(54) Title	Crystallisation process for 1-(beta-D-glucopyranosyl)-4-methyl-3- [5-(4-fluorophenyl)-2-thienylmethyl] benzene
(51) International Patent Classification(s)	C07D 309/10 (2006.01)
(21) Application No.	2010270202
(22) Date of Filing	2010.07.08
(87) WIPO No.	WO11/003976
(30) Priority Data	
(31) Number	09165125.7
(32) Date	2009.07.10
(33) Country	EP
(43) Publication Date	2011.01.13
(44) Accepted Journal Date	2014.04.24
(71) Applicant(s)	Janssen Pharmaceutica NV
(72) Inventor(s)	Rammeloo, Thomas Joachim Landewald; De Keyser, Ruben; Schildermans, Gustaaf Jozef Petrus
(74) Agent / Attorney	Shelston IP, L 21 60 Margaret St, Sydney, NSW, 2000
(56) Related Art	US 7,008,959
	WO 2008/068327
Abstract:
The present invention relates to a crystallisation procedure to obtain 1-[(D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl)] benzene hemihydrate crystals having a narrow particle size distribution and improved flowability, bulk and tap density properties.
CRYSTALLISATION PROCESS FOR 1-(β-D-GLUCOPYRANOSYL)-
4-METHYL-3-[5-(4-FLUOROPHENYL)-2-ThIENYLMETHYL] BENZENE

Field of the Invention

The present invention relates to a crystallisation procedure to obtain 1-(β-D-
glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemi-
hydrate crystals having a narrow particle size distribution and improved flowability,
bulk and tap density properties.

Background of the Invention

Any discussion of the prior art throughout the specification should in no way
be considered as an admission that such prior art is widely known or forms part of
common general knowledge in the field.

The compound 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-
thienylmethyl] benzene is a inhibitor of sodium-dependent glucose transporter
(SGLT) and thus of therapeutic use for the treatment of diabetes, obesity, diabetic
complications, and the like. It is described in WO-2005/012326 as compound (84)
having the following structure:

```
CH3
O

HO
OH
```

A crystalline form of this compound is disclosed in WO-2008/069327.

In general, for commercial use it is important that Active Pharmaceutical
Ingredients (API's) should have good handling qualities. Additionally, there is a
need to produce the API in a pure and crystalline form to enable formulations to
meet specific pharmaceutical requirements.

Crystal engineering is of importance in the production of API's. During
crystallisation, many physico-chemical characteristics of the API or drug substance
are defined, including crystal polymorph, shape, size, particle size distribution,
chemical purity and stability. These characteristics influence the stirrability, residual solvent level, drying time, agglomeration, fragmentation and attrition during the isolation process, which in turn affects the drug product manufacturing by determining particle flow, compressibility, solubility, dissolution rate and bioavailability. The specifications towards the physical properties of the API, driven by the drug product manufacturing, are very narrow concerning particle size distribution, bulk density, electrostatic charge and flowability.

It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.

Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".

Although the invention will be described with reference to specific examples it will be appreciated by those skilled in the art that the invention may be embodied in many other forms.

Summary of the Invention

According to a first aspect of the present invention there is provided a process for preparing 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate crystals wherein a crystalline suspension of 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate in a solvent system is subjected to at least one temperature oscillation episode and at least one mechanical particle size reduction episode and wherein the solvent system is selected from ethyl acetate, 1-methylethyl acetate, or a mixture thereof, and said solvent system optionally comprises up to 20% water.

According to a second aspect of the present invention there is provided 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate crystals, when prepared by a process as defined according to the first aspect of the present invention.

According to a third aspect, there is provided use of 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate crystals
according to the second aspect of the invention in the manufacture of a medicament for the treatment of a disease or condition associated with sodium-dependent glucose transporter (SGLT).

According to a fourth aspect, there is provided a method of treating a disease or condition associated with sodium-dependent glucose transporter, comprising the step of administering to a subject in need thereof, a therapeutically effective amount of 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate crystals.

It has been observed that the crystalline 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate (referenced to as "compound (I)" throughout the patent description), prepared using the classic cooling or anti-solvent crystallisation techniques has a large particle size distribution with a lot of fine particles and coarse particles which negatively impacts the drug product manufacturing. Examples of such a particle size distribution of compound (I) are given in Figure 3.

It has now been found that crystalline 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluoro-phenyl)-2-thienylmethyl] benzene hemihydrate (i.e. compound (I)) can be obtained with a narrow particle size distribution when the crystallisation process comprises at least one temperature oscillation episode and at least one mechanical particle size reduction episode. It has been found that the crystalline compound (I) so obtained has a narrow particle size distribution and improved flowability, bulk and tap density properties.

Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".

Brief Description of the Figures

A preferred embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

Figure 1 is a graphical presentation of a crystallisation process according to the present invention comprising of four temperature oscillation episodes and four mechanical particle size reduction episodes.
Crystallisation procedures using temperature oscillation and/or mechanical particle size reduction have been disclosed in WO-99/67236 and WO-2004/064806.

The temperature oscillation episode, also called Ostwald ripening, is performed by heating and cooling the suspension comprising crystalline compound 5 (I) to a predetermined temperature, conveniently under stirring. The following parameters for the temperature oscillation episode can be controlled:

- the start temperature before heating
- the heating time, the rate of heating and temperature/time profile
- the maximum temperature and the duration thereof (temperature holding step)
- the cooling time, rate of cooling and temperature/time profile
- the end temperature after cooling

Said temperature oscillation parameters depend upon the nature of the solvent or solvent mixture, the nature of the crystals, the desired particle size and particle size distribution and may be optimized using standard tests.
[0012] The temperature amplitude, \textit{i.e.} the difference between the starting temperature and the maximum temperature of the temperature oscillation episode, may be chosen to bring a significant amount of compound (I) into solution, e.g. between 10 and 60%. The amplitude may range according to the desired solubility difference between 5°C and 20°C. The amplitude may be the same or different for each temperature oscillation episode.

[0013] The temperature oscillation curve may be in the form of approximately a sinus curve with a temperature holding step or approximately a zig-zag curve, \textit{i.e.} a curve comprising a linear heating step and a linear cooling step. Alternatively, the cooling step may also use a cubic cooling profile.

[0014] In order to avoid a total process time of several days, the heating time and cooling time in the temperature oscillation episode may be each e.g. about 10 minutes to 120 minutes. Between heating and cooling, there may be a temperature holding step, e.g. a duration of about 5 to 10 minutes. Preferably, the heating time may be shorter than the cooling time, e.g. a heating time of about 10 to 15 minutes and a cooling time of about 60 to 120 minutes.

[0015] In general, the higher the number of temperature oscillation episodes the narrower the particle size distribution becomes. In practice, the number of episodes may be about 1 to 6.

[0016] Each temperature oscillation episode is alternated with a mechanical particle size reduction episode. The mechanical particle size reduction of the crystals of compound (I) in suspension may be done by milling or micronisation using ultrasound.

[0017] Mechanical particle size reduction by ultrasound may be performed by subjecting the crystalline suspension to a sonication energy whose frequency is above that which is detectable by the human ear: \textit{i.e.} higher than 16 kHz to 20 kHz. Ultrasonic treatment may be used either batchwise or semi-continuously, either in an ultrasonic bath or in a vessel fitted with a submersible ultrasonic generator, or as a continuous flow process using either an ultrasonic bath as the generator or a flow-through ultrasonic cell. The duration of the ultrasonic treatment, and the frequency and intensity of the radiation can be selected by those skilled in the art to achieve the desired end result. The mechanical particle size reduction process by ultrasound can be followed by particle size analysis of samples periodically removed from the system.
[0018] Mechanical particle size reduction of the compound (I) crystals in suspension can also be performed by wet milling or wet grinding using a shearing machine such as a high-speed rotor-stator device or high shear mill. Wet milling can be carried out either by placing the shearing machine in the reactor containing the suspension of compound (I) crystals, or by passing said crystalline suspension continuously into the shearing machine. Suitable shearing machines are e.g. of the Turrax® type, magic LAB®, or Dispax-Reactor® type, sold by IKA®-Werke GmbH & Co. KG in Germany. These high shear milling machines can use different types of milling disks such as “2G, 4M and 6F generators” depending upon the desired particle size and/or milling time. Some of these machines are suitable for treating industrial amounts ranging up to the point of allowing a flow rate of 100 m³/hour.

[0019] Mechanical particle size reduction using wet milling is preferred for the treatment of industrial amounts of Active Pharmaceutical Ingredients (API’s). Particle size reduction by ultrasound presents problems when large volumes have to be treated since the efficacy of the ultrasound emitter decreases beyond a few centimeters from said emitter. Also high-power ultrasound can cause premature wear of the metals and welds of the apparatus used since ultrasound causes cavitation close to the walls of the ultrasound emitter possibly leading to metal leaching. Said metal leaching may contaminate the API.

[0020] Particle size analysis of the compound (I) crystals in suspension during the crystallisation process can be done with a Lasentec focused-beam reflectance measurement (FBRM) system.

[0021] In an embodiment the present invention relates to a process for preparing crystalline compound (I) comprising the consecutive steps of
a) preparing a solution of compound (I) in a solvent system under concentration and temperature conditions which allow the total solubility of compound (I);
b) cooling the said solution to a temperature such that the solution in the metastable zone;
c) seeding the solution of compound (I) with crystals of compound (I);
d) cooling the solution of compound (I) to obtain a suspension of crystals of compound (I);
e) subjecting the crystalline suspension thus formed to mechanical particle size reduction using a shearing machine;
f) heating the crystalline suspension of compound (I) to dissolve the fine particles.
g) repeat steps d), e) and f) from 1 to 6 times;

h) cooling the crystalline suspension of compound (I) to room temperature or lower;

i) filtering off the crystals of compound (I) thus formed.

5 [0022] The solvent, solvent mixture or solvent system used in the crystallisation process of the present invention can be any organic solvent, or mixture of organic solvents, wherein there is a large difference in solubility of compound (I) between the lowest and the highest temperature of the temperature oscillation episode. The solvent or solvent mixture may contain water up to 20% which may result in a two phase solvent mixture.

10 [0023] In practice it has been found that ester type solvents such as, e.g. ethyl acetate, or 1-methylethyl acetate, are suitable for the crystallisation procedure of the present invention. These ester type solvents may optionally comprise water.

15 [0024] The conditions for the crystallisation procedure of the present invention are dependent upon the solvent system used. For instance when the solvent system is a mixture of 1-methylethyl acetate and water wherein water is present in an amount from 0.1% to 1.8% v/v, then the following conditions apply:

- step b) : the temperature ranges between 52°C and 56°C, in particular about 54°C;
- step c) : seeding with microfine crystals of compound (I) in an amount of about 0.5%;
- step d) : cooling is in accordance with a cubic temperature profile to a temperature between 36°C and 40°C, in particular about 38°C;
- step e) : wet milling using a high shear machine;
- step f) : the suspension of crystalline compound (I) is heated to a temperature between 52°C and 56°C, in particular about 55°C;
- step h) : the crystalline suspension of compound (I) is cooled in a room temperature or lower, in particular to 0°C.

For 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate (i.e. compound (I)) it has been found that the desired narrow particle size distribution can be obtained using a first temperature oscillation episode, followed by a first mechanical particle size reduction episode, a second temperature oscillation episode, a second mechanical particle size reduction episode, and a third temperature oscillation episode. Thereafter, the suspension is cooled in order to reduce the solubility of the crystals of compound (I) in the solvent and the crystals are then isolated by filtration and dried. The particle size distribution of compound (I) obtained using this procedure is demonstrated in Figure 4 and shows a narrow particle size distribution.
size distribution without the presence of a double distribution and fine or coarse particles as for crystalline compound (I) obtained using the classic cooling or anti-solvent crystallisation techniques (see Figure 3).

[0026] Example 1
A solution of 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate (i.e. compound (I)) (317.5 g) in 1-methylethyl acetate (1400 ml) and water (15.6 ml) was heated till 72.5°C until a clear solution was obtained and filtered. The filter was rinsed with 1-methyl-ethyl acetate (175 ml) and the reaction mixture was allowed to cool to a temperature of 54°C. The reaction mixture was seeded with compound (I) (1.59 g) and the mixture was stirred for 2 hours. The reaction mixture was cooled according to a cubic temperature decrease described below:

- to 52.4°C over 20 minutes
- to 49.0°C over 20 minutes
- to 44.4°C over 20 minutes
- to 38°C over 20 minutes

The crystalline suspension was subjected to wet milling using a high shear mill for 25 minutes (Dispax-Reactor® type DR 2000/20 from IKA®-Werke GmbH & Co. KG in Germany with a 2P or 4M milling disk.

The reaction mixture was then heated to a temperature of 55°C and subsequently cooled according to a cubic temperature decrease described below:

- to 54.0°C over 25 minutes
- to 52.4°C over 25 minutes
- to 47.1°C over 25 minutes
- to 38°C over 25 minutes

The crystalline suspension was subjected to wet milling using a high shear mill for 25 minutes using the same conditions as set out above.

The reaction mixture was then heated to a temperature of 55°C and subsequently cooled according to a cubic temperature decrease described below:

- to 54.0°C over 25 minutes
- to 52.4°C over 25 minutes
- to 47.1°C over 30 minutes
- to 0°C over 105 minutes
The suspension was stirred for 4 hours at a temperature of 0°C. The precipitate was filtered off and washed with 1-methylethyl acetate (175 ml) and dried under vacuum.

5

[0027] Example 2

Particle size of original compound (I) and crystallised compound (I) according to the procedure of Example 1 have been determined with laser diffraction (LD). For this purpose, a Malvern Mastersizer 2000 laser diffractometer (Malvern, U.K.) has been used, which was equipped with a Hydro 2000S wet dispersion module. Prior to analysis, an amount of ca. 200 mg of the product was dispersed in 1% (w/v) polysorbate 20 in water by means of vigorous shaking for 30 seconds. A representative portion of this dispersion was then added to the reservoir of the wet dispersion module, which for this purpose was filled with water. The liquid medium was circulated via the measurement cell of the instrument, to allow measurement of the product specific scattering pattern. Based on the scattering intensities as measured under different angles relative to the incoming collimated laser beam, for compound (I) the particle size distribution (PSD) by volume was calculated based on the Fraunhofer optical model. For the PSD, the d10, d50 and d90 cumulative undersize were reported as the relevant statistical descriptors.

Table 1 : particle size distribution

<table>
<thead>
<tr>
<th></th>
<th>D10</th>
<th>D50</th>
<th>D90</th>
</tr>
</thead>
<tbody>
<tr>
<td>original compound (I)</td>
<td>14 µm</td>
<td>43 µm</td>
<td>116 µm</td>
</tr>
<tr>
<td>crystallised compound (I)</td>
<td>20 µm</td>
<td>49 µm</td>
<td>102 µm</td>
</tr>
</tbody>
</table>

As can be seen from Table 1, the compound (I) crystals prepared according to the present invention have a narrow and well defined particle size distribution with less fine and coarse percentiles (see the improved D10 and D90 values).

The graphical representation of the particle size distribution of compound (I) obtained by classical cooling or anti-solvent crystallisation can be found in Figure 3. The particle size distribution of compound (I) obtained using temperature oscillation and wet milling with a high shear machine as described in Example 1 can be found in Figure 4. As can be seen by comparing these series of graphical particle size distribution figures, the particle size distribution of crystalline compound (I) obtained using temperature oscillation and wet milling with a high shear machine does not show the presence of a double distribution and is absent of fine or coarse particles.
[0028] Example 3
The bulk and tap densities of the crystallised 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate were measured. The bulk density of 25 g of compound (I) was measured by recording its volume in a 100-ml graduated cylinder. Tap density volume was then measured after 500 taps.

Table 2: bulk and tap density

<table>
<thead>
<tr>
<th></th>
<th>Bulk density (g/ml)</th>
<th>Tap density (g/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>original compound (I)</td>
<td>0.28</td>
<td>0.48</td>
</tr>
<tr>
<td>crystallised compound (I)</td>
<td>0.35</td>
<td>0.54</td>
</tr>
</tbody>
</table>

In general a higher bulk density and a smaller difference between tap and bulk densities gives better powder flow and manufacturability.

The bulk density for the crystallised compound (I) according to Example 1 is 20% higher than for original compound (I).

[0029] Description of the drawings:

Figure 1: graphical presentation of four temperature oscillation episodes and four mechanical particle size reduction episodes

Figure 2: graphical presentation of temperature oscillation and wet milling

Figure 3: particle size distribution of compound (I) obtained by classical cooling or anti-solvent crystallisation

Figure 4: particle size distribution of compound (I) obtained using temperature oscillation and wet milling with a high shear machine as described in Example 1
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

1. A process for preparing 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate crystals wherein a crystalline suspension of 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate in a solvent system is subjected to at least one temperature oscillation episode and at least one mechanical particle size reduction episode and wherein the solvent system is selected from ethyl acetate, 1-methylethyl acetate, or a mixture thereof, and said solvent system optionally comprises up to 20% water.

2. A process according to claim 1, wherein the temperature oscillation episode comprises a heating phase and a corresponding cooling phase.

3. A process according to claim 2, wherein the heating phase precedes the cooling phase.

4. A process according to any one of claims 1 to 3, wherein the mechanical particle size reduction is performed by wet milling.

5. A process according to any one of claims 1 to 4, wherein the temperature oscillation episode precedes the mechanical particle size reduction episode.

6. A process according to any one of claims 1 to 5, wherein the temperature oscillation episode and the mechanical particle size reduction episode are repeated independently from one another.

7. A process according to any one of the preceding claims, wherein the solvent system in step a) is ethyl acetate optionally comprising up to 20% water.

8. A process according to claim 1, comprising the consecutive steps of
 a) preparing a solution of compound (I) in a solvent system under concentration and temperature conditions which allow the total solubility of compound (I);
 b) cooling the said solution to a temperature such that the solution in the metastable zone;
c) seeding the solution of compound (I) with crystals of compound (I);
d) cooling the solution of compound (I) to obtain a suspension of crystals of compound (I);
e) subjecting the crystalline suspension thus formed to mechanical particle size reduction using a shearing machine;
f) heating the crystalline suspension of compound (I) to dissolve the fine particles;
g) repeat steps d), e) and f) from 1 to 5 times;
h) cooling the crystalline suspension of compound (I) to room temperature or lower;
i) filtering off the crystals of compound (I) thus formed.

9. A process according to claim 8, wherein the solvent system in step a) is a mixture of 1-methylethyl acetate and water.

10. A process according to claim 8 or claim 9, wherein the temperature in step b) is 54 °C.

11. A process according to any one of claims 8 to 10, wherein cooling of the solution of compound (I) in step d) is in accordance with a cubic temperature decrease.

12. A process according to any one of claims 8 to 11, wherein the crystalline suspension of compound (I) in step f) is heated to 55 °C.

13. A process according to any one of claims 8 to 12, wherein steps d), e) and f) are repeated 1 time.

14. A process according to any one of claims 8 to 13, wherein the crystalline suspension of compound (I) in step h) is cooled to 0 °C.

15. 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene hemihydrate crystals, when prepared by a process as defined according to any one of the preceding claims.
16. Use of \(1-(\beta\text{-D-glucopyranosyl})\text{-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]}\) benzene hemihydrate crystals according to claim 15 in the manufacture of a medicament for the treatment of a disease or condition associated with sodium-dependent glucose transporter (SGLT).

17. A method of treating a disease or condition associated with sodium-dependent glucose transporter (SGLT), comprising the step of administering to a subject in need thereof, a therapeutically effective amount of \(1-(\beta\text{-D-glucopyranosyl})\text{-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]}\) benzene hemihydrate crystals according to claim 15.

18. Use according to claim 16, or the method according to claim 17, whereas the disease or condition is diabetes, obesity and/or diabetic complications.

19. A process for preparing \(1-(\beta\text{-D-glucopyranosyl})\text{-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]}\) benzene hemihydrate crystals according to any one of claims 1 to 14; \(1-(\beta\text{-D-glucopyranosyl})\text{-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]}\) benzene hemihydrate crystals, when prepared by a process as defined according to any one of claims 1 to 14; use of \(1-(\beta\text{-D-glucopyranosyl})\text{-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]}\) benzene hemihydrate crystals in the manufacture of a medicament; a method of treating a disease or condition associated with sodium-dependent glucose transporter (SGLT), substantially as herein described with reference to any one or more of the examples but excluding comparative examples, if any.
Figure 1: graphical presentation of four temperature oscillation episodes and four mechanical particle size reduction episodes

(Temp vs Time graph with markers indicating mechanical particle size reduction.)
Figure 2: graphical presentation of temperature oscillation and wet milling
Figure 3: particle size distribution of compound (I) obtained by classical cooling crystallisation or anti-solvent crystallisation.
Figure 4: particle size distribution of compound (I) obtained using temperature oscillation and wet milling with a high shear machine as described in Example 1