发明名称 微型薄膜泵

摘要
本发明属于精密机械中微型流体泵技术领域，涉及微型薄膜泵，主要由上、下支架，一片盖片，一个薄膜和一个双压电驱动组成。其中，上、下支架连接形成一体，上、下支架之间依次重叠压置所述盖片、薄膜、垫片；该上支架中部开一通孔使压置其下的盖片露出，盖片开有两个分别用作进液口和出液口的通孔；该薄膜中部通过一次制作一体形成的液体贮存、流动的区域，该区域包括依次连通的进液口、第一微型阀、泵腔、与第一微型阀方向相同的第二微型阀、出液口，该区域的底部为泵膜，该盖片与薄膜结合形成泵体。本发明具有结构简单，工作可靠，能够自启动且可控制微量液体流动，外形尺寸小，无需对工作液体加热的特点。
1、一种微型薄膜泵，其特征在于，主要由上、下支架，一片盖片，一个薄膜和一个双压电梁组成；其中，上、下支架连接成一整体，上、下支架之中依次重叠压置所述盖片、薄膜、垫片；该上支架中部开一通孔使压置其下的盖片露出，盖片开有两个分别用作进液口和出液口的通孔；该薄膜中部通过一次制作一体形成的液体贮存、流动的区域，该区域包括依次连通的进液口、第一微型阀、泵腔、与第一微型阀方向相同的第二微型阀、出液口，该区域的底部为泵膜，该盖片与薄膜结合形成泵体。

2、如权利要求1所述的微型薄膜泵，其特征在于，所说的第一微型阀和第二微型阀为一锥管。

3、如权利要求1所述的微型薄膜泵，其特征在于，所说的第一微型阀和第二微型阀由多个并列的锥管构成。

4、如权利要求1所述的微型薄膜泵，其特征在于，所说的第一微型阀和第二微型阀为内壁带有对相错排列的模块的管道。
微型薄膜泵

技术领域
本发明属于精密机械中微型流体泵技术领域，特别涉及微型薄膜泵结构设计及制作方法。

背景技术
近年来，随着生物芯片、微量给药等生化分析和医疗技术的发展，对微量液体输送的要求日益突出。同时，微型能源系统、精密生物实验研究以及精细化工等也要求提供能够精确控制的微量液体供给。目前，一般的微型泵结构都较复杂，制作成本较高，而且不能实现自启动。

发明内容
本发明的目的是为满足应用的需求，提供一种双压电梁驱动的微型薄膜泵，具有结构简单，工作可靠，能够自启动且可控制微量液体流动，外形尺寸小，无需对工作液体加热等特点。

本发明的微型薄膜泵，其特征在于，主要由上、下支架，一片盖片，一个薄膜和一个双压电梁组成；其中，上、下支架连接成一整体，上、下支架之间依次重叠压置所述盖片、薄膜、垫片；该上支架中部开一通孔使压置其下的盖片露出，盖片开有两个分别用作进液口的出液口的通孔；该薄膜中部通过一次制作一体形成的液体贮存、流动的区域，该区域包含依次连通的进液口、第一微型阀、泵腔、与第一微型阀方向相同的第二微型阀，出液口，该区域的底部为泵膜，该泵片与薄膜键和形成泵体。

本发明的工作原理为：当给双压电梁通以交变电流，双压电梁通过粘结于上面的垫片带动泵膜上下运动，从而使得泵腔的容积发生变化，产生液体流动；通过泵腔两侧的两个阀控制液体流动方向，实现液体往一个方向流动，达到驱动液体流动的目的。

本发明的有益效果是：将泵腔、泵膜和阀通过一次光刻、注模集成到一片薄膜上，从而大大的减少了体积，并且使得制作简单，工作可靠；通过双压电梁在交变电流作用下的运动驱动泵膜运动，并通过阀控制液体流动方向，实现液体单向流动，不会产生高热，从而避免因为输入过高对某些生物试剂失效。另外，该泵能实现薄膜腔和泵的泵体变形，使得泵膜微型泵应用的液体自注入问题得以解决，实现自起动。

附图说明
图1为本发明的双压电梁驱动的微型薄膜泵结构实施例立体分解图。
图2为图1的结构装配示意图。
图3为图1中薄膜示意图。
图4为图1中薄膜的结构实施例1示意图。
图5为图1中薄膜的结构实施例2示意图。
图6为图1中薄膜的结构实施例3示意图。
本发明提出的一种双压电梁驱动的微型薄膜泵结合实施例及附图详细说明如下。
本发明的双压电梁驱动的微型薄膜泵实施例结构如图1、2所示。该微型泵主要由
上、下支架 1、4，一片盖片 2，一个薄膜 3 和一个双压电架 5 组成；其中，双压电架 5 两端通过紧固螺钉 9 固定在下支架 4 上，双压电架 5 上依次重叠放置一垫片 6、薄膜 3、盖片 2 及上支架 1。上下支架连接成一整体，其它部件置于上、下支架中，该上支架中部开一通孔使压置其下的盖片 2 露出，盖片开有两个分别用来进液口的出液口的通孔；该薄膜 3 中部通过一次微机电加工工艺（Micro Electrical Mechanical System-MEMS）制作一体形成的液体贮存、流动的区域，该区域包括依次连通的进液口 31、第一微型阀 32、泵腔 33、第二微型阀 34、出液口 35。该区域的底部为泵膜 36，该盖片 2 与薄膜 3 键和形成泵体。如图 3 所示。

其工作原理为：本实施例采用的双压电架 5 是用陶瓷烧结工艺在黄铜片的上、下表面分别制作一层 50-500 μm 厚且极化方向相同的 PZT 压电陶瓷，在其外表面镀一银层做为电极，并将上、下两部分的正极与负极接到一起，将两根双压电架的电极输出端并联在一起。

当给双压电架 5 通以交变电场，双压电架通过粘结于上面的垫片 6 带动泵膜 36 上下运动，从而使得泵腔 33 的容积发生变化，可将液体从进液口 31 吸入；通过泵腔 33 两侧的两个阀 32、34 控制液体流动方向，实现液体往一个方向流动，达到驱动液体流动的目的一。

本实施例整个尺寸可为 50×20×10 mm³，其中薄膜 3 的尺寸可为 20×10×(0.1～1)mm³，它通过一次微机电加工工艺（Micro Electrical Mechanical System-MEMS）制作，双压电架 5 可选用尺寸为 50×2×0.5、50×4×0.5、50×8×0.5 等几种规格的常规产品，其它部件采用玻璃，有机玻璃或塑料等材料，通过传统的机械加工工艺制作。

本实施例的薄膜 3 的泵体可有多种具体结构分别结合附图详细说明。

实施例 1 的泵体结构如图 4 所示，其中，泵体中间为圆形泵腔，其直径为 4-8 毫米，两侧为圆形液体进口 31 和液体出口 35，其直径均为 1-3 毫米，泵腔与液体进、出口之间为方向相同的微型锥形阀 32、微型阀 34，其小端口 0.05-0.2 毫米，锥度为 3-10 度，长度为 2-4 毫米。

薄膜材料采用聚二甲基硅氧烷（Polydimethylsiloxane，PDMS），薄膜的厚度为 0.1～1 毫米，泵腔 33 的高度为 10～100 微米。

实施例 2 的泵体结构如图 5 所示，本实施例与第一个实施例的区别在于：泵腔与液体进、出口之间的微型锥形阀可以为两个锥形并列 52、54，还可为多个锥形并列，这样可以增大流量。

实施例 3 的泵体结构如图 6 所示，本实施例与第一个实施例的区别在于：在薄膜上集成的微型阀可为内壁带有多个相错排列的模块 66 的圆管构成的模块阀 62、64，模块 66 的个数可以为并列的 1 排 4 个、2 排 4 个、3 排 6 个、4 排 8 个等。

本实施例所给的尺寸只作为举例，并不限定本发明的保护内容，根据具体情况的实际情况可进行调整改变。

本实施例中的薄膜 3 及泵体可采用成熟的 MEMS 工艺中的光刻、注模工艺制作，其制作工艺流程如下；
1. 在硅片或玻璃基底上光刻厚胶；
2. 在厚胶上沉积一层三甲基氯硅烷，以利于脱膜；
3. 在有厚胶结构的基底上注入聚二甲基硅氧烷（Polydimethylsiloxane，PDMS），使其固化；
4. 把 PDMS 膜从基底上剥离；
5. 对 PDMS 有结构的一面和打有进出孔的玻璃或有机玻璃盖片进行表面等离子处理，然后把 PDMS 膜和盖片键和上，或不经过表面处理直接把 PDMS 膜和盖片键和上，形成泵体。

薄膜 3 也可以利用 MEMS 工艺中的 UV—LIGA 工艺制作，其制作工艺流程如下：
1. 在溅射有 Au 等金属电镀种子层的硅片或玻璃基底上光刻厚胶；
2. 在上述基底上电镀出金属模具，去光刻胶，把金属模具与基底分离；
3. 利用电铸出的模具在有机玻璃等材料上压模出带有泵腔 33、泵膜 36 和两个阀的薄膜 3；
4. 把薄膜 3 粘接到盖片 2 上形成泵体。

上述工艺的具体条件参数均为本技术领域的技术人员的已有知识与技能。
图 6