d), 7.46 (3H, m). FAB-MS 57C ($M+H$)⁺, 592 ($M+Na$)⁺, 608 ($M+K$)⁺.

Isomer 2 (L,L,L or L,D,L) LTyr-Gly-Gly- α MePhe-LLeu NMR (D_2O) δ 0.88 (6H, dd), 1.43 (3H, s), 1.57 (3H, br m), 3.20 (4H, m), 3.91 (4H, m), 4.23 (2H, m), 6.88 (2H, d), 7.16 (4H, d), 7.33 (3H, m). FAB-MS 570 ($M+H$)⁺, 592 ($M+Na$)⁺, 608 ($M+K$)⁺.

EXAMPLE 2

N-(t-Butyloxycarbonyl)-DL- α -methylphenylalanine (1)

DL- α -Methylphenylalanine (5.0 g, 28 mmol) was dissolved in warm 10% Na_2CO_3 solution (60 mL) and then cooled to 0°C. t-Butyloxycarbonyl anhydride (6.39 g, 29.3 mmol) in dioxan (50 mL) was added dropwise and the mixture stirred at 0°C for 1 hour. The mixture was then allowed to warm to room temperature and stirred for a further 24 hours. The solvents were then distilled off in vacuo and the residue taken up in H_2O . This was then washed with CH_2Cl_2 (3x), acidified with citric acid, and

-29-

extracted with CH_2Cl_2 (3x). The organic extracts were combined, dried (MgSO_4), and the solvent distilled off in vacuo to give 1 as a white solid (6.2 g, 25.1 mmol, 90%): ^1H NMR (DMSO-d_6) δ 1.18 (3H, s), 1.41 (9H, s), 2.91 (1H, d, J 13 Hz), 3.31 (1H, d, J 13 Hz), 6.71 (1H, bs), 7.09 (2H, d), 7.25 (3H m), 12.50 (1H, bs).

EXAMPLE 3

10 N-(t-Butyloxycarbonyl)-DL- α -methylphenylalaninamide
(2)

1 6.7 g, 22 mmol was dissolved in CH_2Cl_2 (80 mL) and 1,3-dicyclohexylcarbodiimide (4.9 g, 24 mmol) followed by 1-hydroxybenzotriazole monohydrate (3.9 g, 28.8 mmol) added and the mixture stirred for 0.5 hour at room temperature. DMF (15 mL) was then added, the solution cooled to -10°C and a slow stream of NH_3 (g) bubbled through. The mixture thickened almost immediately so a further amount of DMF (50 mL) was added. After 0.5 hour, the addition of NH_3 (g) was stopped and the white precipitate removed by filtration and washed with EtOAc. The washings were combined with the filtrate and the solvent distilled off in vacuo. The residue was partitioned between H_2O (500 mL) and CH_2Cl_2 . The aqueous layer was washed with CHCl_3 (3x), the organic extracts combined, washed with a saturated NaHCO_3 solution, dried (MgSO_4), and the solvent distilled off in vacuo. The white solid obtained was further purified by flash column chromatography on silica, eluting with a mixture of CHCl_3 :MeOH (95:5) to give 2 as a white solid (4.4 g, 15.8 mmol, 66%): ^1H NMR (DMSO-d_6) δ 1.33 (3H, s), 1.41 (9H, s), 3.31 (2H, bs), 6.25 (1H, bs), 7.15 (6H, m), 7.41 (1H, bs).

-30-

EXAMPLE 4

DL- α -Methylphenylalaninamide (3)

2 (4.4 g, 15 mmol) was stirred in TFA (15 mL) at room temperature for 15 minutes. The TFA was 5 distilled off in vacuo and the residue taken up in EtOAc. The organic solution was carefully washed with saturated NaHCO₃ solution, dried (MgSO₄), and the solvent removed in vacuo to give 3 as a white solid (1.9 g, 12.1 mmol, 70%) ¹H NMR (MeOH-d₄) δ 1.40 10 (3H, s), 2.77 (1H, d, J 13 Hz), 3.21 (1H, d, J 13 Hz), 7.30 (5H, m).

EXAMPLE 5

N-(9H-Fluoren-9-ylmethoxy)carbonyl-L-tryptophyl-DL-
 α -methylphenylalaninamide (4)

3 (1.8 g, 10.1 mmol) and N-[(9H-fluoren-9-ylmethoxy)carbonyl]-L-tryptophan pentafluorophenyl ester (6.0 g, 10.1 mmol) were stirred together in DMF (50 mL) at room temperature for 18 hours. The 20 solution was concentrated in vacuo and H₂O (400 mL) added. The aqueous suspension was extracted with EtOAc (3x) and the organic extracts combined, dried (MgSO₄) and the solvent removed in vacuo to give crude 4.

25

EXAMPLE 6

L-Tryptophyl-DL- α -methylphenylalaninamide (5)

4 (3.65 g, 6.2 mmol) was dissolved in a 20% solution of piperidine in DMF (20 mL) and stirred at 30 room temperature for 20 minutes. The mixture was then concentrated in vacuo and H₂O (400 mL) added; the white precipitate formed was then removed by filtration. Citric acid was added to the filtrate to pH 3 and washed with EtOAc (3x). The aqueous layer 35 was made alkaline (pH 9) with solid Na₂CO₃ and

-31-

extracted with EtOAc (3x). The organic extracts were combined, dried ($MgSO_4$) and the solvent removed in vacuo to give 5 as a pale yellow solid (2.2 g).
5 Purification by flash column chromatography on silica, eluting with $CH_2Cl_2:MeOH$ (10:1) gave the product 5 as a white foam (1.8 g, 4.93 mmol, 80%):
 1H NMR (DMSO- d_6) δ 1.45 (0.5 x 3H, s), 1.51 (0.5 x 3H, s), 1.81 (2H, bs), 2.59 (0.5 x H, dd, J 10.14 Hz), 2.76 (0.5 x H, dd, 9, 14 Hz), 3.15 (2H, m), 3.45 (2H, m), 6.95-7.60 (12H, m), 8.16 (0.5 x H, s), 8.28 (0.5 x H, s), 10.85 (1H, s).
10

EXAMPLE 7

N-[[(4-Chlorophenyl)methoxy]carbonyl]-L-tryptophyl-
15 α -methyl-DL-phenylalaninamide (6)

Pyridine (0.11 mL, 1.4 mmol) was added dropwise to a stirred solution of 4-chlorobenzyl alcohol (0.20 g, 1.4 mmol) and triphosgene (0.15 g, 0.51 mmol) in CH_2Cl_2 (5 mL) at 0°C and stirred for 5 minutes. The solvent was removed in vacuo and the resulting oil triturated with Et_2O and filtered. The filtrate was added to a solution of 5 (0.26 g, 0.71 mmol) and triethylamine (0.10 mL, 0.71 mmol) in THF (25 mL) and stirred overnight. The solvent was removed in vacuo to give a white solid which was partitioned between EtOAc and 10% citric acid solution. The organic layer was washed with saturated $NaHCO_3$ solution and H_2O and dried ($MgSO_4$). Further purification by flash column chromatography on silica eluting with a mixture of $CH_2Cl_2:MeOH$ (95:5) gave 6 as a white foam (0.23 g, 0.43 mmol, 61%); mp 89-101.3°C; MS (FAB) m/e 533 [M+H]: 1H NMR (DMSO- d_6) δ 1.38 (0.5 x 3H, s, α -CH₃), 1.40 (0.5 x 3H, s, α -CH₃), 2.80-3.40 (4H, m, CH_2 -indole, CH_2Ph), 4.10-4.32 (1H, m, Trp α -H), 4.80-4.99 (2H, m,

-32-

CH₂O), 6.90-7.78 (18H, m, Ar, CONH₂, CONH, OCONH), 10.70 (1H, s, indole NH); Anal. (C₂₉H₂₉N₄O₄C·0.3 H₂O) C, H, N.

5

EXAMPLE 8

N-[[[4-(Trifluoromethyl)phenyl]methoxy]carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide (7)

Prepared by the same method as 6. White foam (0.092 g, 62%); mp 91-112°C; MS (FAB) m/e 567 [M+H]; ¹H NMR (DMSO-d₆) δ 1.38 (0.5 x 3H, s, α -CH₃), 1.41 (0.5 x 3H, s, α -CH₃), 2.70, 3.46 (4H, m, CH₂-indole, CH₂Ph), 4.12-4.36 (1H, m, Trp α -H), 4.90-5.16 (2H, m, CH₂O), 6.90-7.88 (18H, m, Ar, CONH₂, CONH, OCONH), 10.84 (1H, s, indole NH); Anal. (C₃₀H₂₉N₄O₄F₃·0.75 H₂O) C, H, N.

15

EXAMPLE 9

N-[(1,1'-Biphenyl)-4-ylmethoxy]carbonyl-L-tryptophyl- α -methyl-DL-phenylalaninamide (8)

Prepared by the same method as 6. White foam (0.050 g, 32%); mp 92-102°C; MS (FAB) m/e 576 [M+H]; ¹H NMR (DMSO-d₆) δ 1.38 (0.5 x 3H, s, α -CH₃), 1.39 (0.5 x 3H, s, α -CH₃), 2.72-3.40 (4H, m, CH₂-indole, CH₂Ph), 4.12-4.35 (1H, m, Trp α -H), 4.90-5.08 (2H, m, CH₂O), 6.92-7.85 (23H, m, Ar, CONH₂, CONH, OCONH), 10.90 (1H, s, indole NH); Anal. (C₃₅H₃₄N₄O₄·0.75 H₂O) C, H, N.

20

25

EXAMPLE 10

N-[(9-Anthracynylmethoxy]carbonyl-L-tryptophyl- α -methyl-DL-phenylalaninamide (9)

Prepared by the same method as 6. Yellow foam (0.10 g, 23%); mp 113-130°C; MS (FAB) m/e 599 [M+H]; ¹H NMR (DMSO-d₆) 1.36 (3H, s, α -CH₃), 2.25-3.20 (2H, m, CH₂-indole), 3.25-3.40 (2H, m, CH₂Ph), 4.20-4.38

35

-33-

(1H, m, Trp α -H), 5.95 (0.5 x 2H, AB, \underline{J} 12 Hz, CH_2Ar), 6.01 (0.5 x 2H, AB, \underline{J} 12 Hz, CH_2Ar), 6.85-7.20 (17H, m, Ar, CONH_2 , OCONH), 7.77 (0.5 x H, s, CONH), 7.83 (0.5 x H, s, CONH), 8.10 (1H, s, Ar), 8.13 (1H, s, Ar), 8.28 (1H, s, Ar), 8.31 (1H, s, Ar), 8.67 (1H, s, Ar), 10.80 (1H, s, indole NH); Anal. ($\text{C}_{37}\text{H}_{34}\text{N}_4\text{O}_4 \cdot 0.7 \text{ H}_2\text{O}$) C, H, N.

EXAMPLE 11

10 N-[(1-Naphthalenylmethoxy)carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide (10)

Prepared by the same method as 6. White foam (0.13 g, 34%); mp 102-113°C; MS (FAB) m/e 549 [M+H]; ^1H NMR (DMSO-d_6) δ 1.40 (3H, s), 2.87 (1H, m), 3.05-3.45 (3H, m), 4.15-4.40 (1H, m), 5.30-5.50 (2H, m), 6.90-8.00 (21H, m), 10.70 (1H, s); Anal. ($\text{C}_{33}\text{H}_{32}\text{N}_4\text{O}_4 \cdot 0.4 \text{ H}_2\text{O}$) C, H, N.

EXAMPLE 12

20 N-[(1-Naphthalenylmethoxy)carbonyl]-L-tryptophyl- α -methyl-L-phenylalaninamide (11)

Prepared by the same method as 6, - α -methyl-L-phenylalanine was obtained by the method of Turk, et al (Turk, J., Panse, G. T., Marshall G. R., J. Org. Chem. 40:953 (1975)).

EXAMPLE 13

N-[(1-Naphthalenylmethoxy)carbonyl]-L-tryptophyl- α -methyl-D-phenylalaninamide (12)

30 Prepared by the same method as 6. D- α -methyl-phenylalanine was obtained by the method of Turk, et al.

-34-

EXAMPLE 14

N-[[[4-(Propoxycarbonyl)phenyl]methoxy]carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide (13)

Propyl 4-(hydroxymethyl)benzoate (0.10 g, 0.5 mmol), 4-nitrophenyl chloroformate (0.10 g, 0.5 mmol) and pyridine (0.04 mL, 0.5 mmol) were stirred for 18 hours in CH_2Cl_2 (8 mL). The solvent was removed in vacuo and the white residue triturated with EtOAc and filtered. The filtrate was added to a solution of 5 (0.10 g, 0.27 mmol) and 1,1,3,3-tetra-methylguanidine (0.10 mL, 0.81 mmol) in DMSO (2 mL) and stirred for 3.5 hours. The reaction mixture was poured onto H_2O and extracted with EtOAc. The organic layer was washed with 10% citric acid solution, saturated NaHCO_3 solution, H_2O , and dried (MgSO_4). Further purification by flash column chromatography on silica, eluting with CH_2Cl_2 (95:5) gave 13 as a white foam (0.02 g, 13%); mp 78-105°C; MS (FAB) m/e 586 [M^+H]; ^1H NMR (DMSO- d_6) δ 0.97 (3H, t, $\underline{\text{J}}$ 7 Hz, CH_3CH_2), 1.38 (0.5 x 3H, s, $\alpha\text{-CH}_3$), 1.40 (0.5 x 3H, s, $\alpha\text{-CH}_2$), 1.76 (2H, m, CH_2CH_2), 2.80-3.45 (4H, m, CH_2 -indole, CH_2Ph), 4.12-4.35 (3H, m, Trp $\alpha\text{-H}$, $\text{CH}_2\text{CH}_2\text{O}$), 4.94-5.15 (2H, m, CH_2OCO), 6.95-7.95 (18H, m, Ar, CONH_2 , CONH , OCONH , 10.82 (1H, s, indole NH); Anal. ($\text{C}_{33}\text{H}_{36}\text{N}_4\text{O}_6 \cdot 0.75 \text{H}_2\text{O}$) C, H, N.

EXAMPLE 15

Boc (α -Me) -DL-PheODhbt (14)

1,3-Dicyclohexylcarbodiimide (4.95 g, 24 mmol) was added to a solution of 1 (6.70 g, 24 mmol) in THF (100 mL) at -15°C and allowed to stir for 5 minutes. 3-Hydroxy-1,2,3-benzotriazine-4-(3H)-one (3.91 g, 24 mmol) and an additional volume of THF (20 mL) were added and the mixture stirred at -10°C for 1 hour and at 0°C for 4 hours. After leaving overnight at 5°C a

-35-

white solid precipitated. This was filtered and dried to give 14 (9.1 g, 89%): ^1H NMR (DMSO-d₆) δ 1.44 (3H, s, α -CH₃), 1.49 (9H, s, t-Bu), 3.06 (1H, d, J 13 Hz, CH' HPh), 3.61 (1H, d, J 13 Hz, CH' HPh), 7.15-7.38 (5H, m, Ph), 7.64 (1H, s, OCONH), 8.02 (1H, 5, J 7.5 Hz, Ar), 8.19 (1H, t, J 7.5 Hz, Ar), 8.33 (2H, d, J 8 Hz, Ar).

EXAMPLE 16

10 Boc-(α -Me)-DLPheGlyNH₂ (15)

14 (4.24 g, 10 mmol), glycinate hydrochloride (1.11 g, 11 mmol), and triethylamine (1.39 mL, 11 mmol) in EtOAc (100 mL) were stirred overnight at room temperature. The white solid which precipitated 15 was removed by filtration and washed with EtOAc. The filtrate was washed with 10% citric acid solution, saturated NaHCO₃ solution, H₂O, and dried (MgSO₄). Removal of the solvent in vacuo gave 15 as a white solid (2.05 g, 61%): ^1H NMR (DMSO-d₆) δ 1.16 (3H, s, α -CH₃), 1.43 (9H, s, t-Bu), 2.95 (1H, d, J 13 Hz, CH₂Ph), 3.26 (1H, d, J 15 Hz, CH₂Ph), 3.46 (1H, br d, J 16.5 Hz, NHCH₂CO), 3.69 (1H, dd, J 16.5 Hz, 6 Hz, NHCH₂CO), 7.02-7.34 (8H, m, Ar, CONH₂, OCONH), 8.17 (1H, bs, NHCO).

25

EXAMPLE 17

(α -Me)-DLPheGlyNH₂ (16)

15 (2.0 g, 5.7 mmol) was stirred at 0°C in TFA (2 mL) for 15 minutes. The solvent was removed in vacuo and the residue triturated with ET₂O. The white solid formed was filtered and dried to give 16 (1.97 g, 95%): ^1H NMR (DMSO-d₆) δ 1.52 (3H, s, α -CH₃), 3.06 (1H, d, J 14 Hz, CH₂Ph), 3.20 (1H, d, J 14 Hz, CH₂Ph), 3.74 (2H, d, J 5.5 Hz, NHCH₂CO),

-36-

7.00-7.40 (7H, m, Ph₂CONH₂), 8.09 (3H, bs, NH₃⁺),
8.62 (1H, J 5.6 Hz, CONH).

EXAMPLE 18

5 N-[(Phenylmethoxy) carbonyl]-L-tryptophyl- α -methyl-DL-phenylalanylglycinamide (17)

Hydrobenzotriazolyl tetramethyluronium hexachlorophosphate (HBTU) (0.19 g, 0.5 mmol) was added to a solution of Z-(L)-Trp (0.15 g, 0.5 mmol), 16 (0.17 g, 0.5 mmol), and N,N-diisopropylethylamine (0.26 mL, 1.5 mmol) in DMF (3 mL) and stirred at room temperature for 45 minutes. Water was added and the mixture extracted with EtOAc. The organic layer was washed with 10% citric acid solution, saturated NaHCO₃ solution, H₂O, and dried (MgSO₄). Further purification by flash column chromatography on silica, eluting with CH₂Cl₂:MeOH (90:10) gave 17 as a white foam (0.17 g, 61%); mp 92-110°C; MS (FAB) m/e 556 [M+H]⁺; ¹H NMR (DMSO-d₆) δ 1.19 (0.5 x 3H, s, α -CH₃), 1.24 (0.5 x 3H, s, α -CH₃), 2.80-3.30 (4H, m, CH₂-indole, CH₂Ph), 3.40-3.78 (2H, m, CH₂CONH₂), 4.25-4.48 (1H, m, Trp- α -H), 4.84-5.06 (2H, m, CH₂OCO), 6.88-7.45 (16H, m, Ar, OCONH, CONH₂), 7.55-7.75 (2H, m, Ar), 7.80 (0.5 x H, t, CONHCH₂), 7.88 (0.5 x H, t, CONHCH₂), 8.35 (0.5 x H, s, NHC(CH₃), 8.41 (0.5 x H, s, NHC(CH₃), 10.86 (1H, s, indole NH); Anal. (C₃₁H₃₃N₅O₃₅·0.5H₂O) C, H, N.

EXAMPLE 19

30 N-[(1-Naphthalenylmethoxy) carbonyl]-L-tryptophyl- α -methyl-DL-phenylalanylglycinamide (18)

Diisopropylethylamine (52 μ L, 0.3 mmol) was added to a stirred solution of N-[(1-naphthyl-methoxy) carbonyl]tryptophan (0.117 g, 0.3 mmol) and HBTU (0.114 g, 0.3 mmol) in DMF (5 mL) at room

-37-

temperature. The mixture was stirred for 10 minutes, then 16 (0.105 g, 0.3 mmol) in DMF (5 mL) was added, followed by diisopropyl ethylamine (105 μ L, 0.6 mmol) and the reaction mixture stirred for a further 5 18 hours. The mixture was poured into H_2O (100 mL) and extracted with EtOAc (2 x 50 mL). The organic extracts were combined, washed with 10% citric acid solution (1 x 100 mL), saturated $NaHCO_3$ solution (1 x 100 mL), H_2O (2 x 100 mL), and dried ($MgSO_4$). 10 The solvent was removed in vacuo and the residue purified by column chromatography on silica, eluting first with mixtures of EtOAc in hexane (30% to 70%) followed by CH_2Cl_2 :MeOH (95:5) to give 18 as a white solid (0.148 g, 81%); MS (FAB) m/e 606 [M+H]: 1H NMR (DMSO-d₆) δ 1.21 (0.5 x 3H, s, α -CH₃), 1.26 15 (0.5 x 3H, s, α -CH₃), 2.85-3.78 (6H, m, CH_2 -indole, CH_2Ph , CH_2CONH_2), 4.38 (1H, m, Trp α -H), 5.44 (2H, m, CH_2 naphthyl), 6.92-7.20 (10H, m, Ar/NH), 7.33 (0.5 x H, s, Ar/NH), 7.35 (0.5 x H, s, Ar/NH), 20 7.52-7.70 (6H, m, Ar/NH), 7.75-8.00 (4H, m, Ar/NH), 8.33 (0.5 x H, s, NH), 8.35 (0.5 x H, s, NH), 10.72 (1H, s, NH indole); Anal. (C₃₅H₃₅N₅O₅·0.5H₂O) C, H, N.

EXAMPLE 20

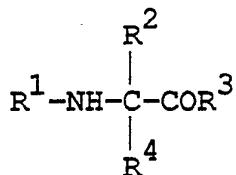
25 N-[(1-Naphthalenylmethoxy)carbonyl]-L-tryptophyl- α -methyl-L-phenylalanylglycinamide (19)

Prepared by the same method as Compound 18 as in Example 19 in methylphenylalanine and obtained by the method of Tuttle, et al.

30

EXAMPLE 21

N-[(2,3-Dimethoxyphenyl)methoxy]carbonyl-L-tryptophyl- α -methyl-DL-phenylalaninamide (20)


35 Prepared by the same method as Compound 6 in Example 7, white foam: mp 87-102°C; MS (FAB) m/e 559

-38-

[M+H]; ^1H NMR (DMSO-d₆) δ 1.39 (3H, s, α -CH₃), 2.88 (1H, t) and 3.11-3.39 (3H, m, CH₂-indole, CH₂Ph), 3.63 (3H, d, OCH₃), 3.78 (3H, s, OCH₃), 4.21 (1H, m, Trp α -H), 4.93 (2H, s, CH₂O), 6.79-7.78 (17H, m, Ar, 5 CONH₂, CONH, OCONH), 10.76 (1H, s, indole NH), and (C₃₁H₃₄N₄O₆·0.5 H₂O) C, H, N.

CLAIMS

1. A compound of formula

I

or a pharmaceutically acceptable salt thereof
wherein:

10 R^1 is an N-terminal blocking group, from 0 to

4 amino acid residues or hydrogen;

R^2 is a sidechain of a genetically coded amino acid except glycine;

15 R^3 is a C-terminal blocking group from 0 to 4 amino acid residues, -OH, or OR^n wherein

R^n is straight or branched alkyl or

cycloalkyl of from 1 to 6 carbon atoms;

20 R^4 is a sidechain of a genetically coded amino acid, except glycine, or

$-\text{HC}=\text{CH}_2$,

$-\text{C}\equiv\text{CH}_2$,

$-\text{CH}_2-\text{CH}=\text{CH}_2$,

$-\text{CH}_2\text{C}\equiv\text{CH}_2$,

$-\text{CH}_2\text{Ar}$,

$-\text{CH}_2\text{OR}$,

25 $-\text{CH}_2\text{OAr}$,

$-(\text{CH}_2)_n\text{CO}_2\text{R}$, or

$-(\text{CH}_2)_n\text{NR}^5\text{R}^6$ wherein n is an integer of

from 0 to 3, R is hydrogen or lower

alkyl, Ar is a mono- or polycyclic

unsubstituted or substituted carbo- or

heterocyclic aromatic or hydroaromatic

moiety;

30

-40-

35

R^4 and R^2 cannot be hydrogen;
 R^1 and R^3 together cannot be more than 4
amino acid residues.

10

2. A compound according to Claim 1 wherein:

R^1 is H,

Boc,

Fmoc,

Z,

1-Adoc,

2-Adoc,

IVA, or

NVA;

R^2 is CH_3^- or

$HOOC-CH_2^-$; and

R^3 is $-NH_2$,

$-OCH_3$, or

$-OCH_2Ph$.

10

3. A compound according to Claim 1 selected from

MeLys-Trp-Asp-Asn-Gln,

Lys-MeTrp-Asp-Asn-Gln,

Lys-Trp-MeAsp-Asn-Gln,

5

Lys-Trp-Asp-MeAsn-Gln,

Lys-Trp-Asp-Asn-MeGln,

MeVal-Gly-His-Leu-Met-NH₂,

Val-Gly-MeHis-Leu-Met-NH₂,

Val-Gly-His-MeLeu-Met-NH₂,

10

Val-Gly-His-Leu-MeMet-NH₂,

MeGlp-His-Trp-Ser-Tyr,

Glp-MeHis-Trp-Ser-Tyr,

Glp-His-MeTrp-Ser-Tyr,

Glp-His-Trp-MeSer-Tyr,

15

Glp-His-Trp-Ser-MeTyr,

Gly-MeLeu-Arg-Pro-Gly-NH₂,

-41-

Gly-Leu-MeArg-Pro-Gly-NH₂,
Gly-Leu-Arg-MePro-Gly-NH₂,
MeTyr-Pro-Ser-Lys-Pro,
20 Tyr-MePro-Ser-Lys-Pro,
Tyr-Pro-MeSer-Lys-Pro,
Tyr-Pro-Ser-MeLys-Pro,
Tyr-Pro-Ser-Lys-MePro,
MeThr-Arg-Gln-Arg-Tyr-NH₂,
25 Thr-MeArg-Gln-Arg-Tyr-NH₂,
Thr-Arg-MeGln-Arg-Tyr-NH₂,
Thr-Arg-Gln-MeArg-Tyr-NH₂,
Thr-Arg-Gln-Arg-MeTyr-NH₂,
Gly-MeTrp-Thr-Leu-Asn,
30 Gly-Trp-MeThr-Leu-Asn,
Gly-Trp-Thr-MeLeu-Asn,
Gly-Trp-Thr-Leu-MeAsn,
MeLeu-Tyr-Gly-Leu-Ala-NH₂,
Leu-MeTyr-Gly-Leu-Ala-NH₂,
35 Leu-Tyr-Gly-MeLeu-Ala-NH₂,
Leu-Tyr-Gly-Leu-Aib-NH₂,
MePhe-Phe-Trp-Lys-Thr,
Phe-MePhe-Trp-Lys-Thr,
Phe-Phe-MeTrp-Lys-Thr,
40 Phe-Phe-Trp-MeLys-Thr,
Phe-Phe-Trp-Lys-MeThr,
MePhe-Phe-Gly-Leu-Met-NH₂,
Phe-MePhe-Gly-Leu-Met-NH₂,
Phe-Phe-Gly-MeLeu-Met-NH₂, and
45 Phe-Phe-Gly-Leu-MeMet-NH₂.

4. A compound named N-[α -methyl-N-[N-(N-L-tyrosylglycyl)glycyl]-L-phenylalanyl]-L-leucine trifluoroacetate (1:1 salt).

5. A compound named N-[α -methyl-N-[N-(N-L-tyrosylglycyl)glycyl]-D-phenylalanyl]-L-leucine trifluoroacetate (1:1 salt).
6. A compound named N-[[(4-chlorophenyl)methoxy]-carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide.
7. A compound named N-[[[4-(trifluoromethyl)-phenyl]methoxy]carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide.
8. A compound named N-[[(1,1'-biphenyl)-4-yl-methoxy]carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide.
9. A compound named N-[(9-anthracylmethoxy)-carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide.
10. A compound named N-[(1-naphthalenylmethoxy)-carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide.
11. A compound named N-[(1-naphthalenylmethoxy)-carbonyl]-L-tryptophyl- α -methyl-L-phenylalaninamide.
12. A compound named N-[(1-naphthalenylmethoxy)-carbonyl]-L-tryptophyl- α -methyl-D-phenylalaninamide.
13. A compound named N-[[[4-(propoxycarbonyl)-phenyl]methoxy]carbonyl]-L-tryptophyl- α -methyl-DL-phenylalaninamide.

-43-

14. A compound named N-[(phenylmethoxy)carbonyl]-L-tryptophyl- α -methyl-DL-phenylalanyl glycinate.
15. A compound named N-[(1-naphthalenylmethoxy)-carbonyl]-L-tryptophyl- α -methyl-DL-phenylalanyl glycinate.
16. A compound named N-[(1-naphthalenylmethoxy)-carbonyl]-L-tryptophyl- α -methyl-L-phenylalanyl glycinate.
17. A compound named N-[(2,3-dimethoxyphenyl)-methoxy]carbonyl]-L-tryptophyl- α -methyl-DL-phenylalanine.
18. A pharmaceutical composition comprising an amount of a compound according to Claim 1 effective to treat pain in a mammal suffering therefrom, and a pharmaceutically acceptable carrier.
19. A method of treating pain in a mammal comprising administering an effective pain treating amount of a compound according to Claim 1.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US92/03119

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :A61K 37/00, 37/02; C07K 5/00, 7/00
US CL :530/330; 514/17

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 530/330; 514/17

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS TEXT SEARCH, CAS ONLINE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO,A, 90/12810 (RIVIER ET AL) 01 NOVEMBER 1990, see entire document.	1-19
Y	US, A, 4,689,318 (KAISER ET AL) 25 AUGUST 1987, see entire document.	1-19

 Further documents are listed in the continuation of Box C. See patent family annex.

"A"	Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	document defining the general state of the art which is not considered to be part of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L"	earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified)	"Z"	document referring to an oral disclosure, use, exhibition or other means
"P"	document referring to an oral disclosure, use, exhibition or other means		document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search	Date of mailing of the international search report
23 July 1992	29 JUL 1992

Name and mailing address of the ISA/ Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorized officer AVIS DAVENPORT
Facsimile No. NOT APPLICABLE	Telephone No. (703) 308 0196