发明名称：商品或证券的定价和分配系统与方法

摘要
用于在万维网上进行证券拍卖的计算机实现的一种方法，包括以下行动：提供一种竞买机制，从而竞买者因及早匿名披露其递盘而受到奖赏；提供证券分配方式，允许获胜的竞买者支付出售证券的单一市场清算价格；以及提供一种系统，从而所有参与者能够实时监视拍卖。
1. 用于在万维网上进行证券拍卖的计算机实现的一种方法，包括以下动作：

提供一种竞买机制，从而竞买者因及早匿名披露其递盘而受到奖赏；

提供证券分配方式，允许获胜的竞买者支付出售证券的单一市场清算价格；以及

提供一种系统，从而所有参与者能够实时监视拍卖。

2. 权利要求 1 的方法，其中证券包括股票或债券。

3. 权利要求 1 的方法，其中证券包括商品。

4. 权利要求 3 的方法，其中商品包括黄金，白银或其它获许商品交换的交易商品。

5. 权利要求 1 的方法，其中竞买机制包括开放的自动落价拍卖过程。

6. 权利要求 1 的方法，其中竞买者因及早匿名披露其递盘而受到奖赏的竞买机制，包括输入竞争性递盘的附加的行动，这种竞争性递盘包括所需的证券量和高于基准国库券的两个差价。

7. 权利要求 6 的方法，其中高于基准国库券的两个差价按一基点增量表述。

8. 权利要求 6 的方法，其中高于基准国库券的两个差价包括一个第一差价成分和一个第二差价成分，且其中第一差价成分将通过开放帐簿(openbook)系统通过万维网向其它竞买或投资者者披露，但输入第一差价成分的投资者身份是匿名的(即不由开放帐簿系统公开)。

9. 权利要求 8 的方法，其中第二差价成分不得以大于保护差价范围小于第一差价成分。

10. 权利要求 9 的方法，其中第二差价成分(指定为 "最后递盘")直到拍卖结束后才向其它竞买者或投资者披露。

11. 权利要求 8 的方法，其中第一差价成分("初始递盘") 在拍卖
结束时将不是竞买者或投资者的实际部分。

12. 权利要求6的方法，其中除了或替代竞争性递盘之外竞买者可输入一递盘(指定一“非竞争性”递盘)，包括所需的证券量值和等于指定的高于基准可买券的最低差价的差价。

13. 权利要求12的方法，其中新的竞争性递盘和新的非竞争性递盘将由开放账簿系统收到递盘确认时的时间印记标记。

14. 权利要求1的方法，其中允许获胜的竞买者支付售出证券的单一的市场清算价格的证券分配包括以下附加的行动：

借助于开放账簿系统基于万维网系统，对特定的证券拍卖交易进行开放的自动落价拍卖，待拍卖的证券量值被指定一“交易量”;

在拍卖结束是则非竞争性递盘的最低到最高最终递盘价格或差价成分排布认可的递盘;

用于把对于非竞争性递盘以最低最终递盘或最低差价成分开始的所有认可的递盘指定为可接受的递盘，直到被认可的递盘所需的合计证券量值大于或等于交易量为止;

用于把其结果使得由认可的递盘所需的证券合计算量值大于或等于交易量的最低差价成分指定为“结算差价”;

按从最早到最近时间印记值的顺序排布所有可接受递盘; 以及根据拍卖开始前协议的规则向可接受的竞买者分配证券。

15. 用于在万维网上进行证券拍卖的设备，包括：

计算机系统，连接到因特网通信装置，从而在远程终端的竞买者能够与该计算机系统通信;

与该计算机系统连接的竞买机制装置，用于奖赏及年匿名披露其递盘的竞买者;

与该竞买机制装置连接用于分配证券的分配装置，允许获胜的竞买者支付出售证券的单一市场清算价格; 以及

在远程终端的显示装置，与该计算机系统通过因特网连接，从而所有参与者能够实时监视拍卖。

16. 权利要求15的设备，其中证券包括债券。
17. 权利要求 15 的设备，其中证券包括商品。
18. 权利要求 17 的设备，其中商品包括黄金或白银。
19. 权利要求 15 的设备，其中竟买机制包括开放的自动落价拍卖过程。
20. 在一种具有用户结点的网络中，用户结点包括与所述网络连接的浏览器程序，所述用户结点在网络上提供对信息的请求并提供竞买输入命令，网络结点包括：
 开放帐簿系统拍卖服务器结点，响应来自所述用户结点要作为合格的竞买者参与证券拍卖的请求，其中开放帐簿系统拍卖服务器结点提供一种竟买机制，通过这种机制竞争者因及早将其据盘而受到奖赏，并提供证券的分配，这种分配允许获胜的竞买者支付出售所发售证券的单一市场清算价格，并提供一种系统，由此所有参与的用户能够在用户结点监视证券拍卖。
21. 根据权利要求 20 的开放帐簿系统拍卖服务器结点，其中所述证券包括债券。
22. 根据权利要求 20 的开放帐簿系统拍卖服务器结点，其中所述证券包括商品。
23. 根据权利要求 22 的开放帐簿系统拍卖服务器结点，其中所述商品包括黄金或白银。
24. 根据权利要求 20 的开放帐簿系统拍卖服务器结点，其中竞买机制包括开放的自动落价拍卖过程。
25. 根据权利要求 21 的开放帐簿系统拍卖服务器结点，其中使得竞买者因及早将其据盘而受到奖赏的竟买机制，包括输入竞争性据盘，该据盘包括证券的所需量值及高于基准国库券的两个差价。
26. 根据权利要求 25 的开放帐簿系统拍卖服务器结点，其中高于基准国库券的两个差价借助于一基点增量表述。
27. 根据权利要求 25 的开放帐簿系统拍卖服务器结点，其中高于基准国库券的两个差价包括一个第一差价成分和一个第二差价成分，且其中第一差价成分将通过开放帐簿系统通过万维网向其它竞买或投
资者者披露，但输入第一差价成分的投资者身份是匿名的（即不由开放帐簿系统公开）。

28. 根据权利要求 27 的开放帐簿系统拍卖服务器结点，其中第二差价成分不得大于保护差价范围小于第一差价成分。

29. 根据权利要求 28 的开放帐簿系统拍卖服务器结点，其中第二差价成分（指定“最后递盘”）直到拍卖结束后才向其它竞买者或投资者披露。

30. 根据权利要求 27 的开放帐簿系统拍卖服务器结点，其中第一差价成分（“初始递盘”）在拍卖结束时将不是竞买者或投资者的实盘部分。

31. 根据权利要求 25 的开放帐簿系统拍卖服务器结点，其中除了或替代竞争性递盘之外竞买者可输入一递盘（指定一“非竞争性”递盘），包括所需的资金量值和等于指定的高于基准国库券的最小差价的差价。

32. 根据权利要求 31 的开放帐簿系统拍卖服务器结点，其中新的竞争性递盘和新的非竞争性递盘将以由开放帐簿系统收到递盘确认时的时间印记标记。

33. 根据权利要求 20 的开放帐簿系统拍卖服务器结点，其中允许获胜的竞买者支付售出证券的单一的市场清算价格的证券分配包括：

第一代码机制，用于对特定的证券拍卖交易进行开放的自动落价拍卖，其中待拍卖的证券量值被指定为“交易量”；

连接到第一代码机制的第二代码机制，用于从非竞争性递盘的最低到最高最终递盘价格或差价成分排列认可的递盘，这种排列是在拍卖结束时进行的；

连接到第二代码机制的第三代码机制，用于对于非竞争性递盘以最低最终递盘或最低差价成分开始的所有认可的递盘指定为可接受的递盘，直到被认可的递盘所需的合计证券量值大于或等于交易量为止。

连接到第二代码机制的第四代码机制，用于把其结果使得由认可的递盘所需的证券合计量值大于或等于交易量的最低差价成分指定为
“清算差价”；

连接到第四代码机制的第五代码机制，用于按从最早到最迟时间
印记值的顺序排布所有可接受递盘；以及

连接到第五代码机制的第六代码机制，用于根据拍卖开始前协议
的规则向可接收的竞买者分配证券。

34. 存储在被计算的可使用介质上的一种计算机程序产品，包括:
 计算机可读程序装置，用于引起计算机在万维网上进行证券拍卖；
 提供一种竞买机制，以此拍卖竞买者可因及早匿名披露其递盘而
 受到奖励；
 提供一种证券分配，允许获胜的竞买者支付出售证券的单一市场
 清算价格；以及
 提供一种系统，以此所有参与者能够实时监视拍卖。
商品或证券的定价和分配系统与方法

与相关申请的交叉对比

本申请要求 2000 年 3 月 8 日提交的美国临时申请 No. 60/187,800 的权益。本申请还涉及未决申请 09/347,949, 1999 年 7 月 6 日提交，标题为 “Auction System and Method For Pricing and Allocation During Capital Formation”。

版权声明

本专利文件一部分包含受到版权保护的材料。版权拥有者不反对出现在专利商标事务所专利文献或记录中由专利文献或专利公开的任何人的传真复制，但除此之外则保留所有版权。

技术领域

本发明涉及因特网计算机系统和过程领域。特别地，本发明是通过使用基于因特网控制系统用于商品或证券事项定价和分配的方法和设备。

背景

希望买入和卖出原始证券发售和大宗被调节商品或证券(以下为“证券”)的过程对于更多的投资者是可访问的，并通过提供对买入报价和卖出报价过程更多的可视性使其更为价格透明，降低销售者和投资者的成本并增加这些证券的交易量。

提供证券新的发售的现有系统是不透明的，无效率的，并且偏向一定的购买者和证券经纪人。这里所使用的“证券”包括净值证券，商品(作为对许可商品交换的交易)，固定收益或债务证券，例如包括但不限于公司债券，抵押有价债券，浮现市场债券，后保债券，长期国债券，可兑换债券，黄金等等。这些将一般称为“证券”。

虽然以下就债务证券描述技术问题，但总的问题涉及到被调节的证券，商品和其它资产的出售。业内专业人员将可看出，具体描述的
技术问题是可在这里所公开的本发明的意义和精神范围内解决的一般问题。

一般对于一个地方当局、公司，或其它非美国财产证券发行人，通过让投资银行或其它经纪人承销证券发售而出售其证券。一般，公司证券辛迪加组织使用投资银行的推销员向潜在的投资者传送未决证券发售的条款，连同某些初步的，非正式的“价格传闻”。按这样的方式，与投资者开始对话，意欲获取关于定价和投资者兴趣的反馈。这种反馈由发行人和其它投资者共享。

这种过程一般被称为“帐簿建立”。帐簿建立是一反复的和筛选：对列出关注的投资者和它们表面感兴趣的证券数量的“帐簿”的口头历史的分类被谈论，再谈论并修改，直到证券发售或“交易”成为发售者可容忍的那样大和廉价。然后交易由辛迪加定价，且发售者与证券承销者开始书面协议进行证券发售。这样直到证券发售被定价并认定之后，一般没有由发售者作出实际进行证券发售的书面委托。在最初发售已经通过这种初步销售过程之后，证券在“二级”市场自由交易，就是说交易不是新增发的证券的市场。证券发售者一般将向承销者对其市场营销、定价和分配服务付费。

在这种原始销售系统中，市场规模和市场价格由辛迪加控制。并且，如以下所讨论，辛迪加可能希望传递市场规模和价格，以便实现一组目标，这些目标可能属于证券承销者或某些部分参与者，而基本不属于发售者和市场。证券承销者可能倾向于一定的投资者，使得其它对最初证券发售购买这种债券表现出兴趣的投资者，将不能肯定他们会受辛迪加部门分配到任何债券。此外，交易将一般变为几倍的超额认购，就是说投资者将希望有比由发售者正在提供的更多的债券。

潜在的投资者一般知道这一点，因而将向辛迪加指出一证券量，这可能是投资者实际想要的债券量许多倍。因为投资者明白，在传统的帐簿建立过程中，信息由证券承销者筛选和传递，以便达到可能与他们自己不同的目的，投资者往往怀疑和谨慎地审视这一过程。这样，投资者可能试图以数种对他们有利的方式操纵这一系统。例如，如上所
述，潜在的投资者可能虚假他们的订单，指出有兴趣于比他们真正想要的证券量要大。潜在的投资者还可能形容如果价格上升则订单取消，实际上这简单表示了心态。然后由辛迪加设法使交易达成“适当的”价格和规模，常常使手续费最大化并有利于这个或那个会员，但很少有利于市场整体或达到最有效的价格与分配方案。

因为所有这种试图进行的操纵，承销者可能无法很好理解证券的潜在的购买者在各潜在价格点真正的意图。所有各方面的行为都是以通过使用筛选过程以获得有利态势而操纵系统为目的所左右的。因而，可能是这种情况，即一旦实际的市场价格在二级交易中建立，顾客以外一种代价获利，则导致对该系统的进一步的失信。

近来对于债务证券市场的条件扩大了对改变如何购买和出售这些证券的需要。例如，进行电子销售的技术已变得易于获得（通过拍卖等），这促进了低成本基于实时的非筛选价格发现。其次，债券投资者和发行者在他们的金融业市场知识上，在他们分析信用质量的能力和识别市场中的价值的能力方面已经变得更为老到。这意味着他们比过去较少依赖金融中间人的研究和建议。第三，过去十年来市场中可投资的资金量急剧增加，在投资者团体中形成新的债券发行的激烈的竞争，产生了对更好的市场清晰化过程的需要。第四，由传统的投资银行提供而涉及它们发起的新的债券发行的服务已经明显萎缩，同时对于所提供服务的收费却保持不变。减少的服务最明显的例子是由传统的投资银行提供的二级市场流动性的剧烈萎缩，主要是对二级公司债券交易下降的收益率降低的 adjunct的结果。最后，当前的系统促使对账簿的规模和质量错误的表示，促使特别利益取向的交易，并常常关于分配造成对系统信赖的重大纠纷，因而引起投资者和发行者哄抬价值和数量，以至加剧了系统中价格的隐藏性和不精确性。

随着因特网和相当可靠的远程通信系统的出现，现已作出各种努力使用这些系统用于对共有基金和其它投资性有价证券的管理，并用于包括国债、公司债券和其它证券的销售和购买的系统，其方式避免了上述许多问题。例如特别是在债券和其它证券领域，我们看到各

com，基于因特网供应商零售商固定收益交易软件，并由BondExchange LLC, Goldman Sachs Group Inc., PaineWebber Inc.,及Spear, Leeds & Kellog拥有。几乎所有这些努力提供新的发行方式的系统都遵循相同的逻辑；就是说，它们都通过万维网(web)分发调查、证券销售书、总结和其它新的发行信息，这胜过纸张、传真和某些电话。然而，债券的最终定价和分配还是通过传统方法进行。

现仍然需要一种基于因特网的中心化的系统，提供低成本的、开放的并且非中心化价格发现的环境。就是说，一种使用当前技术以改进价格发现过程透明性的系统，避免失灵，降低所涉及的特别利益总额，并使分配成本更直接地符合由媒介所增加的值。本发明提供了实现这些目标并可用于一般证券和商品交易的一种系统。

本发明的概述

本发明通过提供用于在web上对机构和个人投资者进行证券拍卖的一种经济的、高性能可适应系统和方法(命名为“OpenBook系统”)，克服了上述系统的缺陷。在OpenBook系统拍卖中：

·奖励及早匿名披露他们的出价的竞买者。
·所有的获胜者支付出售证券的单一市场清算价格。
·所有参与者能够实时监视拍卖活动。

这样OpenBook系统创建透明和低成本的新的发行市场；对所有竞买者提供对证券平等的访问机会；并对投资者和发行者两者都给出“专业加部门的席位”。

由此提出在万维网上进行证券拍卖的计算机实现方法
奖励及早匿名披露他们的出价的竞买者。
所有的获胜者支付出售证券的单一市场清算价格。
所有参与者能够实时监视拍卖活动。
由此提出在万维网上进行证券拍卖的设备
奖励及早匿名披露他们的出价的竞买者。
所有的获胜者支付出售证券的单一市场清算价格。
所有参与者能够实时监视拍卖活动。
还提出 OpenBook 系统中的一种网络结点，该结点是网络中的拍卖服务器结点。该网络具有包括连接到网络的浏览器程序的用户结点，用户结点在所述网络上提供对信息的请求并提供竞买输入命令，该网络结点包括：

- OpenBook 系统中的拍卖服务器结点响应来自用户结点作为有资格的竞买者参与证券拍卖活动的请求，从而 OpenBook 系统拍卖服务器结点提供一种竞买机制，通过这种机制竞买者由于及早匿名披露他们的出价而受到奖励，并提供一种证券分配方式，使所有的获胜竞买者支付售出被发售的证券的单一市场清算价格。

还提供了一种存储在被计算的可使用介质上的计算机程序产品，包括

计算机可读程序装置，用于引起计算机在万维网上进行证券拍卖活动；

提供一种竞买机制，从而奖励及早匿名披露他们的出价的拍卖竞买者；

提供一种证券分配方式，允许获胜的竞买者支付售出证券的单一市场清算价格；以及

提供一种系统，以此所有参与者能够实时监视拍卖活动。

附图的简要说明

图 1 是表示根据本发明的一实施例证券定价和分配系统的流程图。

图 2 是表示图 1 中所示证券定价和分配系统拍卖部分期间发生的过程的流程图。

图 3 是表示图 1 中所示证券定价和分配系统拍卖部分期间发生的初始竞买过程的流程图。

图 4 是表示图 1 中所示证券定价和分配系统拍卖部分期间发生的竞买修复过程的流程图。

图 5 是表示债券分配过程的流程图，该过程是图 1 所示证券定价
和分配系统的一部分。

图 6 是因特网体系结构高级图示。
图 7 是表示登录屏幕用户界面的屏幕镜头。
图 8 是一用户界面屏幕镜头，表示样本证券发出一组示例性原始条款。
图 9 是一用户界面的屏幕镜头，表示一组示例性拍卖细节。
图 10 是一用户界面屏幕镜头，表示一组示例性过程中拍卖细节。
图 11 是用户界面另一屏幕镜头，表示一组示例性过程中拍卖细节。
图 12 是用户界面另一屏幕镜头，表示一组示例性过程中竞买和相关时间印记。
图 13 是用户界面另一屏幕镜头，表示一组过程中拍卖细节的示例性竞买确认。
图 14 是用户界面另一屏幕镜头，表示带有过程中拍卖细节示例性的一组当前竞买状态数据。
图 15 是用户界面另一屏幕镜头，表示对带有一组过程中拍卖细节的竞买修改项示例性确认请求。
图 16 是用户界面另一屏幕镜头，表示指示时间印记可能被修改的示例性警告屏幕。
图 17 是用户界面另一屏幕镜头，表示屏上一示例性成功的拍卖购买。
图 18 是用户界面另一屏幕镜头，表示通知屏幕上一示例性不成功的的拍卖购买。
图 19 是用户界面另一屏幕镜头，表示一示例性已完成的拍卖细节。
图 20 是用户界面另一屏幕镜头，表示与拍卖期间不正确的竞买量选择相关的一示例性出错消息。
图 21 是用户界面另一屏幕镜头，表示拍卖期间与试图删除竞买相关的示例性注意消息。
图 22 是包含本发明系统的高级物理布局体系结构的流程图。
图 23 是一流程图，表示包含本发明系统的拍卖服务器体系结构细节。
图 24 是一流程图，进一步示出本发明优选实施例的系统体系结构的示例性细节。

本发明的详细说明

概览

本发明通过提供用于在万维网上对机构和个人投资者进行证券拍卖的一种经济的、高性能可适应系统和方法（命名为“OpenBook 系统”），克服了上述系统缺陷。在 OpenBook 系统拍卖中：

· 奖励及早匿名披露他们的出价的竞买者。
· 所有的获胜者支付出售证券的单一市场清算价格。
· 所有参与者能够实时监视拍卖活动。

这样 OpenBook 系统创建透明和低成本的新的发行市场；对所有竞买者提供对证券平等的访问机会；并对投资者和发行者两者都给出“华泰加部门的席位”。

与传统的投资分级证券发售的类似性

OpenBook 系统拍卖过程在以下方面类似于传统的投资分级债券出售：

· 证券发售将发生在从通告到结束的 3－5 天
· 发行者将有有效的分栏有价证券申请上市登记表
· 管理承销商将与发行者签署条款协议
· 共同经理人将在承销商中间签署协议
· 经销商将签署经销商协议
· 证券说明书附约将以被发行的证券条款更新基础证券说明书
· 证券要澄清普通交易（T+3），DVP（交付对付款）。还要对未来 T+1 清算提供规定。

在拍卖之前 OpenBook 系统的参与者同意一旦拍卖完成他们的竞买是管理承销商能够接受的有条件的报价。为了能够立即接受这种报
价格，在定价之前承销商需要与发行人订立带有以下规定的条款协议：

- 承销商购买证券将以成功的拍卖为条件；
- 拍卖将由各种条款范围限制，包括利率差价，发行量和最大国库券利率；
- 发行人、投资者及承销商同意遵守公布在 OpenBook 系统网站上的拍卖规则；
- 证券说明书的定义将包括证券说明书的电子形式；

根据本发明的系统是证券的低价格确定和分配系统，该系统的结果能够明显有利于通过这种证券发售寻求筹集资金的公司，又有利于希望购买这种证券的投资者。如在背景节指出，这里所使用的证券包括净值证券，固定收益或债务证券，借款媒介，诸如但不限于公司或市政债券，抵押有价债券，浮现市场债券，后保债券，商品，黄金，金融市场票据，诸如但不限于美国短期国库券，银行储蓄证明，商业票据，证券回购协议等等。使用根据本发明优选实施例的定价和分配系统的投资媒介证券发售，本质上不同于传统的被承销或自动落价拍卖证券发售。在根据本发明进行的证券发售中，投资媒介一般将由证券发售公司以由竞买该媒介的投资者使用自动落价拍卖型方式确定的价格售出。自动落价拍卖在以下文献中有说明 Exxon Corp., 1977-78 Fed. Sec. L. Rep. (CCH) para/ 81,198 at 88,159 (avail. May 9, 1977)，其中解释说：

自动落价拍卖在某些重要的方面不同于竞争递盘的惯例。基本上，所提交的递盘为了可被接受不需要涵盖证券发售的整个量。每一竞买者，包括机构和个人以及注册证券经纪人，指出想要的证券发售量及收益率。收到的每一递盘，除非该递盘被撤回，将在对递盘项目指定的期限成为不可撤销的买方发盘。

此外，证券发售价格基于在递盘中确定的收益率。在招标期结束后，递盘按收益率被降序列出。首先接受带有最低收益率的递盘，然后接受顺次较高收益率的其它递盘，直到带有达到证券发售总量所需的最高收益率的那些递盘。被接受的最高收益率是所有债券被裁决
的收益率。在确定该收益率时，利率和价格是由发行人固定的，将基于所接受的收益率把证券裁决给成功的竞买者。

然而使用自动落价拍卖方法并不能减轻所有的困难。或者使用传统的帐簿建立或者使用自动落价拍卖技术，直到投资者已经表明兴趣或拍卖已经进行并发生价格之后，此时发行者一般都不能形成任何有约束力的协议以发行债券。这样，即使在表示兴趣或在自动落价拍卖中发出递盘，发行者仍然不能决定发售任何债券，这使得投资者直到最后定价之前都不能确定他们会收到任何债券。

此外，证券价值几乎排除了市场对证券的功能。且上述传统的帐簿建立方法和自动落价拍卖方法因为过程的封闭性，都对具体的固定收益证券市场的市场价值可能为何，提供了不完全的指示。例如，对于债券市场没有一个报价系统允许潜在的投资者能够认识到哪一个新的发行可能是有价值的。另外，直到价格已经设定且证券已被购买后，此前没有一种机制使潜在的购买者可获得关于发行人的信息，或其它潜在的购买者相信特定的证券有价值，或发行者将发售的证券量的信息。最后，取决于诸多外部因素，在不同的时间点对于类似等级的证券的类似的交易量，可能有不同的需求。这样，对于具体类型的证券过去的需求不一定是对于类似的证券发售未来需求的良好指标。于是，当使用传统的方法购买这些类型的证券时，对于投资者来说固有地缺乏确定性。虽然本发明中使用了自动落价拍卖类型，但与由其它系统所使用的“封闭”（密封递盘）类型的拍卖相反，这种拍卖已是一种“开放的”拍卖。

在一优选实施例中，关于证券发售的信息，诸如最终收益率被设定的范围及证券发售总量，最好在拍卖之前提供。此外，潜在的投资者将在拍卖过程中收到关于其它潜在的投资者对于该证券发售正在竞买的情形的反馈。

拍卖顾问(Auction Advisor)最好提供一种系统，在其上运行证券发售的拍卖部分，并帮助证券发行人营销证券发售及进行拍卖。图 1 是一流程图，表示根据本发明一优选实施例的证券定价和分配系统的总
体，如其中步骤 110 所示，在拍卖之前发行人向拍卖顾问传送一委托书，表示发行人希望使用根据本发明的定价和分配系统进行证券发售。然后，如步骤 112 所示，发行人与拍卖顾问订立协议，以便对发行人的证券发售进行定价和出售。这一协议最好对发行人仅就伴随成功的拍卖完成来说有法律约束力。

因为已经订立了有约束力的协议，如步骤 113 所示，发行人和/或拍卖顾问能够确定以下将要讨论的拍卖参数的数量，这最好包括限制证券发售价格和总量的参数。这些拍卖参数最好向潜在的拍卖参与者公布。

在根据本发明的证券分配系统中，竞买者最好能够投放两类递盘，即竞争性递盘和非竞争性递盘。如以下将详细说明，递盘包括价格成分和数量成分。非竞争性递盘依据竞买者所希望的证券的美元量给出，并自动被指定一价格成分，该价格成分等于通过拍卖参数对证券发售设定的最小收益率。竞争性递盘最好有由竞买者选择的数量成分又有价格成分，该价格成分可能高于通过拍卖参数所设定的最小收益率。此外，竞争性递盘最好有用于定价和分配的私人成分，及一个公开成分，最好使该成分在拍卖进行中对其他竞买者可用，并最好与私人成分相关。通过有私人和公开成分，竞争性递盘能够用来对竞买者和发行人提供有关证券发售的市场价值的信息，而无需竞买者确切披露他或她的递盘为何。最后，如步骤 116 所示，拍卖结束，并如以下说明，最好在拍卖结束之后 30 分钟完成最终定价。

然后，如步骤 118 所示，提供拍卖顾问进行定价和分配拍卖。基本上，通过按从最好到最坏的顺序编排拍卖期间收到的递盘而确定清算价格，并以所有被发售的债券能够被分配的递盘价格对证券发售定价。然后债券被分配到递盘在最好递盘价格(含)与清算价格(含)之间的所有竞买者。这一阶段所达到的定价最好相对于拍卖结束后时基准长期国债券的收益率而设定。

根据本发明的证券分发系统与传统的固定收益证券发售有若干优点。首先，因为发行人最好在定价或债券分配发生前订立出售证券协
议，对投资者提供了债券被发行的相对较高的确定性。

而且，在投资者表示有兴趣之前，比过去的证券发行系统能够并
最好使投资者获得多得多的信息。通过在拍卖前公布的拍卖参数使得
可获得定价和交易量信息。此外，在拍卖期间通过公布可获得的所有
逆盘公开成分，使潜在的投资者可获得进一步的“实时”定价信息。
本发明优选实施例的这两个特性有利于向投资者传播重要信息，允许
进行基于较高可信度的投资决策。

此拍卖系统还能够在零售市场提供较大的风险暴露(exposure)，使
作为个人投资者最好有能力在基本上等的地位与机构投资者竞买证
券发售。这样，个人零散投资者能够获得对新的固定收益证券包括优
公司证券发售发售的发行，而在以往的证券发行方式下他们可能不能
有这样的访问。零散投资者能够与机构投资者一同竞买对增加需求有
胜过典型的承销证券发售附加的效果，在后者情形下零散市场相对于
机构购买者基本是被忽视的。

此外，因为电子系统固有的效率，证券发行人向投资银行或其它
经纪人为销售证券而支付那样大量的佣金。其有利的结果可能是对进
行证券发售的发行人很大的节省。

这种拍卖系统提供了较大的确定性，这使得证券的分配被裁定给
最需要它们的人。分配是基于投资者逆盘的积极性和它们的时间印记。
投资者对证券愿付的价格越低且越早发出它们的逆盘，它们就越可能
被裁定得到证券。

在一优选实施例中，采用根据本发明拍卖方式的证券发售将通过
使用由受让人 W.R. Hambrecht, Inc.开发的软件系统进行，这在以下
详细说明。这一系统将处理证券发行的过程的多个方面，包括定购、定
价和分配。然而应当理解，根据本发明的证券定价和分配系统，可通过
任意数目的类似的基于万维网的软件和硬件模块实现。

虽然如上所述，本发明的定价和分配系统能够用于任何类型的证
券，以下所讨论的优选实施例将关于债券具体来说是公司债券进行说
明。此外，这里所涉及债券的定价是根据对债券支付的利率或收益率.
具体来说，定价将涉及对于被拍卖的的债券支付的利率相相对于所选择的基准长期国库券。这一量值将被称为“差价”。应当注意，差价越低，发行人对债券必须支付的利率越低。因而，给出的递盘差价越低，对发行人越有吸引力。

定购

在根据本发明的系统中，投资媒介的债券发售最好对机构和零散投资者都是可访问的。为了采用任何给出的债券发售，投资者必须与被指定的债券承销者登记。预计机构投资者将能够之间与这种债券承销者登记，但是零散投资者一般将通过在线经纪商参与。在可获得由发售公司销售的债券的那天，已登记的投资者能够提交对债券发售的递盘。递盘最好通过作为拍卖顾问的受让人 W.R. Hambrecht, Inc. 维护的基于万维网的接口电子提交。详细讨论的，任何作出递盘的投资者将指出投资者愿意购买的债券数量(“递盘量”)及投资者愿意接受的差价(“差额”)。

建立

为了安排债券发售，证券发行人最好在发行人想要出售债券的日期前至少一周与拍卖顾问接触，并安排使拍卖顾问通过本发明的拍卖过程发盘与出售债券发售。

在进行拍卖之前，发行人和/或拍卖顾问确定以下列出的拍卖参数。然后，在拍卖开始前这些参数最好通知给潜在的竞买者。这一特性有利地向潜在的投资者提供了关于债券发售的信息，这些信息远多于在背景节所讨论的通过以前使用的债券销售技术传统上可获得的信息。

以下列出的参数是在优选实施例中确定的参数。应当明白，在本发明的范围内可包含在拍卖之前决定的或更多或较少的拍卖参数，并通知给潜在的竞买者。

1. 待发售的债券的最小和最大美元金额(“最小和最大交易量”)。这在递盘之前向潜在的投资者提供了关于债券发售总量的具体信息。待发售债券的精确的美元金额最好在拍卖开始和结束之间的中途提出。
(这最好有 1 到 4 小时的持续时间)，并在最大和最小交易量之间。如以下所详细讨论的，拍卖的中点定价的基本金额和需求信息将最好已经由拍卖顾问收集并传播给发行人和竞买人。这样，向发行人有利地提供有价值的定价和需求信息，这些信息可用于确定债券发售的最终美元金额。

2. 对正被发售的债券的可比较期限的基准国库券 (“基准国库券”)。递盘按照高于基准国库券的收益率的收益率或差价表示。如以下所讨论的，拍卖过程确定所发售的债券将以此被出售的差价 (“清算差价”)。然而最终收益率基于基准国库券收益率，该收益率在清算差价确定之后可能还持续不断波动。最终收益率最好基于拍卖结束后 30 分钟基准国库券收益率而设定。

3. 对于递盘可被接受的超过基准国库券的最小和最大差额 (分别 “最小差价” 和 “最大差价”)。如果这一信息在拍卖开始之前给予潜在的投资者关于所发售的债券最终收益率范围的概念 (取决于拍卖接受债券 30 分钟基准国库券收益率)，这样，潜在投资者能够估计出债券发售中他们的利益，并从而估计他们递盘量和价格。

4. 对于基准国库券的最大收益率 (“最大基准国库券利率”)。这指出基准国库券的最大收益率。发行者和 / 或拍卖发起人有权，但没有义务取消拍卖。如果实际的国库券利率大于基准国库券利率。

5. 对于竞争性递盘和非竞争性递盘的最小美元量。这是竞买者在竞争性递盘或非竞争性递盘中可递盘的最低美元金额。设置这些参数是为了防止可能对拍卖增加不必要的管理和复杂的过小的递盘的扩散。此外，个人投资者可使用这些参数确定他或它是否确实希望参与拍卖。对于竞争性递盘的最小美元量可能但不是必须等于非竞争性递盘的最小美元量。

6. 对于竞争性递盘和非竞争性递盘的最小美元增量。递盘必须按这些预定的增量作出。例如，如果最小美元增量是 $1000,00$，则递盘必须按这一增量增量。也就是说，例如不会接受 $10,500$ 的递盘。设置这些参数减轻了管理的困难。对于竞争性递盘的最小美元增量可以但不
是必须与非竞争性递盘最小美元增量相同。

7. 最大美元递盘量 (“最大递盘量”)。这是在组合竞买者的竞争性递盘和非竞争性递盘后任一单个的竞买者能够竞买的最大美元量。设置这一参数是为了防止任何单个的竞买者通过通过拍卖设置的差价有支配性的影响。这时设置这一参数能够允许清算差价更好地反映所发售的债券真实的市场估价。

8. 初始递盘下的最大差价，潜在的投资者在不取消其竞争性递盘情形下能够修改最终递盘 (“被保护的差价范围”)。如以下将详细介绍的，竞争性递盘有公开差价成分和私人差价成分。被保护的差价范围是借助于基准表示的最大量，其私人差价可能低于公开差价成分而不需要取消或重新输入整个的竞争性递盘。例如，如果被保护差价范围设置在 .04 (以基准表示)，且潜在的投资者竞争性初始 (公开) 递盘为 .75，则最终 (私人) 递盘在不取消和不重新输入竞争性递盘情形下不能低于 .71。如以下所论述，被保护差价范围倾向于引起在拍卖期间定价信息被公开提供，以便反映债券发售最终定价将依据的私人递盘信息。

9. 发行满期日。
10. 发行的息票频率。
11. 拍卖开始和结束时间。如上所指出，拍卖持续时间组合在 1 到 4 小时之间。
12. 最终交易量通知的时间。如以上所讨论，这一时间最好在拍卖进行期间。

通过在拍卖开始之前公布以上所列的拍卖参数，潜在的投资者能够收到远远多于比过去的证券发售技术中一般可能获得的关于固定收益证券发售的信息。特别是通过公布最大和最小交易量，竞争国库券和最小与最大差价，潜在的投资者将在债券销售之前得到关于债券发售的详和定价信息。这种信息能够有利于投资者用来作出更可靠的投资决策。

拍卖过程

图 2 是一流程图，示出根据本发明的系统拍卖部分期间所发生的
主要过程的优选实施例。如步骤 150 中所示，拍卖在预定并公布的时间开始。在拍卖期间，有三个主要过程发生。如步骤 152 所示，拍卖顾问监视拍卖过程。例如在优选实施例中，这包括这样的行动，诸如只允许每一拍卖参与者有一个竞争性递盘和一个非竞争性递盘。监视基准国库券利率看是否超过最大国库券利率，并管制投放的递盘的真实性。

此外，如步骤 154 所示并如以下将详细说明，递盘由拍卖顾问取得，且递盘的公开成分被公布。应当理解，在拍卖期间收取的递盘不一定被接受。就是说，简单来说因为拍卖顾问从一个竞买者收取一递盘，这不一定意味着该竞买者将得到债券。如以下将讨论的，只有成功的竞买者才将收到债券。

如步骤 156 所示，最好在拍卖中途设定交易量。在预定的结束时间，如步骤 158 所示，拍卖结束且不再收取递盘。

竞买

根据本发明的定价和分配系统，最好基于收到的潜在的投资者的递盘，确定正在发售的债券将产生的收益率。潜在的投资者的拍卖递盘最好指出两件事情：潜在的投资者希望购买的债券的数量，以及潜在的投资者希望对债券所能得到的收益率。债券的数量最好表示为潜在的投资者希望购买的债券总值，例如通过投资者可能指出希望购买 $200,000 价值的债券。潜在的投资者想要在购买的债券上得到的收益率，最好以最终定价时的基准国库券收益率与所竞买的债券期望收益率之间的差价对于一个基点增量指出。例如，如果基准国库券收益率为 7%，拍卖参与者想出价 1.5%以指示愿意接受所购债券 8.5% 的收益率。

如以下所详细讨论，在根据本发明一优选实施例的债券定价和分配方法中，递盘是否成功一般取决于两个因素：递盘的差价大小及递盘投放的相对时间。一般来说，递盘差价越低及递盘投放时间相对越早，拍卖参与者越可能收到所希望的全额债券。为了确定递盘是何时投放的，“时间印记”与该递盘相关，它指示该递盘相对于拍卖期间
所收到其它递盘是何时收到的。

如上所述，在本发明的一优选实施例中，一般有两类拍卖参与者可投之的递盘：竞争性递盘和非竞争性递盘。竞争性递盘最好指出数量和差价，该差价可能高于在拍卖前由发行者设定的最小差价。另一方面，非竞争性递盘简单地表示清算价格不论如何竞买者希望的债券总量。

此外，有两类竞争性递盘：公开的竞争性递盘和私人的竞争性递盘。当首先输入竞争性递盘时，竞买者最好最好既输入公开竞争性递盘，或“初始递盘”，也输入私人竞争性递盘，或“最终递盘”。初始递盘在拍卖结束时不作为来自潜在投资者实盘的部分，而最终递盘将是这种实盘的一部分。此外，在拍卖进行时，初始递盘的差价和量是可由其它潜在的投资者获取的(虽然最好不透露竞买者的身份)。如果竞买者在输入初始递盘时不输入最大递盘，则初始递盘最好默认变为最终递盘。

因为最终递盘影响证券发售的清算差价，并成为在拍卖结束时潜在投资者的实盘，为了向拍卖参与者提供证券发售的市场值的指示，可能希望公布最终递盘。然而，也可能希望对拍卖参与者保守关于他们实盘的精确信息的秘密直到拍卖结束。因而，为了向所有竞买者提供证券发售的市场值的某些信息，私人的最终递盘最好与公开的初始递盘相关。

为了实现这一点，在一优选实施例中发行人设置保护差价范围，该范围指示在不更改递盘的实际印记情形下，竞买者的最终递盘从最终递盘差价能够低于他或她的初始递盘的最大量。例如，如果一发行人设置保护差价范围为.35基点，则竞买者最终差价在不失去递盘的时间印记情形下不能低于竞买者初始递盘以下.35。如果竞买者超出保护差价范围，则最好失去递盘原来时间印记，并向新的递盘指定对应于在保护差价范围之外作出的最终递盘新的时间印记。此外，新的初始递盘最好按默认生成以匹配在原来的初始递盘保护范围之外的最终递盘。最好不允许最终递盘在初始指示之上。这向观察公开提供的信息
的竞买者提供了这样的知识，即所提供的信息反映了其它竞买者正在报出的最大差价。这能够对正在观察公开提供的递盘信息的竞买者提供较大的确定性。

如以上指出及以下将要详细说明的，最好基于对应于递盘的时间印记分部分配债券。这样，在竞争性的拍卖中，要及早递盘并通过不要把最终递盘投放到保护差价范围之外以保留他或她的递盘时间印记，这是竞买者的利益所在。这促进了竞买者对于竞买者的初始递盘作出在保护差价范围之内的最终递盘。这反过来又促使竞买者作出反映竞买者真正相信证券售发市场价值的他们的初始递盘。这样，促使公开提供的递盘信息在拍卖过程中相对可早获得，并对证券售发的真实市场价值承担某种关系。

如上所述，替代或除了竞争性递盘之外，竞买者还能够提供非竞争性递盘。在发竞争性递盘中，竞买者输入递盘所需的证券量，诸如 $200,000。为了定价的目的，差价应置被设置在由发行人在拍卖之前确定的最大差价。如以下将详细说明的，这意味着非竞争性递盘是首先“被填充”的或被分配所请求的债券量的递盘。这样，想要得到发售的债券确定量但不很关心收益率的竞买者，可简单地指出他或她想要多少债券，以及该递盘将可按清算差价填充。而且，零散的投资者最好被限制只提交非竞争性递盘，而机构投资者能够提交竞争性或非竞争性递盘。这有利地允许理性的机构投资者保持对债券最终价格实质的控制，从而降低假如零散投资者主要影响债券价格会引入市场的可能的不合理性。象竞争性递盘那样，非竞争性递盘当投放时也收到可用来确定分配优先权的时间印记。

图 3 是一流程图，表示根据本发明投放初始递盘的一优选实施例。在步骤 200，投资者投放一初始递盘。如步骤 210 和 216 所示，投资者将必须输入量值，并如果递盘是竞争性的，还必须输入差价。在步骤 210 收益量值之后，如步骤 212 和 214 所示，由系统进行两个检验。首先在步骤 212，确定递盘量值是否大于最小递盘量及处于正确的递盘增量。如果没有满足这些条件的一个或两个，则投资者被返回步骤
210 并要求输入另一递盘量值。如果这两个条件都满足，则在步骤 214
系统检验确保输入的量值小于或等于投资者信用限额或最大递盘量。
如果输入的量值不小于或等于这些参数一个或两个，则投资者被要求
重新输入递盘量值。如果量值小于或等于投资者信用限额及最大递盘
量，则竞买者初始递盘的量值成分被认可。

如步骤 216 所示，与初始递盘相关的还有差价。在步骤 218，系统
首先确定递盘是否为竞争性的。如果递盘是非竞争性的，则在步骤 222
对该递盘的差价被设置为最小递盘差价。如果初始递盘是竞争性递盘
的部分，则如图 220 所示，确定差价是否低于最大差价并高于最小差
价。如果该差价超出这一最小/最大差价范围，则竞买者被返回步骤 216
并要求输入另一差价。如果差价在最小/最大差价范围内，则认可递盘
的差价成分。最后在步骤 224，如果初始递盘的量值成分和差价成分
都获认可，则递盘显示给公众并给出时间印记。

如以上所讨论，能够修改竞争性差价成分。此外，能够修改竞争
性递盘或非竞争性递盘的量值成分。图 4 是一流程图，示出根据本发
明的系统如何允许竞买者修改竞争性递盘或非竞争性递盘的量值成分
并输入和修改最终递盘(竞争性递盘)。在步骤 300，投资者修改竞争性
递盘或非竞争性递盘的量值成分。在步骤 310，系统检验修改是否大
于最小递盘量和处于正确的递盘增量。如果修改的递盘违反任何一个
参数，则竞买者被返回步骤 300 不被要求进行新的修改。如果两个参
数都满足，则在步骤 312 系统检验修改的递盘量值成分是否大于或等
于当前递盘量值成分。这样，如果新的量值成分小于原来的量值成分，
如步骤 316 所示，询问竞买者他或她是否要投放一个新的递盘，即新
的时间印记的递盘。

如果竞买者不希望丢失原来递盘的时间印记，他或她被返回步骤
300 以作出适当的递盘修改。如果竞买者希望输入新的递盘，他可以
这样作，但只能到稳住市价(pegged)的量。

相对大幅地改变递盘量值，例如大于 50%，能够对提供给竞买者
的递盘信息有相对大的影响。这样，允许递盘量值这样大的改变可能
对拍卖过程引入较大的不确定性。于是，最好劝阻竞买者这样大幅地
改变他们的递盘量值。如果竞买者改变他或她原来的递盘量值达 50%
或更大，最好取消原来的递盘且竞买者必须输入有新的时间印记的新
的递盘。因而，如果被修改的递盘新的量值成分大于或等于当前递盘
量值成分，则在步骤 314 系统检验新的量值是否以小于 50% 大于原来
的量值成分。如果是，则在步骤 316 询问竞买者他或她是否要输入新
的递盘。然而，如果新的量值成分以小于 50% 大于原来的量值成分，
则如步骤 318 所示改变被接受，时间印记保留，新的量值显示给其它
竞买者。

如以上所讨论，竞争性递盘还具有在拍卖期间不公开的最终递盘
成分。再次参照图 4，在步骤 400，竞买者输入或修改竞争性递盘的最
终递盘。如步骤 400 所示，竞争性递盘的最终递盘成分被默认设置为
初始递盘成分。然而，如果最终递盘小于初始递盘并在来自初始递盘
的保护差价范围内，竞买者最好能够输入不同于初始递盘的最终递盘。
因而，如步骤 410 所示系统检验输入的最终递盘是否小于初始递盘不
大于保护差价范围。如果不是，则在步骤 420，给予竞买者输入新的
递盘的机会。

如果竞买者不希望输入新的递盘，则使竞买者返回步骤 400。如果
竞买者希望输入新的递盘，则如步骤 414 所示，向修改的递盘指定新
的时间印记，且被修改的递盘的初始递盘成分被默认设置等于新的最
终递盘成分。然而如果竞买者希望，则能够输入不同于新的最终递盘
的初始递盘，只要它大于新的最终递盘并在最终递盘的保护差价范围
内。返回步骤 410，如果在步骤 400 输入的新递盘小于原来的
初始递盘不超过保护差价范围，则在步骤 416，新的最终递盘被接受
而不改变递盘的时间印记。

在接受递盘达拍卖参数中所设定的预定的时间量之后，拍卖结束
而不再接受另外的递盘，且已提交的递盘不能被改变。

定价和分配

在拍卖结束后最好随之确定对于通过拍卖过程出售的债券，投资
者将收到的最终收益率。最好是拍卖结束后 30 分钟确定出最终收益率。然而在拍卖结束后立即确定相对于基准国库券利率所发售的债券将被出售的差价。图 5 是一流程图，示出用来定价和分配发售中的债券的过程。

如步骤 500 所示，非竞争性递盘和竞争性递盘的最终递盘成分从最低差价到最高差价排布在一序列中。如上所指出，非竞争性递盘被自动指定在拍卖参数中确定的最小差价。于是，非竞争性递盘将被收集在被排布的递盘序列的最低水平。具有相同差价的递盘按降序从最早时间印记到最后时间印记被排布在序列中。具有相同时间印记和差价的递盘放置在序列中相同的水平。

如步骤 501 和 510 所示，最低的一个或多个递盘(如果多个递盘共享相同的时间印记)被“接受”。看是否有足够的量值需求填充交易量，被接受的递盘的竞买者将收到清算差价的债券。然后在步骤 512，系统检验已接受的递盘的合计量值是否等于或超过交易量。如果不是 511，则接受序列中下一个最高一个或多个递盘。循环系统通过步骤 510 和 512 直到所接受的递盘的合计量值等于或大于交易量为止。然后如步骤 514 所示，系统检验是否所有的已接受的递盘都是非竞争性递盘。如果不是 515，也就是说如果至少有一个竞争性递盘被接受，则如步骤 516 所示，清算差价被设定为等于最后接受的一个或多个递盘(具有相同的时间印记)的差价。

如果所有已接受的递盘是非竞争性的 517，则如步骤 518 所示，清算差价被设定为两个值之一。如果接受的递盘所需的债券合计美元量值恰好等于交易量，则债券将被裁定在最小差价和最大差价之间的中点。然而如果接受的递盘所需的债券合计量值大于交易量，则债券将被裁定为最小差价。

如步骤 520 所示，如果有带有相同时间印记的多个递盘且其差价成分等于清算差价，则债券在这些递盘之间按比例分配。然后在步骤 522，系统确定已接受的递盘的合计量值成分是否成分大于交易量。如果不是 523，也就是说如果已接受的递盘的合计量值成分等于交易量，
则如步骤 524 和 526 所示，根据量值成分递盘投资者被裁定给予按清算差价的债券。

如步骤 528 所示，如果已接受的递盘的合计量值成分大于交易量，则所接受的具有最高差价和最后时间印记的递盘被裁定只得到递盘指示的所希望量值的一部分。被裁定给予的部分最好等于交易量与所有已接受的递盘所需债券合计量值减去具有最高递盘和最后时间印记已接受的递盘所需债券量值之间的差。此外，如步骤 526 所示，债权被裁定以清算差价给予。

结束

债券定价发生在拍卖结束后将近 30 分钟。最好通过向基准国债券利率添加清算差价而确定拍卖收益率。债券上的息票利率将设定在息票收益率向下舍入到由发行人和拍卖顾问确定的增量。对应于息票收益率和息票利率的债券价格最好舍入到三个小数位。

实施本发明的最佳方式

虽然以下优选实施例的说明涉及的是拍卖方面当前的操作规则以及针对债券或证券的系统，但业内专业人员清楚，这些和类似的规定能够用在并用于任何类型的有价证券类似的电子拍卖，以及用于大多数商品类似的商品拍卖。类似地，虽然系统的硬件和软件及它们当前体系结构的描述现在用于债券和其它证券的拍卖，但业内专业人员显然明白，这些和类似的硬件及软件装置能够用在或用于任何类型的有价证券类似的电子拍卖，以及用于大多数商品类似的商品拍卖。

所采用的技术

OpenBook 拍卖系统建立在为 W.R. Hambrecht 的专利权的 OpenIPO™ 证券承销平台开发的设计和体系结构上。这在以下相关未决申请中有说明，序列号 09/347,949 filed July 6, 1999，该文献在此完全结合以资对比。拍卖引擎采用模块化的客户-服务器体系结构，该体系结构使用标准的网络协议可被划分到若干处理器之间。系统的核心是定单管理服务器(OMS)，该服务器使用现有的关系数据库提供面向事务的持久存储。系统的其它组件通过分布式通信系统与 OMS 交互。
作用以处理行政管理、竞买管理，及证券分配。以下将更详细地说明包括其与这一先有发明差别的本发明的新颖性。

当前的操作规则

在系统的优选实施例中，以下的规则管理证券购买者和销售者的参与，并符合管理这种证券销售的联邦或州法规。

1. 一般条款

1.1. 这些规则（“条例”）将管理预期的证券购买者（“投资者”）在由 W R Hambrecht+Co. (“WRH”)操纵的 OpenBook 系统因特网电子拍卖系统（“系统”或“OpenBook 系统”）中的参与。每一投资者通过与 WRH 参与 OpenBook 系统的承销商或证券商签署顾客协议和/或参与协议而同意受该规则的约束，并允许其他投资者参与 OpenBook 系统。除去顾客协议、OpenBook 系统参与协议及任何这种特别标记对这一文件的修改之外，这些规则不应与其它文件（包括在 WRH 万维网站上公布的文件）相关联被解释。

1.2. WRH 有不定期修改规则的专有权，并将这种修改在 OpenBook 系统上公告。投资者将在修改中所述生效日期之后受到修改的约束。

1.3. 如果据其独立判断出现干扰这种拍卖作业的事件，WRH 有权取消任何拍卖。

2. 发行人

2.1. 证券的发行人（“发行人”）和或 WRH 选择在拍卖之前将在 OpenBook 系统上通知的以下项目：要发行的债券最小和最大元；对正被发售的债券的近似可比较期限的基准国库券（“基准国库券”）；对于递盘可被接受的超过基准国库券的最小差额（“超过基准国库券的最小差额”）；对于递盘可被接受的超过基准国库券的最大差额（“超过基准国库券的最大差额”）；对于基准国库券的最大利率（“最大基准国库券利率”）；对于竞争性递盘的最小美元量（“竞争性递盘最小美元量”）；对于竞争性递盘的最小美元增量（“竞争性递盘增量”）；对于非竞争性递盘的最小美元量（“非竞争性递盘最小美元量”）；
递盘的最小美元增量(“最小非竞争性递盘增量”); 最大美元递盘量值 (“最大递盘量”); 初始递盘下的最大差价，使投资者在不取消其竞争性递盘情形下能够修改最终递盘(“被保护的差价范围”); 发行限期日; 发行的息票频率; 拍卖开始和结束时间; 拍卖结束时间; 交易量通知时间。发行人和/或 WRH 可以选择任何认为与拍卖相关的附加项目。

2.2. 如果实际的国债利率高于基准国库利率，发行人和/或 WRH 有权，但没有义务取消 OpenBook 系统上的拍卖。

2.3. 发行人和/或 WRH 在拍卖期间某预先规定的点将通知发行的准确美元量(“交易量”)。

3. 竞买

3.1. 拍卖将在发行人和/或 WRH 所确定的时间开始和结束。投资者不可以在拍卖开始之前或结束之后投放递盘。

3.2. 投资者可以按美元输入所希望债券量值及按一基点增量(总称为 “竞争性递盘”) 超过基准国库券的两个差价。

3.2.1. 当投资者输入竞争性递盘时，第一差价成分将披露给 OpenBook 系统上的其它投资者，但投资者的身份将保持匿名(“初始递盘”)。

3.2.2. 直到拍卖结束为止第二差价成分将不披露给其它投资者 (“最终递盘”)。最终递盘不能以大于保护差价范围小于初始递盘。

3.2.3. 在拍卖结束时初始递盘将不作为投资者方实盘的部分。在拍卖结束时竞争性递盘的最终递盘和量值成分将包括投资者方实盘。

3.3. 除了或代替竞争性递盘，投资者可以按美元输入所需的债券量值及与高于基准国库券的最小差价相等的差价(总称为 “非竞争性递盘”)。

3.4. 新的竞争性递盘和非竞争性递盘将在由 OpenBook 系统收到递盘的确认时以一分钟增量被标记 (“时间印记”)。

3.5. 任何时候投资者只能投放一个竞争性递盘和一个非竞争性递盘。

3.6. 竞争性递盘的量值成分必须大于或等于最小竞争性递盘量，
并处于可由最小竞争性递盘增量整除的增量，非竞争性递盘的量值成分必须大于或等于最小非竞争性递盘量，并处于可由最小非竞争性递盘增量整除的增量。

3.7. 当加在一起时，竞争性递盘与非竞争性递盘量值成分不得超过由WRH设定的投资者信用限额或最大递盘量的较小者。

3.8. 初始递盘和最终递盘必须大于或等于高于基准国债券的最小差价，并小于或等于高于基准国债券的最大差价。

4. 改变递盘差价

4.1. 在拍卖期间任何时候投资者可以改变最终递盘。最终递盘必须小于或等于当前初始递盘。

4.2. 如果投资者试图改变最终递盘为小于初始递盘的值超过保护差价范围（“不合格最终递盘”），OpenBook系统将自动向投资者提供输入新的竞争性递盘的机会，该递盘带有按默认设置但由投资者改变的以下量值：等于先前竞争性递盘量值成分的量值成分，及等于不合格最终递盘的初始递盘和最终递盘。

4.3. 投资者不能修改非竞争性递盘的差价。

5. 改变递盘量值

5.1. 在拍卖期间任何时间，投资者可以改变竞争性递盘或非竞争性递盘的量值成分。

5.2. 如果投资者试图改变竞争性递盘量值成分为这样的一个值（“竞争性递盘不合格量值成分”）使得(1)小于该竞争性递盘当前现有的量值成分，或(2)大于投资者对于该竞争性递盘输入的第一量值成分50%以上，则OpenBook系统将自动向投资者提供输入新的竞争性递盘的机会，具有以下按默认设置但由投资者改变的值：等于竞争性递盘不合格量值成分的量值成分，以及等于先前竞争性递盘的初始递盘和最终递盘的初始递盘和最终递盘。

5.3. 如果投资者试图改变非竞争性递盘量值成分为这样的一个值（“非竞争性递盘不合格量值成分”）使得(1)小于该非竞争性递盘当前现有的量值成分，或(2)大于投资者对于该非竞争性递盘输入的第一量
值成分 50% 以上，则 OpenBook 系统将自动向投资者提供输入新的非竞争性递盘的机会，具有以下按默认设置但由投资者改变的值：等于非竞争性递盘不合格量值成分的量值成分，以及等于超过国库券的最小差价的差价成分。

6. 债券的裁定

6.1. 如果所有竞争性和非竞争性递盘所需的债券总量值小于交易量，WRH 有权但没有义务取消拍卖并拒绝所有提交的递盘。如果所有竞争性和非竞争性递盘所需的债券总量值小于交易量且 WRH 决定不取消拍卖，则承销商迪加将投放一非竞争性递盘，量值成分等于交易量与所有竞争性和非竞争性递盘所需的债券总量值之间的差。

6.2. 在拍卖结束时，从最低到最高最终递盘或非竞争性递盘的差价成分排布竞争性和非竞争性递盘。除非按 6.3-6.5 节修改，否则从最低最终递盘或非竞争性递盘的最低差价成分开始接受竞争性递盘和非竞争性递盘，直到由接受的递盘所需合计量值大于或等于交易量为止。结果使得所有递盘总量值大于或等于交易量的最低差价水平，被称为“清算差价”。

6.3. 所有具有最终递盘成分的竞争性递盘或具有等于清算差价的差价成分的非竞争性递盘，将从最早到最后时间印記排布。除非按 6.4 和 6.5 节修改，否则将从最早时间印記开始接受竞争性递盘和非竞争性递盘，直到已接受的递盘所需的债券合计量值大于或等于交易量为止。对具有相同时间印記并具有等于清算差价的差价成分的递盘，将根据所需债券美元量值按比例裁定给予债券。

6.4. 如果所有递盘是非竞争性递盘，且这些递盘所需债券合计美元量值恰好等于交易量，则债券将以高于基准国库券最小差价和高于基准国库券最大差价之间的中点裁定授予。除非按 6.5 节修改，否则如果所有递盘为非基准性递盘且这些递盘所需债券的合计美元量值大于交易量，则债券将按高于国库券最小差价裁定授予。

6.5. 如果所有被接受的递盘所需债券的合计量值大于交易量，则交易最高差价和最后时间印記的递盘将被裁定授予债券的部分量值，
该量值等于交易量与所有被接受的递盘所需债券合计量值减去被接受的具有最高差价和最后时间印记递盘的所需债券的量值之间的差。

6.6. 所有具有小于清算差价的最终递盘或非竞争性递盘差价成分的投资者将被裁定授予清算差价的债券。

6.7. W.R. Hambrecht 保留以任何原因拒绝竞争性和非竞争性递盘的权利。

6.8. 由 WRH 接受的递盘将构成由投资者购买证券不可撤销的合同。

7. 定价

7.1. 在拍卖终止之后将近 30 分钟发生债券定价。通过向基准国库存按利率增加清算差价而确定拍卖收益率（“拍卖收益率”）。债券的息票利率将被设定在拍卖收益率向下舍入到由 WRH 和发行人确定的增量。对应于拍卖收益率和息票利率的债券价格被舍入到三个小数位。

拍卖过程

在本发明的一实施例中，本发明系统的总体图示于图 6 中。在本发明的实施例中，本发明拍卖方法和系统的最终用户，使用标准的万维网浏览器 601 通过诸如因特网 602 等网络，访问信息万维网站 603 和拍卖服务器 604。信息万维网站 603 可以关联公布的 URL，并包含关于本发明方法和系统的证券发售和拍卖过程的信息。拍卖服务器 604 可以包含拍卖运行的拍卖引擎本身。

图 22 显示用于本发明方法和系统的物理网络的一个示例性实施例。路由器 2202，诸如 Cisco 路由器连接到网络，诸如因特网 2201。在本发明的实施例中，本发明的方法和系统的拍卖应用程序配置在对因特网 2201 提供 100Mbp 连接的设备中。路由器 2202 连接到转换器 2203，该转换器可以是与公共网络连接的 10 Mbp/100Mbp 转换器。转换器 2203 连接到产品 (production) 拍卖服务器，该服务器可以指定为热生产服务器。转换器 2203 还连接到备份服务器 2206，该服务器可以指定为温备份服务器。产品拍卖服务器 2204 和备份服务器 2206 连接到转换器 2205，该转换器可指定为专用网络转换器并可与专用网
络连接。在本发明的实施例中，数字流通过路由器 2202 并然后通过转
换器 2203 来往于因特网 2201，该转换器引导拍卖相关的位流通过相
关的公共网络到产品拍卖服务器 2204。备份服务器 2206 也可以在相
同的公共网络上，并作为产品拍卖服务器 2204 的故障接替。转换器
2205 用作为与包含其它非因特网有关的应用的相关专用网络连接。

图 23 显示出本发明的方法和系统的拍卖服务器 2301 的实施例总体
图。拍卖服务器 2301 可以包括一个或多个数据库 2302、OMS 2305、
竞买管理器 2306、拍卖人 2303、及管理员 2304。拍卖人 2303、管理
员 2304、及竞买管理器 2304 都可访问 OMS 2305。在本发明的实施例
中，拍卖人 2303、管理员 2304、及竞买管理器 2306 具有对 OMS 2305
不同的等级的访问。OMS 2305 是与一个或多个数据库 2302 相关联的
定单管理系统。竞买管理器 2306 连接到万维网服务器 2307，该服务
器又连接到网络，诸如因特网 2308。

图 24 对于本发明方法和系统示出更为详细的示例性系统体系结
构的图示。在本发明的实施例中由带有 OpenBook 系统扩展的
OMS/CoreOMS 示例显示的定单管理系统 2410，或 OMS 负责跟踪系
统的主要对象，这包括与用户、帐户、拍卖，头寸及供货(fills)。定单
管理系统 2410 可以实现基于用户的认证和基于角色的授权。在本发明
的实施例中，定单管理系统 2410 还可以对客户访问实现 Java
RMI-based API/SPi，并且是整个系统定时和事件的所在地。在本发明
的实施例中，定单管理系统 2410 使用关系后背存储(Relational
Backing Store)2407 定位并保持主要对象在永久保存装置中可得。在
本发明的实施例中，关系后背存储 2407 负责向关系模式映射系统的主要
对象，定位并保持 OpenBook 系统的主要对象在永久存储器中可得，
并用于服从数据模型的参照完整性约束。在本发明的一实施例中，关
系后背存储 2407 实现了与对象关系数据库系统 2408，诸如 Sybase
Adaptive Server Enterprise 的 Java JDBC 接口。

在本发明的一实施例中，OpenBookManager 2406 负责竞买者帐
户管理，多路复用与定单管理系统 2410 的基于竞买者-角色的接口，
及用于授权账户的头寸管理并对现行拍卖状态变化提供单一监听程序接口。OpenBookManager 2406 使得对于通过不直接使用定单管理系统 2410 API/SPI 的任何用户接收系统使用的客户，可获得状态和头寸信息。

在本发明的实施例中，OpenBook 系统的小服务器(Servlet)接口 2405 提供了 Java 小服务器引擎 2404 API 规范与 OpenBookManager 2406 模块直接的联接。小服务器调用被映射到 OpenBookManager 2406 接口以允许构成对 HTML 的用户接口。OpenBook 小服务器接口 2405 由 Java 小服务器引擎 2404 调用和控制。这可用是第三方 Java 小服务器引擎诸如来自 Allaire 的 JRun。JRun 又通过第三方 HTTP 万维网服务器 2402 使用，它可以是来自 Zeus Technology 的 Zeus。HTTP 万维网服务器 2402 又连接到万维网浏览器用户接口 2401。

在本发明的实施例中，提供了 HTML 模板 2403 以允许 OpenBook 小服务器接口 2405 模块和 HTML 设计者之间的概念分开。可以为系统的主要对象和所有它们的属性，以及系统属性诸如时间和日期，提供服务器例包括模板映射。可支持并容纳多个浏览器产品。

拍卖服务器数据库的模式

在本发明的实施例中，现在说明用于本发明方法和系统的拍卖服务器的示例性数据库模式。

在本发明的实施例中，auctiondb 数据库可以代表关系后备存储 (RBS) 2407，如图 24 所示。这一数据库与本发明的方法和系统的拍卖服务器相关联。

以下的语句整理出任何建立拍卖的现有的拍卖数据库:

```
use master

dump transaction master with no_log

drop database openbook

go
```

以下生成了一个空的拍卖数据库:
create database openbook on data=10 log on logs=10
go
use openbook
go

用户表定义关于被允许访问系统各部分的实体的静态信息。参见图23，用户可以是管理员2304，拍卖人2305，竞买管理器2306，审计师角色的实体，或设置帐户的实体。对各种组件的访问等级可由UserRoles表确定。每一用户被指定唯一的UserID，它用来指来自其它表的用户。一实施例如下：

create table openbook..users (
tStamp datetime not null,
ownerId numeric(18,0) not null,
id numeric(18,0) not null,
userName varchar(60) not null,
contactName varchar(80) null,
securityType int not null,
securityKey varchar(255) null,
status int not null,
unique (id),
unique (userName)
)
print "Created openbook..users"
go

本发明方法和系统中用户登录(userLOG)表与用于用户的安全个出错检验相关。每当进行拍卖时，用户登录被更新以便对行动分类。一个实施例如下：

create table openbook..userLog (
editId numeric(18,0) not null
)
references openbook..users(id),
txId numeric(18,0) not null,
action int not null,
tStamp datetime not null,
ownerId numeric(18,0) not null,
id numeric(18,0) not null references openbook..users(id),

userName varchar(60) not null,
contactName varchar(80) null,
securityType int not null,
securityKey varchar(255) null,
status int not null,
unique (txId)
)

print "Created openbook..userLog"
go

帐户表用来记录与最终用户相关的信息，诸如与本发明方法和系统相关的投资者。最终用户的例子为干扰购买者，干扰投资者，及零散用户。一个实施例如下:

create table openbook..accounts (
tStamp datetime not null,
ownerId numeric(18,0) not null references openbook..users(id),
id numeric(18,0) not null,
account varchar(80) not null,
name varchar(60) not null,
status int not null,
securityKey varchar(60) null,
<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>contactName</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>company</td>
<td>varchar(60)</td>
<td>null</td>
</tr>
<tr>
<td>address1</td>
<td>varchar(60)</td>
<td>null</td>
</tr>
<tr>
<td>address2</td>
<td>varchar(60)</td>
<td>null</td>
</tr>
<tr>
<td>address3</td>
<td>varchar(60)</td>
<td>null</td>
</tr>
<tr>
<td>city</td>
<td>varchar(50)</td>
<td>null</td>
</tr>
<tr>
<td>state</td>
<td>varchar(20)</td>
<td>null</td>
</tr>
<tr>
<td>zip</td>
<td>varchar(20)</td>
<td>null</td>
</tr>
<tr>
<td>country</td>
<td>varchar(50)</td>
<td>null</td>
</tr>
<tr>
<td>directPhone</td>
<td>varchar(30)</td>
<td>null</td>
</tr>
<tr>
<td>mobilePhone</td>
<td>varchar(30)</td>
<td>null</td>
</tr>
<tr>
<td>faxNumber</td>
<td>varchar(30)</td>
<td>null</td>
</tr>
<tr>
<td>emailAddress</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>challenge</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>response</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>companySwitchboard</td>
<td>varchar(30)</td>
<td>null</td>
</tr>
<tr>
<td>wrhManager1</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>wrhManager2</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>clearingAccount</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>instructions</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>accountManager</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>accountNameDisclosed</td>
<td>bit</td>
<td>not null</td>
</tr>
<tr>
<td>accountType</td>
<td>varchar(8)</td>
<td>null</td>
</tr>
<tr>
<td>bloomberg</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>bocName</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>bocPhone</td>
<td>varchar(30)</td>
<td>null</td>
</tr>
<tr>
<td>bocEmail</td>
<td>varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>creditLimit</td>
<td>float</td>
<td>null</td>
</tr>
<tr>
<td>agreementSigned</td>
<td>datetime</td>
<td>null</td>
</tr>
<tr>
<td>unique (id)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unique (account)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
print "Created openbook..accounts"

go

帐户登录(accountLOG)表用来记录并分类由给定的帐户采取的所有行动。一实施例如下:

create table openbook..accountLog (
 editId numeric(18,0) not null
 references openbook..users(id),
 txId numeric(18,0) not null,
 action int not null,
 tStamp datetime not null,
 ownerId numeric(18,0) not null
 references openbook..users(id),
 id numeric(18,0) not null references

openbook..accounts (id),
 account varchar(80) not null,
 name varchar(60) not null,
 status int not null,
 securityKey varchar(60) null,
 contactName varchar(80) null,
 company varchar(60) null,
 address1 varchar(60) null,
 address2 varchar(60) null,
 address3 varchar(60) null,
 city varchar(50) null,
 state varchar(20) null,
 zip varchar(20) null,
 country varchar(50) null,
 directPhone varchar(30) null,
角色表对由拍卖系统定义的安全角色提供了方便的档案库。对每一角色指定唯一的 RoleID。此 RoleID 由 UserRoles 表参照。角色的语义由应用程序定义。用户的角色可被检验以确定用户是否可访问一定的资源或允许执行各种任务。一个实施例如下：

```sql
mobilePhone varchar(30)   null,
faxNumber varchar(30)     null,
emailAddress varchar(80)  null,
challenge varchar(80)     null,
response varchar(80)      null,
companySwitchboard varchar(30)  null,
wrhManager1 varchar(80)   null,
wrhManager2 varchar(80)   null,
clearingAccount varchar(80) null,
instructions varchar(80)  null,
accountManager varchar(80) null,
accountNameDisclosed bit  not null,
accountType varchar(8)    null,
bloomberg varchar(80)     null,
bocName varchar(80)      null,
bocPhone varchar(30)     null,
bocEmail varchar(80)     null,
creditLimit float        null,
agreementSigned datetime null,
unique (txId)
)

print "Created openbook..accountLog"
go
```
```
create table openbook..roles (  
  roleId numeric(18,0) not null,  
  roleName varchar(20) not null,  
  unique (roleId),  
  unique (roleName)  
)

print "Created openbook..roles"
go

UserRole 表列举了所有与特定用户相关的角色。一实施例如下:

create table openbook..userRoles (  
  userId numeric(18,0) not null  
  references openbook..users(userId),  
  roleId numeric(18,0) not null  
  references openbook..roles(roleId)  
)

create unique index userRolesIndex on openbook..userRoles(userId, roleId)
create index userRolesUserIndex on openbook..userRoles (userId)
create index userRolesRolesIndex on openbook..userRoles (roleId)
print "Created openbook..userRoles"
go

在本发明的实施例中, UserRoleLog 表表示系统所知道的每一用户每一角色变化的完整的交易历史。每一交易被指定一个唯一的UserRoleTxId。一个实施例如下:

```
create table openbook..userRoleLog (
 userRoleTxId numeric(18,0) not null,
 editId numeric(18,0) not null
 references openbook..users(id),
 userId numeric(18,0) not null
```
在本发明的一实施例中，视图 `userRoleName` 与 `userRoles` 的相同的数据相关的，但提供的是用户和角色名称而不是标识。一个实施例如下：

```sql
create view userRoleNames as
 select userName, roleName
 from openbook..userRoles ur, users u, roles r
 where ur.userId = u.id and ur.roleId = r.roleId
print "Created openbook..userRoleNames"
```

拍卖表定义实际进行的拍卖。每一拍卖与一组定义了拍卖的参数相关联。也可以使用通过点击(click-through)的参数。参数的表值可被存储。在本发明的一个实施例中，所需的且必须被提供的参数在以下示例性实施例中是被作为“非零(ont null)”被列出的那些参数。

```sql
create table openbook..auctions (
```
tStamp datetime not null,
ownerId numeric(18,0) not null,
    references openbook..users(id),
id numeric(18,0) not null,
cusip varchar(12) not null,
description varchar(255) null,
status int not null,
totalAvailable int not null,
minValue float not null,
maxValue float not null,
valueIncrement float not null,
lotSize int not null,
openTime datetime not null,
closeTime datetime not null,
alert varchar(255) null,
announcedSize int not null,
minAuctionSize int not null,
maxAuctionSize int not null,
auctionFormat varchar(80) null,
benchmarkDesignationTime int not null,
benchmarkDollarPriceAtPricing float not null,
benchmarkRateAtPricing float not null,
benchmarkRateMax float not null,
benchmarkTreasury varchar(15) null,
benchmarkCusip varchar(12) null,
bondsFreeToTradeAt int not null,
clearingSpread float not null,
jointManagers varchar(80) null,
compSizeIncrement int not null,
couponDates varchar(100) null,
couponFrequency varchar(15) null,
<table>
<thead>
<tr>
<th>Field</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>couponRate float</td>
<td>not null</td>
</tr>
<tr>
<td>dollarPrice float</td>
<td>not null</td>
</tr>
<tr>
<td>evalInterval int</td>
<td>not null</td>
</tr>
<tr>
<td>faceValue float</td>
<td>not null</td>
</tr>
<tr>
<td>finalPricingTime int</td>
<td>not null</td>
</tr>
<tr>
<td>issuer varchar(50)</td>
<td>null</td>
</tr>
<tr>
<td>listed varchar(15)</td>
<td>null</td>
</tr>
<tr>
<td>maturity datetime</td>
<td>null</td>
</tr>
<tr>
<td>accruedInterest float</td>
<td>not null</td>
</tr>
<tr>
<td>maxBidIncrease float</td>
<td>not null</td>
</tr>
<tr>
<td>maxCompSize int</td>
<td>not null</td>
</tr>
<tr>
<td>maxNonCompSize int</td>
<td>not null</td>
</tr>
<tr>
<td>maxPurchase float</td>
<td>not null</td>
</tr>
<tr>
<td>minCompSize int</td>
<td>not null</td>
</tr>
<tr>
<td>minNonCompSize int</td>
<td>not null</td>
</tr>
<tr>
<td>nonCompSizeIncrement int</td>
<td>not null</td>
</tr>
<tr>
<td>pricingTime int</td>
<td>not null</td>
</tr>
<tr>
<td>protectedSpread float</td>
<td>not null</td>
</tr>
<tr>
<td>rating varchar(40)</td>
<td>null</td>
</tr>
<tr>
<td>sellingConcession float</td>
<td>not null</td>
</tr>
<tr>
<td>settlementDate datetime</td>
<td>null</td>
</tr>
<tr>
<td>settlementTerms varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>issueDate datetime</td>
<td>not null</td>
</tr>
<tr>
<td>sizingTime int</td>
<td>not null</td>
</tr>
<tr>
<td>softDollarEarlyCutoff int</td>
<td>not null</td>
</tr>
<tr>
<td>softDollarEarlyPercent float</td>
<td>not null</td>
</tr>
<tr>
<td>softDollarLatePercent float</td>
<td>not null</td>
</tr>
<tr>
<td>structure varchar(80)</td>
<td>null</td>
</tr>
<tr>
<td>term int</td>
<td>not null</td>
</tr>
<tr>
<td>typeofIssue varchar(30)</td>
<td>null</td>
</tr>
<tr>
<td>wrhManagerRole varchar(30)</td>
<td>null</td>
</tr>
</tbody>
</table>
yieldToMaturity float not null,
unique (id),
unique (cusip)
)
print "Created openbook..auctions"
go

在本发明的一个实施例中，视图交易'允许用户看见用于报告产生及报告目的的视图，诸如对于监视拍卖的人员。视图可以生成，就使得需要运行报告时不必每次都查询数据库。在本发明的一实施例中，数据已经被组合并馈送到与本发明的方法和系统相关的报告结构中。一实施例如下:
create view deals as
select tStamp, ownerId, id, cusip, description, status
from openbook..auctions
print "Created view deals"
go

auctionLOG 表用于分类并记录对具体的拍卖所采取的所有行动。在本发明的一个实施例中，用户的改变被记录在 auctionLOG 中。在本发明的实施例中，参数可由用户改变。一实施例如下:
create table openbook..auctionLog (editId numeric(18,0) not null
references openbook..users(id),
txId numeric(18,0) not null,
action int not null,
tStamp datetime not null,
<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>ownerId numeric(18,0)</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>references openbook..users(id),</td>
<td></td>
<td></td>
</tr>
<tr>
<td>id numeric(18,0)</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>openbook..auctions (id),</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cusip varchar(12)</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>description varchar(255)</td>
<td>null</td>
<td></td>
</tr>
<tr>
<td>status int</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>totalAvailable int</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>minValue float</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>maxValue float</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>valueIncrement float</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>lotSize int</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>openTime datetime</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>closeTime datetime</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>alert varchar(255)</td>
<td>null</td>
<td></td>
</tr>
<tr>
<td>announcedSize int</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>minAuctionSize int</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>maxAuctionSize int</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>auctionFormat varchar(80)</td>
<td>null</td>
<td></td>
</tr>
<tr>
<td>benchmarkDesignationTime int</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>benchmarkDollarPriceAtPricing float</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>benchmarkRateAtPricing float</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>benchmarkRateMax float</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>benchmarkTreasury varchar(15)</td>
<td>null</td>
<td></td>
</tr>
<tr>
<td>benchmarkCusip varchar(12)</td>
<td>null</td>
<td></td>
</tr>
<tr>
<td>bondsFreeToTradeAt int</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>clearingSpread float</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>jointManagers varchar(80)</td>
<td>null</td>
<td></td>
</tr>
<tr>
<td>compSizeIncrement int</td>
<td>not null</td>
<td></td>
</tr>
<tr>
<td>couponDates varchar(100)</td>
<td>null</td>
<td></td>
</tr>
<tr>
<td>couponFrequency varchar(15)</td>
<td>null</td>
<td></td>
</tr>
</tbody>
</table>
couponRate float  not null,
dollarPrice float  not null,
evalInterval int  not null,
faceValue float  not null,
finalPricingTime int  not null,
issuer varchar(50)  null,
listed varchar(15)  null,
maturity datetime  null,
accruedInterest float  not null,
maxBidIncrease float  not null,
maxCompSize int  not null,
maxNonCompSize int  not null,
maxPurchase float  not null,
minCompSize int  not null,
minNonCompSize int  not null,
nonCompSizeIncrement int  not null,
pricingTime int  not null,
protectedSpread float  not null,
rating varchar(40)  null,
sellingConcession float  not null,
settlementDate datetime  null,
settlementTerms varchar(80)  null,
issueDate datetime  not null,
sizingTime int  not null,
ssoftDollarEarlyCutoff int  not null,
ssoftDollarEarlyPercent float  not null,
ssoftDollarLatePercent float  not null,
structure varchar(80)  null,
term int  not null,
typeOfIssue varchar(30)  null,
wrhManagerRole varchar(30)  null,
yieldToMaturity float not null,
unique (txId)
)
print "Created openbook..auctionLog"
go

在本发明的一个实施例中，视图 dealLog 表示用于特定交易的视图。视图 dealLog 可用于报告或其它目的。一个实施例如下:

create view dealLog as
    select editId, txId, action, tStamp, ownerId, id,
    cusip, description, status
    from openbook..auctionLog
print "Created view dealLog"
go

头寸表记录用于递盘的结构，包括这些项目，诸如交易量，时间印记，初始递盘差价，及最终递盘差价。在本发明的实施例中，对于非竞争性递盘，记录交易量和时间印记。在本发明的实施例中，对于竞争性递盘，记录交易量，最终递盘差价，初始递盘差价，和时间印记。在本发明的一个实施例中，可参照用户帐户。头寸表还可以通过帐户和/或通过拍卖索引。一实施例如下:

create table openbook..positions (  
tStamp datetime not null,
ownerId numeric(18,0) not null
    references openbook..users(id),
id numeric(18,0) not null,
dealId numeric(18,0) not null
    references openbook..auctions (id),
account varchar(80) not null,
size int not null,
minFillSize int not null,
status int not null,
value float not null,
initialValue float not null,
nonCompSize int not null,
treasures float null,
priority_tStamp datetime null,
priority_size int null,
nonCompPriority_tStamp datetime null,
nonCompPriority_size int null,
unique (id),
unique (account, dealId)
)
print "Created openbook..positions"
go

在本发明的一个实施例中，表 positionLog 记录对头寸表所作的改变。在本发明的一实施例中，改变的例子为在差价的改变，交易量的改变，及时间印记的改变。对帐户的所有改变都可被记录。通过对每一拍卖唯一的 auctionID，和/或交叉参照用户 ID，表 positionLog 可以按每一拍卖被索引。一实施例如下:

create table openbook..positionLog (  
editId numeric(18,0) not null  
    references openbook..users(id),
txId numeric(18,0) not null,
action int not null,
tStamp datetime not null,
ownerId numeric(18,0) not null
    references openbook..users(id),
id numeric(18,0) not null references
openbook..positions (id),
deadId numeric(18,0) not null
    references openbook..auctions (id),
account varchar(80) not null,
size int not null,
minFillSize int not null,
status int not null,
value float not null,
initialValue float not null,
nonCompSize int not null,
treasuries float null,
priority_tStamp datetime null,
priority_size int null,
nonCompPriority_tStamp datetime null,
nonCompPriority_size int null,
unique (txId)
)

print "Created openbook..positionLog"
go

在本发明的一个实施例中，供货表可存储关于被授予的债券的信息。一个最终用户可设置一个头寸，根据拍卖的其它头寸和其它因素，最终用户可能或可能不获得供货。一实施例如下:
create table openbook..fills ( 
    tStamp datetime not null,
    ownerId numeric(18,0) not null
        references openbook..users(id),
    id numeric(18,0) not null,
    indicationId numeric(18,0) not null
        references openbook..positions (id),
    value float not null,
    size int not null,
    status int not null,
    softDollarAllocation float not null,
    unique (id)
)

print "Created openbook..fills"
go

在本发明的一个实施例中，fillLog 表分类并记录对摊销的改变。改变包括因为出错，不可信的递盘，和/或出售较少的量值或其它方式修改递盘而由管理员作出的改变。在一个实施例中，管理员或其它方面可以改变递盘。

create table openbook..fillLog ( 
    editId numeric(18,0) not null
        references openbook..users(id),
    txId numeric(18,0) not null,
    action int not null,
    tStamp datetime not null,
    ownerId numeric(18,0) not null
        references openbook..users(id),
    id numeric(18,0) not null references openbook..fills
(id),
    indicationId numeric(18,0) not null
    references openbook..positions (id),
    value float not null,
    size int not null,
    status int not null,
    softDollarAllocation float not null,
    unique (txId)
)

print "Created openbook..fillLog"
go

create clustered index fillsBidldIndex on openbook..fills(id)
go

数据库转储或出口的一个实施例如下:

checkpoint
go
sp_dropdevice dbdumpfile
go
sp_adddumpdevice "disk", dbdumpfile, "/tmp/dbdump"
go
dump database openbook to dbdumpfile
go
_EOF_

/bin/rm -f /tmp/dbdump

exit 0
在本发明的实施例中，本发明的方法和系统通过单一价格拍卖与一公司债券发起相关联。在本发明的一实施例中，拍卖的状态可包括 NOT OPEN，OPEN，WITHDRAWN，PRICING，CLOSING，RUNNING，ALLOCATED，及 FIRED。

在本发明的一实施例中，时间是拍卖必须的成分，且每一阶段在系统中可作为一状态被俘获。在本发明的实施例中，每一状态严格地独立于其余的状态：在任何给定的时间拍卖只严格地处于一种状态，没有两个状态是重叠的，且没有任何一个时间段没有严格地被一个状态覆盖。在本发明的实施例中，从一个状态到下一个状态的过度是自动的。

在 NOT_OPEN 状态，拍卖没有开始。在本发明的实施例中，这一状态在系统中首先生出拍卖的瞬间开始，并继续到过度到 OPEN 状态为止。不会生成、修改或删除任何头寸。所有的拍卖在这一状态生成，且这是不能使之从另一状态过度来的状态。本发明的方法和系统只能从 NOT_OPEN 状态过度到 OPEN 状态。

在 OPEN 状态中，拍卖开始，并能够生成、修改，或删除来自合格帐户和授权用户的头寸。在本发明的实施例中，这一状态在拍卖开始的瞬间开始并继续到过度到 PRICING 状态或 WITHDRAWN 状态为止。由于系统定时的难以预测的变化，这一状态不能用作为对头寸操作被本发明的方法和系统何时接收的决定性的控制。可以预期，在这一状态持续期将是从 openTime 拍卖属性直到 closeTime 拍卖属性。参见以下关于定时的讨论。

在 WITHDRAWN 状态中，拍卖被撤销。这一状态在拍卖被撤销的瞬间开始并无限期继续，或直到其被复位到 OPEN 状态。这通常是拍卖已被暂停或取消的信号。在本发明的实施例中，不接受任何头寸操作，虽然某些头寸可能已经存在于本发明的方法和系统中。

在 PRICING 状态，系统正准备接收最终定价条款。这一状态在尽可能紧跟结束时间后立即的瞬间开始，并在向 CLOSED 状态或 WITHDRAWN 状态过度时结束。在这一状态期间，头寸操作只允许
由授予辛迪加角色的用户进行。在本发明的一个实施例中，为了实现
辛迪加长期头寸可输入用于辛迪加的新头寸；在这一状态期间总的可
用的拍卖属性可被修改。这一量可以不同于拍卖属性被通知的量，并
能够用来影响辛迪加短期头寸。

在 CLOSED 状态，拍卖结束，因而不允许进一步的头寸操作。该
状态在辛迪加管理器结束拍卖的瞬间开始，并当拍卖人使拍卖向
RUNNING 状态过度时结束。

在 RUNNING 状态，拍卖人处于计算清算值和产生分配的过程。
在本发明的一实施例中，查询帐簿可产生中间结果。如果在 RUNNING
状态中出现差错，则拍卖返回 CLOSED 状态并所有分配被删除。在成
功结束分配产生时，状态变为 ALLOCATED。

在 ALLOCATED 状态，拍卖已经被分配，且已经生成执行并可
用。在本发明的一实施例中，最终拍卖属性，诸如息票，价格，及其它
属性可由具有授予辛迪加角色的用户计算并公布。对于进入这一状态
后的头几分钟，对于收到供货的头寸可修改公债券头寸属性；这一时
间在结束时间 + 最终定价时间结束，但直到进入这一状态之前不会开
始。

在 FILLED 状态，拍卖被供货。不允许任何头寸操作或拍卖操作。
供货可被传送给第三方，诸如清算经纪人，获胜的竞买人，和/或其它
方面。这一状态在拍卖人已结束产生供货时开始，且 FILLED 状态可
以无限期延续。

在本发明的一实施例中，拍卖中的时间可用如下掌握。正常的头
寸操作允许在一定的时间进行。当试图进行头寸操作时，由本发明的
方法和系统的定单管理系统给出时间印记。在本发明的一个实施例中，
在定单管理系统中这一时间印记被赋予尽可能早的时间，以允许使用
最早的值。这一时间印记改进了公平性和一致性，这在于不同的操作
可能取不同的时间量，从而获得提议的时间印记减少了这一变化。在
本发明的实施例中，这一时间印记被向下舍入到最近的百分之一秒。

在本发明的一实施例中，在头寸生成之前，允许修改或删除，提
议的时间印记可对开始的时间核对；如果时间印记大于或等于开始的时间，则时间印记再对封闭的时间核对；如果时间印记小于结束的时间，则拍卖状态被核实；如果拍卖的状态不是 WITHDRAWN，则允许操作继续。这一过程使得能够处理在开始时间之后但严格在过度到 OPEN 状态之前受理收到的递盘的情形，以及在结束时间之后但严格在从 OPEN 状态过度出来之前不受理收到的递盘。

在本发明的一实施例中，时间问题还涉及有关竞争性和非竞争性递盘。当对任何对象作出任何改变时，为了审计的目的通过定单管理系统记录时间印记。如果操作的结果是优先的时间印记被重置，则使用对头寸最后改变的时间印记。

在本发明的一实施例中，对拍卖评估的定时可以与拍卖属性 evalInterval 相关联，该定时以秒表示。在本发明的一实施例中，通过从结束时间向后推移可计算规定的评估时间，使得最后的评估间隔精确地在结束时间终止。在本发明的一实施例中，可对定义拍卖的人警告不要使用可能造成时间印记混乱的 evalInternal。

再参见图 6，通过登录到拍卖服务器 604 以对服务器使识别最终用户，最终用户可以启动本发明的方法和系统的拍卖。通过熟知的加密机制可以保证往来于万维网站传送的数据的安全。图 7 显示对于本发明的示例性登录屏幕。诸如投资者这样的最终用户输入投资者帐户号码 701 及口令 702。用户在与本发明的方法和系统登记之后可收到之后号码 701 和口令 702。

在本发明的实施例中，往来登记到本发明的方法和系统，投资者可通过填写顾客申请表，签署顾客协议和参与协议可以开一帐户，并从与本发明的方法和系统相关的顾客帐户职员那里收到批准。在一定的场合，投资者可以由与本发明的方法和系统相关的职员指定的第三方经纪人-经销商一同使用现有的帐户。

再次参见图 7，还提示最终用户输入拍卖键 704。在本发明的一实施例中，每一拍卖在提前一到两天时间通知。以电子的方式将拍卖通知已登记的参与者。拍卖进行得很快，通常持续两小时。当向已登记
的参与者通知时，他们可能收到用于给定的拍卖的拍卖密钥 703。

如果最终用户选择初始项 705，则由图 8 示例的初始项屏幕显示给用户。图 8 示出拍卖的细节，包括标题 801 和初始项 802。该初始项可能包括这样一些项目，诸如发行人，发行量，期满日期，息票利率，结算日期，结算项目，发行类型，息票日期，结构，格式，质量等级，基准国库券，最大基准利率，最小/最大差价，保护差价，拍卖日期和时间，定价日期和时间，最大购买限额，最小和倍数投资，列出的任命 (listing designation)，软美元项 (soft dollar terms)，共同经理人名称，及销售许可。

再次参见图 7，如果最终用户选择提交 704，则本发明的方法和系统查验由最终输入的用户安全数据库以匹配账户号码 701 及口令 702 信息。如果输入的信息匹配系统中已登记的最终用户，则系统检验由最终用户输入的拍卖密钥 703。如果最终用户正确地被登记且输入的拍卖密钥 703 正确，则向最终用户显示图 9 中示例表示的拍卖前的屏幕。

在由图 9 示例的拍卖前的阶段，不接收递盘，如拍卖进展窗口 901 所示。在拍卖前阶段和整个拍卖过程，可向最终用户显示提供了关于拍卖详情的拍卖细节 902。拍卖开始 903 显示拍卖开始时间，拍卖结束 904 显示拍卖结束时间。Min/max 差价 905 按基点显示拍卖期间允许的高于基准国库券最大和最小递盘差价。

保护差价范围 906 示出在初始递盘下，最终用户可以修改最终递盘，而不删除最终用户现有竞争性递盘的最大差价范围。提高初始递盘大于保护差价范围结果将是删除原来的递盘并输入带有新的时间印记的新的递盘。在该例子中，保护差价范围 906 为 4 个基点差价。基准国库券 907 与所选择的参照的对正被拍卖债券可比期限的美国国库券相关。基准国库券收益率可在拍卖之后用来定价债券。在本发明的实施例中，如果基准国库券收益率在价格上高于最大利率，则允许但不要求发行人取消拍卖。

在拍卖开始之后，向最终用户显示诸如图 10 所示的一个屏幕。拍
卖进展窗口 901 显示当前时间和拍卖剩余的时间。累积递盘图表 1002 表示总的累积递盘，在所示的拍卖例子中是 $500 亿。累积递盘图表 1002 还以基点差价 (bps) 条形图格式累积分组显示了初始递盘的分布。在该例子中，总共有 24 个递盘，所有 24 个初始递盘都在或低于 105 bps。在该例子中，23 个递盘低于 104 个 bps，这表明有 (24-23=1) 一个初始递盘在 105 bps。这一累积递盘图表向最终用户提供了这样的线索，即为了有切实的机会成功地赢得拍卖，最终用户可能必须以怎样的 bps 递盘。在图 9 的例子中，如果没有递盘被修改，则最终用户知道 105 bps 的最终递盘当前将不会获得合理获胜的机会，因为已经有超过 $450 亿价值的递盘处于 104 bps 及以下，且供拍卖的债券总量在 $300 亿到 $450 亿之间。通过累积图表 902 显示的只是初始递盘，而不是最终递盘，但是保护差价范围 906 提供了对最终用户最终递盘可落到何处的指导。在本发明的一个实施例中，累积递盘图表 1002 被彩色编码为三种颜色，一个颜色用于可能在猜测的清算价格之上的递盘，第二个颜色用于可能在也可能不在清算价格之上的递盘，且第三种颜色用于可能低于清算价格的递盘。

如果用户点击或选择标称图表 1001，则标称递盘图表 1102 与最终用户通信，如图 11 所示。标称递盘图表 1102 对每一基点差价按条带图格式分组示出初始递盘数目，示出在按基点差价初始所需的的债券量值。在图 11 所示的例子中，有两个初始递盘在 103 bps，但是它们占有债券的大量值 ($110 亿价值在 103 bps)。在本发明的一个实施例中，标称递盘图表 1102 被彩色编码为三种颜色，一种颜色用于用于可能在猜测的清算价格之上的递盘，第二种颜色用于可能在也可能不在清算价格之上的递盘，第三种颜色用于可能低于清算价格的递盘。

如果用户点击或选择递盘数据 1103，递盘数据表 1202 与最终用户通信，如图 12 所示。递盘数据表 1202 按 bps 顺序示出每一递盘。在该例子中，所示的第一递盘是非竞争性递盘 “N”，量值为 10，时间印记在 9:00 ET。在本发明的实施例中，递盘数据表 1202 的项被彩
色编码为三种颜色，第一种颜色用于用于可能在猜测的清算价格之上的递盘，第二种颜色用于可能在也可能不在清算价格之上的递盘，第三种颜色用于可能低于清算价格的递盘。如果有太多的递盘要显示在递盘数据表 1202 的一个屏幕中，最终用户可以点开或选择查看其余的递盘按钮以显示其它递盘。

再次参见图 12，最终用户通过在投放递盘窗口 1201 输入递盘信息，可以选择投放递盘。当屏幕开始时，投放递盘窗口 1201 出现在最终用户屏幕上，并且用户选择通过各种递盘历史图表及表格循环，则保持在用户屏幕上。在本发明的实施例中，最终用户可以选择投放竞争性递盘 1203，非竞争性递盘 1208，或既选择竞争性递盘 1203 又选择非竞争性递盘 1208。对于竞争性递盘 1203 或非竞争性递盘 1208，最终用户必须输入交易量 1205。交易量 1205 是按百万计的递盘量。在本发明的实施例中，最小竞争性递盘是 $1$ 百万并能够以增量 $1,000$ 增加。最小非竞争性递盘为 $1,000$ 并能够以 $1,000$ 增量增加。投资者可增加现有的递盘量最高可达 $50\%$ 并保持原来时间印记。在本发明的实施例中，递盘增量量超过 $50\%$ 结果将是删除原来的递盘，并输入带有新的时间印记 1204 的新的递盘。

在本发明的实施例中，对于竞争性递盘 1203，最终用户还必须输入初始递盘 1206 和最终递盘 1207。初始递盘 1206 是按竞争性递盘基点的差价，该差价将向其它投资者匿名披露。在本发明的实施例中，最终递盘 1207 只能设置在低于初始递盘，但可能以超过保护差价范围 906 不同于初始递盘。可以在拍卖结束之前任何时间改变最终递盘 1207。设置最终递盘 1207 以大于保护差价范围低于初始递盘 1206，结果将删除原来的递盘，并输入带有新的时间印记 1204 新的递盘。

在本发明的实施例中，最大递盘 1210 是一特定投资者在一给定的递盘中可竞买的最大量。当加在一起时，投资者的竞争性递盘 1203 和非竞争性递盘 1208 的交易量不得超过由最大递盘 1210 指示的最大递盘量。在图 12 所示的例子中，最大递盘 1210 是 $75$ 百万。

如果最终用户在递盘投放窗口 1201 正确地输入了递盘信息，并点
击或选择提交 1211，则图 13 所示的确认递盘屏幕可以与最终用户通
信。如果最终用户没有正确输入递盘信息，诸如输入了超过对于特定
投资者允许的最大递盘，则图如 20 所示出错屏幕与最终用户通信。
在图 20 中，差错 2001 向用户描述了投放递盘 1201 窗口中的错误。在
图 20 所示的例子中，超过允许的最大递盘与用户通信。

再来参见图 12，如果用户正确输入了递盘，则图 13 所示的确认
屏幕可以与用户通信。确认递盘窗口 1301 出现，提醒并总结最终用户
先前已输入的递盘信息。如果最终用户出错或改变他或她的意向，最
终用户可以点击或选择返回 1302 以返回先前的投放递盘屏幕。

如果最终用户选择确认递盘 1303，如图 14 所示的当前递盘状态
屏幕与最终用户通信。当前递盘状态窗口 1401 包含当前状态列 1402
和修改列 1403。当前状态列 1402 显示最终用户现在的一个或多个递
盘。而且作为竞争性递盘 1203 与非竞争性递盘 1208 之和的整个递盘
1404 与用户通信。

如果最终用户希望修改 1403 一递盘，最终用户可选择改变递盘的
量 1205。对于竞争性递盘 1203，用户可改变最终递盘 1207 受到诸如
保护差价范围 906 约束的差价。在本发明的实施例中，在本发明的实
施例中，对修改递盘量 1205 的另一约束是，在拍卖期间任何时候递盘
可被增加达 50%而无需改变时间印记。如果最终用户增加递盘量超过
50%，则现有的递盘将被删除，并输入带有新的量和新的时间印记的
新的递盘。

在本发明的实施例中，作为进一步的约束，在其未删除时递盘量
不能被减少。在拍卖期间任何时候投资者可以删除递盘。本发明的
方法和系统可以因任何原因排除投资者，包括对拍卖过程的破坏性活
动。

在本发明的实施例中，向投资者给出一最大递盘量限额，该限额
随由本发明的方法和系统所建立的信用和/或其它方法而变化。当加在
一起时，投资者的竞争性递盘和非竞争性递盘量不得超过该最大递盘
量。
如果最终用户决定作出修改并点击或选择修改递盘 1406，则向用户显示诸如图 15 所示的屏幕。

在图 15 所示的例子中，最终用户已选择修改最终用户竞争性递盘 1203 的最终递盘 1207。如果用户搞错了或改变了他或她的意向，最终用户可以点击或选择返回 1502，或者用户可以点击或选择确认递盘 1502 以接受所示的修改 1503。

再来参见图 14，如果最终用户点击或选择删除递盘 1405，则如图 21 所示的删除递盘屏幕与用户通信。在所示例子中删除递盘窗口 2101 中，最终用户可选择删除竞争性递盘 2102，删除非竞争性递盘 2103，或删除两种递盘 2104。

如果在修改递盘中最终用户选择保护差价范围 906 之外的最终递盘，复核递盘窗口 1601 如图 16 所示与最终用户通信。一个标记 1602 出现在非保护的不正确的最终递盘 1207 旁边，并警告 1603 提醒最终用户，接受最终递盘结果将失去当前的时间印记 1204。如果最终用户他或她的意向，他或她可以点击或选择返回 1604。如果最终用户希望继续进行新的递盘 1606，因而失去老的时间印记 1204，最终用户可选择提交递盘 1605。

在本发明的实施例中，如果在拍卖结束时，最终用户已经作出一个或多个成功的递盘，成功购买窗口 1701 与最终用户通信，如图 17 屏幕镜头示例所示。总的成功购买 1704 以百万美元表示总的购买量。

在本发明的一实施例中，软美元可得 1702 表示向非承销经纪人-零售商出售由被付给投资者指定的特许权的部分。在本发明的实施例中，出售每一交易的特许权部分将使投资者可获得软美元。在本发明的实施例中，对带有较早时间印记的成功递盘给予较大的以软美元出售特许权的部分。投资者可以向他们选择的帐户转让软美元。在本发明的实施例中，投资者在交易定价之后有最多 24 小时完成他们的软美元指定。

用于出售的基准量 1703 允许投资者在拍卖结束后最多 15 分钟设置要出售的基准国债券量。如果最终用户商人美元量并点击或选择出
售国库券 1705，则该数量的国库券将被出售。在拍卖后的第一个十五分钟内，最终用户可以设置并改变最终用户希望出售的基准国库券量。出售可以按在交易定价时，或在拍卖结束后将近 30 分钟流行的市场价格进行。

拍卖结果 1705 示出计算差价 1706，最终交易量 1707，及最终定价时间 1708。清算差价 1706 表示按基点高于基准国库券最低的差价，这是销售所有债券的最终交易量 1707 的结果。

最终交易量 1707 表示被售出的债券合计数，并可由债券发行人在拍卖结束前预定的时间设定，最终定价时间 1708 表示在拍卖结束后将近半小时设置的债券发行人的最后项目，例如有收益率，价格，及息票。

如果在拍卖结束时最终用户没能够成功进行一个或多个递盘，诸如图 18 所示并在图 19 中继续的屏幕与用户通信。拍卖结果 1801，最终用户的递盘或多个递盘 1803，及初始拍卖项目 1802 与不成功的最终用户通信。

在本发明的实施例中，本发明的方法和系统使用了一种修改自动结算拍卖形式。在自动结算拍卖中，成功的竞买者支付市场清算价格，即所有拍卖中发售后的证券售出的最高价格。

在本发明的实施例中，拍卖结束时，对定单供货是最低价递盘直到售出全部发售的证券的差价为止。对所有其递盘低于清算差价的人其定单以清算差价填充。处于决定差价的递盘按时间印记被裁决。在差价和时间印记连结的情形下，按比例裁定债券。如果最后以结算差价接受的递盘需要的债券多于可得，则所有其余的债券在最后交易量内可裁定给该竞买者。

在本发明的实施例中，如果在拍卖期间基准国库券收益率按预定的基点数上移，则拍卖将被取消。如果没有足够的定单填充由发行人通知的最终交易量，拍卖也将取消。

在本发明的实施例中，在拍卖结束时以电子方式通知成功的竞买者。拍卖结束后关于被拍卖的债券的基本信息，在与本发明的方法和
系统相关的万维网站可公开获得。这些信息例如可包括交易量、收益率、利息票，及期限。可使得被裁定授予债券的人获得关于拍卖结果的进一步的细节和对竞买者的统计。

在本发明的实施例中，债券定价发生在拍卖终止后将近30分钟。清算差价加到基准国债收益率上以获得拍卖收益率。债券的利息票利率可变为向下舍入到最近1/8%的拍卖收益率。对应于拍卖收益率和利息票利率的债券价格可被计算到三位小数。在定价之后完成必要的证明文件下很短时间即可进行债券交易。

业内专业人员将会明白，上述这一示例性债券拍卖过程可同样用于股票，商品，及其它类型的证券。

已经就优选实施例对本发明进行了说明，业内专业人员应当认识到，各种类型的通用计算机硬件可替代用于上述结构以实现同等的结果。类似地，可以理解的是，可构成算法逻辑电路以执行权利要求中每一所需装置的功能，用于处理竞买者，发行企业和拍卖服务器结点之间的因特网通信。对于业内专业人员明显的是，可以对优选实施例作出按以下权利要求评判属于本发明的精神和范围内的改型和变形。
图3
从最低差价成分到最高并以初始递盘的时间印记排布最终递盘

获得最低项

接受递盘

获得下一项

已接受递盘的合计量值是否等于或超过交易量？

否

清算差价设置为最小/最大差价范围的中点或在最小差价范围（见规则6.4）

是

是否所有非竞争性递盘？

否

清算差价=最后接受的递盘的差价

是

带有相同时间印记和等于清算差价水平的递盘其比例供货

证券的合计量值是否大于交易量？

否

带有最高差价和最后时间印记的递盘被裁定给予部分证券量值

是

根据最终递盘量值成分投资者被裁定给予证券

投资者被裁定给予等于清算差价的差价水平的证券

结束

图5
<table>
<thead>
<tr>
<th>发行人</th>
<th>Acme Explosives</th>
</tr>
</thead>
<tbody>
<tr>
<td>发行量</td>
<td>US$300,000,000 to $450,000,000 (final size set 9/21/99 at 10:00AM ET)</td>
</tr>
<tr>
<td>期限</td>
<td>September 15, 2009</td>
</tr>
<tr>
<td>息票利率</td>
<td>Determined by auction as the sum of the benchmark treasury and the auction-clearing spread, rounded down to the nearest 1/8%</td>
</tr>
<tr>
<td>结算日期</td>
<td>September 24, 1999</td>
</tr>
<tr>
<td>结算项目</td>
<td>Flat</td>
</tr>
<tr>
<td>发行类型</td>
<td>Public</td>
</tr>
<tr>
<td>结构</td>
<td>Make Whole +20</td>
</tr>
<tr>
<td>格式</td>
<td>Book entry DTC</td>
</tr>
<tr>
<td>級别</td>
<td>Moody's A1; S&amp;P A+</td>
</tr>
<tr>
<td>基准国债券</td>
<td>6% August 2009</td>
</tr>
<tr>
<td>最大基准利率</td>
<td>6.2% (auction cancelled if benchmark yield exceeds this rate)</td>
</tr>
<tr>
<td>最小/最大差价</td>
<td>95/105 basis points over benchmark</td>
</tr>
<tr>
<td>保护差价</td>
<td>4 bps</td>
</tr>
<tr>
<td>拍卖日期/时间</td>
<td>September 21, 1999, 9:00AM-11:00AM ET</td>
</tr>
<tr>
<td>定价日期/时间</td>
<td>September 21, 1999, 11:30AM ET</td>
</tr>
<tr>
<td>最大购买限额</td>
<td>The lower of your WR Hambrecht credit limit or $75,000,000</td>
</tr>
<tr>
<td>最小/倍增</td>
<td>$1,000/$1,000</td>
</tr>
<tr>
<td>列出</td>
<td>NYSE</td>
</tr>
<tr>
<td>软美元项目</td>
<td>20% on all winning bids time-stamped before 9:30AM ET, 5% on all others</td>
</tr>
<tr>
<td>共同经理人</td>
<td>Co-Manager 1, Co-Manager 2</td>
</tr>
<tr>
<td>出售折让</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

图8
<table>
<thead>
<tr>
<th>Time Stamp</th>
<th>Current</th>
<th>Submit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (millions)</td>
<td>$0.000</td>
<td>$00.000</td>
</tr>
<tr>
<td>Initial Bid</td>
<td>None</td>
<td>Select Spread</td>
</tr>
<tr>
<td>Final Bid</td>
<td>None</td>
<td>Select Spread</td>
</tr>
</tbody>
</table>

**Pricing Rationale**

<table>
<thead>
<tr>
<th>拍卖详情</th>
<th>9:00 AM ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>拍卖开始</td>
<td>11:00 AM ET</td>
</tr>
<tr>
<td>最小/最大差价</td>
<td>95 - 105 bps</td>
</tr>
<tr>
<td>保护差价范围</td>
<td>4 bps</td>
</tr>
<tr>
<td>基准国债券</td>
<td>6% 08/09</td>
</tr>
</tbody>
</table>

---

The Auction will start in 5 Minutes
<start page will appear automatically at 0 minutes>

Bids will not be accepted until the auction begins

---

图9
### Auction Details

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auction Start</td>
<td>9:00 AM ET</td>
</tr>
<tr>
<td>Auction Finish</td>
<td>11:00 AM ET</td>
</tr>
<tr>
<td>Min/Max Spread</td>
<td>95 - 105 bps</td>
</tr>
<tr>
<td>Protected Spread Range</td>
<td>4 bps</td>
</tr>
<tr>
<td>Benchmark Treasury</td>
<td>6% 08/09</td>
</tr>
</tbody>
</table>

**How It Works | Initial Terms | FAQ | Logout**

Acme $300-450 million 10 year

Joint Lead Managers: Comanager 1, Comana

<table>
<thead>
<tr>
<th>投放逆盘</th>
<th>Current</th>
<th>Submit</th>
</tr>
</thead>
<tbody>
<tr>
<td>竞争性逆盘</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Stamp</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Size (millions)</td>
<td>$0.000</td>
<td>$25.125</td>
</tr>
<tr>
<td>Initial Bid</td>
<td>None</td>
<td>Select Spread</td>
</tr>
<tr>
<td>Final Bid</td>
<td>None</td>
<td>Select Spread</td>
</tr>
</tbody>
</table>

非竞争性逆盘		
Time Stamp	None	
Size (millions)	$0.000	$10.125
Max Bid (millions)	$75.000	Submit Bid

Current Time 9:25 ET
Time Remaining 95 minutes

Auction Progress - Nominal Chart - Initial Bids
Total Cumulative Bids = $500 million

Cumulative Chart
### 投放递盘

<table>
<thead>
<tr>
<th>竞争性递盘</th>
<th>Current</th>
<th>Submit</th>
</tr>
</thead>
<tbody>
<tr>
<td>时间印记</td>
<td>None</td>
<td>$25.125</td>
</tr>
<tr>
<td>量（百万）</td>
<td>$0.000</td>
<td>$25.125</td>
</tr>
<tr>
<td>初始递盘</td>
<td>None</td>
<td>Select Spread ▼</td>
</tr>
<tr>
<td>最终递盘</td>
<td>None</td>
<td>Select Spread ▼</td>
</tr>
</tbody>
</table>

### 非竞争性递盘

时间印记	None
量（百万）	$0.000
量大递盘（百万）	$75,000

### Current Time 9:25 ET

<table>
<thead>
<tr>
<th>Initial Bid</th>
<th>Size</th>
<th>Time Stamp</th>
<th>Initial Bid</th>
<th>Size</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10</td>
<td>9:00</td>
<td>101</td>
<td>8</td>
<td>9:1</td>
</tr>
<tr>
<td>97</td>
<td>25</td>
<td>9:20</td>
<td>101</td>
<td>15</td>
<td>9:1</td>
</tr>
<tr>
<td>98</td>
<td>20</td>
<td>9:15</td>
<td>101</td>
<td>15</td>
<td>9:1</td>
</tr>
<tr>
<td>99</td>
<td>15</td>
<td>9:12</td>
<td>102</td>
<td>10</td>
<td>9:1</td>
</tr>
<tr>
<td>99</td>
<td>30</td>
<td>9:03</td>
<td>102</td>
<td>14</td>
<td>9:0</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>9:08</td>
<td>102</td>
<td>20</td>
<td>9:0</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>9:06</td>
<td>102</td>
<td>6</td>
<td>9:3</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>9:21</td>
<td>102</td>
<td>10</td>
<td>9:3</td>
</tr>
<tr>
<td>101</td>
<td>5</td>
<td>9:13</td>
<td>103</td>
<td>75</td>
<td>9:0</td>
</tr>
<tr>
<td>101</td>
<td>7</td>
<td>9:01</td>
<td>103</td>
<td>35</td>
<td>9:1</td>
</tr>
<tr>
<td>101</td>
<td>10</td>
<td>9:04</td>
<td>104</td>
<td>40</td>
<td>9:0</td>
</tr>
</tbody>
</table>

**Nominal Chart**

**Cumulative Chart**

### Auction Details

- **Auction Start**: 9:00 AM ET
- **Auction Finish**: 11:00 AM ET
- **Min/Max Spread**: 95 - 105 bps
- **保护差价范围**: 4 bps
- **Benchmark Treasury**: 6% 08/09
### Auction Details

<table>
<thead>
<tr>
<th>Nominal Chart</th>
<th>Bid Data</th>
<th>Explanation of Ch</th>
<th>11/08/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 AM ET</td>
<td>11:00 AM ET</td>
<td>6% 105 bps</td>
<td>4 bps</td>
</tr>
</tbody>
</table>

### Auction Start

- Current Bidding Period: 9:00 AM ET
- Min/Max Spread: 105 bps
- Protected Spread Range: 6%

### Bid Data

- Bid Start Time: 9:00 AM ET
- Bid Finish Time: 11:00 AM ET
- Min/Max Spread: 105 bps
- Protected Spread Range: 6%

### How It Works

**Acme $300-450 million 10 year**

<table>
<thead>
<tr>
<th>Time Stamp (milliseconds)</th>
<th>Current Bid</th>
<th>New Bid</th>
<th>Assigned on Confirmation</th>
<th>Basis Point Spread (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1301</td>
<td>None</td>
<td>None</td>
<td>$0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1302</td>
<td>None</td>
<td>None</td>
<td>$0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1303</td>
<td>None</td>
<td>None</td>
<td>$0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Time Remaining: 95 minutes
- Total Cumulative Bids = $500 million

### Click Confirm Bid to verify.

- Competitive Bid
  - Current Bid: None
  - New Bid: None
  - Assigned on Confirmation: $0.00
- Non-Competitive Bid
  - Current Bid: None
  - New Bid: None
  - Assigned on Confirmation: $0.00

### Basin Progress - Cumulative Chart - Initial Bid

- Basis Point Spread (bps): 0.00
- Total Cumulative Bids = $500 million

### Current Time 8:25 ET

- How It Works
- Initial Terms
- FAQ
- Logout
<table>
<thead>
<tr>
<th>How it Works</th>
<th>Initial Terms</th>
<th>FAQ</th>
<th>Logout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme $300-450 million 10 year</td>
<td>Joint Lead Managers: Comanager 1, Comanager 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Current Time 9:25AM ET
**Time Remaining 95 minutes**

<table>
<thead>
<tr>
<th>Auction Progress - Cumulative Chart - Initial Bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cumulative Bids = $500 million</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Stamp</th>
<th>Basis Point Spread (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25.125</td>
<td>95 - 105 bps</td>
</tr>
<tr>
<td>$10.125</td>
<td>104 bps</td>
</tr>
<tr>
<td>$35.250</td>
<td>103 bps</td>
</tr>
<tr>
<td>$75.000</td>
<td>104 bps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal Chart</th>
<th>Bid Data</th>
<th>Explanation of Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auction Start</td>
<td>9:00 AM ET</td>
<td></td>
</tr>
<tr>
<td>Auction Finish</td>
<td>11:00 AM ET</td>
<td></td>
</tr>
<tr>
<td>Min/Max Spread</td>
<td>95 - 105 bps</td>
<td></td>
</tr>
<tr>
<td>Benchmark Treasury</td>
<td>6% 08/09</td>
<td></td>
</tr>
</tbody>
</table>
警告
您的最终递盘超出保护差价范围。接受这样的递盘结果将失去当前时间印记。
点击提交递盘按钮以继续这一递盘。

<table>
<thead>
<tr>
<th>Current</th>
<th>新递盘</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitive Bid</td>
<td></td>
</tr>
<tr>
<td>Time Stamp</td>
<td>09:05AM ET</td>
</tr>
<tr>
<td>Size (millions)</td>
<td>$25.125</td>
</tr>
<tr>
<td>Initial Bid</td>
<td>104 bps</td>
</tr>
<tr>
<td>Non-Competitive Bid</td>
<td></td>
</tr>
<tr>
<td>Time Stamp</td>
<td>09:25AM ET</td>
</tr>
<tr>
<td>Size (millions)</td>
<td>$10.125</td>
</tr>
<tr>
<td>Max Bid (millions)</td>
<td>$75,000</td>
</tr>
</tbody>
</table>

图16
<table>
<thead>
<tr>
<th>Auction Details</th>
<th>Current Time 11:03 AM ET</th>
<th>Nominal Chart</th>
<th>Bid Data</th>
<th>Explanation of Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auction Start</td>
<td>9:00 AM ET</td>
<td>95 - 105 bps</td>
<td>Min/Max Spread</td>
<td>Protected Spread Range</td>
</tr>
<tr>
<td>Auction Finish</td>
<td>11:30 AM ET</td>
<td>6% 0% 09/09</td>
<td>4 bps</td>
<td>Benchmark Treasury</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Time 11:03 AM ET</th>
<th>Auction Over</th>
<th>Acme $450 million 10 year</th>
<th>$35.250 million</th>
<th>$7.05 million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Stamp</td>
<td>09:05 AM ET</td>
<td>Competitive</td>
<td>$251,125</td>
<td>1000 bps</td>
</tr>
<tr>
<td>Time Stamp</td>
<td>09:15 AM ET</td>
<td>Non-Competitive</td>
<td>$10,125</td>
<td>103 bps</td>
</tr>
<tr>
<td>Time Stamp</td>
<td>09:25 AM ET</td>
<td>Sale Price</td>
<td>$450 million</td>
<td>1130 AM ET</td>
</tr>
<tr>
<td>Time Stamp</td>
<td>11:30 AM ET</td>
<td>LogOut/Exit Auction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If you do not have an account with WR Hambrecht & Co., we will facilitate the bond trade for your introducing broker.

All settlement, clearing, and account maintenance will be handled by your introducing broker.
<table>
<thead>
<tr>
<th>How It Works</th>
<th>Initial Terms</th>
<th>FAQ</th>
<th>Logout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme $450 million 10 year</td>
<td>Joint Lead Managers: Comanager 1, Comanager 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Your bid was not successful during this auction. Thank you for your participation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearing Spread</td>
</tr>
<tr>
<td>Final Deal Size</td>
</tr>
<tr>
<td>Time of Final Pricing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>拍卖结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>当前时间11:05ET</td>
</tr>
<tr>
<td>Acme$450百万10年</td>
</tr>
<tr>
<td>初始项目</td>
</tr>
<tr>
<td>Issuer</td>
</tr>
<tr>
<td>Issue Size</td>
</tr>
<tr>
<td>Maturity</td>
</tr>
<tr>
<td>Coupon Rate</td>
</tr>
<tr>
<td>Settlement Date</td>
</tr>
<tr>
<td>Settlement Terms</td>
</tr>
<tr>
<td>Type of Issue</td>
</tr>
<tr>
<td>Coupon Dates</td>
</tr>
<tr>
<td>Structure</td>
</tr>
<tr>
<td>Format</td>
</tr>
<tr>
<td>Rating</td>
</tr>
<tr>
<td>Benchmark Treasury</td>
</tr>
<tr>
<td>Maximum Benchmark Rate</td>
</tr>
<tr>
<td>Minimum/Maximum Spread</td>
</tr>
<tr>
<td>Protected Spread</td>
</tr>
<tr>
<td>Auction Date/Time</td>
</tr>
<tr>
<td>Pricing Date/Time</td>
</tr>
</tbody>
</table>

Logout + Exit Auction
<table>
<thead>
<tr>
<th>最大购买限额</th>
<th>The lower of your WR Hambrecht credit limit or $75,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>最小/倍增</td>
<td>$1,000/$1,000</td>
</tr>
<tr>
<td>列出</td>
<td>NYSE</td>
</tr>
<tr>
<td>软美元项</td>
<td>20% on all winning bids time-stamped before 9:30AM ET, 5% on all others</td>
</tr>
<tr>
<td>共同经理人</td>
<td>Co-Manager 1, Co-Manager 2</td>
</tr>
<tr>
<td>销售折让</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

图19
### How it Works | Initial Terms | FAQ | Logout

**Acme $300-450 million 10 year**

**Joint Lead Managers:** Comanager 1, Comanager 2

---

**投标流程**

**出错:**

- 递盘量超过最大。输入有效递盘，然后点击提交。

<table>
<thead>
<tr>
<th><strong>Competitive Bid</strong></th>
<th><strong>Non-Competitive Bid</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Time Stamp</strong></td>
<td><strong>Time Stamp</strong></td>
</tr>
<tr>
<td>09:25AM ET</td>
<td>09:25AM ET</td>
</tr>
<tr>
<td><strong>Size (millions)</strong></td>
<td><strong>Size (millions)</strong></td>
</tr>
<tr>
<td>$25.125</td>
<td>$10.125</td>
</tr>
<tr>
<td>$X</td>
<td>$X</td>
</tr>
<tr>
<td><strong>Initial Bid</strong></td>
<td><strong>Max Bid (millions)</strong></td>
</tr>
<tr>
<td>104</td>
<td>$75.000</td>
</tr>
<tr>
<td>Select Spread</td>
<td>Submit</td>
</tr>
<tr>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Select Spread</td>
<td></td>
</tr>
</tbody>
</table>

**Current Time 9:25 ET**

**Time Remaining 95 minutes**

**Auction Progress - Cumulative Chart - Initial Bid**

- **Total Cumulative Bids = $500 million**

**Auction Details**

**Auction Start**	9:00 AM ET
**Auction Finish**	11:00 AM ET
**Min/Max Spread**	95 - 105 bps
**Protected Spread Range**	4 bps
**Benchmark Treasury**	6% 06/09

---

图20
ATTENTION:
Cancelling a bid cannot be undone.

Joint Lead Managers: Comanager 1, Comanager 2

Auction Progress - Non-Market Initial Bids
Total Cumulative Bids = $500 million

Basis Point Spread (bps)
9:00 AM ET 9:00 AM ET 11:00 AM ET 11:00 AM ET

Nominal Chart Bid Data Explanation of Chart
Min/Max Spread 95 - 105 bps 4 bps
Protected Spread Range 6% 09/09

How It Works | Initial Terms | FAQ | Contact
Acme $300-450 million 10 year

Competitive Bids
- Current
- Cancel Bid

Non-Competitive Bids
- Current
- Cancel Bids

Cancel Both Bids

Canceling a bid cannot be undone.

2102
2103
2104

图21