wO 2007/030404 A1 |10 0 000 0 0 0O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 March 2007 (15.03.2007)

LD 0

(10) International Publication Number

WO 2007/030404 Al

(51) International Patent Classification:
GOG6F 21/00 (2006.01)

(21) International Application Number:
PCT/US2006/034366

(22) International Filing Date: 31 August 2006 (31.08.2006)

GO7F 17/32 (2006.01)

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/221,314

(US).

(72) Inventors; and

6 September 2005 (06.09.2005) US

(71) Applicant (for all designated States except US): IGT
[US/US]; 9295 Prototype Drive, Reno, Nevada 89521

(74) Agents: WOLF, Dean, E. et al.; Beyer Weaver & Thomas,

(US).

English
English

Llp, P. O. Box 70250, Oakland, California 94612-0250

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP,

KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, §Y, T], TM, TN, TR,

TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(75) Inventors/Applicants (for US only): COCKERILLE, (84) Designated States (unless otherwise indicated, for every

Warner [US/US]; 414 Abbay Way, Sparks, Nevada 89431
(US). BENBRAHIM, Jamal [MA/US]; 4615 Edmonton
Drive, Reno, Nevada 89511 (US). NELSON, Dwayne
[US/US]; 5488 Alemen Drive, Las Vegas, Nevada 89113

(US).

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,

[Continued on next page]

(54) Title: DATA PATTERN VERIFICATION IN A GAMING MACHINE ENVIRONMENT

/-900

(" Pattern Comparison Procedure D)

I 902

Valid pattern
verification

Y

904

Select first/next valid
comparison pattern

”

I} 020

Invalid pattern
identification

il 922

v

906

with selected valid
comparison pattern

Compare selected pattern

908

Anomaly

—No detected?

Yes
v /—910

Implement appropriate
anomaly handling
procedure(s)

Perform
additional
analysis?

Select first/next invalid
comparison pattern

N —924

Compare selected pattern
with selected invalid
comparison pattern

Match
detected?

Yes
¥ J—QZB

implement appropriate
anomaly handling
procedure(s)

930

Perform

additional
analysis?

(57) Abstract: A technique is disclosed
for detecting at least one anomaly
associated gaming data, wherein the
gaming data is associated with a first casino
gaming machine. A first portion of gaming
data is selected for analysis. According
to a specific embodiment, the first portion
of gaming data corresponds to a first data
pattern. A first comparison pattern relating
to the first data pattern is also selected.
A comparison is then performed in which
the first comparison pattern is compared
with a first portion of the first data pattern.
Based upon the results of the comparison,
a determination may be made as to
whether at least one anomaly is detected
in association with the first data pattern.

WO 2007/030404 A1 |00 000 0T 000000 0O 0

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, For two-letter codes and other abbreviations, refer to the "Guid-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

DATA PATTERN VERIFICATION IN A GAMING MACHINE ENVIRONMENT

BACKGROUND OF THE INVENTION

This invention relates to gaming machines such as video gaming machines and
video poker machines. More particularly, the present invention relates to techniques
for implemeﬁting pattern comparisons of various types of electronic information
associated with a gaming machine or gaming system in order to verify the authenticity
of such information and/or to identify suspect or unauthorized portions of such
information.

Typically, utilizing a master gaming controller, a gaming machine controls
various combinations of devices that allow a player to play a game on the gaming
machine and also encourage game play on the gaming machine. For example, a game
played on a gaming machine usually requires a player to input money or indicia of
credit into the gaming machine, indicate a wager amount, and initiate a game play.
These steps require the gaming machine to control input devices, including bill
validators and coin acceptors, to accept money into the gaming machine and recognize
user inputs from devices, including touch screens and button pads, to determine the
wager amount and initiate game play. After game play has been initiated, the gaming
machine determines a game outcome, presents the game outcome to the player and
may dispense an award of some type depending on the outcome of the game.

As technology in the gaming industry progresses, the traditional mechanically
driven reel gaming machines are being replaced with electronic counterparts having
CRT, LCD video displays or the like and gaming machines such as video gaming
machines and video poker machines are becoming increasingly popular. Part of the
reason for their increased popularity is the nearly endless variety of games that can be
implemented on gaming machines utilizing advanced electronic technology. In some
cases, newer gaming'mgchines are utilizing computing architectures developed for
personal computers. The§‘é"v~ideo/electronic gaming advancements enable the
operation of more complex games, which would not otherwise be possible on
mechanical-driven gaming machines and allow the capabilities of the gaming machine

to evolve with advances in the personal computing industry.

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

To implement the gaming features described above on a gaming machine
using computing architectures utilized in the personal computer industry, a number of
requirements unique to the gaming industry must be considered. One such
requirement is the regulation of gaming software. Typically, within a geographic area
allowing gaming, i.e. a gaming jurisdiction, a governing entity is chartered with
regulating the games played in the gaming jurisdiction to insure fairness and to
prevent cheating. Thus, in many gaming jurisdictions, there are stringent regulatory
restrictions for gaming machines requiring a time consuming approval process of new
gaming software and any software modifications to gaming software used on a
gaming machine.

In the past, to implement the play of a game on a gaming machine, a
monolithic software architecture has been used. In a monolithic software architecture,
a single gaming software executable is developed. The single executable may be burnt
onto an EPROM and then submitted to various gaming jurisdictions for approval.
After the gaming software is approved, a unique signature can be determined for the
gaming software stored on the EPROM using a method such as a CRC. Then, when a
gaming machine is shipped to a local jurisdiction, the gaming software signature on
the EPROM can be compared with an approved gaming software signature prior to
installation of the EPROM on the gaming macbine. The comparison process is used to
ensure that approved gaming software has been installed on the gaming machine.

A disadvantage of a monolithic programming architecture is that a single
executable that works for many different applications can be quite large. For instance,
garhing rules may vary from jurisdiction to jurisdiction. Thus, either a single custom
executable can be developed for each jurisdiction or one large executable with
additional logic can be developed that is valid in many jurisdictions. The
customization process may be time consuming and inefficient. For instance,
upgrading the gaming software may require developing new executables for each
jurisdiction, submitting the executables for reapproval, and then replacing or
reprogramming EPROMs in each gaming machine.

Typically, personal computers use an object oriented software architecture
where different software objects may be dynamically linked together prior to
execution or even during execution to create many different combinations of

executables that perform different functions. Thus, for example, to account for
2

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

differences in gaming rules between different gaming jurisdictions, gaming software
objects appropriate to a particular gaming jurisdiction may be linked at run-time
which is simpler than creating a single different executable for each jurisdiction. Also,
object oriented software architectures simplify the process of upgrading software since
a software object, which usually represents only a small portion of the software, may
be upgraded rather than the entire software. However, a disadvantage of object
oriented software architectures is that they are not very compatible with EPROMs,
which are designed for static executables. Thus, the gaming software regulation
process described above using EPROM’s may not be applicable to a gaming machine
employing an object orientated software approach.

Further, in the past, gaming jurisdictions have required that EPROM based
software to “run in place” on the EPROM and not from RAM i.e. the software may
not be loaded into RAM for execution. Typically, personal computers load
executables from a mass storage device, such as a hard-drive, to' RAM and then the
software is executed from RAM. Running software from an EPROM limits the size of
the executable since the storage available on an EPROM is usually much less than the
storage available on a hard-drive. Also, this approach is not generally compatible with
PC based devices that load software from a mass storage device to RAM for
execution.

In light of the above, it will be appreciated that there exist an ongoing need for
improving techniques for regulating and verifying gaming machine software and other

related information.

SUMMARY OF THE INVENTION

Various aspects of the present invention are directed to different methods,
systems, and computer program products for detecting at least one anomaly associated
gaming data, wherein the gaming data is associated with a first casino gaming
machine. A first portion of gaming data is selected for analysis. According to a
specific embodiment, the first portion of gaming data corresponds to a first data
pattern. A first comparison pattern relating to the first data pattern is also selected. A
comparison is then performed in which the first comparison pattern is compared with

a first portion of the first data pattern. Based upon the results of the comparison, a

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

determination may be made as to whether at least one anomaly is detected in
association with the first data pattern.

According to one embodiment, the first comparison pattern may correspond to
a valid comparison pattern which, for example, may correspond to a portion of
authenticated gaming data. When the valid comparison pattern is compared with the
first portion of the first data pattern, a first anomaly may be identified in response to a
determination that the first portion of the first data pattern does not match the valid
comparison pattern.

According to another embodiment, the first comparison pattern may
correspond to an invalid comparison pattern, which, for example, may correspond to
data which is know or suspected to be invalid or unauthorized. When the valid
comparison pattern is compared with the first portion of the first data pattern, a first
anomaly may be identified in response to a determination that the first portion of the
first data pattern matches the invalid comparison pattern. In at least one embodiment,
an anomaly handling procedure may be initiated in response to a determination that an
anomaly has been detected in association with the first data pattern.

Additional objects, features and advantages of the various aspects of the
present invention will become apparent from the following description of its preferred
embodiments, which description should be taken in conjunction with the

accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a perspective view of an exemplary gaming machine 2 in
accordance with a specific embodiment of the present invention.

Figure 2 is a simplified block diagram of an embodiment of gaming machine 2
showing processing portions of a configuration/reconfiguration system in accordance
with the present invention.

Figure 3 is a block diagram of a gaming process file structure 300 in
accordance with a specific embodiment of the present invention.

Figure 4 is a flow chart depicting a specific embodiment of a method of
verifying the authenticity of a pattern temporarily stored in RAM.

Figure 5 is a flow chart depicting a specific embodiment of a method of

parsing an address space (AS) file.

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

Figure 6 is a flow chart depicting a method of locating authentic process files.

Figure 7 is a flow chart depicting a specific embodiment of a method of
initializing a pattern authenticator and pattern comparator on a gaming machine.

Figure 8 shows a flow diagram of a Pattern Analysis Procedure 850 in
accordance with a specific embodiment of the present invention.

Figure 9 shows an example of a Pattern Comparison Procedure 900 and
according us with a specific embodiment of the present invention.

Figure 10 is a block diagram of a gaming system of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will now be described in detail with reference to a few
preferred embodiments thereof as illustrated in the accompanying drawings. In the
following description, numerous specific details are set forth in order to provide a
thorough understanding of the present invention. It will be apparent, however, to one
skilled in the art, that the present invention may be practiced without some or all of
these specific details. In other instances, well known process steps and/or structures

have not been described in detail in order to not obscure the present invention.

Gaming Machine

Figure 1 shows a perspective view of an exemplary gaming machine 2 in
accordance with a specific embodiment of the present invention. As illustrated in the
example of Figure 1, machine 2 includes a main cabinet 4, which generally surrounds
the machine interior (illustrated, for example, in Figure 3) and is viewable by users.
The main cabinet includes a main door 8 on the front of the machine, which opens to
provide access to the interior of the machine. Attached to the main door are player-
input switches or buttons 32, a coin acceptor 28, and a bill validator 30, a coin tray 38,
and a belly glass 40. Viewable through the main door is a video display monitor 34
and an information panel 36. The display monitor 34 will typically be a cathode ray
tube, high resolution flat-panel LCD, or other conventional electronically controlled
video monitor. The information panel 36 may be a back-lit, silk screened glass panel
with leﬁering to indicate general game information including, for example, a game
denomination (e.g. $.25 or $1). The bill validator 30, player-input switches 32, video

display monitor 34, and information panel are devices used to play a game on the

5

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

game machine 2. According to a specific embodiment, the devices may be controlled
by code executed by a master gaming controller housed inside the main cabinet 4 of
the machine 2. In specific embodiments where it may be required that the code be
periodically configured and/or authenticated in a secure manner, the technique of the
present invention may be used for accomplishing such tasks.

Many different types of games, including mechanical slot games, video slot
games, video poker, video black jack, video pachinko and lottery, may be provided
with gaming machines of this invention. In particular, the gaming machine 2 may be
operable to provide a play of many different instances of games of chance. The
instances may be differentiated according to themes, sounds, graphics, type of game
(e.g., slot game vs. card game), denomination, number of paylines, maximum jackpot,
progressive or non-progressive, bonus games, etc. The gaming machine 2 may be
operable to allow a player to select a game of chance to play from a plurality of
instances available on the gaming machine. For example, the gaming machine may
provide a menu with a list of the instances of games that are available for play on the
gaming machine and a player may be able to select from the list a first instance of a
game of chance that they wish to play.

The various instances of games available for play on the gaming machine 2
may be stored as game software on a mass storage device in the gaming machine or
may be generated on a remote gaming device but then displayed on the gaming
machine. The gaming machine 2 may executed game software, such as but not limited
to video streaming software that allows the game to be displayed on the gaming
machine. When an instance is stored on the gaming machine 2, it may be loaded from
the mass storage device into a RAM for execution. In some cases, after a selection of
an instance, the game software that allows the selected instance to be generated may
be downloaded from a remote gaming device, such as another gaming machine.

As illustrated in the example of Figure 1, the gaming machine 2 includes a top
box 6, which sits on top of the main cabinet 4. The top box 6 houses a number of
devices, which may be used to add features to a game being played on the gaming
machine 2, including speakers 10, 12, 14, a ticket printer 18 which prints bar-coded
tickets 20, a key pad 22 for entering player tracking information, a florescent display
16 for displaying player tracking information, a card reader 24 for entering a magnetic

striped card containing player tracking information, and a video display screen 45.
6

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

The ticket printer 18 may be used to print tickets for a cashless ticketing system.
Further, the top box 6 may house different or additional devices not illustrated in
Figure 1. For example, the top box may include a bonus wheel or a back-lit silk
screened panel which may be used to add bonus features to the game being played on
the garﬂing machine. As another example, the top box may include a display for a
progressive jackpot offered on the gaming machine. During a game, these devices are
controlled and powered, in part, by circuitry (e.g. a master gaming controller) housed
within the main cabinet 4 of the machine 2.

It will be appreciated that gaming machine 2 is but one example from a wide
range of gaming machine designs on which the present invention may be
implemented. For example, not all suitable gaming machines have top boxes or
player tracking features. Further, some gaming machines have only a single game
display — mechanical or video, while others are designed for bar tables and have
displays that face upwards. As another example, a game may be generated in on a
host computer and may be displayed on a remote terminal or a remote gaming device.
The remote gaming device may be connected to the host computer via a network of
some type such as a local area network, a wide area network, an intranet or the
Internet. The remote gaming device may be a portable gaming device such as but not
limited to a cell phone, a personal digital assistant, and a wireless game player. Images
rendered from 3-D gaming environments may be displayed on portable gaming
devices that are used to play a game of chance. Further a gaming machine or server
may include gaming logic for commanding a remote gaming device to render an
image from a virtual camera in a 3-D gaming environments stored on the remote
gaming device and to display the rendered image on a display located on the remote
gaming device. Thus, those of skill in the art will understand that the present
invention, as described below, can be deployed on most any gaming machine now
available or hereafter developed.

Some preferred gaming machines of the present assignee are implemented
with special features and/or additional circuitry that differentiates them from general-
purpose computers (e.g., desktop PC’s and laptops). Gaming machines are highly
regulated to ensure fairness and, in many cases, gaming machines are operable to
dispense monetary awards of multiple millions of dollars. Therefore, to satisfy

security and regulatory requirements in a gaming environment, hardware and software
7

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

architectures may be implemented in gaming machines that differ significantly from
those of general-purpose computers. A description of gaming machines relative to
general-purpose computing machines and some examples of the additional (or
different) components and features found in gaming machines are described below.

At first glance, one might think that adapting PC technologies to the gaming
industry would be a simple proposition because both PCs and gaming machines
employ microprocessors that control a variety of devices. However, because of such
reasons as 1) the regulatory requirements that are placed upon gaming machines, 2)
the harsh environment in which gaming machines operate, 3) security requirements
and 4) fault tolerance requirements, adapting PC technologies to a gaming machine
can be quite difficult. Further, techniques and methods for solving a problem in the
PC industry, such as device compatibility and connectivity issues, might not be
adequate in the gaming environment. For instance, a fault or a weakness tolerated in a
PC, such as security holes in software or frequent crashes, may not be tolerated in a
gaming machine because in a gaming machine these faults can lead to a direct loss of
funds from the gaming machine, such as stolen cash or loss of revenue when the
gaming machine is not operating properly.

For the purposes of illustration, a few differences between PC systems and
gaming systems will be described. A first difference between gaming machines and
common PC based computers systems is that gaming machines are designed to be
state-based systems. In a state-based system, the system stores and maintains its
current state in a non-volatile memory, such that, in the event of a power failure or
other malfunction the gaming machine will return to its current state when the power
is restored. For instance, if a player was shown an award for a game of chance and,
before the award could be provided to the player the power failed, the gaming
machine, upon the restoration of power, would return to the state where the award is
indicated. As anyone who has used a PC, knows, PCs are not state machines and a
majority of data is usually lost when a malfunction occurs. This requirement affects
the software and hardware design on a gaming machine.

A second important difference between gaming machines and common PC
based computer systems is that for regulation purposes, the software on the gaming
machine used to generate the game of chance and operate the gaming machine has

been designed to be static and monolithic to prevent cheating by the operator of
8

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

gaming machine. For instance, one solution that has been employed in the gaming
industry to prevent cheating and satisfy regulatory requirements has been to
manufacture a gaming machine that can use a proprietary processor running
instructions to generate the game of chance from an EPROM or other form of non-
volatile memory. The coding instructions on the EPROM are static (non-changeable)
and must be approved by a gaming regulators in a particular jurisdiction and installed
in the presence of a person representing the gaming jurisdiction. Any changes to any
part of the software required to generate the game of chance, such as adding a new
device driver used by the master gaming controller to opefate a device during
generation of the game of chance can require a new EPROM to be burnt, approved by
the gaming jurisdiction and reinstalled on the gaming machine in the presence ofa
gaming regulator. Regardless of whether the EPROM solution is used, to gain
approval in most gaming jurisdictions, a gaming machine must demonstrate sufficient
safeguards that prevent an operator or player of a gaming machine from manipulating
hardware and software in a manner that gives them an unfair and some cases an illegal
advantage. The gaming machine should have a means to determine if the code it will
execute is valid. If the code is not valid, the gaming machine must have a means to
prevent the code from being executed. The code validation requirements in the
gaming industry affect both hardware and software designs on gaming machines.

A third important difference between gaming machines and common PC based
computer systems is the number and kinds of peripheral devices used on a gaming
machine are not as great as on PC based computer systems. Traditionally, in the
gaming industry, gaming machines have been relatively simple in the sense that the
number of peripheral devices and the number of functions the gaming machine has
been limited. Further, in operation, the functionality of gaming machines were
relatively constant once the gaming machine was deployed, i.e., new peripherals
devices and new gaming software were infrequently added to the gaming machine.
This differs from a PC where users will go out and buy different combinations of
devices and software from different manufacturers and connect them to a PC to suit
their needs depending on a desired application. Therefore, the types of devices
connected to a PC may vary greatly from user to user depending in their individual

requirements and may vary significantly over time.

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

Although the variety of devices available for a PC may be greater thanon a
gaming machine, gaming machines still have unique device requirements that differ
from a PC, such as device security requirements not usually addressed by PCs. For
instance, monetary devices, such as coin dispensers, bill validators and ticket printers
and computing devices that are used to govern the input and output of cashtoa
gaming machine have security requirements that are not typically addressed in PCs.
Therefore, many PC techniques and methods developed to facilitate device
connectivity and device compatibility do not address the emphasis placed on security
in the gaming industry.

To address some of the issues described above, a number of hardware/software
components and architectures are utilized in gaming machines that are not typically
found in general purpose computing devices, such as PCs. These hardware/software
components and architectures, as described below in more detail, include but are not
limited to watchdog timers, voltage monitoring systems, state-based software
architecture and supporting hardware, specialized communication interfaces, security
monitoring and trusted memory.

For example, a watchdog timer is normally used in International Game
Technology (IGT) gaming machines to provide a software failure detection
mechanism. In a normally operating system, the operating software periodically
accesses control registers in the watchdog timer subsystem to “re-trigger” the
watchdog. Should the operating software fail to access the control registers within a
preset timeframe, the watchdog timer will timeout and generate a system reset.
Typical watchdog timer circuits include a loadable timeout counter register to allow
the operating software to set the timeout interval within a certain range of time. A
differentiating feature of the some preferred circuits is that the operating software
cannot completely disable the function of the watchdog timer. In other words, the
watchdog timer always functions from the time power is applied to the board.

IGT gaming computer platforms preferably use several power supply voltages
to operate portions of the computer circuitry. These can be generated in a central
power supply or locally on the computer board. If any of these voltages falls out of
the tolerance limits of the circuitry they power, unpredictable operation of the
computer may result. Though most modern general-purpose computers include

voltage monitoring circuitry, these types of circuits only report voltage status to the
10

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

operating software. Out of tolerance voltages can cause software malfunction, creating
a potential uncontrolled condition in the gaming computer. Gaming machines of the
present assignee typically have power supplies with tighter voltage margins than that
required by the operating circuitry. In addition, the voltage monitoring circuitry
implemented in IGT gaming computers typically has two thresholds of control. The
first threshold generates a software event that can be detected by the operating
software and an error condition generated. This threshold is triggered when a power
supply voltage falls out of the tolerance range of the power supply, but is still within
the operating range of the circuitry. The second threshold is set when a power supply
voltage falls out of the operating tolerance of the circuitry. In this case, the circuitry
generates a reset, halting operation of the computer.

The standard method of operation for IGT gaming machine game software is
to use a state machine. Different functions of the game (bet, play, result, points in the
graphical presentation, etc.) may be defined as a state. When a game moves from one
state to another, critical data regarding the game software is stored in a custom non-
volatile memory subsystem. This is critical to ensure the player’s wager and credits
are preserved and to minimize potential disputes in the event of a malfunction on the
gaming machine.

In general, the gaming machine does not advance from a first state to a second
state until critical information that allows the first state to be reconstructed is stored.
This feature allows the game to recover operation to the current state of play in the
event of a malfunction, loss of power, etc that occurred just prior to the malfunction.
After the state of the gaming machine is restored during the play of a game of chance,
game play may resume and the game may be completed in a manner that is no
different than if the malfunction had not occurred. Typically, battery backed RAM
devices are used to preserve this critical data although other types of non-volatile
memory devices may be employed. These memory devices are not used in typical
general-purpose computers.

As described in the preceding paragraph, when a malfunction occurs during a
game of chance, the gaming machine may be restored to a state in the game of chance
just prior to when the malfunction occurred. The restored state may include metering
information and graphical information that was displayed on the gaming machine in

the state prior to the malfunction. For example, when the malfunction occurs during
11

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

the play of a card game after the cards have been dealt, the gaming machine may be
restored with the cards that were previously displayed as part of the card game. As
another example, a bonus game may be triggered during the play of a game of chance
where a player is required to make a number of selections on a video display screen.
When a malfunction has occurred after the player has made one or more selections,
the gaming machine may be restored to a state that shows the graphical presentation at
the just prior to the malfunction including an indication of selections that have already
been made by the player. In general, the gaming machine may be restored to any state
in a plurality of states that occur in the game of chance that occurs while the game of
chance is played or to states that occur between the play of a game of chance.

Game history information regarding previous games played such as an amount
wagered, the outcome of the game and so forth may also be stored in a non-volatile
memory device. The information stored in the non-volatile memory may be detailed
enough to reconstruct a portion of the graphical presentation that was previously
presented on the gaming machine and the state of the gaming machine (e.g., credits) at
the time the game of chance was played. The game history information may be
utilized in the event of a dispute. For example, a player may decide that in a previous
game of chance that they did not receive credit for an award that they believed they
won. The game history information may be used to reconstruct the state of the gaming
machine prior, during and/or after the disputed game to demonstrate whether the
player was correct or not in their assertion. Further details of a state based gaming
system, recovery from malfunctions and game history are described in U.S. patent no.
6,804,763, titled “High Performance Battery Backed RAM Interface”, U.S. patent no.
6,863, 608, titled “Frame Capture of Actual Game Play,” U.S. application no.
10/243,104, titled, “Dynamic NV-RAM,” and U.S. application no. 10/758,828, titled,
“Frame Capture of Actual Game Play,” each of which is incorporated by reference and
for all purposes.

Another feature of gaming machines, such as IGT gaming computers, is that
they often include unique interfaces, including serial interfaces, to connect to specific
subsystems internal and external to the gaming machine. The serial devices may have
electrical interface requirements that differ from the “standard” EIA 232 serial
interfaces provided by general-purpose computers. These interfaces may include EIA

485, EIA 422, Fiber Optic Serial, optically coupled serial interfaces, current loop style
12

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

serial interfaces, etc. In addition, to conserve serial interfaces internally in the gaming
machine, serial devices may be connected in a shared, daisy-chain fashion where
multiple peripheral devices are connected to a single serial channel.

The serial interfaces may be used to transmit information using
communication protocols that are unique to the gaming industry. For example, IGT’s
Netplex is a proprietary communication protocol used for serial communication
between gaming devices. As another example, SAS is a communication protocol used
to transmit information, such as metering information, from a gaming machine to a
remote device. Often SAS is used in conjunction with a player tracking system.

IGT gaming machines may alternatively be treated as peripheral devices to a
casino communication controller and connected in a shared daisy chain fashion to a
single serial interface. In both cases, the peripheral devices are preferably assigned
device addresses. If so, the serial controller circuitry must implement a method to
generate or detect unique device addresses. General-purpose computer serial ports are
not able to do this.

Security monitoring circuits detect intrusion into an IGT gaming machine by
monitoring security switches attached to access doors in the gaming machine cabinet.
Preferably, access violations result in suspension of game play and can trigger
additional security operations to preserve the current state of game play. These
circuits also function when power is off by use of a battery backup. In power-off
operation, these circuits continue to monitor the access doors of the gaming machine.
When power is restored, the gaming machine can determine whether any security
violations occurred while power was off, e.g., via software for reading status registers.
This can trigger event log entries and further data authentication operations by the
gaming machine software.

Trusted memory devices and/or trusted memory sources are preferably
included in an IGT gaming machine computer to ensure the authenticity of the
software that may be stored on less secure memory subsystems, such as mass storage
devices. Trusted memory devices and controlling circuitry are typically designed to
not allow modification of the code and data stored in the memory device while the
memory device is installed in the gaming machine. The code and data stored in these
devices may include authentication algorithms, random number generators,

authentication keys, operating system kernels, etc. The purpose of these trusted
13

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

memory devices is to provide gaming regulatory authorities a root trusted authority
within the computing environment of the gaming machine that can be tracked and
verified as original. This may be accomplished via removal of the trusted memory
device from the gaming machine computer and verification of the secure memory
device contents is a separate third party verification device. Once the trusted memory
device is verified as authentic, and based on the approval of the verification
algorithms included in the trusted device, the gaming machine is allowed to verify the
authenticity of additional code and data that may be located in the gaming computer
assembly, such as code and data stored on hard disk drives. A few details related to
trusted memory devices that may be used in the present invention are described in
U.S. patent no. 6,685,567 from U.S. patent application no. 09/925,098, filed August 8,
2001 and titled “Process Verification,” which is incorporated herein in its entirety and
for all purposes.

In at least one embodiment, at least a portion of the trusted memory
devices/sources may correspond to memory which cannot easily be altered (e.g.,
“unalterable memory”) such as, for example, EPROMS, PROMS, Bios, Extended
Bios, and/or other memory sources which are able to be configured, verified, and/or
authenticated (e.g., for authenticity) in a secure and controlled manner.

According to a specific implementation, when a trusted information source is
in communication with a remote device via a network, the remote device may employ
a verification scheme to verify the identity of the trusted information source. For
example, the trusted information source and the remote device may exchange
information using public and private encryption keys to verify each other’s identities.
In another embodiment of the present invention, the remote device and the trusted
information source may engage in methods using zero knowledge proofs to
authenticate each of their respective identities. Details of zero knowledge proofs that
may be used with the present invention are described in US publication no.
2003/0203756, by Jackson, filed on April 25, 2002 and entitled, “Authentication in a
Secure Computerized Gaming System”, which is incorporated herein in its entirety
and for all purposes.

Gaming devices storing trusted information may utilize apparatus or methods
to detect and prevent tampering. For instance, trusted information stored in a trusted

memory device may be encrypted to prevent its misuse. In addition, the trusted
14

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

memory device may be secured behind a locked door. Further, one or more sensors
may be coupled to the memory device to detect tampering with the memory device
and provide some record of the tampering. In yet another example, the memory device
storing trusted information might be designed to detect tampering attempts and clear
or erase itself when an attempt at tampering has been detected.

Additional details relating to trusted memory devices/sources are described in
US Patent Application Serial No. 11/078,966, entitled “SECURED VIRTUAL
NETWORK IN A GAMING ENVIRONMENT”, naming Nguyen et al. as inventors,
filed on March 10, 2005, herein incorporated in its entirety and for all purposes.

Mass storage devices used in a general purpose computer typically allow code
and data to be read from and written to the mass storage device. In a gaming machine
environment, modification of the gaming code stored on a mass storage device is
strictly controlled and would only be allowed under specific maintenance type events
with electronic and physical enablers required. Though this level of security could be
provided by software, IGT gaming computers that include mass storage devices
preferably include hardware level mass storage data protection circuitry that operates
at the circuit level to monitor attempts to modify data on the mass storage device and
will generate both software and hardware error triggers should a data modification be
attempted without the proper electronic and physical enablers being present. Details
using a mass storage device that may be used with the present invention are described,
for example, in U.S. Patent 6,149,522, herein incorporated by reference in its entirety
for all purposes.

Returning to the example of Figure 1, when a user wishes to play the gaming
machine 2, he or she inserts cash through the coin acceptor 28 or bill validator 30.
Additionally, the bill validator may accept a printed ticket voucher which may be
accepted by the bill validator 30 as an indicia of credit when a cashless ticketing
system is used. At the start of the game, the player may enter playing tracking
information using the card reader 24, the keypad 22, and the florescent display 16.
Further, other game preferences of the player playing the game may be read from a
card inserted into the card reader. During the game, the player views game
information using the video display 34. Other game and prize information may also be

displayed in the video display screen 45 located in the top box.

15

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

During the course of a game, a player may be required to make a number of
decisions, which affect the outcome of the game. For example, a player may vary his
or her wager on a particular game, select a prize for a particular game selected from a
prize server, or make game decisions which affect the outcome of a particular game.
The player may make these choices using the player-input switches 32, the video
display screen 34 or using some other device which enables a player to input
information into the gaming machine. In some embodiments, the player may be able
to access various game services such as concierge services and entertainment content
services using the video display screen 34 and one more input devices.

During certain game events, the gaming machine 2 may display visual and
auditory effects that can be perceived by the player. These effects add to the
excitement of a game, which makes a player more likely to continue playing. Auditory
effects include various sounds that are projected by the speakers 10, 12, 14. Visual
effects include flashing lights, strobing lights or other patterns displayed from lights
on the gaming machine 2 or from lights behind the belly glass 40. After the player has
completed a game, the player may receive game tokens from the coin tray 38 or the
ticket 20 from the printer 18, which may be used for further games or to redeem a
prize. Further, the player may receive a ticket 20 for food, merchandise, or games
from the printer 18.

Figure 2 is a simplified block diagram of an exemplary gaming machine 200 in
accordance with a specific embodiment of the present invention. As illustrated in the
embodiment of Figure 2, gaming machine 200 includes at least one processor 210, at
least one interface 206, and memory 216.

In one implementation, processor 210 and master gaming controller 212 are
included in a logic device 213 enclosed in a logic device housing. The processor 210
may include any conventional processor or logic device configured to execute
software allowing various configuration and reconfiguration tasks such as, for
example: a) communicating with a remote source via communication interface 206,
such as a server that stores authentication information or games; b) converting signals
read by an interface to a format corresponding to that used by software or memory in
the gaming machine; ¢) accessing memory to configure or reconfigure game
parameters in the memory according to indicia read from the device; d)

communicating with interfaces, various peripheral devices 222 and/or I/O devices
16

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

211; e) operating peripheral devices 222 such as, for example, card reader 225 and
paper ticket reader 227; f) operating various I/O devices such as, for example, display
235, key pad 230 and a light panel 216; etc. For instance, the processor 210 may send
messages including configuration and reconfiguration information to the display 235
to inform casino personnel of configuration progress. As another example, the logic
device 213 may send commands to the light panel 237 to display a particular light
pattern and to the speaker 239 to project a sound to visually and aurally convey
configuration information or progress. Light panel 237 and speaker 239 may also be
used to communicate with authorized personnel for authentication and security
purposes.

Peripheral devices 222 may include several device interfaces such as, for
example: card reader 225, bill validator/paper ticket reader 227, hopper 229, etc. Card
reader 225 and bill validator/paper ticket reader 227 may each comprise resources for
handling and processing configuration indicia such as a microcontroller that converts
voltage levels for one or more scanning devices to signals provided to processor 210.
In one embodiment, application software for interfacing with peripheral devices 222
may store instructions (such as, for example, how to read indicia from a portable
device) in a memory device such as, for example, non-volatile memory, hard drive or
a flash memory.

The gaming machine 200 also includes memory 216 which may include, for
example, volatile memory (e.g., RAM 209), non-volatile memory 219 (e.g., disk
memory, FLASH memory, EPROMs, etc.), unalterable memory (e.g., EPROMs 208),
etc.. The memory may be configured or designed to store, for example: 1)
configuration software 214 such as all the parameters and settings for a game playable
on the gaming machine; 2) associations 218 between configuration indicia read from a
device with one or more parameters and settings; 3) communication protocols
allowing the processor 210 to communicate with peripheral devices 222 and I/O
devices 211; 4) a secondary memory storage device 215 such as a non-volatile
memory device, configured to store gaming software related information (the gaming
software related information and memory may be used to store various audio files and
games not currently being used and invoked in a configuration or reconfiguration); 5)
communication transport protocols (such as, for example, TCP/IP, USB, Firewire,

IEEE1394, Bluetooth, IEEE 802.11x (IEEE 802.11 standards), hiperlan/2, HomeRF,
17

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

etc.) for allowing the gaming machine to communicate with local and non-local
devices using such protocols; etc. Typically, the master gaming controller 212
communicates using a serial communication protocol. A few examples of serial
communication protocols that may be used to communicate with the master gaming
controller include but are not limited to USB, RS-232 and Netplex (a proprietary
protocol developed by IGT, Reno, NV).

A plurality of device drivers 242 may be stored in memory 216. Example of
different types of device drivers may include device drivers for gaming machine
components, device drivers for peripheral components 222, etc. Typically, the device
drivers 242 utilize a communication protocol of some type that enables
communication with a particular physical device. The device driver abstracts the
hardware implementation of a device. For example, a device drive may be written for
each type of card reader that may be potentially connected to the gaming machine.
Examples of communication protocols used to implement the device drivers 259
include Netplex 260, USB 265, Serial 270, Ethernet 275, Firewire 285, I/0 debouncer
290, direct memory map, serial, PCI 280 or parallel. Netplex is a proprietary IGT
standard while the others are open standards. According to a specific embodiment,
when one type of a particular device is exchanged for another type of the particular
device, a new device driver may be loaded from the memory 216 by the processor 210
to allow communication with the device. For instance, one type of card reader in
gaming machine 200 may be replaced with a second type of card reader where device
drivers for both card readers are stored in the memory 216.

In some embodiments, the gaming machine 200 may also include various
authentication and/or validation components 244 which may be used for
authenticating/validating specified gaming machine components such as, for example,
hardware components, software components, firmware components, information
stored in the gaming machine memory 216, etc. In the embodiment of the Figure 2,
authentication/validation component 244 includes a pattern analysis engine 250 for
facilitating authentication and/or validation operations. For example, as described in
greater detail below, the pattern analysis engine 250 may be utilized for analyzing
selected portions of information for one or more predetermined patterns of data.
Some types of the predetermined patterns may correspond to valid, authenticated

patterns of data, while other types of the predetermined patterns may correspond to
18

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

patterns of data which are known or suspected to be invalid. Examples of other types
of authentication and/or validation components are described in U.S. Patent No.
6,620,047, entitled, “ELECTRONIC GAMING APPARATUS HAVING
AUTHENTICATION DATA SETS,” incorporated herein by reference in its entirety
for all purposes.

According to specific embodiments, the software units stored in the memory
216 may be upgraded as needed. For instance, when the memory 216 is a hard drive,
new games, game options, various new parameters, new settings for existing
parameters, new settings for new parameters, device drivers, and new communication
protocols may be uploaded to the memory from the master gaming controller 104 or
from some other external device. As another example, when the memory 216 includes
a CD/DVD drive including a CD/DVD designed or configured to store game options,
parameters, and settings, the software stored in the memory may be upgraded by
replacing a first CD/DVD with a second CD/DVD. In yet another example, when the
memory 216 uses one or more flash memory 219 or EPROM 208 units designed or
configured to store games, game options, parameters, settings, the software stored in
the flash and/or EPROM memory units may be upgraded by replacing one or more
memory units with new memory units which include the upgraded software. In
another embodiment, one or more of the memory devices, such as the hard-drive, may
be employed in a game software download process from a remote software server.

It will be apparent to those skilled in the art that other memory types, including
various computer readable media, may be used for storing and executing program
instructions pertaining to the operation of the present invention. Because such
information and program instructions may be employed to implement the
systems/methods described herein, the present invention relates to machine-readable
media that include program instructions, state information, etc. for performing various
operations described herein. Examples of machine-readable media include, but are
not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape;
optical media such as CD-ROM disks; magneto-optical media such as floptical disks;
and hardware devices that are specially configured to store and perform program
instructions, such as read-only memory devices (ROM) and random access memory
(RAM). The invention may also be embodied in a carrier wave traveling over an

appropriate medium such as airwaves, optical lines, electric lines, etc. Examples of
19

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

program instructions include both machine code, such as produced by a compiler, and
files including higher level code that may be executed by the computer using an
interpreter.

Additional details about other gaming machine architectures, features and/or
components are described, for example, in U.S. Patent Application Serial No.
10/040,239, entitled, “GAME DEVELOPMENT ARCHITECTURE THAT
DECOUPLES THE GAME LOGIC FROM THE GRAPHICS LOGIC,” and
published on April 24, 2003 as U.S. Patent Publication No. 20030078103,
incorporated herein by reference in its entirety for all purposes.

As stated previously, gaming regulatory and/or security restrictions typically
require that an electronic gaming system provide both security and authentication
features for its components. For this reason, gaming commissions have heretofore
required that all software components of an electronic gaming system be stored in
unalterable memory, which is typically an unalterable ROM (e.g., EPROM). While
such electronic casino gaming systems have been found to be useful in promoting
casino game play, the restriction requiring that the casino game program be stored in
unalterable ROM memory results in a number of disadvantageous limitations. For
example, due to the limited capacity of the ROM storage media traditionally used to
hold the program, the scope of game play available with such systems is severely
limited.

One technique for overcoming such a limitation is to enable the gaming
machine to retrieve at least a portion of its game code from a remote location such as,
for example, a remote game server. One example of a game server that may be used
with the present invention is described in co-pending U.S. patent application
09/595,798, filed on 6/16/2000, entitled “Using a Gaming Machine as a Server”
which is incorporated herein in its entirety and for all purposes. The game server
might also be a dedicated computer or a service running on a server with other
application programs. In order to gain approval in most gaming jurisdictions,
however, it must be demonstrated that sufficient safeguards are in place to prevent an
operator or player of a gaming machine from manipulating hardware and/or software
in a manner that gives them an unfair (and some cases) an illegal advantage.

According to at least one embodiment of the present invention, gaming

software and/or other code executed on the gaming machine 200 by the master gaming
20

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

controller 212 may be periodically verified, for example, by comparing software
stored in memory 216 for execution on the gaming machine 200 with certified copies
of the software stored on one or more trusted memory sources which, for example,
may reside at the gaming machine and/or at a remote location. In one implementation,
such a technique may be implemented using, for example, a pattern comparator 254
and a pattern authenticator 256 such as those illustrated in Figure 2.

In a specific embodiment where the patterns to be analyzed correspond to
selected portions of software code which may be executed by the master gaming
controller 212, the pattern comparator may be configured or designed to compare at
least some portion(s) of the gaming software scheduled for execution on the gaming
machine at a particular time with authenticated gaming software stored at one or more
trusted memory source(s) which are accessible to the gaming machine 200. The
trusted memory source(s) may comprise one or more file storage devices which, for
example, may be located at the gaming machine 200, on other gaming machines, on
remote servers, or combinations thereof. During operation of the gaming machine, the
pattern comparator periodically checks the gaming software programs being executed
by the master gaming controller 212 since, for example, the gaming software
programs executed by the master gaming controller 212 may vary with time.
Additional details relating to the pattern comparator functionality are described, for
example, with respect to Figures 3-5, and 8-9 of the drawings.

In the above-described embodiment, the pattern authenticator (described in
greater detail, for example, with respect to Figures 6-7 and 8-9) may be configured or
designed to access, at the trusted memory source(s), authenticated portions of the
gaming software being checked by the pattern comparator. During the boot process for
the gaming machine 200 (see e.g., Figure 7), the pattern authenticator may be loaded
from an EPROM such as 208. The master gaming controller 212 executes various
gaming software programs using one or more processors 210. During execution, a
software program may be temporarily loaded into the memory 216 such as, for
example, RAM 209. Depending on the current operational state of the gaming
machine, the types of software programs loaded in the memory 216 may vary with
time. For instance, when a game is presented, particular software programs or

executable code used to present a complex graphical presentation may be loaded into

21

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

memory 216. However, when the gaming machine 200 is idle, these graphical
software programs may not be loaded into the RAM.

According to a specific embodiment, the pattern comparator and pattern
authenticator may execute simultaneously with the execution of the other software
programs on the gaming machine. Thus, the gaming machine is designed for “multi-
tasking” i.e. the execution of multiple software programs simultaneously. In at least
one embodiment, the pattern comparator and pattern authenticator processes may be
used to verify executable code. However, the present invention is not limited to the
verification of executable code. More specifically, as described in greater detail
below (e.g., with respect to Figures 8-9), the technique of the present invention may
be used: (1) to verify selected patterns of files, images, data, code, or other
information; and/or (2) to identify unauthorized or anomalous patterns of files,
images, data, code, or other information associated with gaming machine operations.

Details of gaming software programs that may be executed on a gaming
machine and an object oriented software architecture for implementing these software
programs are described in co-pending U.S. patent application 09/642,192, filed on
8/18/00 and entitled “Gaming Machine Virtual Player Tracking and Related
Services,” which is incorporated herein in its entirety and for all purposes and U.S.
Patent No. 6,804,763, entitled “High Performance Battery Backed Ram Interface”
which is incorporated herein in its entirety and for all purposes.

Various gaming software programs, loaded into memory 216 for execution,
may be managed as “processes” by an operating system used on the gaming machine
200. The operating system may also perform process scheduling and memory
management. An example of an operating system that may be used with the present
invention is the QNX operating system provided by QNX Software Systems, LTD
(Kanata, Ontario, Canada).

The pattern comparator may use information provided by the operating system,
such as process information for processes scheduled by the operating system, to select
gaming software executables for pattern analysis, verification, and/or validation.
According to a specific embodiment, pattern validation may involve the comparing of
a selected pattern against a known, valid instance of that pattern. For example, the
Code Comparator process may be configured or designed to compare patterns

executing in memory against their counterparts on the hard drive. Pattern verification
22

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

may involve the comparing of a selected pattern against one or more known or
suspected invalid patterns such as, for example, the comparing of a selected pattern
against patterns of known viruses.

According to a specific embodiment, the QNX operating system may provide a
list of process that are currently being executed on the gaming machine and
information about each process (See, e.g., Figure 3). With QNX, the pattern
comparator and pattern authenticator may be processes scheduled by the operating
system. The present invention is not limited to an operating system such as QNX. The
pattern comparator may be used with other operating systems that provide information
about the software programs currently being executed by the operating system and the
memory locations of these software units during execution to verify the gaming
software programs executing on the gaming machine. For instance, the pattern
comparator may be used with Linux (Redhat, Durham, North Carolina), which is an
open source Unix based operating system, or Windows NT or MS Windows 2000
(Microsoft, Redmond, Washington). Windows utilizes a RAM image on the hard
drive to create a virtual paging system to manage executable code. The present
invention may be applied to verify executable code managed by a virtual paging
system. Further, the executable formats and dynamic link libraries between operating
systems may vary. The present invention may be applied to different executable
formats and link libraries used by a particular operating system and is not limited to
the format and libraries of a particular operating system.

According to a specific embodiment, the pattern authenticator searches a file
system available to the gaming machine for certified/authentic copies of gaming
software programs currently being executed by the gaming machine. The file system
may be distributed across one or more file storage devices. The certified/authentic
copies of gaming software programs may be certified after a regulatory approval
process as described above. The certified/authentic copies of gaming software
programs may be stored in a “static” mode (e.g. read-only) on one or more file storage
devices located on the gaming machine 200 such as file storage device 214 or
EPROM 208. The file storage devices may be a hard-drive, CD-ROM, CD-DVD,
static RAM, flash memory, EPROM’s, compact flash, smart media, disk-on-chip,

removable media (e.g. ZIP drives with ZIP disks, floppies or combinations thereof.

23

10

15

20

25

30

WO 2007/030404

PCT/US2006/034366

The file system used by the pattern authenticator may be distributed between
file storage devices located on the gaming machine or on remote file storage devices.

One advantage of the pattern analysis techniques of the present invention is
that gaming software programs executed in a dynamic manner (e.g., different gaming
software programs may be continually loaded and unloaded into memory for
execution) may be regularly checked to ensure the software programs being executed
by the gaming machine are certified/authentic programs. The verification process may
be used to ensure that approved gaming software is operating on the gaming machine,
which may be necessary to satisfy gaming regulatory entities within various gaming
jurisdictions where the gaming machine may operate. The gaming machine may be
designed such that when uncertified, invalid and/or inauthentic programs are detected,
an error condition is generated and the gaming machine shuts down. Thus, the present
invention enables software architectures and hardware developed for personal
computers to be applied to gaming machines.

For purposes of illustration, aspects of the pattern analysis techniques of the
present invention will now be described by way of illustration with respect to Figures
3-7 of the drawings which relate to a specific embodiment where the patterns to be
analyzed correspond to selected portions of software code which may be executed by
the master gaming controller 212.

FIGURE 3 is a block diagram of a gaming process file structure 300 in
accordance with a specific embodiment of the present invention. As a player utilizes a
gaming machine in the manner described above, many different software programs
may be executed by the gaming machine. As different gaming software programs are
executed by the gaming machine, an operating system running on the gaming machine
assign the programs memory location in RAM and then schedule and track the
execution of each program as “processes.” The pattern analysis engine (e.g., 250),
which may also be configured as a process, may be used to verify itself and the other
processes being executed from RAM.

In one example, every time a process is launched in the operating system, a
special directory, such as 310, 315, 320, 325 and 330, is created under the directory
“/proc” 305 (e.g. the process directory) in the operating system. The name of this
directory is identical to the process ID number (PID) of the process. For instance,

process directories corresponding to process ID numbers “17, “27, “4049”, “1234” and
24

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

“6296” are stored under the “/proc” 305 directory. The process directories ﬁsted under
the “/proc” directory 305 may vary as a function of time as different processes are
launched and other process are completed.

In one embodiment, under each PID directory, such as 310, 315, 320, 325 and
330, an address space (AS) file, titled “AS”, may be stored. The AS files, such as 335,
340, 345, 350 and 355 may contains various information about its parent process.
Ttems stored in this file may include, among other things, the command line name
used to launch the program and it’s location in RAM (e.g. 350) and the names and
location in RAM of the shared objects (so) that the process uses (e.g. 352, 354 and
356). A shared object is a gaming software program that may be shared by a number
of other gaming software programs.

The shared objects used by a process on the gaming machine may vary with
time. Thus, the number of shared objects such as 352, 354 and 356 used by a process
may vary with time. For instance, a process for a game presentation on a gaming
machine may launch various graphical shared objects and audio shared objects during
the presentation of a game on the gaming machine and various combinations of these
shared objects may be used at various times in the game presentation. For example, a
shared object for a bonus game presentation on the gaming machine may only be used
when a bonus game is being presented on the gaming machine. Hence, a process fora
bonus game presentation may be launched when a bonus game presentation is
required and the process may terminate when the bonus game presentation is
completed. When the game presentation process uses the bonus game presentation
shared object, the launching and the termination of the bonus game presentation
shared object may be reflected in the AS file for the game presentation process.

The pattern analysis engine may use the AS files to determine which game
related processes are currently being executed on the gaming machine. The pattern
analysis engine may also be a process designated in the “/proc” directory 305. Also, in
the “/proc” directory there may exist one or more directories that are not
representations of process Ids. These include, but are not limited to, SELF, boot 330,
ipstats, mount, etc. When parsing the “/proc” directory, these directories are skipped
as they do not represent game related code. Once a valid directory is found, e.g.,

«“4049” 320, it is opened and the “AS” file in it may parsed. A detailed method of

25

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

using the “AS” file as part of a code validation/authentication process is described
with respect to FIG. 4.

FIGURE 4 is a flow chart depicting a method 400 of validating the
authenticity of a process temporarily stored in RAM on a gaming machine using the
pattern analysis engine in accordance with one embodiment of the present invention.
As described above, the pattern analysis engine may be used with other operating
systems which may affect the comparison process. Thus, the following example is
provided for illustration purposes only.

In 401, a pattern analysis process, which, for example, may be implemented by
the pattern analysis engine 250, is instantiated. Various processes may be scheduled
for execution on the gaming machine at the same time. Thus, the operating system
determines the order in which to execute each process. An execution priority may be
assigned to each process. Thus, processes with a higher priority will tend to execute
before lower priority processes scheduled to run on the gaming machine.

In one embodiment, the pattern analysis process may be scheduled to run at a
low priority where the pattern analysis process may be automatically launched at
regular intervals by the operating system. Therefore, during its execution, the pattern
analysis process may be preempted by other higher priority processes that may
add/remove/reload additional processes. For this reason, the design of the pattern
analysis process may include methods to detect when the execution of the pattern
analysis process has been preempted and methods to respond to the
addition/removal/reloading of processes that may have occurred while the pattern
analysis process was preempted.

In other embodiments, the pattern analysis process may not always be a low-
Jevel process. During certain states of the gaming machine, the pattern analysis
process may be scheduled as a high priority process. For instance, when the pattern
analysis process has not been executed over a specific period of time, the priority of
the pattern analysis process may be increased until the process is completed. In
another example, the pattern analysis process may be launched and complete its tasks
without interruption from other processes.

In 405, after the pattern analysis process has been launched, it begins to check
each process instantiated by the operating system that is listed under the “/proc”

directory as described with respect of FIG. 3. It is preferable that the pattern analysis
26

10

15

20

25

30

WO 2007/030404

PCT/US2006/034366

process be able to open the “/proc” directory. When it can not open the directory, an
error is generated as described with respect to FIG. 5. The pattern analysis process
may check PID directories in a certain range of integer values. PID directories within
the range of integer values may correspond to gaming software programs verified by
the pattern analysis process, while PID directories outside of the integer range may not
be verified by the pattern analysis process.

In 410, the pattern analysis process opens the “AS” as described with respect
to FIG. 3. When the “AS” file can not be opened, an error condition may be triggered.
In 415, when the “AS” file is opened, the pattern analysis process parses process
information such as an executable file name corresponding to the process and a
temporary memory location of the process in RAM. In addition, the pattern analysis
process may parse from the “AS” file the executable file names and temporary
memory locations of the processes in RAM for one or more shared objects used by the
process. When information from the “AS” file can not be obtained by the pattern
analysis process a number of error conditions may be triggered. Further details of 410
and 415 involving opening and parsing the “AS” file are described with respect to -
FIG. 5.

In 420, when the pattern analysis process has obtained a file name
corresponding to the process in the “AS” file, the location of the file is requested, for
example, from the pattern authenticator. According to a specific embodiment. the
pattern authenticator may be configured to include pattern identification functionality.
The location of the file may be requested from the pattern authenticator via, for
example, an inter process communication (IPC) from the pattern analysis process.
IPCs allow processes instantiated by the operating system to share information with
one another.

According to a specific embodiment, when asking the pattern authenticator for
the location(s) of a given file, the full file name and a vector of string pointers, i.e.,
vector <String *>, are passed. The pattern authenticator application prograﬁ interface
(API) fills the vector with a list of paths to file locations corresponding to the file
name received from pattern authenticator and returns the vector to the pattern analysis
process via an IPC. The list of paths correspond to matching files found on the file
storage media (e.g., memory 216) identified by the pattern authenticator. If no

matches are found, the vector returned by the authenticator is empty or may contain an
27

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

error message. Details of one search method used by the paitern authenticator is
described with respect to FIG. 6.

In 425, the pattern analysis process examines the vector returned by the pattern
authenticator. When the vector is empty, the process identified by the pattern analysis
process may be considered a rogue process. In 430, an error condition, such as “file
not found”, may be reported by the pattern analysis process. The error condition may
cause the system manager on the gaming machine to take an action such as shutting
down, rebooting, calling an attendant, entering a “safe” mode and combinations
thereof.

In 435, operating instructions temporarily stored in RAM corresponding to a
process executing on the gaming machine are compared with a certified/authentic
operating instructions stored in a file located by the pattern authenticator. In the
operating system for one embodiment of the present invention, files are stored using
an Executable and Linking Format (ELF). Details of the ELF format are described as
follows and then a comparison by the pattern analysis process of operating
instructions for a process stored in RAM with operating instructions stored in a
corresponding ELF file are described.

Generally, there are three ELF file types: 1) executable, 2) relocatable and 3)
shared object. Of these three, only the executable and shared object formats, which
may be executed by the operating system, are used by the pattern analysis process.
There are five different sections that may appear in any given ELF file including a) an
ELF header, b) a program header table, ¢) section header table, d) ELF sections and)
ELF segments. The different sections of the ELF file are described below.

The first section of an ELF file is always the ELF Header. It is the only
section that has a fixed position and is guaranteed to be present. The ELF header has
three tasks: 1) it details the type of file, target architecture, and ELF version, 2) it
contains the location within the file of the program headers, section headers, and
string tables as well as their size and 3) it contains the location of the first executable
instruction.

The Program Header Table is an array of structures that can each describe
either a segment in the file or provide information regarding creating an executable
process image. Both the size of each entry in the program header table and the

number of entries reside in the ELF header. Every entry in the program header table
28

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

includes a type, a file offset, a physical and virtual addresses, a file size, a memory
image size and a segment alignment. Like the program header table, the section header
table contains an array of structures. Each entry in the section header table contains a
name, a type, a memory image starting address, a file offset, a size an alignment and a
section purpose. For every section in the file, a separate entry exists in the section
header table.

Nine different ELF section types exist. These consist of executable, data.
dynamic linking information, debugging data, symbol tables, relocation information,
comments, string tables and notes. Some of these types are loaded into the process
image, some provide information regarding the building of the process image, and
some are used when linking object files. There are three categories of ELF segments:
1) text, 2) data and 3) dynamic. The text segment groups executable code, the data
segment groups program data, and the dynamic segment groups information relevant
to dynamic loading. Each ELF segment consists of one or more sections and provide
a method for grouping related ELF sections. When a program is executed, the
operating system interprets and loads the ELF segments to create a process image. If
the ELF file is a shared object file, the operating system uses the segments to create
the shared memory resource.

In 435, the comparison process may include first verifying the ELF header and
then verifying the program blocks. When a program is temporarily loaded in RAM as
a process, only the program blocks that are marked as loadable and executable in the
ELF file will exist in RAM and, therefore, are the only ones verified.

To validate a process loaded in RAM, the pattern analysis process opens a file
on the storage device where the file is located. The pattern analysis process begins
with the first file in the vector of file paths sent to the pattern analysis process by the
pattern authenticator. In 415, the RAM address of the loaded process is obtained from
»AS” when the ”AS” file is parsed. The RAM address marks the start of the loaded
ELF header. The loaded ELF header is verified against the corresponding ELF header
from the file on the storage device. Since the size of the ELF header is fixed, this
comparison is a straight forward byte comparison. If the ELF header matches, the
program blocks are then checked.

In at least one implementation, pattern comparison operations may be

performed by the pattern comparator 254. The pattern comparator may consider two
29

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

things when comparing ELF program blocks. First, what program blocks were
loadable and/or executable and second, where do each of the program blocks reside in
RAM. The number of program headers resides in the ELF header. Each of these
headers, in turn, contains the offset to the code block that they represent as well as
whether or not it is loadable or executable.

The starting address for where, in RAM, the code exists, resides in the “AS”
file. This is the same for the file except that the starting address of the file pointer is
used to determine the start of the program. All executable/loadable program blocks in
RAM are compared against the file stored on the storage media. Data blocks which
may vary as the program is executed are not usually checked. However, in some
programs, “fixed” or static data blocks may be checked by the pattern comparator. In
one embodiment, when all blocks check out, the comparison is deemed successful. In
another embodiment, only a portion of the program blocks may be checked by the
pattern comparator. To decrease the time the comparison process takes, partial or
random section portions of code may be compared. In one embodiment, a bit-wise
comparison method is used to compare code. However, the method is not limited to a
bit-wise comparison other comparison methods may be used or combinations of
comparison methods may be used.

During the file comparison process, a mismatch may result from several
different conditions including but not limited to the conditions described as follows.
First, it is possible that the pattern analysis process was pre-empted and that the
process that is currently being verified was terminated. Second, it is also possible that
the RAM contents or file contents for the process in question may have been
corrupted. Third, the file being compared could have the same name as the file used to
launch to process but not actually be the same file. This condition may occur, for
example, when the pattern authenticator returns a vector with multiple file paths
corresponding to the file name sent to the pattern authenticator by the pattern analysis
process. Fourth, the process executing in RAM may have been altered in some manner
in an attempt t(; tamper with the gaming machine.

In 440, the pattern analysis process checks the status of the RAM and file
compare process. In 445, when the compare is accepted (the conditions for accepting
the compare may be varied), the pattern analysis process begins to check any shared

objects for the process obtained from the “AS” file. When the process does not use
30

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

shared objects, the pattern analysis process continues to the next PID directory in 405.
When the process is using one or more shared objects, the pattern analysis process
sends a request to the pattern authenticator to find file locations corresponding to the
file name for the shared object in 420.

In 442, when a mismatch occurs, to determine whether the process has
terminated, the “AS” file for the process is re-parsed and the newly obtained contents
are compared against the original contents obtained initially. When the “AS” file is
no longer accessible, the process was terminated during the compare process and the
comparison is aborted and an error condition is not generated. When the “AS” file
can be re-parsed but the file name stored within the “AS” file has changed, then the
original process may been terminated and a new process may have been started with
the same process identification number (PID). In this case, the comparison process is
aborted and error condition is not generated.

In 445, when the newly obtained contents from the “AS” file match the
original contents of the “AS” file in 442, the comparison process continues with the
next file from the matching file list in the vector that was obtained via the pattern
authenticator process. When the pattern analysis process reaches the end of this
vector list without matching the process, a rogue process may be running and an error
condition is reported in 450 to the system manager. In 440, when a comparison fails
because of a RAM and/or file corruption, the pattern analysis process may check
whether the process has terminated in 442 and continue to the next the file in the
authenticator file list in 445. Once the end of the authenticator file list is reached, the
pattern analysis process will declare a rogue process and report the error in 450.

FIGURE 5 is a flow chart depicting a method of parsing an address space (AS)
file as described with respect to 410 and 415 in FIG. 4. The method is presented for
illustrative purposes as it is specific to the QNX operating system. A similar method
may be developed for different operating systems such as Linux or Windows NT. In
500, the pattern analysis process attempts to open the process directory (“/proc” as
described with reference to FIG. 3), which is provided by the operating system and
contains a list of all the processes currently scheduled for execution. In 505, when the
process directory can not be opened, an error is sent by the pattern analysis process to
the system manager indicating the process directory can not opened. In one example,

the process directory as well as other directories below the process directory may be
31

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

inaccessible because an access privilege has been set on the directory that prevents
access by the pattern analysis process. Access privileges for directories are well know
in UNIX based operating systems such as QNX.

In 510, when the process directory can be opened, the pattern analysis process
selects the next directory in the list of PID directories under the process directory. The
PID directories are listed as integers. The pattern analysis process, which may be
repeatedly pre-empted by other process while performing the code comparison, stores
which integer PID it is currently comparing and then proceeds to the next closet
integer after the compare on the current process is completed. In 515, the pattern
analysis process compares the selected integer PID number with a range of integers.
Not all processes are necessarily compared by the pattern analysis process. In general,
only processes within a particular numerical range corresponding to gaming software
that has been certified are verified by the pattern analysis process. When the PID
directory number does not fall within the range of integers checked by the pattern
analysis process or the PID directory has a text name, such as boot, the pattern
analysis process proceeds to the next PID directory in the process directory in 510.

When the PID directory is within the integer range of processes which the
pattern analysis process checks, in 520, the pattern analysis process attempts to open
the PID directory. In 521, when the PID directory can not be opened, the comparator
determines whether the process was terminated by the operating system. When the
process was terminated by the operating system, the pattern analysis process moves to
the next directory in the process directory in 510. In 522, when the PID directory can
not be opened and the process was not terminated by the operating system, an error
message is posted to the operating system. A way of tampering with the gaming
machine may be to generate a process that can not be checked by the pattern analysis
process and/or other components of the pattern analysis engine.

In 525, when the PID directory can be opened, the pattern analysis process
attempts to open the Address Space (AS) file as described with reference to FIG. 2.
The “AS” file may contain a process memory address location, a process executable
file name, shared object memory address locations used by the process and shared
object executable file names corresponding to the shared objects. In 540, the pattern

analysis process attempts to read the “AS” file. In 550, when the file is readable, the

32

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

pattern analysis process continues with the comparison process according to 420 in
FIG. 4.

In 540 when the pattern analysis process can not get information from the
“AS” file, the pattern analysis process checks for the “Error for Search (ESRCH)”
error condition in 545. The error code ESRCH is returned when the requested file
does not exist and indicates that the process the pattern analysis process was trying to
access was removed. When the pattern analysis process detects this error code, the
error is ignored and the pattern analysis process continues to the next PID directory in
510. In 555, when an ERSCH error condition is not detected, an error message is sent
to the system manager indicating the “AS” file can not be parsed. The “AS” may not
be parsable for a number of reasons. For instance, the data in the “AS” may have been
corrupted in some manner that prevents the pattern analysis process from reading the
file.

In 525 when the “AS” can not be opened, only one error code, “Error No Entry
(ENOENT)” is tolerated. The ENOENT error code is returned when the requested file
does not exist. It indicates that the process the pattern analysis process was trying to
access was removed by the operatirlg system. In 530, the pattern analysis process
checks for the ENOENT code. When an ENOENT error code has been generated, the
code is ignored and the pattern analysis process moves on to the next PID directory in
510. The ENOENT code may have béen generated because the pattern analysis
process was preempted during its operation by the execution of one or more higher
priority processes. While the higher priority processes were being executed, the
process that the pattern analysis process was checking may have been terminated.
When any other error code is detected by the pattern analysis process, in 535 an error
message is sent to the operating system indicating that the “AS” can not be opened.
For instance, the “AS” file may exist but the pattern analysis process may not have the
access privilege to open the file which would generate an error condition other than
ENOENT and hence an error condition in 535.

FIGURE 6 is a flow chart depicting a method of locating authentic process
files. In 420, as described above, the pattern analysis process sends a file name request
via an interprocess communication to the pattern authenticator. In 605, via the pattern
authenticator application program interface, the pattern authenticator receives a file

name. The pattern authenticator searches through a list of file names where each file
' 33

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

name corresponds to certified executable gaming software program. The certified
gaming software programs may be stored on storage media, i.et one or more file
stbrage devices, located within the gaming machine, located outside of the gémiﬁg
machine or combinations thereof. A portion of the certified executable gaming
software programs may have been approved by a gaming regulatory agency ina
gaming jurisdiction for use on gaming machines in the gaiming jurisdiction. In cases
where a gaming jurisdiction does not require certiﬁcation of a particular software
program, the gaming software program may also be certified as authentic by the
gaming manufacturer for security reasons. Further details of péttern authenticator
application may be found in co-pending U.S. Application no. 10/458,846, filed on
June 10, 2003, by LeMay, et al., “Method and Apparatus for Software Authentication”
which is incorporated in its entirety and for all purposes.

In 610, the pattern authenticator determines whether it has reached an end of
the list of certified file names. When the pattern authenticator has not reached the end
of the list, in 615, the pattern authenticator gets the next file name of the list. In 620,
when the name from the list matches the name received from the pattern analysis
process, the path to the file, which may be the location of the file in a file structure
stored on a file storage device, is added to a list of matched files detected by the
pattern analysis process. .

The list of matched files is stored in a vector which may contain zero files
when no files have been matched to a plurality of files when multiple matches have
been detected by the pattern analysis process. In the case where multiple matches have
been detected, the multiple files may reside on a common file storage device or the
multiple files may reside on different file storage devices. In 620, when a match is not
detecte‘d, the pattern authenticator checks the next file entity on the list for a match. In
630, after the entire list of certified file names has been searched, the authenticator
sends a vector, which may be empty, containing a list of matches detected by the
pattern authenticator, to the pattern comparator via an IPC.

FIGURE 7 is a flow chart depicting a method 800 of initializing an
authenticator and other components of the pattern analysis engine on a gaming
machine. In 805, an authenticator such as, for example, the pattern authenticator 25 6,
is loaded by the BIOS from an EPROM (see, e.g., FIG 2). The pattern authenticator

may be stored on an EPROM or other trusted memory source for security and gaming
' 34

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

approval reasons. The EPROM storing the pattern authenticator can be submitted for
approval to a gaming jurisdiction. Once the EPROM has been approved, as was
previously described, a unique signature may be generated for the EPROM. The '
unique signature fnay be checked when the EPROM is installed on the gaming
machine in the local gaming jurisdiction. Since software stored on the EPROM is
generally difficult to alter, the use of the EPROM may also prevent tampering with the
gaming machine. ‘

'In 81 0, after the pattern authenticator has been loaded from the EPROM, the
pattern authenticator may validate itself. For instance, a CRC may be performed on
the authenticator software to obtain'a CRC value. The CRC value may be compared
with a certified CRC value stored at some location on the gaming machine. In 812, the
validation check is performed. When the authenticator is not valid, the initialization of
the gaming machine is halted in 835 and the gaming machine may be shutdown or
placed in a safe mode. In 815, the pattern authenticator may compare a list of certified
software programs stored in the EPROM with a list of software programs available on
the gaming machine. As an example, the EPROM may contain about 1 Megabyte of
memory available for storage purposes but is not limited to this amount. The pattern
authenticator may also perform other files system checks.

In 817, if file system has not been validated, the launch of the gaming machine
is halted and the gaming machine may be shutdown or placed in a safe mode in 835.
However, if the file system has been validated, the system manager is launched in 820.
In 825 and 830, the system manager launches the game manger and other pattern
analysis engine components such as, for example, the pattern comparator. Once
components of the pattern analysis engine have been launched, the pattern analysis
procedure may continually run in the background preferably as a task in a “multi-
tasking system.” Alternatively, the pattern analysis procedure may be triggered to run
upon the occurrence of one or more predetermined events.

As another advantage, the pattern analysis techniques of the present invention
may also be used to identify known or suspected invalid patterns, and to ensure that
“rogue” programs are not operating on the gaming machine. For instance, one method
which may be used to tamper with a gaming machine might be to introduce a rogue
information onto the gaming machine and/or it’s associated peripheral components.

For example, rogue code may be used to trigger illegal jackpots on a gaming machine;
35

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

pay table data may be illegally altered to increase game payouts; operating code for
the bill validator may be illegally altered to accept counterfeit bills; etc.

As described in greater detail below, the technique of the present invention
may be used: (1) to verify selected patterns of files, images, data, code, or other
information; and/or (2) to identify unauthorized or anomalous patterns of files,
images, data, code, or other information associated with the gaming machine and/or
its peripheral components. The technique of the present invention may also be
applied to verify any data structures or other information loaded into RAM from mass
storage devices used in the presentation of a game on a gaming machine or in any
other gaming service provided by the gaming machine. In this way the technique of
the present invention may be implemented as an additional security measure to help
reduce the risk of unauthorized tampering of a the gaming machine.

Figure 8 shows a flow diagram of a Pattern Analysis Procedure 850 in
accordance with a specific embodiment of the present invention. In at least one
implementation, the Pattern Analysis Procedure 850 may be implemented at gaming
machine 200 (Figure 2) using hardware, software, or a combination thereof. In at Jeast
one embodiment, the Pattern Analysis Procedure 850 may be used for analyzing
selected patterns of data relating to files, images, code, data, or other information in
order, for example, to validate the authenticity of such patterns and/or to detect any
anomalies.

In at least one implementation, the Pattern Analysis Procedure may be
implemented by the master game controller 212 of Figure 2. According to specific
embodiments, a variety of different events may be used to trigger execution of the
Pattern Analysis Engine or its related processes as described, for example, in Figures
4-9, For example, one event may correspond to the gaming machine door being
opened or closed. A second event may be the initialization cycle of the gaming
machine. A third event may correspond to a jackpot payoff. A fourth event that may
trigger the pattern analysis procedure is the completion of downloading of remote
game code data or other information from a remote server onto the gaming machine
memory. Examples of other events include: scheduled and/or random testing events;
execution of an executable pattern; monetary transfer to/from the géming machine;
attendant request via a gaming machine menu page; server request via a

communication protocol; tale-tell board indication of monitored gaming machine
36

10

15

- 20

25

30

WO 2007/030404 PCT/US2006/034366

hardware; received signals and/or other input from an external entity (e.g., remote
server, casino attendant, etc.); player input; etc. In at least one embodiment, the
detection of one or more specified events may cause the Pattern Analysis Procedure to
automatlcally execute for analyzmg selected pattems

During execution of the Pattern Analy51s Procedure, one or more patterns of
file data, image data, code, and/or other information may be analyzed. Initially, as
shown at 852, a first pattern is selected for analysis. According to different
embodiments, the'éelected pattern may correspond to one or more of the following: a
portion of a file or image; software code; operating code; gaming paytable data; audio
data; machine op-code patterns (e.g., device access commands, memory access
commands, bus access commands, etc); and/or other information relating to gaming
machine operations.

The selected pattern may be retrieved or acquired from a variety of different
sources such as, for example: processes residing within the gaming machine’s volatile
memory (e.g., RAM 209); files, images, data, code and/or other information residing
in memory 216 of the gaming machine; files, images, data; code and/or other
information residing in any of the peripheral devices 222; operating system code or
instructions; files, images, data, code and/or other information provided from an
external device such as, for example, a remote gaming server; hash codes, checksums
and/or other coded information relating to one or more files, images, data, code and/or
other information; information residing on portable memory devices such as CDs,
DVDs, flash drives, etc; BIOS information, boot loader information; and/or any
combination thereof. .

After a desired pattern has been selected for analysis, pattern ID information
relating to the selected pattern may be acquired (854). In at least one implementation,
the pattern ID information may include information ‘relaﬁhg to various characteristics
or parameters of the selected patterns such as, for ekainple: poiﬁter locations; pattern
names or other identifier information; the name or identity of the device or source
from which the pattern was acquired; code ot other information which relates to an
operation or function associated with a particular ‘machine component (such as, for
example, the IDE bus, PCI bus, PCI Ekpress bus, IS.A' bus, USB, Firewire, BIOS,
Northbridge, Southbridge, etc.); etc. For example, in one implementation where the

pattern corresponds to a portion of a process residing in RAM, the pattern information
37"

10

15

20

30

WO 2007/030404 PCT/US2006/034366

may include pointers to location of the process in volatile memory (RAM), and the
name of the process.

The pattern ID information may then be used (856) to retrieve pattern
comparison information from one or more trusted entities. According to specific
embodiments, the trusted entities and controlling circuitry may be designed to not
allow modification of the codé and data stored in the memory device while the
memory device is installed in the gaming machine. The code and data stored in these
devices may include authenticatioh algorithms, random number generators,
authentication keys, operating system kérnels, etc. Information provided by the
trusted entity may be provided or retrieved fron an internal storage medium (internal
to the gaming machine), from an external storage medium external to the gaming
machine, and/or from an external source for remote source such as a gaming server or
other type of server via a network.

One purpose of the trusted entities is to provide gaming regulatory authorities
a root trusted authority within the computing environment of the gaming machine that
can be tracked and verified as original. In at least one embodiment, at least a portion
of the trusted entities/sources may correspond to memory which cannot easily be
altered (e.g., “unalterable memory”) such as, for example, EPROMS, PROMS, Bios,
Extended Bios, and/or other memory sources which are able to be configured,
verified, and/or authenticated (e.g., for authenticity) in a secure and controlled
manner. InA one implementation, a trusted entity may include one or more remote
hosts or servers. According to a specific implementation, when a trusted information
source is in communication with a remote device via a network, the remote device
may employ a verification scheme to verify the identity of the trusted information
source. In at least one embodiment, the pattern authenticator may be configured as a
software process which resides in a boot PROM of the gaming machine, which may
be considered a trusted entity. ' '

According to a specific embodiment, the pattern comparator 254 may be
configured or designed to acquire the pattern ID information for the selected pattern,
and provide the pattern ID information to the pattern authenticator 256 (which may be
configured as a trusted entity). The pattern authenticator may then respond by
providihg information relating to one or more locations (e.g., on the hard drive) where

portions of the comparison patterns (corresponding to the pattern ID information) can
' 38

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

be found. The pattern authenticator (or trusted entity) may also be configured or
designed to provide a portion of the comparison patterns to the pattérn compérator.
Thus, for example, in one in{piementation the pattern aﬁthenﬁcator may return a list of
file paths associated with a particular pattern name. The list may reference different
memory locations, for example, if there are shared objects in the gaming machine
system which reside in more than one location of the RAM and/or nonvolatile
memory. If the pattern authenticator cannot find a match, then it may be determined
that an error has been detected, and an appropriaté error-handling process may be
initiated. However, if the pattern authenticator identifies one or more memory
locations (e.g., on the hard drive) corresponding to the selected pattern, then the
selected pattern (e.g., from the RAM) may be matched against the appropriate
comparison patterns (which, for example, have already been authenticated) in
nonvolatile memory that have been identified by the pattern authenticator. According
to a specific implementation, before any data or code is able to be stored on the hard
drive of the gaming machine, it must first be authenticated using a specified
public/private key and and/or other security certificate.

In at least one implementation, the pattern comparison information may
include: (i) one or more valid, authenticated patterns associated with the pattern ID
information; and/or (ii) one or more patterns (associated with the pattern ID
information) which are known or suspected to be invalid/unauthorized.

Because each type of system operation can be mapped to a set of addresses for
a particular operating system, it is possible to génerate specific types of comparison
patterns for specific operations using information relating to the interface addresses
for such operations. Examples of invalid or suspect patterns may include
unauthorized or unnecessary commands relating to, for example: device access
actions; device driver access actions; hardware access actions; memory access acﬁons;
bus access actions; reprogrammable device program/erase actions, periphefal device
access actions; known machine op-code patterns (e.g., device access commands,
memory access commands, bus access commands, etc); etc. For example, if the
pattern being analyzed relates to code for a USB driver, the USB driver may be
permitted to access the USB bus, but may not be permitted to access the serial or
parallel buses. Thus, if the USB driver code includes commands for accessing the

serial bus, such commands may be identified as being invalid or suspect or otherwise
39

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

anomalous. Other examples of invalid or suspect patterns include, for example:
viruses; rogue code or data; corrupted code or data; known software virus patterns;
known software worm patterns; known unauthorized machine op-code patterns; etc.

According to a specific embodiment, a pattern selected for analysis may be
deemed to be invalid if the selected pattern cannot be found on the local hard drive of
the gaming machine or, alternatively cannot be found at a trusted entity or a location
specified by the trusted entity for retrieving comparison patterns. In at least one
embodiment, the technique of the present invention may also be used to detect TSR
(terminiate and stay resident) anomalies in which invalid information is residing in
volatile memory, but has no corresponding location on the disk or other nonvolatile
memory.

According to a specific embodiment, the pattern authenticator or other trusted
entity may acquire information relating to the identified pattern from a variety of
sources. For example, the information that is providéd by the pattern authenticator or
trusted entity (e.g., location of pattern portions in memory, verified portions of the
identified pattern, unauthorized patterns relating to or associated with the identified
pattern, and/or other information relating to the identified pattern) may be retrieved
from a variety of sources including, for example, memory 216, and/or one or more
remote devices/ serveré via a network interface, etc. Addiﬁonally, pattern ID
information relating to identify of the pattern may be retrieved from a remote source.
For example, a pattern or portion thereof may be selected and provided to the Pattern
Analysis Engine 250. The Pattern Analysis Engine may then analyze the pattern,
extract and/or genefate relevant information relating to the pattern, and provide the
relevant information to an external entity (e.g., a remote server) in order to obtain the
pattern name and/or other pattern ID information relating to the selected pattern.

Returning to Figure 8, once the relevant pattern corhparison information has
been obtained, pattern analysis may then be performed (858) on the selected pattern
using the pattern comparison information. In at least one embodiment, the pattern
comparator 254 may be configured or designed to perform the pattern analysis. |

In at least one embodiment, the pattern analysis may be used to verify that
patterns selected for analysis conform with or match comparison patterns provided by
the pattern comparison information (which, for example, have been validated and/or

authenticated). Additionally (or alternatively), the pattern analysis may be used to
40

10

15

20

25

30

WO 2007/030404

PCT/US2006/034366

compare selected patterns against known or suspected invalid patterns in order to
identify anomalous or invalid portions of the selected patterrs. Each of these different
pattern analysis techniques is described in greater detail, for example, with respect to
Figure 9 of the drawings.

After the pattern analysis or pattern comparison operations have been
performed, a determination is made (860) as to whether any anomalies have been
detected. For example, an anomaly may be detected if the pattern comparatdr is not
able to verify that a selected pattern matches an authenticated comparison pattern. An
anomaly may also be detected if the pattern comparator identifies a match between a
selected pattern and a known invalid comparison pattern.

According to specific embodiments, if an anomaly is detected during the
pattern analysis, one or more appropriate anomaly handling procedure(s) may be
implemented (862) such as, for example: shutting down the gaming machine;
notifying a human operator or remote server of the detected anomaly; halting all or
partial executions of code at the gafning machine; perforrning a memory core dump in
order, for example, to pfeserve the state of all processes of the gaming machine as of
the time the anomaly was detected; capturing and/or recording patterns relating to

identified anomalies; reformatting and reloading selected portions of the gaming

 machine memory; etc.

" For example, according to a specific embodiment, if a particular pattern being
anaiyzed is identified as being rogue, invalid or unaﬁthorized, the identified pattern
may be stored in a write-only memory location of non-volatile storage at the gaming
machine. Once the image of the rogue pattern hasbeen stored in memory, it may later
be used or added to a database of rogue or invalid patterns which may then be
downloaded to other gaming machines so that the Pattern Analysis Engines of those
gaming machines may perform specific searches for the identified rogue pattern(s).

' Another error handling technique may include halting execution of one or
more software componenta of the gaming machine in order to préserve their state for
subsequent analysis. For example when an anomaly is detected, the gamine machine
is not shut down, but rather code executing on the gaming machine (e.g., only the
process that is identified as being invalid, or the entire system) may be halted from

that point on.

41

10

15

20

25

30

WO 2007/030404

PCT/US2006/034366

After the appropriate anomaly handling procedure(s) have been implemented,
or if no anomalies are detected for the specified pattern analysis, a determination may
be made (864) as to whether additional pattern analysis'is to be performed upon other
selected patterns. If so, then a next pattern may be selected (852) for analysis, as
described above.

Figure 9 shows an example of a Pattern Comparison Procedure 900 and
according us with a specific.embodiment of the present invention. According to a
specific embodiment, the Pattern Comparison Procedure 900 of Figure 9 may be
implemented by one or more components of the Pattern Analysis Engine such as, for
example, pattern comparator 254. In at least one implementation, the Pattern
Comparison Procedure 900 may be initiated when performing pattern analysis or
pattern comparison operations as described, for example, at 858 of Figure 8.

As illustrated in the embodiment of Figure 9, the Pattern Comparison
Procedure 900 may be configured or designed to perform different types of pattern
comparisons such as, for example: valid pattern verification (902) and/or invalid
pattern identification (920). In at least one embodiment, valid pattern verification may
include verifying that patterns selected for analysis conform with or match comparison
patterns provided by the pattern comparison information. Invalid pattern
identification may include comparing selected paﬁerns against known or suspected
invalid patterns in order to identify anomalous or invalid portions of the selected
patterns. '

During valid pattern verification, a first/next valid comparison pattern may be
selected (904) from the pattern comparison information (e. g., described previously in
Figure 8). In at least one implementation, the selected valid comparison pattern may
correspond to a trusted pattern which has been validated and/or authenticated.

A cbmparison may then be perforrried (906) between the pattern selected for
aﬁalysis (e.g., at 852 of Figure 8) and the selected valid comparison péttei‘n. In one
embodiment, the pattern comparison operatiohs may be performed by the pattern
comparator 254. According to different embodiments, the valid comparison pattern
may be compared to the entirety or one or more selected portions of the pattern

selected for analysis.

42

10

15

20

25

30

WO 2007/030404

PCT/US2006/034366

According to specific embodiments, if an anomaly is detected (908) as a result
of performing the pattern comparison, one or more appropriate anomaly handling
procedure(s) may be impleménted (910).

- After the appropriate anomaly handling procedure(s) have been implemented,
or if no anomalies were detected during the pattern comparison, a determination may
be made (912) as to whether additional valid pattern comparisons are to be performed
upon the selected pattern. If so, then a next valid comparison pattern may be selected
(904) for comparison with the pattern selected for analysis.

During invalid pattern verification, a first/next invalid comparison pattern may
be selected (922) from the pattern comparison information (e.g., described previously
in Figure 8). In at least one implementation, the selected invalid comparison pattern
may correspond to a pattern which is known or suspected as being invalid with respect
to the pattern selected for analysis (e.g., at 852 of Figure 8).

A comparison may then be performed (924) between the pattern selected for
analysis and the selected invalid comparison pattern. In one embodiment, the pattern .
comparison operations may be performed by the pattern comparator 254. According
to different embodiments, the invalid comparison pattern may be compared to the
entirety or one or more selected portions of the pattern selected for analysis.

According to specific embodiments, if a match is detected (926) as.a result of
performing the pattern comparison, one or more appropriate anomaly handling
procedure(s) may be implemented (928).

After the appropriate anomaly handling procedure(s) have been implemented,
or if no anomalies were detected during the pattern comparison, a determination may
be made (930) as to whether additional invalid pattern comparisons are to be
performed upoh the selected pattérn. If so, then a next invalid comparison pattern
may be selected (922) for comparison with the pattern selected for analysis.

In addition to analyzing patterns xesiding in the primary memory of the gaming
machine, the Pattern Analysis Engine may also analyze patterns of files, images, data,
code, and/or other information residing in the memory of associated peripheral
devices (e.g., 222), and/or patterns which are provided from other external sources or
remote sources. For example, desired portions of data or code from selected peripheral
devices 222 may be analyzed for validation purposes and/or may be analyzed in order

to detect presence of anomalies in the patterns being analyzed. Such a feature may be
43

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

particularly useful in environments or embodiments where the code executed by one
or more peripheral devices was provided via a remote gaming server via a network
connection. Thus, it will be appreciated that the technique of the present invention
provides additional security features for gamlng machine peripheral dev1ces which, in
turn, provide the benefit of preventing invalid or unauthorized code/data from being
executed or utilized on peripheral devices.

For example, in one implementation a bill validator module of gaming
machine 2 (Figure 1) may receive at leasf a portion of operating code from a remote
server. In order to verify that the received code is authentic and valid, the Pattern
Analysis Engine may analyze at least a portion of the bill validator code before the bill
validator is permitted to go online. In another example, data from the hopper pay
table may be analyzed by the Pattern Analysis Engine in order to validate the data and
ensure that it is correct.

It will be appreciated that the pattern analysis technique of the present
invention may be used to analyze patterns retrieved directly from persistent memory
or nonvolatile memory as well as volatile memory such as RAM. For example, in one
implementation, the pattern analysis procedure may be used to analyze one or more
selected patterns retrieved from the gaming machine disk drive and/or retrieved from a
remote gaming server before that pattern is loaded into the gaming machine RAM.

Additionally, in at least one implementation, the pattern analysis technique of
the present invention may be used to analyze patterns of data in selected portions of
the gaming machine memory independent of any existing file systems or file
structures. For example, in one implementation, the pattern analysis technique of the
present invention may be used to analyze selected sectors of raw data stored in one or
more locations of the gaming machine memory. In one embodiment, the memory
locations to be analyzed may be randomly selected, and/or may be selected using
predetermined criteria. ’ '

In addition to analyzing a raw data, the technique of the present invention may
also be used for analyzing processed data relating to one or more files, images, data or
other information associated with the gaming machine. For example, in one
implementation, the pattern analysis technique of the present invention may be used to
analyze one or more hash codes corresponding to one or more files/images stored in

the gaming machine memory. In one embodiment, the gaming machine of the present
’ ‘ 44

10

15

25

30

WO 2007/030404 PCT/US2006/034366

invention may be configured or designed to generate the processed data (e.g., hash
codes) using files, images, and/or other data stored in the gaming machine memory.
The generated processed data may then be analyzed, for example, using a comparison
pattern which also includes processed data. For example, one type of invalid
comparison pattern may correspond to a hash code that was generated using
executable code from a known rogue program. The Pattern Analysié Engine 1ﬁay use
this invalid comparison pattern, for example, to perform invalid pattern identification
when analyzing processed data relating to one or more files, images, raw data or other

information associated with the gaming machine.

Gaming System

TFigure 10 shows a block diagram illustrating components of a gaming system
1000 which may be used for irnplémenting various aspects of the present invention.
In Figure 10, the components of a gaming system 1000 for providing game software
licensing and downloads are described functionally. The described functions may be
instantiated in hardware, firmware and/or software and executed on a suitable device.
In the system 1000, there may be many instances of the same function, such as
muliiple game play interfaces 1011. Nevertheless, in F igure 10, only one instance of
each function is shown. The functions of the compornents may be combined. For
example, a single device may comprise the game play interface 1011 and include
trusted memory devices or sources 1009. A

* .The gaming system 1000 may receive inputs from different groups/entities and

output various services and or information to these groups/entities. For example, game
players 1025 primarily input cash or indicia of credit into the system, make game
selections that trigger software doWnloads, and recéive entertainment in exchange for
theif inputs. Game software content providers provide game software for the system
and may receive compensation for the content they provide based on licensing
agréements with the gaming machine operators. Gaming machine operators select
game software for distribution, distribute the game software on the gaming devices in
the system 1000, receive revenue for the vse of their software and compensate the
gafnirlg machine operators. The gaming regulators 1030 may provide rules and
regulations that must be applied to the gamihg system and may receive réports and

other information confirming that rules are being obeyed.

45

10

20

30

WO 2007/030404 PCT/US2006/034366

In the following paragraphs, details of each component and some of the
interactions between the components are described with respect to Figure 10. The
game software license host 1001 may be a server connected to a number of remote
gaming devices that provides licensing services to the remote gaming devices. For
example, in other embodiments, the license host 1001 may 1) receive token requests
for tokens used to activate software executed on the remote gaming devices, 2) send
tokens to the remote gaming devices, 3) track token usage and 4) grant and/or renew
software licenses for software executed on the remote gaming devices. The token
usage may be used in utility based licensing schemes, such as a pay-per-use scheme.

In another embodiment, a game usage-tracking host 1015 may track the usage
of game software on a plurality of devices in communication with the host. The game
usage-tracking host 1015 may be in communication with a plurality of game play

hosts and gaming machines. From the game play hosts and gaming machines, the

'game usage tracking host 1015 may receive updates of an ‘amount that each game

available for play on the devices has been played and on amount that has been
wagered per game. This information may be stored in a database and used for billing
according to methods described in a utility based licensing agreement.

The game software host 1002 may provide game software downloads, such as
downloads of game software or game firmware, to various devious in the game system
1000. For example, when the software to generate the game is not available on the
game pl‘ay interface 1011, the game software host 1002 may download software to
generate a selected game of chance played on the garne play interface. Further, the
game software host 1002 may download new game content to a plurality of gaming
machines via a request from a gaining machine operator. ‘

In one embodiment, the game software host 1002 may also be a game software
configuration-tracking host 1013. The function of the game software conﬁguration-
tracking host is to keep records of software configurations and/or hardware
configurations for a plurality of devices in communication with the host (e.g.,
denominations, number of paylines, paytables, max/min bets). Details of a game
software host and a game software configuration host that may be used with the
present invention are described in chpending U.S. patent no. 6,645,077, by Rowe,
entitled, “Gaming Terminal Data Repository and Information System,” filed

December 21, 2000, which is incorporated, herein in its entirety and for all purposes.
46

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

A game play host device 1003 may be a host server connected to a plurality of
remote clients that generates games of chance that are displayed on a plurality of
remote game play interfaces 1011. For example; the game play host deviéé 1003 may
be a server that provides central determination for a bingo gamé play played on a
plurality of connected game play interfaces 1011. As another example, the game play
host device 1003 may generate games of chance, such as slot games or video card
games, for display on a remote client. A game ﬁlayer using the remote client may be

able to select from a number of games that are provided on the client by the host

~ device 1003. The game play host device 1003 may receive game software

management services, such as receiving downloads of new game software, from the
game software host 1002 and may receive game software licensing services, such as
the granting or renewing of software licenses for software executed on the device
1003, from the game license host 1001.

In particular embodiments, the game play interfaces or other gaming devices in
the gaming system 1000 may be portable devices, such as electronic tokens, cell
phones, smart cards, tablet PC’s and PDA’s. The portable devices may support
wireless communications and thus, may be referred to as wireless mobile devices. The
network hardware architecture 1016 may be enabled to support communications
between wireless mobile devices énd other gaming devices in gaming system. In one
embodiment, the wireless mobile devices may be used to play games of chance.

The gaming system 1000 may use a number of trusted information sources.
Trusted information sources 1004 may be devices, such as servers, that provide
information used to authenticate/activate other pieces of information. CRC values
used to authenticate software, license tokens used to allow the use of software or
product activation codes used to activate to software are examples of trusted
information that might be proVided from a trusted information source 1004. Trusted
information sources may be a memory device, such as an EPROM, that includes
trusted information used to authenticate other information. For example, a game play
interface 1011 may store a private encryption key in a trusted memory device that is
used in a private key-public key encryption scheme to authenticate information from
another gaming device.

When a trusted information source 1004 is in communication with a remote

device via a network, the remote device will employ a verification scheme to verify
47

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

the identity of the trusted information source. For example, the trusted information
source and the remote device may exchange information using public and private
encryption keys to verify each other’s identities. In another embodiment of the present
invention, the remote device and the trusted information source may engage in
methods using zero knowledge proofs to authenticate each of their respective
identities. Details of zero knowledge proofs that may be used with the present
invention are described in US publication no. 2003/0203756, by Jackson, filed on
April 25, 2002 and entitled, “Authentication in a Secure Computerized Gaming
System, which is incorporated herein in its entirety and for all purposes.

Gaming devices storing trusted information might utilize apparatus or methods
to detect and prevent tampering. For instance, trusted information stored in a trusted
memory device may be encrypted to prevent its misuse. In addition, the trusted
memory device may be secured behind a locked door. Further, one or more sensors
may be coupled to the memory device to detect tampering with the memory device
and provide some record of the tampering. In yet another example, the memory device
storing trusted information might be designed to detect tampering attempts and clear
or erase itself when an attempt at tampering has been detected.

The gaming system 1000 of the present invention may include devices 1006
that provide authorization to download software from a first device to a second device
and devices 1007 that provide activation codes or information that allow downloaded
software to be activated. The devices, 1006 and 1007, may be remote servers and may
also be trusted information sources. One example of a method of providing product
activation codes that may be used with the present invention is describes in previously
incorporated US. patent no. 6,264,561.

A device 1006 that monitors a plurality of gaming devices to determine
adherence of the devices to gaming jurisdictional rules 1008 may be included in the
system 1000. In one embodiment, a gaming jurisdictional rule server may scan
software and the configurations of the software on a number of gaming devices in
communication with the gaming rule server to determine whether the software on the
gaming devices is valid for use in the gaming jurisdiction where the gaming device is
located. For example, the gaming rule server may request a digital signature, such as
CRC’s, of particular software components and compare them with an approved digital

signature value stored on the gaming jurisdictional rule server.
48

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

Further, the gaming jurisdictional rule server may scan the remote gaming
device to determine whether the softwére is configured in a manner that is acceptable
to the gaming jurisdiction where the gaming device is located. For example, a
maximum bet limit may vary from jurisdiction to jurisdiction and the rule
enforcement server may scan a gaming device to determine its current software
configuration and its location and then compare the configuration on the gaming
device with approved parameters fbr its location. |

A gaming jurisdiction may include rules that describe how game software may
be downloaded and licensed. The gaming jurisdictional rule server may scan |
download transaction records and licensing records on a gaming device to determine
whether the download and licensing was carried out in a manner that is acceptable to
the gaming jurisdiction in which the gaming device is located. In general, the game
jurisdictional rule server may be utilized to confirm compliance to any gaming rules
passed by a gaming jurisdiction when the information needed to determine rule
compliance is remotely accessible to the server. | .

Garmne software, firmware or hardware residing a particular gaming device may
also be used to check for compliance with local gamiﬁg jurisdictional rules. In one
embodiment, when a gaming device is installed in a particular gaming jurisdiction, a
software program including jurisdiction rule information may be downloaded to a
secure merhory location on a gaming machine or the jurisdiction rule information may
be downloaded as data and utilized by a program on the gaming machine. The
software program and/or jurisdiction rule information may used to check the gaming
device software and software configurations for compliance with local gaming
jurisdiétional rules. In another embodiment, the software program for ensuring
compliance and jurisdictional information may be installed in the gamin;g machine
prior to its shipping; such as at the factory where the gaming machine is
manufactured. | |

The gaming devices in game system 1000 may utilize trusted software and/or
trusted firmware. Trusted firmware/software is trusted in the sense that is used with
the assumption that it has not been tampered with. For instance, trusted
software/firmware may be used to authenticate other game software or processes
executing on a gaming device. As an example, trusted encryption programs and

authentication programs may be stored on an EPROM on the gaming machine or
49

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

encoded into a specialized encryption chip. As another example, trusted game
software, i.e., game software approved for use on gaming devices by a local gaming
Junsdlctlon may be required on gaming devices on the gaming machine.

In the present invention, the devices may be connected by a network 1016 with
different types of hardware using different hardware architectures. Game software can
be quite large and frequent downloads can‘place a signiﬁcant burden on a network,
which may slow information transfer speeds on the network. For game-on-demand
services that require frequent downloads of game software in a network, efficient
downloading is essentlal for the service to viable. Thus, in the present 1nvent10ns
network efﬁcnent devices 1010 may be used to actively monltor and maintain network
efficiency. For instance, software locators may be used to locate nearby locations of
game software for peer-to-peer transfers of game software. In another example,
network traffic may be monitored and downloads may be actively rerouted to maintain
network efficiency. '

One or more devices in the present invention may provide game software and
game licensing related auditing, billing and reconciliation reports to server 1012. For
example, a software licensing billing server may generate a bill for a gaming device
operator based upon a usage of games over a time period on the gaming devices
owned by the operator. In another example, a software auditing server may provide
reports on game software downloads to various gaming devices in the gaming system
1000 and current configurations of the game' software on these gaming devices.

At particular time intervals, the software auditing server 1012 may also request
software configurations from a number of gaming devices in the gaming system. The
server may then reconcile the software configuration on each gaming device. In one
embodiment, the software auditing server 1012 may store a record of software
configurations on each gaming device at particular times and a record of software
download transactions that have occurred on the device. By applying each of the
recorded game software download transactions since a selected time to the software
configuration recorded at the selected time, a software configuration is obtained. The
software auditing server may compare the software configuration derived from
applying these transactions on a gaming device with a current software configuration
obtained from the gaming device. After the comparison, the software-auditing server

may generate a reconciliation report that confirms that the download fransaction
50

10

15

20

25

30

WO 2007/030404

PCT/US2006/034366

records are consistent with the current software configuration on the device. The
report may also identify any inconsistencies. In another embodiment, both the gaming
device and the software auditing server may store a record of the download
transactions that have occurred on the gaming device and the software auditing server
may reconcile these records.

There are many possible interactions between the components described with
respect to Figure 10. Many of the interactions are coupled. For example, methods used
for game licensing may affect methods used for game dowﬁloading and vice versa.
For the purposes of explanation, details of a few possible interactions between the
components of the system 1000 relating to éoftware licensing and software downloads
have been described. The descriptions are selected to illustrate particular interactions
in the game system 1000. These descriptions are provided for the purposes of

explanation only and are not intended to limit the scope of the present invention.

OTHER EMDODIMENTS
According to different embodiments, various aspect of the present invention

are directed to methods, systems and/or computer program products for detecting at
least one anomaly associated vs}ith gaming data which is associa’ted with a first gaming
machine that is operable to receive a wager on a game of chance. One embodiment of
the invention comprises: selecting a first portion of gaming data for analysis, the first
portion of gaming data correspohding to a first data pattern; selecting a first
comparison pattern relating to the first data pattern; comparing the first comparison
pattern to a first portion of the first data pattern; and determining, based at least in part
on the comparison of the first comparison pattern to the first portion of the first data
pattern, whether at least one anomaly has been detected in association with the first
data pattern. ’ .

In at least one embodiment, the game of chance is at least one of: a video slot
game, a mechanical slot game, a lottery game, a video poker game, a video black jack
game, a video card game, a video bingo game, a video keno game, or a video
pachinko game.

In at least one embodiment, the first comparison pattern is certified for
execution on the gaming machine in one or more gaming jurisdictions by a regulatory

entity within each of the gaming jurisdictions.

51

10

15

.20

25

30

WO 2007/030404 PCT/US2006/034366

At least one embodiment of the present invention may further comprise:
processing selected portions of data stored in memory of the gaming machine to
thereby generate the first portion of gaming data.

In at least one embodiment, the first portion of gaming data may correspond to
raw data residing in at least one memory location of the gaming machine.

In at least one embodiment, the first comparison pattern may correspond to a
valid comparison pattern, Additionally, at least one embodiment of the present
invention may further comprise: comparing the valid comparison pattern with the first
portion of the first data pattern; and identifying a first anomaly in response to a
determination that the first portion of the first data pattern does not match the valid
comparison pattern.

In at least one embodimeént, the first comparison pattern may correspond to a
valid comparison pattern representing a second portion of authenticated gaming data.
Additionally, at least one embodiment of the present invention may further comprise:
comparing the valid comparison pattern with the first portion of the first data pattern;
and identifying a first anomaly in response to a determination that the first portion of
the first data pattern does not match.the valid comparison pattern.

Tn at least one embodiment, the first comparison pattern may correspond to an
invalid comparison pattern; comparing the invalid comparison pattern with the first
portion of the first data pattern; and identifying a first anomaly in response to a
determination that the first portion of the first data pattern matches the invalid
comparison pattern.

In at least one embodiment, the first comparison pattern may correspond to an
invalid comparison pattern representing data which is known or suspected to be
invalid. Additionally, at least one embodiment of the present invention may further
comprise: comparing the invalid comparison pattern with the ﬁré‘p portion of the first
data pattern; and identifying a first anomaly in response to a determination that the
first portion of the first data pattern matches the invalid comparison pattern.

At least one embodiment of the present invention may further comprise:
determining, based at least in part on the comparison of the first comparison pattern to
the first portion of the first data pattern, whether at least one anomaly has been

detected in association with the first data pattern; and initiating a first anomaly

52

10

15

20

25

WO 2007/030404 PCT/US2006/034366

handling procedure in response to a determination that a first anomaly has been
detected in association with the first data pattern.

At least one embodiment of the present invention may further comprise:
determining, based at least in part on the comparison of the first comparison pattern to
the first portion of the first data pattern, whether at least one anomaly has been
detected in association with the first data pattern; and initiating a first anomaly
handling procedure in response to a determination that a first anomaly has been
detected in association with the first data pattern; wherein the first anomaly handling
procedure includes preserving states of selected processes of the gaming machine..

At least one embodiment of the present invention may further comprise:
determining, based at least in part on the comparison of the first comparison pattern to
the first portion of the first data pattern, whether at least one anomaly has been
detected in association with the first data pattern; and initiating a first anomaly
handling procedure in response to a determination that a first anomaly has been
detected in association with the first data pattern; wherein the first anomaly handling
procedure includes halting execution of selected processes of the gaming machine.

At least one embodiment of the present invention may further comprise:
determining, based at least in part on the comparison of the first comparison pattern to
the first portion of the first data pattern, whether at least one anomaly has.been
detected in association with the first data pattern; and initiating a first anomaly
handling procedure in response to a determination that a first anomaly has been
detected in association with the first data pattern; wherein the first anomaly handling
procedure includes storing information relating the first anomaly and associated first
data pattern. '

In at least one embodiment, the first portion of gaming data may correspond to
executable code to be implemented at the gaming machine.

In at least one embodiment, the ﬁrstpdrtion of gaming data may cofréspond to
exeéutable code to be implemented at a peripheral ‘device associated with the gaming
machine. ' o

In at least one embodiment, the first portion of gaming data may correspond to

non-executable data for use by at least one gaming machine component.

53

10

15

20

25

30

WO 2007/030404

PCT/US2006/034366

At least one embodiment of the present invention may further comprise:
detecting a first anomaly associated with the first data pattern; wherein the first
anomaly relates ta detection of a virus associated with the first data pattern.

At least one embodiment of the present invention may further comprise:
detecting a first anomaly associated with the first data pattern; wherein the first
anomaly relates to detection of rogue code associated with the first data pattern.

At least one embodiment of the present invention may further comprise:
detecting a first anomaly associated with the first data pattern; wherein the first
anomaly relates to detection of corrupted data associated with the first data pattern.

At least one embodiment of the present invention may further comprise:
detecting a first anomaly associated with the first data pattern; wherein the first
anomaly relates to detection of at least one unauthorized command associated with the
first data pattern.

At least one embodiment of the present invention may further comprise:
detecting a first anomaly associated with the first data pattern; wherein the first
anomaly relates to detection of at least one unautﬁorized command associated with the
first data pattern; and wherein the at least one unauthorized command relates to a
device access operation.

At least one embodiment of the present invention may further comprise:
detecting a first anomaly associated with the first data pattern; wherein the first
anomaly relates to detection of at least one unauthorized command associated with the
first data pattern; and wherein the at least one unauthorized command relates to a bus
access operation.

At least one embodiment of the present invention may further comprise:
detecting a first anomaly associated with the first data pattern; wherein the first
anomaly relates to detection of at least one unauthorized command associated with the
first data pattern; and wherein the at least one unauthorized command relates to a
driver access operation.

At least one embodiment of the present invention may further comprise:
detecting a first anomaly associated with the first data pattern; wherein the first
anomaly relates to detection of at least one unauthorized command associated with the
first data pattern; and wherein the at least one unauthorized command relates to a

memory access operation.
54

10

15

20

25

WO 2007/030404

PCT/US2006/034366

At least one embodiment of the present invention may further comprise:
acquiring pattern ID information relating to the first data pattern; and retrieving the
first comparison pattern using the pattern ID information.

At least one embodiment of the present invention may further comprise:
providing at least a portion of the pattern ID information to a trusted entity; and
receiving pattern comparison information relating to the pattern ID information from
the trusted entity; wherein the pattern comparison information includes information
relating to a first location for accessing the first comparison pattern.

In at least one embodiment, the first portion of game data may correspond to
gaming data stored in the gaming machine RAM, and the comparison pattern may
correspond to gaming data stored at a trusted memory source.

In at least one embodiment, the first portion of game data may correspond to
gaming data stored in memory of the gaming machine, and the comparison pattern
may correspond to gaming data stored at a local trusted memory source.

In at least one einbodiment, the first portion of game data may correspond to
gaming data stored in memory of the gaming machine, and the comparison pattern
may correspond to gaming data stored at a remote trusted memory source.

In at least one embodiment, the first portion of garhe data may correspond to
gaming data stored at a peripheral device associated with the gaming machine, and the
comparison pattern may correspond to gaming data stored at a trusted memory source.

‘Although several preferred embodiments of this invention have been described
in detéil herein with reference to the accompanying drawings, it is to be understood
that the invention is not limited to these precise embodiments, and that various
changes and modifications may be effected therein by one skilled in the art without

departing from the scope of spirit of the invention as defined in the appended claims.

55

10

15

20

25

30

WO 2007/030404

PCT/US2006/034366

IT IS CLAIMED

1. A gaming machine adapted to detect at least one anomaly associated
with gaming data, the gaming machine being further adapted to receive a wager on a
game of chance, the gaming machine comprising:

at least one processor;

at least one interface; and

memory;

the gaming machine being configured or designed to:

~ select a first portion of gaming data for analysis, the first portion of gaming

data corresponding to a first data pattern;

select a first comparison pattern relating to the first data pattern;

compare the first comparison pattern to a first portion of the first data pattern,
and

determine, based at least in part on the comparison of the first comparison
pattern to the first portion of the first data pattern, whether at least one anomaly has

been detected in association with the first data pattern.

2. The gaming machine of claim 1, wherein the game of chance is at least
one of: a video slot game, a mechanical slot game, a lottery game, a video poker
game, a video black jack game, a video card game, a video bingo game, a video keno

game, and a video pachinko game.

3. The gaming machine of claim 1, wherein the first comparison pattern is
certified for execution on the gaming machine in one or more gaming jurisdictions by

a regulatory entity within each of the gaming jurisdictions.

4, The gaming machine of claim 1 being further configured or designed
to:
process selected portions of data stored in the memory of the gaming machine

to thereby generate the first portion of gaming data.

56

10

15

20

25

30

WO 2007/030404

5.

PCT/US2006/034366

The gaming machine of claim 1 wherein the first portion of gaming

data corresponds to raw data residing in at least one mermory location of the memory.

6.

The gaming machine of claim 1 wherein the first comparison pattern

corresponds to a valid comparison pattern, the gaming machine being further

configured or designed to:

compare the valid comparison pattern with the first portion of the first data

pattern; and . .

identify a first anomaly in response to a determination that the first portion of

the first data pattern does not match the valid comparison pattern.

7.

The gaming machine of claim 6 wherein the valid comparison pattern

corresponds to a second portion of authenticated gaming data.

8.

The gaming machine of claim 1 wherein the first comparison pattern

corresponds to an invalid comparison pattern, the gaming machine being further

configured or designed to:

pattern; and

‘compare the invalid comparison pattern with the first portion of the first data

identify a first anomaly in responsé to a determination that the first portion of

the first data pattern matches the invalid comparison pattern.

9.

The gaming machine of claim 8 wherein the invalid comparison pattern

corresponds to data which is known or suspected to be invalid.

to:

10.

The gaming machine of claim 1 being further configured or designed

initiate a first anomaly handling procedure in response to a determination that

a first anomaly has been detected in association with the first data pattern.

to:

11.

The gaming machine of claim 1 being further configured or designed

57

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

initiate a first anomaly handling procedure in response to a determination that
a first anomaly has been detected in association with the first data pattern;
wherein the first anomaly handling procedure iticludes preserving states of

selected processes of the gaming machine.

12. The gaming machine of claim 1 being further configured or designed
to:

initiate a first anomaly handling procedure in response to a determination that
a first anomaly has been detected in association with the first data pattern;

wherein the first anomaly handling procedure includes halting execution of

selected processes of the gaming machine.

13. The gaming machine of claim 1 being further configured or designed
to:

initiate a first anomaly handling procedure in response to a determination that
a first anomaly has been detected in association with the first data pattern;

wherein the first anomaly handling procedure includes:

store information relating the first anomaly and associated first data pattern.

14. The gaming machine of claim 1 wherein the first portion of gaming

data corresponds to-executable code to be implemented at the gaming machine

15. The gaming machine of claim 1 wherein the first portion of gaming
data corresponds to executable code to be implemented at a peripheral device

associated with the gaming machine

16. The gaming machine of claim 1 wherein the first portion of gaming
data corresponds to non-executable data for use by at least one gaming machine

component.

17. The gaming machine of claim 1 being further configured or designed
to:

detect a first anomaly associated with the first data pattern;
58

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

wherein the first anomaly relates to detection of a virus associated with the

first data pattern.

18. The gaming machine of claim 1 being‘.furth‘er configured or designed

to:

detect a first anomaly associated with the first data pattern;

wherein the first anomaly relates to detection of rogue code associated with the
first data pattern.

19. The gaming machine of claim 1 being further configured or designed
to:

detect a first anomaly associated with the first data pattern;

wherein the first anomaly relates to detection of corrupted data associated with
the first data pattern.

20. The gaming machine of claim 1 being further configured or designed
to:

detect a first anomaly associated with the first data pattern;
wherein the first anomaly relates to detection of at least one unauthorized

command associated with the first data pattern. -

21. The gaming machine of claim 20 wherein the at least one unauthorized

command relates to a device access operation.

22. The gaming machine of claim 20 wherein the at least one unauthorized

command relates to a bus access operation.

23. The gaming machine of claim 20 wherein the at least one unauthorized

command relates to a driver access operation.

24. The gaming machine of claim 20 wherein the at least one unauthorized

command relates to a memory access operation.

59

10

15

20

25

30

WO 2007/030404 PCT/US2006/034366

25. The gaming machine of claim 1 being further configured or designed

to:

acquire pattern ID information relating to the first data pattern; and

retrieve the first comparison pattern using the pattern ID information.

26. The gaming machine of claim 25 being further configured or designed
to:

provide at least a portion of the pattern ID information to a trusted entity; and

receive pattern comparison information relating to the pattern ID information
from the trusted entity;

wherein the pattern comparison information includes information relating to a

first location for accessing the first comparison pattern.

27. The gaming machine of claim 1 wherein the first portion of game data
corresponds to gaming data stored in the gaming machine RAM; and
wherein the comparison pattern corresponds to gaming data stored at a trusted

memory source.

28. The gaming machine of claim 1 wherein the first portion of game data
corresponds to gaming data stored in memory of the gaming machine; and
wherein the comparison pattern corresponds to gaming data stored at a local

trusted memory source.

29. The gaming machine of claim 1 wherein the first portion of game data
corresponds to gaming data stored in memory of the gaming machine; and
wherein the comparison pattern corresponds to gaming data stored at a remote

trusted memory source.

30. The gaming machine of claim 1 wherein the first pdrtion of game data
corresponds to gaming data stored at a peripheral device associated with the gaming
machine; and

wherein the comparison pattern corresponds to gaming data stored at a trusted

memory source.
60

WO 2007/030404 PCT/US2006/034366

31. The gaming machine of claim 1 further comprising:

a pattern comparator configured or designed to perform at least a portion of the
comparison of the first comparison pattern to the first portion of the first data pattern;
and

a pattern authenticator configured or designed to provide information relating ‘

to a first location for accessing the first comparison pattern.

61

WO 2007/030404 PCT/US2006/034366

1/10

Fig. 1

¢ Old e

PCT/US2006/034366

2/10

WO 2007/030404

“ 1474 s)aoe
. slaAlq 9o1ne(g 90z (s)soepeiu
T2e Joydeooe
uSy0}/ul09
Q1 ¢ 21emyos “Biyuod pue
B¢c Jeddoy BIOIPUI USSM]}O] SUOIJBIOOSSE
yx44 95¢
Jouud 19301 Jeded Jojeopuayiny wsjed 60C NVY || 80T sinoHdd
Geg Joydeooe g ¥Ge Gle Mowsw Alepuooes
Jiepeal 1901}
Jopsedwon) waned
T€7Z joued uopng B¢ Aowauw a)1jejoA-UON
BEc loyeads | . . dqw. o Y1 a1emyos uonelnbyuon
— auibug A
0c¢ pedfey sisfjeuy usened 9l Aowsw
€T 1oued by e
uonepijep/uciesjusyiny w5
= feid 0i¢
GEC Aejasip - (s)10ssa001d
[4%4
Zee Saome(jeleyduad OONW €LZ 9921nap 2i1b0)

PCT/US2006/034366

WO 2007/030404

3/10

€ 7INOIA

HINVN

\ ﬁ KIOWHN
HNVN

00€ TN

96¢ — \,” Eozmz
ysg — \ Eozmz
756 — SIDAT90 d1avesS
ANVN o
\ AIOWAN o
SSHDOUd
0sE — |
ST SV\6r0ND0Ud\
TSt [57 e SEE
SW\ SY\ S\ SV SV
| [
0EE TTE (143 SIt 0T1E
1004\ yETI\ 6701\ ra\ I\
S0
D0dd\

WO 2007/030404 PCT/US2006/034366

4/10
BEGIN PATTERN ANALYSIS

PROCESS 401 400
; 2

p OPEN NEXT PID DIRECTORY

v

OPEN ADDRESS SPACE FILE

41
GET PROCESS INFORMATION

INCLUDING FILE NAME(S) FROM
ADDRESS SPACEFILE 415|

Y

SEND REQUEST TO AUTHENTICATOR TO FIND

——— FILE LOCATIONS CORRESPONDING TO

PROCESS FILE NAME OR SHARED OBJECT
FILE NAME 420

BoS

05

|

=

|

ERROR
N;PC«JTUCI?DE?S (FILE NOT FOUND)
25 _ =
Y
VERIFY RAMANDFILE . 4———|

MORE
MATCHES?

445

COMPARE
OK?

N

ERROR
(COMPARE FAILED)
450

ANY LOADED
SHARED OBJECT
FILESTO

COMPARE?
455

FIGURE 4

WO 2007/030404 PCT/US2006/034366
5/10

410 and
/_\ 415
CAN PROCESS ERROR
DIRECTORY BE (PROCESS DIRECTORY CAN'T

OPENED? BE OPENED 505

500

—]

GET NEXT DIRECTORY IN J

PROCESS DIRECTORY
510

PROCESS
521 TERMINATED

—_ BY OPERATING
SYSTEM?

Y

IS DIRECTORY
A PID ENTRY?

315

ERROR 522
PID FILE CAN NOT BE OPENED

CAN PID DIRECTOR N ERROR
BE OPENED
<20 ("AS" FILE CAN NOT BE
520 OPENED) 535
Y
CAN ADDRESS N ERROR NO ENTRY N
SPACE (AS) FILE BE (ENOENT)?
OPENED?)
525 330
- Y
ABLE TO GET N
N
INFORMATION FROM RRO&;%ES)EARCH
"AS" FILE? '
540 545
Y 555
ERROR 558
ITEARSE (INFORMATION CAN'T BE
ADDRESS SPACE PARSED FROM "AS" FILE)
(AS) FILE 550

FIGURE 5

WO 2007/030404 PCT/US2006/034366

6/10

PATTERN
ANALYSIS PC AUTHENTICATOR
SENDSFILE j}——» RECEIVESFILE
NAME REQUEST NAME REQUEST
420 605

T IPC

AUTHENTICATOR
SENDS LIST TO

COMPARATOR
630

ENTRIES
TO PARSE?

GET NEXT

ENTITY
615

MATCH
DETECTED?

620

ADD NAME/
LOCATION
TO LIST 625

FIGURE 6

WO 2007/030404

7/10

LOAD AUTHENTICATOR

(BIOS) 805

Y

VALIDATE-SELF

(AUTHENTICATOR) 810

PCT/US2006/034366

{\ 800

CHECK FILESYSTEM
VALID?
(AUTHENTICATOR) 815 817
'3 Y
LAUNCH SYSTEM MANGER

(AUTHENTICATOR) 820

-

LAUNCH GAME MANAGER

(SYSTEM MANAGER) 825

Y

LAUNCH OTHER PATTERN
ANALYSIS ENGINE COMPONENTS
'(SYSTEM MANAGER) 830

FIGURE 7

HAULT
LAUNCH
835

WO 2007/030404

8/10

/—850
¢ Pattern Analysis Procedure)

l /—852

— ! Select first/next pattern for analysis

l /—854

Acquire ID information relating to
selected pattern

l’ 856

PCT/US2006/034366

Use ID information to retrieve pattern comparison
information from trusted entity

l /—858

Perform pattern analysis on selected pattern using
pattern comparison information

l /—860

,———<Any detected anomalies?>——|

No Yes
864 ¢

- 862

Perform

: Implement appropriate
additional < anomaly handling
analysis? / procedure(s)

Fig. 8

WO 2007/030404

PCT/US2006/034366

9/10

(" Pattern Comparison Procedure D)

y 902
Valid pattern
verification

Select first/next valid
comparison pattern

il

)

Compare selected pattern
with selected valid
comparison pattern

Yes

Implement appropriate
anomaly handling
procedure(s)

Perform
additional
analysis?

No

v ,—910

| 920

Invalid pattern
identification

L

Select first/next invalid
» comparison pattern

l 924

Compare selected pattern
with selected invalid
comparison pattern

Yes
v /—928

Implement appropriate
anomaly handling
procedure(s)

930

Perform

additional
analysis?

No

Fig. 9

PCT/US2006/034366

WO 2007/030404

201 01 3UN9I 0z01

SHOLYYIdO
SHIAV1d INVO ANIHOVIN ONIAVD

10/10

ZToT
NOLLYIMIONODIY
— TToT ‘ONITTIE
6001 oNEoL4g || FOVANAIN L ‘oNLany T
FUVMINNIL >v_m0>>mz AV1d aav1ad ~ oNpiovHL
/3UYMLAOS | INVD JHYMLIOS NOLLYHSNSI4NOD
aaLsnyl INVMLAOS
. INYO
BOOT /
sI1NY oToT otor
TvNOLLOIasHNe
ONINVYD 40 JHNLOTLIHOYY/AUYMAYYH MHOMLIAN wmw_,wwwﬁ
ANINAOHOANT INYS
7007 | =
JHYMLA0S - [~ — k 1001
I1VAILOV OL J00T | — Zoor || ONIsN3onn
NOLLYZIMOHLNY || 3uvmidos | woor U INYO
304N0S ONILSOH
JONVHO OL | 1\ vinmionnt || ONILSOH | ool d0s
NOILYZINOHLNY
qaisnyy || AYd3NVO INVO

000} speojumod
pue Buisueo] elemyos Bujwes
Buipinold 10} walsAg Bulwes

N

0c0! ‘ SiLol
SHOLVYTINDIY ONINVYO SH3IAINOHd
ANILINOD FHVMLA0S ONINYD

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/034366

CLASSIFICATION OF SUBJECT MATTER

NG SG07F 1732 T HeeER 1 /00

According to International Paient Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO7F GO6F

Minimum documentation searched (classification sysiem followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, whetre practical, search lerms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

the whole document

12 July 2001 (2001~07-12)
the whole document

the whole document

the whole document

the whole document

X US 2003/032485 Al (COCKERILLE WARNER [US] 1-31
ET AL) 13 February 2003 (2003-02-13)

X WO 01/50230 A2 (SIGMA GAME INC [US]) 1-31

X EP 1 496 419 A (WMS GAMING INC [US]) 1-31
12 January 2005 (2005-01-12)

X US 6 106 396 A (ALCORN ALLAN E [US] ET AL) 1-31
22 August 2000 (2000-08-22)

X WO 01/77837 A (MATHIS RICHARD M [USI) 1-31
18 October 2001 (2001-10-18)

D Further documents are lisied in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier docurnent but published on or after the international
filing date

‘L' document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

'C* document referring o an oral disclosure, use, exhibition or
other means

P document published prior to the International filing date but
later than the priority date claimed :

.'T* later document published afier the international filing date

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered o involve an inventive step when the
document is combined with one or maore other such docu-
!m:ats, 3uch combination being obvious to a person skilled
in the art.

'&" document member of the same patent family

Date of the actual completion of the international search

22 January 2007

Dale of mailing of the intemational search report

01/02/2007

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Van Dop, Erik

Form PCT/ASA/210 (second sheet) (April 2005)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2006/034366
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2003032485 Al 13-02-2003 CA 2456635 Al 20-02-2003
EP 1427494 Al 16-06-2004
WO 03013677 Al 20-02-2003
us 2004068654 Al 08-04~-2004
WO 0150230 A2 12-07-2001 AU 782891 B2 08-09-2005
AU 2915101 A 16-07-2001
CA 2362450 Al 12-07-2001
us 6595856 Bl 22-07-2003
EP 1496419 A 12-01-2005 AU 2004203019 Al 27-01-2005
CA 2473287 Al 09-01-2005
US 2005009599 Al 13-01-2005
ZA 200405485 A 22-02-2006
US 6106396 A 22-08-2000 AU 6282096 A 30-01-1997
CA 2225805 Al 16-01-1997
CN 1191644 A 26-08-1998
EP 0882339 Al 09-12-1998
JP 2002515765 T 28-05-2002
JP 2006102526 A 20-04-2006
TR 9701723 T1 21-04~-1998
Wo 9701902 Al 16-01-1997
us 6149522 A 21-11~-2000
us 5643086 A 01-07-1997
ZA 9700320 A 22-09-1997
WO 0177837 A 18-10-2001 AU 4794101 A 23-10-2001
CA 2406053 Al 18-10-2001
EP 1281124 Al 05-02-2003

Form PGT/ISA/210 {patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - wo-search-report
	Page 75 - wo-search-report

