发明名称
用于电能表的多工位并行测试台
摘要
用于电能表的多工位并行测试台，包括机架，机架设台体结构和扫描仪，台体结构上设顶针装置，顶针装置包括固定块和强电顶针和弱电顶针，顶针设置于固定块上，台体结构上设有多组顶针装置。顶针与强电控制电路连接，扫描仪获取的电能表条形码输入上位机，强电控制电路包括开关电源、电源变压器，调压器和功率表，及检测电能表输出电压的电压表，每个电表对应一个强电控制电路，强电控制电路通过通信接口与上位机连接，强电控制电路的输出信息与电能表条形码一一对应。本发明具有能够一次性检查多个项目，避免漏判、误判，效率高，保障产品质量的优点。
1. 用于电能表的多功能并行测试台，其特征在于：包括机架，所述的机架内设有安放电能表的台体结构和扫描电能表条形码的扫描仪；所述的台体结构上设有与电能表的接线端接触的顶针装置；所述的顶针装置包括固定于台体结构上的固定块，和与电能表接线端接触的强电顶针和弱电顶针，顶针设置于固定块上；所述的台体结构上设有多组顶针装置；顶针与对电能表进行强电供电、检测电能表功率的强电控制电路连接；所述的扫描仪获取的电能表条形码输入所述的上位机；

所述的强电控制电路包括开关电源，与开关电源连接的电源变压器，与电源变压器连接，以调节加装在电能表上的电压的调压器，和与电能表连接以检测电能表输出功率的功率表，及检测电能表输出电压的电压表；每个电能表对应一个强电控制电路，所述的强电控制电路通过通信接口与上位机连接，所述的强电控制电路的输出信息与电能表条形码一一对应。

2. 如权利要求1所述的用于电能表的多功能并行测试台，其特征在于：所述的顶针装置还与检测电能表开合闸状态的开合闸检测电路连接，所述的开合闸检测电路包括与电能表的拉合闸模块连接的光耦，与光耦连接，以检测电能表处于拉合或合闸状态的CPU，和将CPU获取的电能表状态上传至上位机的通讯模块；

所述的光耦的输入端与电能表的拉合闸模块连接，所述的光耦的输出端与CPU连接，所述的光耦与所述的CPU之间设有继电器。

用于电能表的多工位并行测试台

技术领域
[0001] 本发明涉及一种用于电能表的多工位并行测试台。

背景技术
[0002] 随着科学技术的发展，国外电子技术产业转移加速，我国的电子技术领域正经历着高速的增长。尽管许多现在有许多实用测试工具，但是产品的个性化性能，使设置、检测总是停留的在单机逐个测试、人工判断是否合格的阶段。如何让整机设置、检测多机同步执行，每项测试项目一次性测试完成，从而实现真正的自动化测试技术突破，仍旧是工业自动化领域有待研究的重要课题。
[0003] 一直以来，产品整机测试停留在低效率阶段，用测量设备单机逐个测试，每测试一个项目更换不同软件与设备；效率极低，人工判断测试结果，容易造成误判、漏判，造成产品质量不稳定。

发明内容
[0004] 为克服现有技术的产品需要用多种测量设备单机逐个测试，效率低下，容易造成误判、漏判，造成产品质量不稳定的缺点，本发明提供了一种能够一次性检测多个项目，避免漏判、误判，效率高，保障产品质量的用于电能表的多工位并行测试台。
[0005] 用于电能表的多工位并行测试台，包括机架，所述的机架内设有安装电能表的台体结构和扫描电能表条形码的扫描仪，所述的台体结构上设有与电能表的接线端接触的顶针装置，所述的顶针装置包括固定于台体结构上的固定块，和与电能表接线端接触的强电顶针和弱电顶针，顶针设置于固定块上，所述的台体结构还设有多组顶针装置；顶针与对电能表进行强电供电、检测电能表功耗的强电控制电路连接；所述的扫描仪获取的电能表条形码输入所述的上位机。
[0006] 所述的强电控制电路包括开关电源，与开关电源连接的电源变压器，与电源变压器连接，以调节电流在电能表上的电压的调压器，和与电能表连接以检测电能表输出功率的功率表，及检测电能表输出电压的电压表；每个电能表对应一个强电控制电路，所述的强电控制电路通过通信接口与上位机连接，所述的强电控制电路的输出信息与电能表条形码一一对应。
[0007] 进一步，所述的顶针装置还与检测电能表开合闸状态的开合闸检测电路连接，所述的开合闸检测电路包括与电能表的拉合闸模块连接的光耦，与光耦连接、以检测电能表处于拉闸或合闸状态的 CPU，和将 CPU 获取的电能表状态上传至上位机的通讯模块；
[0008] 所述的光耦的输入端与电能表的拉合闸模块连接，所述的光耦的输出端与 CPU 连接，所述的光耦与所述的 CPU 之间设有继电器。
[0010] 本发明的技术构思是:本发明通过将功耗检测、电压检测和电能表的拉合闸状态检测集成于一个并行测试台上，通过顶针装置与电能表的接线端接触，完成测试任务。并行测试台上设置多个顶针装置，可以同时测试多个电能表。唯一标示电能表的条形码由扫描仪扫描后输入上位机中，上位机向与电表对应的强电控制电路发出测试指令，并将该强电控制电路的输出信息与电表条形码一一对应，输出测试结果。

[0011] 本发明具有能够一次性检查多个项目，避免漏判、误判，效率高，保障产品质量的优点。

附图说明

[0012] 图 1 是本发明的总体架构图。
[0013] 图 2 是本发明的结构示意图。

具体实施方式

[0014] 参照附图，进一步说明本发明：

[0015] 用于电能表的多工位并行测试台，包括机架 1，所述的机架 1 内设有安放电能表的台体结构和扫描电能表条形码的扫描仪，所述的台体结构上设有与电能表的接线端接触的顶针装置 3，所述的顶针装置 3 包括固定于台体结构上的固定块，和与电能表接线端接触的硬电顶针和弱电顶针，顶针设置于固定块上，所述的台体结构 2 上设有多组顶针装置 3，顶针与电能表进行强电供电，检测电能表功耗的强电控制电路 4 连接；所述的扫描仪获取的电能表条形码输入所述的上位机；

[0016] 所述的强电控制电路 4 包括开关电源，与开关电源连接的电感变压器，与电源变压器连接、以调节加载在电能表上的电压的电感器，和与电能表连接以检测电能表输出功率的功率表，及检测电能表输出电压的电压表；每个电能表对应一个强电控制电路 4，所述的强电控制电路 4 通过信号接口 5 与上位机连接，所述的强电控制电路 4 的输出信息与电能表条形码一一对应。

[0017] 所述的顶针装置 3 还与检测电能表开合闸状态的开合闸检测电路 6 连接，所述的开合闸检测电路 6 包括与电能表的拉合闸模块连接的光耦，与光耦连接、以检测电能表处于拉闸或合闸状态的 CPU，所述的 CPU 通过所述的通信接口将 CPU 获取的电能表状态上传至上位机；

[0018] 所述的光耦的输入端与电能表的拉合闸模块连接，所述的光耦的输出端与 CPU 连接，所述的光耦与所述的 CPU 之间设有继电器。


[0020] 本发明的技术构思是:本发明通过将功耗检测、电压检测和电能表的拉合闸状态检测集成于一个并行测试台上，通过顶针装置与电能表的接线端接触，完成测试任务。并行测试台上设置多个顶针装置，可以同时测试多个电能表。唯一标示电能表的条形码由扫描仪扫描后输入上位机中，上位机向与电能表对应的强电控制电路发出测试指令，并将该强电控制电路的输出信息与电表条形码一一对应，输出测试结果。
[0021] 本发明具有能够一次性检查多个项目，避免漏判、误判，效率高，保障产品质量的优点。

[0022] 本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举，本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式，本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。
图1

图2