US011631229B2

a2 United States Patent

ao) Patent No.: US 11,631,229 B2

Janzer et al. 45) Date of Patent: Apr. 18, 2023
(54) COMPARATIVE VIRTUAL ASSET (52) US. CL
ADJUSTMENT SYSTEMS AND METHODS CPC ... GO6T 19/20 (2013.01); GO6F 8/34
(2013.01); GO6T 13/40 (2013.01); GO6T
(71) Applicant: DG Holdings, Inc., Salt Lake City, UT 15/503 (2013.01); GO6T 17/005 (2013.01);
(Us) GO6T 17/20 (2013.01); GO6T 2213/08
(2013.01); GO6T 2219/2021 (2013.01)
(72) Inventors: Jesse Janzer, Sandy, UT (US); Jon (58) Field of Classification Search
Middleton, Salt Lake City, UT (US); None
Berkley Frei, Salt Lake City, UT (US) See application file for complete search history.
(73) Assignee: DG Holdings, Inc., Salt Lake City, UT (56) References Cited
(Us) U.S. PATENT DOCUMENTS
(*) Notice: Subject. to any disclaimer,. the term of this 5903682 A 5/1999 Chun
patent is extended or adjusted under 35 6.058.397 A 5/2000 Barrus et al.
U.S.C. 154(b) by 0 days. 6,215,503 Bl 4/2001 Snyder et al.
6,266,064 Bl 7/2001 Snyder
(21) Appl. No.: 17/740,735 6,518,963 Bl 2/2003 Waupotitsch et al.
7,184,047 Bl 2/2007 Crampton
(22) Filed: May 10, 2022 7,952,583 B2 5/2011 Waechter et al.
' ’ (Continued)
(65) Prior Publication Data
OTHER PUBLICATIONS
US 2022/0343614 Al Oct. 27, 2022
Criminisi , et al., “Geos: Geodesic image segmentation”, European
Related U.S. Application Data g(;)(;l;erence on Computer Vision. Springer, Berlin, Heidelberg,
(63) Continuation of application No. 17/154,846, filed on (Continued)
Jan. 21, 2021, now Pat. No. 11,354,877, which is a
continuation of application No. 15/798,173, filed on Primary Examiner — James A Thompson
Oct. 30, 2017, now Pat. No. 10,930,086. (74) Attorney, Agent, or Firm — Foley & Lardner LLP
(60) Provisional application No. 62/415,808, filed on Now. (57) ABSTRACT
1, 2016. The present disclosure illustrates systems and methods for
automatically adjusting a following 3D asset based on a
(51) Int. CL deformation of a related base 3D asset. The systems and
GO6T 19/20 (2011.01) methods may use geomaps to index the relationship between
GO6F 8/34 (2018.01) the following 3D asset and base 3D asset. By automatically
GO6T 13/40 (2011.01) adjusting a following 3D asset based on the base 3D asset,
GO6T 15/50 (2011.01) the following 3D asset may retain full functionality.
GO6T 17/20 (2006.01)
GO6T 17/00 (2006.01) 20 Claims, 3 Drawing Sheets

108

/]

Asset Lookip &
Delivery Servios

Content Gonversion
System
Arfisl
Tools

US 11,631,229 B2

Page 2
(56) References Cited 2014/0139525 A1 5/2014 Grenfell
2014/0214371 Al 7/2014 Schulz et al.
U.S. PATENT DOCUMENTS 2014/0229865 Al 82014 Da Costa et al.
2015/0015575 Al 1/2015 Gierach et al.
8,151,199 B2* 4/2012 Gerson AG63F 13/12 2015/0024852 Al 1/2015 Pacey et al.
705/50 2015/0123967 Al 52015 Quinn et al.
: 2015/0134493 Al 5/2015 Su et al.
8,471,843 B2 6/2013 F t al.
2570330 B2 8/2013 Shustr of al. 2015/0134494 Al 52015 Su et al.
8:739:047 Bl 5/2014 Holler et al. 2015/0187130 Al 7/2015 Guskov et al.
9,501,751 Bl 11/2016 Holler et al. 2015/0363968 Al 12/2015 Yang
9,569,445 B2 2/2017 Flores et al. 2015/0363969 Al 12/2015 Yang
10,217,185 Bl 2/2019 Cabanero et al. 2015/0379025 Al 12/2015 Fl_ores et al.
10.930.086 B2 * 2/2021 JANzerooweoevvoin., GO6T 17/005 2015/0379427 Al 12/2015 Dirac et al.
10,970,843 Bl 4/2021 Olsen et al. 2016/0005226 Al 12016 Brown
2002/0163515 Al 11/2002 Sowizral et al. 2016/0035142 Al 2/2016 Nair et al.
2004/0201584 Al 10/2004 Lee 2016/0078400 Al 3/2016 Altieri
2006/0274070 Al 12/2006 Herman et al. 2016/0292902 Al 102016 Milne et al.
2008/0052242 Al 2/2008 Merritt et al. 2016/0321384 Al 11/2016 Pal et al.
2008/0178147 Al 7/2008 Meliksetian et al. 2016/0350618 Al 12/2016 Meekins et al.
2008/0259076 Al 10/2008 Meinds 2016/0379083 Al 122016 Sala et al.
2009/0135176 Al 5/2009 Snoddy et al. 2017/0039765 Al 2/2017 Zhou et al.
2009/0195541 Al 8/2009 Peng et al. 2017/0140514 Al 5/2017 Amirghodsi et al.
2009/0295799 Al 12/2009 Heim et al. 2017/0206707 Al 7/2017 Guay et al.
2010/0079452 Al 4/2010 Zhou et al. 2017/0213473 Al 7/2017 Ribeira et al.
2010/0177117 Al 7/2010 Finn et al. 2017/0316604 Al 11/2017 Yang et al.
2010/0185640 Al 7/2010 Dettinger et al. 2018/0053040 Al 2/2018 Al-Osaimi
2010/0203968 Al 8/2010 Gill et al. 2018/0122124 Al 5/2018 Thornton et al.
2011/0107239 Al 52011 Adoni et al. 2018/0122139 Al 5/2018 Janzer et al.
2011/0182520 Al 7/2011 Free 2018/0122140 Al 5/2018 Janzer et al.
2012/0038640 Al 2/2012 Lee 2018/0122148 Al 5/2018 Janzer et al.
2012/0069131 Al 3/2012 Abelow 2019/0146599 Al 5/2019 Gunnarsson et al.
2012/0117122 Al 5/2012 Wang et al. 2019/0228576 Al 7/2019 Janzer et al.
2012/0147004 Al 6/2012 Choi et al. 2019/0385365 Al 12/2019 Janzer et al.
2012/0190458 Al 7/2012 Gerson et al.
2012/0243803 Al 9/2012 Jin et al.
2012/0262444 Al 10/2012 Stefanoski et al. OTHER PUBLICATIONS
2013/0047217 Al 2/2013 Shuster et al. . .
2013/0120457 Al 5/2013 Popovic et al. T. Popa, D. Julius and A. Sheffer, “Material-Aware Mesh Defor-
2013/0212228 Al 8/2013 Butler et al. mations,” IEEE International Conference on Shape Modeling and
20130775386 A1 10013 Hoswell ot ai Applications 2006 (SMI'06). 2006, pp. 22-22.
2013/0290106 Al 10/2013 Bradley et al' International Search Report and Written Opinion dated Jan. 9, 2018
2013/0307848 Al 11/2013 Tena et al. for PCT/US2017/059083.
2014/0043329 Al 2/2014 Wang et al.
2014/0132633 Al 5/2014 Fekete et al. * cited by examiner

U.S. Patent Apr. 18,2023 Sheet 1 of 3 US 11,631,229 B2

100
102
[3D Content Y
408 o ~ ; ; 106
: Content Conversion
System
S Asset Lookup &
" Delivery Service
o 3 ik i 1] y/
~ 118
303 Character SDXK r
122a) 1226

Application . 120 f application

A - C

Ready
122h Room Y,
VR 122

o 122d
Application Application

B D

124
User Interface }/

FlG. 1

U.S. Patent Apr. 18,2023 Sheet 2 of 3 US 11,631,229 B2

/ 200

Load 30 Asseis

202

;

Determine New Vertex Coordinates of the Base Asset for a Deformation
204

;

Crawl 3D Asset
206

;

Generate Point Map
208

!

Calculate Offsets
210

:

Save New Deformation
212

:

Inject Deformation
214

!

Drive Deformation
16

FlG. 2

U.S. Patent

Apr. 18,2023 Sheet 3 of 3

US 11,631,229 B2

381

[deniity System

387 Memory 388
Modules Data
. 388
583"\\% ASS@E?ragsfer e !,/ 38
Clent Identity Data -
B4 =] As§et Looku;rf & :
4 Delivery Sarvice
Engine
365 ™ Artist
Tools Engine
386~ | 3D Character SDK :
Engine
387~ | Ready Room VR
Engine
o b 20
396
—
Network - .
Processor(s) interface 0 Inte EoE
z 12
322 Communication | 356
\?& VR | “ Network ~ Content
Application | | e . Creation
Systems || | Application
- Systems

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

US 11,631,229 B2

1
COMPARATIVE VIRTUAL ASSET
ADJUSTMENT SYSTEMS AND METHODS

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 15/798,173, filed Oct. 30, 2017, which claims
the benefit under 35 U.S.C. § 119(e) of U.S. Provisional
Application No. 62/415,808 filed Nov. 1, 2016, each of
which is hereby incorporated by reference herein in its
entirety.

TECHNICAL FIELD

The present disclosure relates to electronic or other virtual
representations of an individual or entity in a computer
generated environment. In particular, the present disclosure
relates to systems and methods for portable and persistent
virtual identity across applications and platforms.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system diagram for a persistent virtual identity
system, according to one embodiment.

FIG. 2 is a flow diagram of a method for adjusting a
following 3D asset based on the deformation of a related
base 3D asset.

FIG. 3 is a block diagram of a persistent virtual identity
system, according to one embodiment.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Individuals are increasingly interacting with computing
devices, systems, and environments and with other individu-
als in electronic or virtual forums, such as in computer
games, social media and other Internet forums, virtual/
augmented reality environments, and the like, sometimes
referred to as cyberspace. These electronic interactions,
whether individual-machine interactions or individual-indi-
vidual interactions, increasingly are facilitated by a concept
of virtual identity for each party to the interaction, which
may be referred to as an application identity. The virtual
identity enables a given party to identify itself to other
entities in an interaction and/or enables other parties to
recognize or identify the given party during the interaction.

A virtual identity can be embodied as simply as a profile,
and be more complex such as including an avatar or other
graphical representation, a persona (e.g., an aspect of char-
acter of the virtual identity that is presented to or perceived
by others), and/or a reputation (e.g., beliefs or opinions that
are generally held about the virtual identity). In virtual
reality (VR) applications, virtual identity can be very com-
plex to provide a fuller, richer identity to other entities in VR
encounters or other interactions. A virtual identity can be
used to associate application data with a user. For example,
a virtual identity can be used to correlate user data, appli-
cation settings, pictures, and/or profiles with users, among
other types of application data.

Presently, virtual identities are limited to a single appli-
cation (e.g., specific to a given application and nontransfer-
able to other applications). That is, a user may create a
virtual identity for a given application and that virtual
identity is not portable to or persistent in a different appli-
cation. A user must create a separate virtual identity to use
with each of a plurality of applications. As such, the user
may have the burden of managing and/or maintaining a

20

30

40

45

55

2

plurality of virtual identities. If the user experiences a
change (e.g., a change of name, address, phone number, or
the like), then the user may have the burden of propagating
the change through a plurality of virtual identities, each
corresponding to a different application.

As virtual identities grow more complex and detailed
(e.g., including greater amounts of information) the burden
on a user may be further enhanced. For example, if the
application identity is associated with a virtual application
having a visual aspect, then the virtual identity may include
a virtual avatar and other types of data associated with the
virtual identity. A user may create, manage, and/or maintain
a different virtual avatar for each of a plurality of virtual
applications. If a user makes a change to an avatar associated
with one virtual identity (e.g., a change of hair color), the
user would need to then make the same change to the avatar
associated with each other virtual identity in which the user
may interact. In other words, if a user wants consistent (e.g.,
identical or similar) virtual identities across multiple appli-
cations, then when the user changes the hair color of an
avatar for a given virtual identity in one application the user
will also have to make that same change for all other
applications in which the user desires the corresponding
avatars and/or virtual identities to be consistent.

A persistent virtual identity (e.g., avatar, persona, repu-
tation, etc.) that is portable across applications and/or plat-
forms may be desirable. In some embodiments of the present
disclosure, a single persistent virtual identity can be created,
managed, and maintained for (and may be portable to) a
plurality of applications and/or virtual environments.

As used herein, an application can be a standalone com-
puter program with possible online components. A platform
can be a group of different applications or services that
provide a broader service that is heavily tied around an
online component. A persistent virtual identity can be devel-
oped and/or employed in multiple applications and/or plat-
forms.

Reference is now made to the figures in which like
reference numerals refer to like elements. For clarity, the
first digit of a reference numeral indicates the figure number
in which the corresponding element is first used. In the
following description, numerous specific details are pro-
vided for a thorough understanding of the embodiments
disclosed herein. However, those skilled in the art will
recognize that the embodiments described herein can be
practiced without one or more of the specific details, or with
other methods, components, or materials. Further, in some
cases, well-known structures, materials, or operations are
not shown or described in detail in order to avoid obscuring
aspects of the embodiments. Furthermore, the described
features, structures, or characteristics may be combined in
any suitable manner in one or more embodiments.

FIG. 1 is a system 100 diagram for a persistent virtual
identity system according to one embodiment. The system
100 can include 3D content 102, a content conversion
system 106, artist tools 108, an asset lookup and delivery
service 110 (and/or library), content standards 114, an asset
transfer client 116, a 3D character SDK 118, and a ready
room in virtual reality (VR) 120. The system 100 can also
include brand modules 1124, 1125, 112¢, and 112d (some-
times referred to generally and collectively as “brand mod-
ule(s) 112”). The system 100 can include a plurality of
applications 122a, 1225, 122¢, 1224 (sometimes referred to
generally and collectively as “application(s) 122”) As can be
appreciated, in some embodiments the applications 122 may
be on a single common computing platform (e.g., in a
common VR environment). In other embodiments, one or

US 11,631,229 B2

3

more on the applications may be on different, unique com-
puting platforms. A user may interact with the system 100 by
way of a user interface 124 that interfaces via the applica-
tions 122 and/or the ready room VR 120. The user interface
124 may be or operate on a user computing device. A user
of'the system 100 may include electronic users, such as a bot
or an Al application, in addition to human users.

The system 100 can provide the ability to create and/or
maintain a persistent virtual identity and/or a corresponding
3D asset(s), and to enable transport of such between appli-
cations (e.g., different games) and/or platforms (e.g., differ-
ent augmented reality (AR) or VR systems). As used herein,
the persistent virtual identity can include a base 3D asset
(e.g., an avatar model and modifications thereto), following
3D assets (e.g., clothing, accessories, etc.), history associ-
ated with a user of the system, social reputations, social
standing, inventory, wardrobe (e.g., additional clothing fol-
lowing 3D assets, which may include pre-saved outfits),
and/or trophies, among other items associated with the
persistent virtual identity. A virtual identity may include
multiple 3D assets, which can include one or more base 3D
assets (e.g., multiple avatars) and one or more following 3D
assets. The 3D asset(s) can be at least partially defined using
geometric data. The 3D asset(s) can further be presented as
an avatar associated with the persistent virtual identity. For
sake of simplicity, a “3D asset” referenced hereafter may be
a base 3D asset, a following 3D asset, or a combination of
one or more of these.

The applications 122 can be VR applications. The appli-
cations 122 can be independent of each other. The applica-
tions 122 can be gaming applications, social media appli-
cations, instructional applications, business applications,
and/or any other type of application employing VR tech-
niques. The brand modules 112 can provide conformity
standards for the applications 122. That is, a 3D asset
generated in the system 100 can conform to the standards
defined by the brand modules 112 to be compatible with the
respective applications 122. The applications 122 may all be
on a single platform (e.g., HTC Vive®, Oculus Rift®,
PlayStation VR®), or may be on different platforms.

In some examples, the applications 122 and/or the brand
modules 112 can be external to the system 100. That is, the
applications 122 and/or the brand modules 112 can be
implemented independent of the system 100 (e.g., separate
and distinct from the ready room VR 120, the asset lookup
and delivery service 110, and the content standards, 114,
although interfacing or otherwise communicating such as
through an API). The applications 122 and the brand mod-
ules 112 are correlated. Stated differently, the brand modules
112 correspond to and provide standards, rules, protocols,
and/or the like for the applications 122. For example, the
application 122a is associated with the brand module 112a,
the application 1224 is associated with the brand module
1125, the application 122¢ is associated with the brand
module 112¢, and the application 1224 is associated with the
brand module 1124d.

The system 100 can enable a persistent virtual identity
that is portable and persistent to exist and be transported
between the applications 122. A developer and/or a user can
integrate or otherwise interconnect with the system 100
(e.g., via applications 122 and/or user interface 124, and
generally over a network) to both create a persistent virtual
identity, and potentially to interact with other persistent
virtual identities created by and corresponding to other
users. The user and/or the application developer can exercise
control over the created persistent virtual identity. For
example, the user can, through the user interface 124,

25

40

45

4

interconnect with the ready room VR 120 to manipulate the
virtual identity. The user can also manipulate the virtual
identity through applications 122. FIG. 1 shows the user
interface 124 interconnected with the system 100 through
the ready room VR 120 and the application 1226b.

The system 100 can include a three dimensional (3D)
character software developer kit (SDK) 118 (e.g., an MCS
Plugin). The 3D character SDK 118 may be a library that can
be implemented in an application 122. The 3D character
SDK 118 includes functionality to perform operations like
create 3D assets (e.g., avatars, in a scene), shape them,
add/remove clothing and other following 3D meshes, etc.
The 3D character SDK 118 also includes functionality to
obtain 3D models (for base 3D assets) and accompanying
information from the local cache (and if a 3D model and/or
accompanying information isn’t in the local cache, the 3D
character SDK 118 can transparently fetch the 3D model
and/or accompanying information from the cloud). The 3D
character SDK 118 can also transform 3D models into game
ready objects, namely 3D assets. The 3D character SDK 118
can also provide other asynchronous operations, which
provides an event or task queue.

The system 100 can also include an asset transfer client
116 (e.g., ready room plugin) and an asset lookup and
delivery service 110 (and/or library). The asset transfer
client 116 and the asset lookup and delivery service 110 can
be local and/or remote to the system 100. That is, the asset
transfer client 116 and/or the asset lookup and delivery
service 110 can be executed (e.g., hosted) on a network
computing device remote to the system 100 that can be
accessed by the applications 122. As used herein, the asset
lookup and delivery service 110 allows the asset transfer
client 116 to request a specific 3D asset with permutations on
the request for specific level of detail, material, and texture
variation. The asset lookup and delivery service 110 can also
provide (e.g., stream) the 3D asset to the asset transfer client
116. As used herein, a material may be a combination of
texture files, shaders, and different maps that shaders use
(normal map, occlusion map) and other data such as specu-
larity and metallic levels depending on the material type. A
material may be a visual layer that makes something within
a 3D asset look like more than just polygons.

The asset transfer client 116 can include two or more
components remotely located from each other and commu-
nicating together, such as over a network. A first component
of the asset transfer client 116 can be implemented in the
user interface 124 and/or the applications 122. A second
component of the asset transfer client 116 can be imple-
mented in the system 100. The first component of the asset
transfer client 116 can communicate with the second com-
ponent of the asset transfer client 116, for example to request
a 3D asset. The component of the asset transfer client 116
implemented in the system 100 can request or otherwise
obtain the 3D asset from the asset client lookup and delivery
service 110.

The system 100 can also include the content standards 114
which includes standards for the brand modules 112 and/or
the applications 122. The content standards 114 can specify
types of content or groups of content based upon the creator
of'the asset, the genre of the asset, or the art style of the asset.
The content standards 114 can specify types of content or
groups of content through the use of filters. The filters can
operate on metadata associated with the 3D assets compris-
ing the content or groups of content. The metadata can
identify a vendor from which the 3D asset originated, a
genre of the 3D asset, and an artistic style of the 3D asset,
among other types of data included in the metadata.

US 11,631,229 B2

5

A genre can include, for example a fantasy genre, a
science fiction (sci-fi) genre, a comic book genre, and/or
contemporary genre, among other genres. An artistic style
can be defined by vendors who create new artistic styles. The
system 100 can have a default artistic style such as a Nikae
artistic style and a Minecraft-esque artistic style.

The content standards 114 can also specify what types of
3D assets are allowed in respective applications 122 and/or
what types of 3D assets are not allowed in respective
applications 122. For example, the content standards 114 can
define that 3D assets with a default artistic style and a
fantasy genre are allowed in a given corresponding appli-
cation 122¢ and that 3D assets of a different artistic style and
a different genre are not allowed in the application 122c.

The content standards 114 can also specify that 3D assets
originating from a particular vendor are allowed in a corre-
sponding application from the applications 122. For
example, the content standards 114 can restrict the transfer
of 3D assets to the application 122d to 3D assets that were
originated by a vendor of the application 1224d.

The content standards 114 can define 3D assets that are
restricted from specific brand modules 112 and/or applica-
tions 122 to maintain consistent or inconsistent visual effect.
The content standards 114 can be implemented in the asset
lookup and delivery service 110 to regulate content provided
to the applications 122. The content standards 114 can also
be implemented in applications 122 and/or the user interface
124 as part of the asset transfer client 116 to regulate content
downloaded and cached at the applications 122 and/or the
user interface 124.

The artist tools 108, the content conversion system 106,
and the ready room VR 120 may be supporting systems to
the system 100. Stated otherwise, they may be supplemental
and/or ancillary to the system 100, such that they could be
implemented separately and distinctly (e.g., on a different
computing device, network, or the like) from other elements
of the system 100. The artist tools 108 can modify 3D assets
to make the 3D assets compatible with the 3D character
SDK 118. The content conversion system 106 can convert
the 3D content 102 to be performant (e.g., to perform well,
such as within performance metrics) for run time applica-
tions. The content conversion system 106 can also convert
the 3D content 102 to be compatible with the 3D character
SDK 118. The 3D content 102 can include, for example,
high fidelity photo-real assets and/or low fidelity game-
ready assets. The 3D content 102 can be created, for
example, by a 3D content creator such as a Daz® 3D
application.

The ready room VR 120 can be an application. The ready
room VR 120 can be a hub and/or a starting point for
persistent virtual identity creation. The ready room VR 120
can also be a default process for moving persistent virtual
identities between applications.

The 3D character SDK 118 can enable a base figure (e.g.,
a base 3D asset representing an avatar that is part of a
persistent virtual identity, or other base 3D asset) to be
changed into any shape and/or size and retain full function-
ality for fitting clothing, animating, and/or customizing.
Using the 3D character SDK 118, the base 3D asset can be
extendable to a potentially unlimited number of variations
for creation of a unique avatar. Stated otherwise, character-
istics of a 3D asset can be modified in a potentially unlimited
number of combinations of variations. Then the system 100
can enable the resultant unique avatar to retain a visual
identity across artistic stylings (e.g., if the application 122a
implements a first styling, for example a cartoon styling, and
the application 1226 implements a second styling, for

10

15

20

25

30

35

40

45

50

55

60

65

6

example a realistic styling, then the unique avatar can retain
a visual identity as the avatar is shown in a cartoon styling
in the application 122a and a realistic styling in the appli-
cation 1224). The 3D character SDK 118 can include a
number of modules and/or services for performing specific
operations to modify or otherwise configure characteristics
of 3D assets. For example, the 3D character SDK 118 can
include a morphing module, a joint center transtorm (JCT)
bone module, a standard shape module, a projection module,
a head scanning to a dynamic mesh fitting module, a
heterogeneous mesh behavior module, a hair module, and a
smart props module.

The artist tools 108 is one or more standalone modules,
potentially including computer-readable instructions config-
ured to convert 3D assets to a form/format compatible with
the system 100. The artist tools 108 can receive a 3D asset
(e.g., geometry), which may be configured in a number of
different formats. The artist tools 108 can be configured to
group the geometry into items; set up the level of details
(LODs) for an item; generate geographical maps (geomaps);
add self-defining behavioral information to objects for run-
time simulation; set up materials and generate materials for
different platforms; configure the geometries’ multilayered
characteristics for runtime-optimized multilayer depth and
volumetric preservation between meshes; and/or set up
zones on items for heterogeneous mesh deformation (e.g., so
that something like metal deforms differently than cloth to
an avatar’s shape). As used herein a geomap comprises
geometry, a vertex index, and a map outlining an optimized
correlation between a following mesh and base mesh to be
used for real time calculation and generation of multilayer
depth solutions and/or projection solutions. Projection ref-
erences the act of projecting a deformer from one mesh to
another.

The artist tools 108 also set up the custom shaping of a
base 3D asset and set up the 3D assets into specific art styles
to allow automatic avatar preservation between art styles.
The output of the artist tools 108 can be either a single 3D
asset and/or a collection of 3D assets which can be com-
patible with the 3D character SDK 118. The 3D assets
modified by the artist tools 108 can be uploaded to the asset
lookup and delivery service 110. The 3D assets can further
be configured at the asset lookup and delivery service 110
for user specified distribution based upon rules and condi-
tions associated with the 3D asset and as provided by the
brand modules 112.

The ready room VR 120 can be a base application that
facilitates interaction between a user and the system 100. A
base application can be different from the applications 122,
such that the base application is a standalone application that
can be executed independently from the applications 122.
The user can create and customize a 3D asset via the ready
room VR 120 using additional content (e.g., following 3D
assets) converted with the artist tools 108, made available
through the asset lookup and delivery service 110, delivered
through the asset transfer client library 116, and passed to
the 3D character SDK 118. For example, the user can, via the
user interface 124, access the ready room VR 120 to create
and/or customize a 3D asset and launch at least one of the
applications 122 through the ready room VR 120.

In some examples, the user can create and customize an
avatar (or otherwise configure a base 3D asset) via the
application 122b. For example the user can access the
application 1226 and through the application 12254 access
the ready room VR 120, or functionality of the ready room
VR 120 (e.g., to create and customize a 3D asset). Stated
differently, functionality of the ready room VR 120 may be

US 11,631,229 B2

7

implemented or otherwise integrated with the application
122b, such that a user of the application 1226 can create
and/or customize an avatar or other 3D assets within the a
context of the application 1225.

The ready room VR 120 can showcase the core function-
ality of the system 100 from an end user’s perspective. The
ready room VR 120 can provide both a place to customize
a 3D asset, including an avatar, a shape and/or clothing
associated with the 3D asset, and a place to demonstrate the
process and/or standards of “walking between applications.”
The ready room VR 120 provides multiple means to transfer
an identity between applications 122, interconnect between
multiple open VR applications 122, and incorporate face
scan data onto the avatar. The ready room VR 120 can
provide different example implementations of a user inter-
face (UI) for shopping, previewing, and/or checking out of
stores, among different types of checkout processes.

Once compatible content is acquired, a user can use and
customize the 3D asset. A persistent virtual identity for the
user can be created, and then the user can activate a
mechanism to allow an acquired and/or created 3D asset
(e.g., avatar) to transport (e.g., transfer) or step into any one
of the applications 122. That is, a 3D asset associated with
a user can retain an identity as the 3D asset transitions from
the ready room VR 120 into one of the applications 122, and
then provide end points for the user to return to the ready
room VR 120. The virtual identity of a user, including a
corresponding avatar or other 3D asset, can be maintained
consistent across multiple applications 122, and as the
virtual identity is transported from one application 122, to
the ready room VR 120, and/or to another application 122.
The 3D asset can also extract and retain items (e.g., a virtual
weapon, or other object 3D asset) from the applications 122
that can persist in the ready room VR 120 as the 3D asset
transitions from one of the applications 122 into the ready
room VR 120 and then to another of the applications 122.

The persistent virtual identity can be associated with, and
representative of a user that is external to the system 100. A
user can be a human user and/or an automated user.

In some examples, transitioning a 3D asset from a first
application (e.g., application 122a) to a second application
(e.g., application 1225) can include conforming to standards
set by the second application. The standards can include a
specific art style and/or theme. Transitioning a 3D asset from
a first application to a second application can include placing
the 3D asset in a VR room (e.g., lobby) of the first appli-
cation 122a where the user and/or the 3D character SDK can
initiate the required changes to the 3D asset before fully
transitioning the 3D asset to the second application.

The transfer of 3D assets between applications includes
configuring a 3D asset so that the 3D asset’s customizations
are retained as the 3D asset transitions from one application
to a different application, such that the settings and status of
the 3D asset remain the same. The transfer of 3D assets is
one example of a persistent virtual identity. The transfer of
3D assets can be accomplished by utilizing a local backdoor
module and/or a remote restore module. These modules
enable the transfer of an identity between applications 122.

The local backdoor module can include an application
122a calling the asset transfer client 116 to export a 3D asset
(e.g.,a3D asset file) and/or a persistent virtual identity (e.g.,
an identity file) comprising geometry, skinning, rig, textures,
materials, and shaders of the current 3D asset with associ-
ated items in use, and/or any additional metadata describing
the 3D asset and/or persistent virtual identity. After the
export is finished, the application 122a launches the appli-
cation 1225 with reference to the local identity file, and then

10

15

20

25

30

35

40

45

50

55

60

65

8

shuts itself down. The application 1226 can access the
identity and request the local identity definition from the
asset transfer client 116 and load the identity into the
application 1225.

The remote restore module can be configured to cause the
application 122a to call the asset transfer client 116 to push
the identity definition metadata to the asset lookup and
delivery service 110. The application 122a can then launch
the application 1225 with an identity string, and then shut
itself down. The application 1225 can request that the asset
transfer client 116 call the asset lookup and delivery service
110 requesting the identity string. The application 1225 can
likewise retrieve metadata associated with the persistent
virtual identity. The application 1225 can use either local 3D
assets (e.g., locally stored) or remote 3D assets (e.g.,
streamed or otherwise provided or accessed from a remote
location) to render the avatar.

In some examples, the asset transfer client 116 can
comprise one or more components. For example, the asset
transfer client 116 can comprise a client and a server. The
client can be implemented in the applications 122 and/or
computing devices on which the applications 122 are
executing. The server of the asset transfer client 116 can be
implemented in the system 100. The client can communicate
with the server to transfer a 3D asset from the system 100 to
the computing device of the applications 122.

To transfer a 3D asset and/or persistent virtual identity
between applications, the user can select a destination appli-
cation 1225 from a source application 122a. Once selected,
a gate or portal may be generated within the source appli-
cation 122a. The source application may portray the gate
and/or portal as a visual appearance branded for the desti-
nation application 1225b. The gate and/or portal may transi-
tion the 3D asset and/or persistent virtual identity from the
source application 1224 to virtual space (e.g., referred to as
the “airlock™) that is configurable and customized by the
destination application 1225 (e.g., a destination application
vendor and/or the corresponding brand module 1125). The
mechanism to trigger the transfer of a 3D asset may include
walking and/or other locomotion methods within a VR
environment provided by the source application 122a
toward the gate or portal of the destination application 1224.

The transferring of the 3D asset and/or the persistent
virtual identity from source application to the virtual space
through the virtual portal may trigger a VR passport check.
The VR passport check compares clothing and/or an art style
associated with the 3D asset and/or the persistent virtual
identity with vendor specific standards of the destination
application 1225. If the 3D asset and/or persistent virtual
identity does not conform to the destination application
1224, then the user is provided an opportunity to change
clothing, art style, or any other aspect associated with the 3D
asset and/or persistent virtual identity, to meet the destina-
tion application standards. Once the standards are met, a
launch mechanism, through another virtual portal, the push-
ing of a button, or the act of meeting the standards, will
initiate a transfer of the 3D asset and/or the persistent virtual
identity between the source application 1224 and the desti-
nation application 1226b.

A set of standards between applications 122 and vendors
can be defined. The standards can foster an increased level
of persistence and transfer to exist between different appli-
cations 122. The standards enable enhanced functionality to
allow standard behavior and transfer of assets or mechanics
between disparate applications 122. For example, an appli-
cation agnostic content interchange can be defined to facili-
tate the association between 3D assets and/or persistent

US 11,631,229 B2

9

virtual identities and a given application 122a (e.g., a source
application 122a) and the transfer of the persistent virtual
identity to other applications 122 (e.g., a destination appli-
cation 1225). Transferring the persistent virtual identity
and/or 3D asset can include losing permanence in the source
application 122q and creating permanence in the destination
application 1226 with a conforming set of behaviors,
mechanics, and appearances.

In some examples, face scan data can be associated with
a dynamic mesh. Associating scan data with a dynamic mesh
can include taking face scan data and changing a base figure,
associated with the 3D asset and/or persistent virtual iden-
tity, to incorporate the face scan data such that the base
figure retains the same mesh topology while retaining func-
tionality for further shaping of the mesh (e.g., making the
face narrower, nose larger, ears pointed, etc.).

The face scan data can be placed on a dynamic mesh. The
face scan data can be 3D scanner generated and/or photo-
grammetry generated (e.g., mesh and texture). The face scan
data can also be generated using various images and/or other
means. Placing the face scan data on a dynamic mesh can
deform the base figure associated with a 3D asset and/or
persistent virtual identity to match the visual appearance of
the face scan data. Placing the face scan data on a dynamic
mesh can generate texture to match the face scan data on the
base figure associated with the 3D assets and/or persistent
virtual identity.

The face scan data can be compared with the base figure
to identify where key facial and head landmarks are on both
sets of data (e.g., face scan data and base figure and/or base
3D asset). The base mesh associated with the base figure is
deformed to the same shape as the face scan data using
automated adjustments of existing blend shapes for each key
region of the face. In some examples, a new blend shape can
be generated for the base figure to match the face scan data.
The face scan generated texture can be analyzed and, using
key face and head landmarks, the texture can be rebuilt to fit
the base figure’s UV map. The face scan generated texture
can comprise multiple texture files. The multiple texture files
can be combined into a single texture file for the head of a
base figure. Fitting face scan data to a base figure can be
performed using a custom rig and geomap technology to
compare and match the base figure mesh to the face scan
data. As used herein, blend shaping, morphing, and deform-
ing references a set of data attached to a mesh which
contains positional deltas on geometry and bones to allow
the mesh to change shape while not changing its fundamen-
tal geometry and/or rig.

When configuring an avatar, if there is face scan data
associated with the 3D asset and/or the application identity
associated with the 3D asset, the ready room VR 120 can
associate the face scan data with the 3D asset such that the
3D asset retains the full customization and compatibility of
the base figure without any scanned data. As such, a 3D asset
can be configured with the face scan data. The face scan data
can be provided, by the user, by uploading a mesh to a server
associated with system 100 through at least one of a web
form or mobile application.

As used herein, the system 100 can be implemented in a
single computing device and/or over a plurality of comput-
ing devices. For example, each of the components of the
system 100 can be implemented using independent comput-
ing devices coupled via a network. In some examples, the
system 100 can be implemented using cloud services.

FIG. 2 illustrates a flow diagram 200 of a method for
adjusting a following 3D asset based on the deformation of
a related base 3D asset. The 3D character SDK 118 of FIG.

30

40

45

55

10

1 may implement this method to enable a base 3D asset (e.g.,
a 3D asset representing an avatar that is part of a persistent
virtual identity) to be changed into any shape and/or size and
automatically and near instantly alter the shapes of follow-
ing 3D assets (e.g., a separate 3D asset associated with the
avatar, such as, clothing, weapons, jewelry, and other virtual
objects). The automatic and near instantaneous altering of
following 3D assets allows the following 3D assets to retain
full functionality (e.g., clothing remains fitted to the avatar)
as the base 3D asset changes. In some embodiments, the
following 3D asset may deform at runtime, allowing the
following 3D asset deform along with the base 3D asset. For
example, in some embodiments, the deformation may be
executed in a single frame of a game which may be less than
10 milliseconds.

As virtual identities become more ubiquitous, individuals
desire a greater variety and number of accessories to cus-
tomize and individualize avatars and express themselves.
However, this increases the complexity and detail of virtual
identities. Further, any deformation made to an avatar must
be permeated to each accessory. For example, if an avatar is
changed in size and a shirt the avatar is wearing (associated
with) remains the same, the shirt will lose its functionality
(e.g., properly covering the avatar). Therefore, it is impor-
tant that each deformation to the avatar be permeated to each
accessory

To optimize the adjustment process, the avatar and the
accessories may be categorized as a base 3D asset and
following 3D assets respectively. The base 3D asset and the
following 3D assets may be any related 3D assets. A
relationship exists between the base 3D asset and the fol-
lowing 3D asset in that each deformation to the base 3D
asset may be proportionally applied to the following 3D
asset. This may allow a base 3D asset to be changed in its
fundamental shape to any potential shape (e.g., grow taller,
shorter, fatter, skinnier, or more muscular), and allow the
following 3D assets to continue to work properly in fitting
or otherwise associating with the avatar.

A 3D character SDK may implement the method for
adjusting a following 3D asset based on the deformation of
a related base 3D asset by first loading 202 a base 3D asset
and a following 3D asset. Loading 202 the base 3D asset
may include receiving vertex index, polygon data, bone
data, skinning data, and UV map for the base 3D asset.
Loading 202 the following 3D asset may include receiving
vertex index, polygon data, bone data, skinning data, UV
map, and Geomap data for the following 3D asset.

All of the loaded data may inform the 3D character SDK
of relationships between the base 3D asset and the following
3D asset. For example, the Geomap data correlates and
indexes key values and relationships between the following
3D asset and the base 3D asset. In one embodiment, the
Geomap may be generated and sent to the 3D character SDK
by another module, such as the artist tools 108 of FIG. 1.

The 3D character SDK may activate or otherwise perform
a deformation on the base 3D asset. Activating or perform-
ing a deformation may include determining 204 new vertex
coordinates of the base asset for the activated deformation.
In one embodiment, a user and/or the system may select a
deformation from a list of available deformations already
created for the base 3D asset. For example, the list of
available deformations may include a height option. If the
height option is selected, the 3D character SDK may deform
the base 3D asset a preset amount along the Z axes. In a
second embodiment, the user or the system may procedur-
ally apply new deformations to the mesh of the base 3D
asset. For example, a user interface to an application or the

US 11,631,229 B2

11

ready room VR may allow a user to manually deform a base
3D asset by selecting a portion of the base 3D asset and
modifying the portion with an input tool (e.g., drag and drop
with a mouse, stylus, or other input implement) to create the
deformation.

The deformation of the base 3D asset creates new vertex
coordinates on the X, Y, and Z axes for the base 3D asset.
The new vertex coordinates may be determined by the
system based on a selection of an available deformation or
based on a manual deformation. The new and the original
vertex coordinates may be stored in memory before moving
the vertex coordinates to apply the deformation. In one
embodiment, the original vertex coordinates may become a
selectable deformation on a list of available deformations
(e.g., revert). Further, in some embodiments, the deforma-
tion may also define a bone transformation. If bone trans-
formation data exists for the deformation, the new and the
original bone structure coordinates may be stored in
memory.

In another embodiment, new X, Y, and Z coordinates for
the new bone positions may be generated based on the
deformation to the vertices. For example, the 3D character
SDK may use the average distance from nearby vertices and
a weight map to determine the new bone structure coordi-
nates. The weight map may include data that describe the
influence of vertices on each bone structure. The 3D char-
acter SDK may calculate an average change in X, Y, Z axes
for each vertex and use the weight map to gradate the
influence of the vertex in relation to the new bone structure
coordinates. The new bone structure coordinates may be an
averaged offset based on the gradated average.

The 3D character SDK may perform a 3D asset crawl 206
on the following 3D asset. The crawl 206 of the 3D asset
may index the polygon data associated with the following
3D asset. The polygon data may define a polygon that
models a portion of the 3D asset. A tree data structure may
order the polygon data according to location. The tree data
structure may allow for quick access to polygon data con-
cerning each polygon as well as the neighbors of each
polygon. Thus the indexed polygon data may be organized
by spatial relationships between polygons.

The 3D character SDK may generate 208 a point map.
The 3D character SDK may generate 208 the point map
based on the geomap, the base 3D asset, and the following
3D asset. The point map represents the relationship between
the vertices of the base 3D asset and the vertices of the
following 3D asset. Specifically, the point map defines the
influence each base 3D asset vertex has on each following
3D asset vertex. The relationship between the base 3D asset
vertices and the following 3D asset vertices may be a
weighted average based on the distance between the vertices
and influence data from the base 3D asset’s weight map.

For example, one or more vertices of the base 3D asset
may correspond to an ankle of an avatar, and one or more
vertices of the following 3D asset may correspond to a pant
cuff. When the 3D character SDK generates 208 the point
mayp, the point map will establish that the one or more ankle
vertices have a significant influence on the one or more pant
cuff vertices. Other vertices of the base 3D asset may have
little to no influence on the pant cuff vertices based on
distance and a weight map.

The 3D character SDK may calculate 210 offsets created
by the deformation for the following 3D asset. Based on the
stored new and original vertex coordinates of the base 3D
asset, the 3D character SDK may determine which base 3D
asset vertices are affected by the deformation. The 3D SDK
may then use the point map to determine which vertices of

25

30

40

45

50

55

12

the following 3D asset are influenced by the affected base
3D asset vertices. The amount each base 3D asset vertex
influences each following 3D asset vertex (influence scores)
may be extracted from the geomap. Based on the influence
scores and the distance between the new and original vertex
coordinates of the base 3D asset (deformation difference), a
set of following vertex offsets and a set of following bone
offsets may be calculated.

In one embodiment, the 3D character SDK may calculate
the set of following vertex offsets by gradating each defor-
mation difference based on the influence score and aggre-
gating each gradated deformation difference. For example, a
first following vertex offset may be calculated by (1) deter-
mining which base 3D asset vertex influences the first
following vertex offset, (2) determining the deformation
difference for each influencing 3D asset vertex, (3) gradating
the deformation difference for each influencing 3D asset
vertex based on the influence score, and (4) aggregating and
averaging the gradated deformation difference. The set of
following vertex offsets may be found by calculating the
aggregated gradated deformation difference for each follow-
ing 3D asset vertex affected by the deformation and aver-
aging the aggregated gradated deformation difference. Thus,
the 3D character SDK may calculate the set of following
vertex offsets by finding a weighted (based on influence
score) average of the deformation of influencing 3D asset
vertices.

Similarly, the 3D character SDK may calculate the set of
following bone offsets by gradating each deformation dif-
ference based on the influence score and aggregating each
gradated deformation difference. For example, a first fol-
lowing bone offset may be calculated by (1) determining
which base 3D asset vertex influences the first following
bone offset, (2) determining the deformation difference for
each influencing 3D asset vertex, (3) gradating the defor-
mation difference for each influencing 3D asset vertex based
on the influence score, and (4) aggregating and averaging the
gradated deformation difference. The set of following bone
offsets may be found by calculating the aggregated gradated
deformation difference for each following 3D asset bones
affected by the deformation and averaging the aggregated
gradated deformation difference. Thus, the 3D character
SDK may calculate the set of following bone offsets by
finding a weighted (based on influence score) average of the
deformation of influencing 3D asset vertices.

In another embodiment, the 3D character SDK may
calculate the set of following bone offsets based on the set
of following vertex offsets. For example, the 3D character
SDK may use the average distance from nearby following
3D asset vertices and a weight map to determine the set of
following bone offsets. The weight map may include data
that describe the influence of vertices on each bone structure.
The 3D character SDK may calculate an average change in
X, Y, 7Z axes for each vertex and use the weight map to
gradate the influence of the vertex in relation to the set of
following bone offsets.

A file system may save 212 a new deformation profile of
the following 3D asset by storing the set of following vertex
offsets and the set of following bone offsets. The deforma-
tion profile may be distinct from the following 3D asset.
However, to increase computing efficiencies, the deforma-
tion profile may be programmatically related to the follow-
ing 3D asset. For example, the name of the deformation
profile may be a unique identifying number procedurally
generated from the corresponding base 3D assets deforma-
tion, a unique identifier of the base 3D asset, and a unique
identifier of the following 3D asset. The unique identifying

US 11,631,229 B2

13

number may allow the 3D character SDK to identify the
deformation profile using a hash-based search.

The deformation profile can be reused. For example, if a
certain deformation occurs to the base 3D asset every time
the base 3D asset is transferred from a first application to a
second application, the following 3D asset may use the
saved deformation profile. In one embodiment, the defor-
mation profile can be locally stored deformation file. The file
system may store the deformation profile until the base 3D
asset, following 3D asset, or geomap data changes. By
indefinitely storing the deformation profile, the 3D character
SDK may reuse the deformation profile for future deforma-
tions of the same nature, thereby saving processing
resources.

The 3D character SDK may inject 214 the deformation
profile into the following 3D asset as a following blend
shape. The process of injecting 214 the deformation profile
may form a new object with a unity identity number. The file
system may also store a source blend shape. The blend shape
may be the deformation applied to the base 3D asset. The
unity identity number may map the following blend shape to
a source blend shape at runtime. The blend shapes may
define maximum offsets for vertices, and deformations may
be a percentage of the maximum offsets.

The 3D character SDK may drive 216 the deformation of
the following 3D asset. The deformation may begin by
calculating the percentage that the base 3D asset has been
offset. For example, the percentage may be calculated by
comparing the actual deformation offsets with the maximum
offsets. Based on that percentage, the 3D character SDK may
move the vertices of the following 3D asset. Moving the
vertices of the following 3D asset by the same percentage as
the base 3D asset may ensure the proper positioning of the
following 3D asset.

Similarly, the bones of the following 3D asset may be
deformed. The deformation may begin by calculating the
new position of each end point of the bones for the following
3D asset and adjust the end points to line them up with the
same offsets as the base 3D asset through the JCT service.

While the steps of the flow diagram 200 have been
described being performed by the 3D character SDK, other
components of system 100 of FIG. 1 may be used to perform
one or more of the steps. In some embodiments, the other
components may include or reference the 3D character SDK
for tools or engines to propagate base 3D asset deformations
to the following 3D asset. For example, the asset transfer
client may load 202 the base 3D asset and the following 3D
asset, and artist tool determines 204 the deformation of the
base 3D asset. The content conversion system may crawl
206 the following 3D asset to convert the following asset to
be compatible with the 3D character SDK. For example, as
part of the conversion process, the content conversion sys-
tem may index the polygon data associated with the follow-
ing 3D asset into a hierarchal tree that represents spatial
relationships between polygons.

Additionally, the asset lookup and delivery service may
allow the asset transfer client to ask for any stored defor-
mation profiles. For example, if a deformation requests that
a base 3D asset increase in height, the asset lookup and
delivery service may find a corresponding deformation
profile of the base 3D asset and the following 3D asset by
using a hash-based search.

FIG. 3 is a block diagram of an identity system according
to one embodiment The mobile device identity system 381
can generate a persistent virtual identity that can be trans-
ferred between applications, potentially on different appli-
cation systems 322. The identity system 381 can include a

10

15

20

25

30

35

40

45

50

55

60

65

14

memory 320, one or more processors 393, a network inter-
face 394, an input/output interface 395, and a system bus
396. The identity system 381 may be the same as or
analogous to the interface system 100 in FIG. 1. The identity
system 381 may interface with one or more VR applications
322 via a communication network 12. The identity system
381 may provide persistent virtual identity for the VR
application systems 322. The identity system 381 may also
interface with one or more content creation application
system 356 to obtain 3D assets.

The one or more processors 393 may include one or more
general purpose devices, such as an Intel®, AMD®, or other
standard microprocessor. The one or more processors 393
may include a special purpose processing device, such as
ASIC, SoC, SiP, FPGA, PAL, PLA, FPLA, PLD, or other
customized or programmable device. The one or more
processors 393 can perform distributed (e.g., parallel) pro-
cessing to execute or otherwise implement functionalities of
the presently disclosed embodiments. The one or more
processors 393 may run a standard operating system and
perform standard operating system functions. It is recog-
nized that any standard operating systems may be used, such
as, for example, Microsoft® Windows®, Apple® MacOS®,
Disk Operating System (DOS), UNIX, IRJX, Solaris,
SunOS, FreeBSD, Linux®, fiM® OS/2® operating sys-
tems, and so forth.

The memory 320 may include static RAM, dynamic
RAM, flash memory, one or more flip-flops, ROM, CD-
ROM, DVD, disk, tape, or magnetic, optical, or other
computer storage medium. The memory 320 may include a
plurality of program engines and/or modules 382 and pro-
gram data 388. The memory 320 may be local to identity
system 381, as shown, or may be distributed and/or remote
relative to the identity system 381.

The program engines 382 may include all or portions of
other elements of the system 381. The program engines 382
may run multiple operations concurrently or in parallel with
or on the one or more processors 393. In some embodiments,
portions of the disclosed modules, components, and/or
facilities are embodied as executable instructions embodied
in hardware or in firmware, or stored on a non-transitory,
machine-readable storage medium, such as the memory 320.
The instructions may comprise computer program code that,
when executed by a processor and/or computing device,
cause a computing system (such as the processors 393
and/or the identity system 381) to implement certain pro-
cessing steps, procedures, and/or operations, as disclosed
herein. The engines, modules, components, and/or facilities
disclosed herein may be implemented and/or embodied as a
driver, a library, an interface, an API, FPGA configuration
data, firmware (e.g., stored on an EEPROM), and/or the like.
In some embodiments, portions of the engines, modules,
components, and/or facilities disclosed herein are embodied
as machine components, such as general and/or application-
specific devices, including, but not limited to: circuits,
integrated circuits, processing components, interface com-
ponents, hardware controller(s), storage controller(s), pro-
grammable hardware, FPGAs, ASICs, and/or the like.
Accordingly, the modules disclosed herein may be referred
to as controllers, layers, services, engines, facilities, drivers,
circuits, and/or the like.

The memory 320 may also include program data 388.
Data generated by the system 381, such as by the program
engines 382 or other modules, may be stored on the memory
320, for example, as stored program data 388. The stored
program data 388 may be organized as one or more data-
bases. In certain embodiments, the program data 388 may be

US 11,631,229 B2

15

stored in a database system. The database system may reside
within the memory 320. In other embodiments, the program
data 388 may be remote, such as in a distributed computing
and/or storage environment. For example, the program data
388 may be stored in a database system on a remote
computing device.

The input/output interface 395 may facilitate interfacing
with one or more input devices and/or one or more output
devices. The input device(s) may include a keyboard,
mouse, touch screen, light pen, tablet, microphone, sensor,
or other hardware with accompanying firmware and/or soft-
ware. The output device(s) may include a monitor or other
display, printer, speech or text synthesizer, switch, signal
line, or other hardware with accompanying firmware and/or
software.

The network interface 394 may facilitate communication
with other computing devices and/or networks and/or other
computing and/or communications networks. The network
interface 394 may be equipped with conventional network
connectivity, such as, for example, Ethernet (IEEE 802.3),
Token Ring (IEEE 802.5), Fiber Distributed Datalink Inter-
face (FDDI), or Asynchronous Transfer Mode (ATM). Fur-
ther, the network interface 394 may be configured to support
a variety of network protocols such as, for example, Internet
Protocol (IP), Transfer Control Protocol (TCP), Network
File System over UDP/TCP, Server Message Block (SMB),
Microsoft® Common Internet File System (CIFS), Hyper-
text Transfer Protocols (HTTP), Direct Access File System
(DAFS), File Transfer Protocol (FTP), Real-Time Publish
Subscribe (RTPS), Open Systems Interconnection (OSI)
protocols, Simple Mail Transfer Protocol (SMTP), Secure
Shell (SSH), Secure Socket Layer (SSL), and so forth.

The system bus 396 may facilitate communication and/or
interaction between the other components of the system,
including the one or more processors 393, the memory 320,
the input/output interface 395, and the network interface
394.

As noted, the interface system 381 also includes various
program engines 382 (or modules, elements, or components)
to implement functionalities of the system 381, including an
asset transfer client engine 383, an asset lookup and delivery
service engine 384, an artist tools engine 385, a 3D character
SDK engine 386, and/or a ready room VR engine 387. These
elements may be embodied, for example, at least partially in
the program engines 382. In other embodiments, these
elements may be embodied or otherwise implemented in
hardware of the system 381. The system 381 also includes
identity data 389 and 3D asset data 390 that may be stored
in the program data 388 which may be generated, accessed,
and/or manipulated by the program engines 382.

EXAMPLE EMBODIMENTS

The following are some example embodiments within the
scope of the disclosure. In order to avoid complexity in
providing the disclosure, not all of the examples listed below
are separately and explicitly disclosed as having been con-
templated herein as combinable with all of the others of the
examples listed below and other embodiments disclosed
hereinabove. Unless one of ordinary skill in the art would
understand that these examples listed below (and the above
disclosed embodiments) are not combinable, it is contem-
plated within the scope of the disclosure that such examples
and embodiments are combinable.

Example 1. An apparatus for comparative virtual asset
deformation system, comprising: memory to store at least
two three dimensional (3D) assets, a geomap that correlates

10

15

20

25

30

35

40

45

50

55

60

65

16

and indexes relationships between the 3D assets, and a 3D
character software developer kit (SDK) engine, the two 3D
assets including at least a base asset and a following asset;
and one or more processing units to deform the following
asset based on a deformation to the base asset, using the
software developer kit (SDK) engine, the processing units
to: determine new vertex coordinates of the base asset for an
activated deformation, generate a point map defining an
influence that vertices of the base asset assert on vertices of
the following assets, the point map indicates which vertices
of the following asset are influenced by vertices of the base
asset with new vertex coordinates for the activated defor-
mation, calculate offsets for the vertices of the following
assets that are influenced by determining a weighted average
of a difference between the new vertex coordinates and old
vertex coordinates of the base asset, and drive the activated
deformation to the following asset based on the calculated
offsets.

Example 2. The apparatus of example 1, wherein the one
or more processing units are further configured to generate
new bone coordinates by calculating an average of a differ-
ence between the new vertex coordinates and old vertex
coordinates of the base asset gradated by influence on
affected bone polygons.

Example 3. The apparatus of example 1, wherein the
memory further stores a geomap representing relationships
between vertices of the base asset and the following asset,
and wherein the one or more processing units generate the
point map by assigning an influence score to the relation-
ships in the geomap.

Example 4. The apparatus of example 3, wherein the
influence score is based on a distance between vertices and
data from a weight map associated with the base asset and
the following asset.

Example 5. The apparatus of example 3, wherein to
calculate the offsets, the one or more processing units:
determine a deformation difference for each influencing base
asset vertex; gradate; the deformation differences for each
influencing base asset vertex based on the influence score;
and aggregate and average the gradated deformation differ-
ences.

Example 6. The apparatus of example 3, wherein the
weighted average is weighted based on the influence score.

Example 7. The apparatus of example 1, wherein the one
or more processing units are further to index polygon data
associated with the following asset into a hierarchal tree
ordered by spatial relations between the polygon data.

Example 8. The apparatus of example 1, wherein the one
or more processing units are further to save a deformation
profile representing the offsets for the vertices of the fol-
lowing assets.

Example 9. The apparatus of example 8, wherein the
deformation profile defines maximum offsets for the vertices
of the following asset and the base asset; and wherein the
one or more processing units drive the activated deformation
by: calculating a percentage comparing offsets from the
activated deformation on the base asset from the maximum
offsets, and moving the vertices of the following asset by an
equivalent percentage.

Example 10. The apparatus of example 8, wherein the
deformation profile comprises a following asset blend shape
corresponding to a source blend shape.

Example 11. The apparatus of example 8, wherein the
following asset blend shape is mapped to the source blend
shape.

Example 12. A non-transitory computer-readable medium
with instructions stored thereon that, when executed by a

US 11,631,229 B2

17

processor, cause a virtual identity system to perform opera-
tions for propagating a deformation between disparate three
dimensional (3D) assets, the operations comprising: deter-
mining new vertex coordinates of a base asset for an
activated deformation, generating a point map defining an
influence that vertices of the base asset assert on vertices of
a following assets, determining, via the point map, which
vertices of the following asset are influenced by vertices of
the base asset with new vertex coordinates for the activated
deformation, calculating offsets for the vertices of the fol-
lowing assets that are influenced by determining a weighted
average of a difference between the new vertex coordinates
and old vertex coordinates of the base asset, and drive the
activated deformation to the following asset based on the
calculated offsets.

Example 13. The apparatus of example 12, wherein
generating the point map comprises assigning an influence
score to relationships in a geomap.

Example 14. The apparatus of example 13, wherein the
influence score is based on a distance between vertices and
data from a weight map associated with the base asset and
the following asset.

Example 15. The apparatus of example 13, wherein
calculating the offsets comprises: determining a deformation
difference for each influencing base asset vertex; gradating
the deformation differences for each influencing base asset
vertex based on the influence score; and aggregating and
average the gradated deformation differences.

Example 16. The apparatus of example 13, wherein the
weighted average is weighted based on the influence score.

Example 17. A method for adjusting virtual assets, the
method comprising: loading at least two 3D assets, includ-
ing at least a base 3D asset and a following asset; activating
a deformation on the base 3D asset; generating a point map
comprising: relationships between vertices of the base 3D
asset and vertices of the following 3D asset, and an influence
score for each relationship that indicates an amount that the
vertices of the base 3D asset influence the vertices of the
following 3D asset influences; determining a first set of
offsets representing the deformation to the base 3D asset;
calculating a second set of offsets corresponding to the first
set of offsets, the second set of offsets based on the point
map and representing a following deformation to be applied
to the following 3D asset when the deformation is applied to
the base 3D asset; and driving the following deformation to
the following 3D asset.

Example 18. The method of example 17, further com-
prising saving a deformation profile representing the second
set of offsets.

Example 19. The method of example 17, further com-
prising injecting the deformation profile into the following
3D asset as a blend shape.

Example 20. The method of example 17, further com-
prising crawling the following 3D asset to index polygon
data of the following 3D asset into a tree structure repre-
sentative of spatial relationships between polygon data on
the following 3D asset.

Furthermore, the described features, operations, or char-
acteristics may be arranged and designed in a wide variety
of different configurations and/or combined in any suitable
manner in one or more embodiments. Thus, the detailed
description of the embodiments of the systems and methods
is not intended to limit the scope of the disclosure, as
claimed, but is merely representative of possible embodi-
ments of the disclosure. In addition, it will also be readily
understood that the order of the steps or actions of the
methods described in connection with the embodiments

15

30

40

45

60

18

disclosed may be changed as would be apparent to those
skilled in the art. Thus, any order in the drawings or Detailed
Description is for illustrative purposes only and is not meant
to imply a required order, unless specified to require an
order.

Embodiments may include various steps, which may be
embodied in machine-executable instructions to be executed
by a general-purpose or special-purpose computer (or other
electronic device). Alternatively, the steps may be performed
by hardware components that include specific logic for
performing the steps, or by a combination of hardware,
software, and/or firmware.

Embodiments may also be provided as a computer pro-
gram product including a computer-readable storage
medium having stored instructions thereon that may be used
to program a computer (or other electronic device) to
perform processes described herein. The computer-readable
storage medium may include, but is not limited to: hard
drives, floppy diskettes, optical disks, CD-ROMs, DVD-
ROMs, ROMs, RAMs, EPROMs, EEPROMs, magnetic or
optical cards, solid-state memory devices, or other types of
medium/machine-readable medium suitable for storing elec-
tronic instructions.

As used herein, a software module or component may
include any type of computer instruction or computer
executable code located within a memory device and/or
computer-readable storage medium. A software module
may, for instance, comprise one or more physical or logical
blocks of computer instructions, which may be organized as
a routine, program, object, component, data structure, etc.,
that performs one or more tasks or implements particular
abstract data types.

In certain embodiments, a particular software module
may comprise disparate instructions stored in different loca-
tions of a memory device, which together implement the
described functionality of the module. Indeed, a module may
comprise a single instruction or many instructions, and may
be distributed over several different code segments, among
different programs, and across several memory devices.
Some embodiments may be practiced in a distributed com-
puting environment where tasks are performed by a remote
processing device linked through a communications net-
work. In a distributed computing environment, software
modules may be located in local and/or remote memory
storage devices. In addition, data being tied or rendered
together in a database record may be resident in the same
memory device, or across several memory devices, and may
be linked together in fields of a record in a database across
a network.

It will be obvious to those having skill in the art that many
changes may be made to the details of the above-described
embodiments without departing from the underlying prin-
ciples of the invention. The scope of the present invention
should, therefore, be determined only by the following
claims.

The invention claimed is:

1. A system to deform a following asset based on a
deformation to a base asset, the system comprising:

memory and one or more processors to:

generate a point map that represents a geometric relation-

ship between one or more of first vertices in a first
three-dimensional (3D) structure corresponding to an
avatar, and one or more of second vertices in a second
3D structure corresponding to an item usable by the
avatar;

generate, based on the point map, a weight map including

one or more indications of influence of one or more of

US 11,631,229 B2

19

the first vertices corresponding to a portion of the
avatar on one or more of the second vertices corre-
sponding to the portion of the avatar;

identify, via a user interface, a deformation to alter the

first 3D structure;

determine, based on the deformation and the first vertices,

third vertices in a third 3D structure corresponding to
the avatar;

generate, based on the weight map, the first vertices, and

the third vertices, one or more offsets corresponding to
one or more of the second vertices;

deform, based on the offsets, the second 3D structure into

a fourth 3D structure corresponding to the item and
fitting the third 3D structure; and

instruct the user interface to present the avatar having the

third 3D structure and the item having the fourth 3D
structure.

2. The system of claim 1, the processors to:

deform the second 3D structure into the fourth 3D struc-

ture during runtime execution of the avatar.

3. The system of claim 1, the processors to:

deform the second 3D structure into the fourth 3D struc-

ture over a time period less than or equal to 10
milliseconds.

4. The system of claim 1, the indications of influence
based on a distance between one or more of the first vertices
and one or more of the second vertices.

5. The system of claim 1, the processor to:

obtain a geomap that includes the first vertices and that

corresponds to one or more geometric relationships
between the avatar and the item.

6. The system of claim 1, the processor to:

receive, by the user interface, a selection of a portion of

the avatar, the portion of the avatar corresponding to the
first 3D structure.

7. The system of claim 1, the processor to:

receive, by the user interface, a selection of a predeter-

mined deformation corresponding to the avatar, the
predetermined deformation based on a dimension of
one or more of the first 3D structure and the avatar.

8. The system of claim 1, the processor to:

generate, based on the offsets, a deformation profile

corresponding to the deformation.

9. The system of claim 1, the processor to:

generate, based on the deformation profile, a fifth 3D

structure corresponding to a second avatar having the
third 3D structure.

10. A method for deforming a following asset based on a
deformation to a base asset, the method comprising:

generating a point map representing a geometric relation-

ship between one or more of first vertices in a first
three-dimensional (3D) structure corresponding to an
avatar, and one or more of second vertices in a second
3D structure corresponding to an item usable by the
avatar;

generating, based on the point map, a weight map includ-

ing one or more indications of influence of one or more
of the first vertices corresponding to a portion of the
avatar on one or more of the second vertices corre-
sponding to the portion of the avatar;

identifying, via a user interface, a deformation to alter the

first 3D structure;

determining, based on the deformation and the first ver-

tices, third vertices in a third 3D structure correspond-
ing to the avatar;

10

15

20

25

30

35

40

45

50

55

60

65

20

generating, based on the weight map, the first vertices,
and the third vertices, one or more offsets correspond-
ing to one or more of the second vertices;

deforming, based on the offsets, the second 3D structure

into a fourth 3D structure corresponding to the item and
fitting the third 3D structure; and

instructing the user interface to present the avatar having

the third 3D structure and the item having the fourth 3D
structure.

11. The method of claim 10, further comprising:

deforming the second 3D structure into the fourth 3D

structure during runtime execution of the avatar.

12. The method of claim 10, further comprising:

deforming the second 3D structure into the fourth 3D

structure over a time period less than or equal to 10
milliseconds.

13. The method of claim 10, the indications of influence
based on a distance between one or more of the first vertices
and one or more of the second vertices.

14. The method of claim 10, further comprising:

obtaining a geomap including the first vertices and cor-

responding to one or more geometric relationships
between the avatar and the item.

15. The method of claim 10, further comprising:

receiving, by the user interface, a selection of a portion of

the avatar, the portion of the avatar corresponding to the
first 3D structure.

16. The method of claim 10, further comprising:

receiving, by the user interface, a selection of a predeter-

mined deformation corresponding to the avatar, the
predetermined deformation based on a dimension of
one or more of the first 3D structure and the avatar.

17. The method of claim 10, further comprising:

generating, based on the offsets, a deformation profile

corresponding to the deformation.

18. The method of claim 10, further comprising:

generating, based on the deformation profile, a fifth 3D

structure corresponding to a second avatar having the
third 3D structure.

19. A computer readable medium including one or more
instructions stored thereon and executable by a processor to:

generate, by the processor, a point map that represents a

geometric relationship between one or more of first
vertices in a first three-dimensional (3D) structure
corresponding to an avatar, and one or more of second
vertices in a second 3D structure corresponding to an
item usable by the avatar;

generate, by the processor and based on the point map, a

weight map including one or more indications of influ-
ence of one or more of the first vertices corresponding
to a portion of the avatar on one or more of the second
vertices corresponding to the portion of the avatar;

identify, by the processor and via a user interface, a

deformation to alter the first 3D structure;

determine, by the processor and based on the deformation

and the first vertices, third vertices in a third 3D
structure corresponding to the avatar;

generate, by the processor and based on the weight map,

the first vertices, and the third vertices, one or more
offsets corresponding to one or more of the second
vertices;

deform, by the processor and based on the offsets, the

second 3D structure into a fourth 3D structure corre-
sponding to the item and fitting the third 3D structure;
and

US 11,631,229 B2

21

instruct, by the processor, the user interface to present the
avatar having the third 3D structure and the item having
the fourth 3D structure.

20. The computer readable medium of claim 19, wherein
the computer readable medium further includes one or more
instructions executable by the processor to:

deform the second 3D structure into the fourth 3D struc-

ture during runtime execution of the avatar and over a
time period less than or equal to 10 milliseconds.

#* #* #* #* #*

10

22

