(54) Title : OPTICAL MEASUREMENT INSTRUMENT AND METHOD THEREFOR

(54) 発明の名称 光学的測定装置およびその方法

1.SLAB TYPE OPTICAL WAVEGUIDE
2.REACTION VESSEL
3.ANTIBODY
4.DISPERSED BODY OF VERY SMALL CARBON BLACK PARTICLES
5.LABELLED ANTIBODY
6.FLUORESCENT DYE

(57) Abstract

The signal-to-noise ratio (S/N) of optical measurement is improved by adding very small particles absorbing excitation light and/or fluorescence emitted from a fluorescent dye or a water-soluble dye to a reaction vessel (2) formed integrally with a slab type optical waveguide (1) so as to reduce stray light attributed to a reagent.
（57）要約

スラブ型光導波路1と一体的に形成された反応槽2に、励起光および/または蛻光色素が放射する蛻光を吸光する微粒子または水溶性色素を添加し、試葉に起因する迷光を低減させて光学的測定のS/N比を高める。
光学的測定装置およびその方法

技術分野

この発明は光学的測定装置およびその方法に関し、さらに詳細にいえば、蛻光物質を含む試薬と測定対象溶液をを収容して所定の反応を行なわせる反応槽を構成するケーシングの一部が光導波路で構成されているとともに、光導波路に対し所定の相対角度で励起光を照射し、蛻光物質に起因する蛻光のうち、光導波路に対して所定の相対角度で出射される成分を受光して反応槽内における光導波路の表面近傍の光学的特性を測定する光学的測定装置およびその方法に関する。特に好ましくは、光導波路内を全反射しながら伝播するように励起光を導入することにより生じるエバネッセンテ波成分によって光導波路の表面近傍に拘束された蛻光物質を励起し、蛻光物質が放射する蛻光のうち、光導波路内を全反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性を測定する光学的測定装置およびその方法に関する。

背景技術

従来から、光導波路内を全反射しながら伝播するように励起光を導入することにより生じるエバネッセンテ波成分によって光導波路の表面近傍に拘束された蛻光物質を励起し、蛻光物質が放射する蛻光のうち、光導波路内を全反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性を測定する光学的測定装置を用いた蛻光免疫測定装置が提案されている。

具体的には、例えば、スラブ型光導波路の一表面を1の区画面とする反応槽を設け、上記表面に予め抗体（または抗原）を固定しておき、この反応槽の内部に測定対象溶液、蛻光色素で標識された抗体（以下、標識抗体と称する）をこの順に注入すればよく、測定対象溶液中の抗原濃度に対応する量の標識抗体が抗原抗
体反応により上記表面の近傍に拘束される。

したがって、励起光のエバネッセント波成分により上記拘束された標識抗体の蛍光色素を励起することができ、蛍光色素から放射され、スラブ型光導波路を伝播して出射される蛍光の強度に基づいて測定対象溶液中の抗原の濃度を検出することができる。

また、従来から、光導波路の一部に反応槽を形成し、光導波路の表面に固定されたリガンド（ligand）と、反応槽に注入された測定対象溶液と、反応槽に注入され、かつ蛍光色素で標識されたリガンドとの間で免疫反応を行なわせ、しかも、平面波を光導波路を通して反応槽に導入することにより蛍光物質を励起し、蛍光色素が放射する蛍光のうち、光導波路内を全反射しながら、伝播する成分に基づいて上記免疫反応の程度を測定する蛍光免疫測定装置が提案されている（特許出願公表昭61－502418号公報参照）。尚、この明細書において、「リガンド」は、抗原、抗体、ハブテン、ホルモンの他、特異的な結合反応を起こせる有機物質を称する。

したがって、励起光により反応槽内の標識抗体の蛍光色素を励起することができ、蛍光色素から放射される蛍光のうち、エバネッセント波結合により光導波路を伝播して出射される蛍光の強度に基づいて免疫反応の程度を検出することができる。

上記前後の蛍光免疫測定装置は、光導波路の表面が完全な平滑面であれば、抗原抗体反応によって表面近傍に拘束されている蛍光色素のみが蛍光を発し、未反応の蛍光色素は蛍光を発しない。しかし、実際には光導波路の表面を完全な平滑面にすることができないから、エバネッセント波成分だけでなく励起光の散乱成分が蛍光色素を励起することになり、未反応の蛍光色素も蛍光を発してしまうことになる。そして、光導波路の表面近傍に拘束された蛍光色素から放射される蛍光と未反応の標識抗体の蛍光色素から放射される蛍光（以下、速光と称する）を光学的に分離することは殆ど不可能である。また、速光は温度等の外部要因による変動を受けやすい。したがって、蛍光免疫測定の感度を余り高めることができない。

このような不都合を解消するために、速光に起因する信号と実際の反応に起因
する信号（以下、実信号と称する）とを分離するための演算処理を行うことが考えられるが、演算に著しく複雑であるとともに、測定時のデータ処理が複雑になるという不都合があり、しかも十分な測定精度を達成できる保証がないという不都合がある。

また、励起光強度を低下させれば逆光を低減することができるが、同時に実信号も小さくなるので、S/N比を改善することはできない。

上記後者の蛍光免疫測定装置は、免疫反応の結果、光導波路の表面近傍に拘束された蛍光色素のみならず、免疫反応に寄与していない未反応の蛍光色素が励起光により励起されてしまう。また、未反応の蛍光色素が放射する蛍光は、反応槽の透明な区画壁を通して放射され、光導波路を全反射しながら伝播する信頼光と共に光検出器により検出される。未反応の蛍光色素に起因する上記蛍光は、免疫反応に寄与した蛍光色素に起因する蛍光との分離が著しく困難であり、また、未反応の蛍光色素に起因する上記蛍光は温度等の外部要因の影響を受けて変動し易いので、測定感度を大きく阻害してしまう。

また、上記未反応の蛍光色素に起因する蛍光が光検出器により検出されてしまうことを防止するために、反応槽の光検出器側に、反応槽の側壁から出射し、かつ本来の免疫反応に寄与していない光を光検出器に対して遮蔽する板等を設けることが考えられるが、光学系の構成が複雑になってしまう。

発明の開示

この発明は上記の問題点を踏まえたものであり、未反応の蛍光物質が放射する蛍光の量を全体として低減し、測定感度を向上させることができる光学的測定装置およびその方法を提供することを目的とし、特に、実信号に殆ど影響を及ぼすことなく、逆光を大幅に低減して光学的測定のS/N比を高めることができる光学的測定装置およびその方法を提供することを目的としている。

上記の目的を達成するための、請求項1の光学的測定装置は、光導波路内を全反射しながら伝播するように励起光を導入することにより生じるエバンセント波成分によって光導波路の表面近傍に拘束された蛍光物質を励起し、蛍光物質が
放射する蛍光のうち、光導波路内を反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性を測定する光学的測定装置であって、光導波路の表面を1の区画面とする反応槽に、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する微粒子を添加してある。

請求項1の光学的測定装置であれば、光導波路内を全反射しながら伝播するように励起光を導入することにより生じるエバネッセンス波成分によって光導波路の表面近傍に拘束された蛍光物質を励起し、蛍光物質が放射する蛍光のうち、光導波路内を全反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性を測定するに当って、光導波路の表面を1の区画面とする反応槽に、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する微粒子を添加してあるので、光導波路の表面において励起光が散乱されることにより光導波路の表面近傍には拘束されていない蛍光物質が励起されること、および／または光導波路の表面において散乱された励起光により励起される蛍光物質が放射する蛍光が光導波路に導入されることを防止することができ、ひいては光学的測定のS／N比を高めることができる。

請求項2の光学的測定装置は、光導波路内を全反射しながら伝播するように励起光を導入することにより生じるエバネッセンス波成分によって光導波路の表面近傍に拘束された蛍光物質を励起し、蛍光物質が放射する蛍光のうち、光導波路内を全反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性を測定する光学的測定装置であって、光導波路の表面を1の区画面とする反応槽に、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する水溶性色素を含有させてある。

請求項2の光学的測定装置であれば、光導波路内を全反射しながら伝播するように励起光を導入することにより生じるエバネッセンス波成分によって光導波路の表面近傍に拘束された蛍光物質を励起し、蛍光物質が放射する蛍光のうち、光導波路内を全反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性を測定するに当って、光導波路の表面を1の区画面とする反応槽に、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する水溶性色素を含有させてあるので、光導波路の表面において励起光が散乱されることにより光導
波路の表面近傍には拘束されていない蛍光物質が励起されること、および/または光導波路の表面において散乱された励起光により励起される蛍光物質が放射する蛍光が光導波路に導入されることを防止することができ、ひいては光学的測定のS/N比を高めることができる。

請求項3の光学的測定装置は、蛍光物質を含む試薬と測定対象溶液をとを収容して所定の反応を行うわせる反応槽を構成するケーシングの一部が光導波路で構成されているとともに、光導波路に対して所定の相対角度で励起光を照射し、蛍光物質に起因する蛍光のうち、光導波路に対して所定の相対角度で出射される成分を受光して反応槽内における光導波路の表面近傍の光学的特性を測定する光学的測定装置であって、上記反応槽に、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質を添加してある。

請求項3の光学的測定装置であれば、蛍光物質を含む試薬と測定対象溶液をとを収容して所定の反応を行うわせる反応槽を構成するケーシングの一部が光導波路で構成されているとともに、光導波路に対して所定の相対角度で励起光を照射し、蛍光物質に起因する蛍光のうち、光導波路に対して所定の相対角度で出射される成分を受光して反応槽内における光導波路の表面近傍の光学的特性を測定するのに当って、上記反応槽に、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質を添加してあるので、光導波路の表面近傍には拘束されていない蛍光物質が励起光により励起されること、および/または光導波路の表面近傍には拘束されていない蛍光物質が放射する蛍光が出射されることを防止することができ、ひいては光学的測定感度（S/N比）を高めることができる。

請求項4の光学的測定装置は、上記光学的測定装置として、光導波路を通じて反応槽内に導入されるように励起光を照射して蛍光物質を励起し、蛍光物質が放射する蛍光のうち、光導波路内を反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性を測定するものを採用している。

請求項4の光学的測定装置であれば、光導波路を通じて反応槽内に導入されるように励起光を照射して蛍光物質を励起し、蛍光物質が放射する蛍光のうち、光導波路内を反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性
を測定するに当って、上記反応槽に、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する物質を添加しているので、光導波路の表面近傍には拘束されていない蛻光物質が光導波路を通して導入される励起光により励起されると、および/または光導波路の表面近傍には拘束されていない蛻光物質が放射する蛻光が光導波路に導入されることを防止することができ、ひいては光学的測定感度（S/N比）を高めることができる。また、励起光と蛻光とを分離するための光学素子を用いる必要がないので、光学系の構成を単純化できる。

請求項5の光学的測定装置は、上記光学的測定装置として、光導波路内を全反射しながら伝播するように励起光を導入することにより生じるエバネッセント波成分によって光導波路表面近傍に拘束された蛻光物質を励起し、蛻光物質が放射する蛻光のうち、光導波路を通して外部に放射される成分に基づいて光導波路表面近傍の光学的特性を測定するものを採用している。

請求項5の光学的測定装置であれば、光導波路内を全反射しながら伝播するように励起光を導入することにより生じるエバネッセント波成分によって光導波路表面近傍に拘束された蛻光物質を励起し、蛻光物質が放射する蛻光のうち、光導波路を通して外部に放射される成分に基づいて光導波路表面近傍の光学的特性を測定するに当って、上記反応槽に、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する物質を添加してあるので、光導波路の表面において励起光が散乱されることにより光導波路の表面近傍には拘束されていない蛻光物質が励起されること、および/または光導波路の表面近傍には拘束されていない蛻光物質が放射する蛻光が光導波路を通して放射されることを防止することができ、ひいては光学的測定感度（S/N比）を高めることができる。また、励起光と蛻光とを分離するための光学素子を用いる必要がないので、光学系の構成を簡単化できる。

請求項6の光学的測定装置は、上記光学的測定装置として、光導波路を所定角度で通して反応槽に導入されるように励起光を照射して蛻光物質を励起し、蛻光物質が放射する蛻光のうち、励起光と異なる所定角度で光導波路を通して外部に放射される成分に基づいて光導波路の表面近傍の光学的特性を測定するものを採用している。
請求項6の光学的測定装置であれば、光導波路を所定角度で通じて反応槽に導入されるように励起光を照射して蛻光物質を励起し、蛻光物質が放射する蛻光のうち、励起光と異なる所定角度で光導波路を通じて外部に放射される成分に基づいて光導波路の表面近傍の光学的特性を測定するに当たって、上記反応槽に、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する物質を添加してあるので、光導波路の表面近傍には拘束されていない蛻光物質が光導波路を通じて導入される励起光により励起されること、および／または光導波路の表面近傍には拘束されていない蛻光物質が放射する蛻光が光導波路を通じて出射されることを防止することができ、ひいては光学的測定感度（S／N比）を高めることができる。また、励起光と蛻光とを分離するための光学素子を用いる必要がないので、光学系の構成を簡単化できる。

請求項7の光学的測定装置は、上記蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する物質として、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する微粒子を採用している。

請求項7の光学的測定装置であれば、蛻光物質を含む試薬と測定対象溶液とを収容して所定の反応を行なわせる反応槽を構成するケーシングの一部が光導波路で構成されているとともに、光導波路に対して所定の相対角度で励起光を照射し、蛻光物質に起因する蛻光のうち、光導波路に対して所定の相対角度で出射される成分を受光して反応槽内における光導波路の表面近傍の光学的特性を測定するに当って、上記反応槽に、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する微粒子を含有させてあるので、光導波路の表面近傍には拘束されていない蛻光物質が光導波路を通じて導入される励起光により励起されること、および／または光導波路の表面近傍には拘束されていない蛻光物質が放射する蛻光が光導波路に導入されることを防止することができ、ひいては光学的測定感度（S／N比）を高めることができる。

請求項8の光学的測定装置は、上記蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する物質として、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する水溶性色素を採用している。

請求項8の光学的測定装置であれば、蛻光物質を含む試薬と測定対象溶液とを
収容して所定の反応を行なわせる反応槽を構成するケーシングの一部が光導波路で構成されているとともに、光導波路に対して所定の相対角度で励起光を照射し、蛻光物質に起因する蛻光のうち、光導波路に対して所定の相対角度で出射される成分を受光して反応槽内における光導波路の表面近傍の光学的特性を測定するに当って、上記反応槽に、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する水溶性色素を含有させてあるので、光導波路の表面において励起光が散乱されることにより光導波路の表面近傍には拘束されていない蛻光物質が励起されること、および/または光導波路の表面近傍には拘束されていない蛻光物質が放射する蛻光が光導波路を通して出射されることを防止することができ、ひいては光学的測定感度（S/N比）を高めることができる。

10 請求項9の光学的測定方法は、光導波路の表面を1の区画面とする反応槽の内部において、上記光導波路の上記表面に固相化されたリガンドと上記反応槽に注入された測定対象溶液と、蛻光物質で標識され、かつ上記反応槽に注入されたリガンドを含む試薬とで所定の反応を行なわせ、上記光導波路内を全反射しながら伝播するように励起光を導入するとともに、蛻光物質が放射する蛻光のうち、光導波路内で反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性を測定する光学的測定方法であって、上記反応槽内に、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する微粒子を含有させた状態で、上記光導波路内を反射しながら伝播する成分を受光して反応槽内における上記光導波路の上記表面近傍の光学的特性を測定する方法である。

20 請求項9の光学的測定装置であれば、光導波路の表面を1の区画面とする反応槽の内部において、上記光導波路の上記表面に固相化されたリガンドと上記反応槽に注入された測定対象溶液と、蛻光物質で標識され、かつ上記反応槽に注入されたリガンドを含む試薬とで所定の反応を行なわせ、上記光導波路内を全反射しながら伝播するように励起光を導入するとともに、蛻光物質が放射する蛻光のうち、光導波路内を反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性を測定する光学的測定方法であって、上記反応槽内に、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する微粒子を含有させた状態で、上記光導波路内を反射しながら伝播する成分を受光して反応槽
内における上記光導波路の上記表面近傍の光学的特性を測定するのであるから、
光導波路の表面において励起光が散乱されることにより光導波路の表面近傍には
拘束されていない蛍光物質が励起されること、および／または光導波路の表面に
おいて散乱された励起光により励起される蛍光物質が放射する蛍光が光導波路に
導入されることを防止することができ、ひいては光学的測定感度（S／N比）を
高めることができる。

請求項1の光学的測定方法は、光導波路の表面を1の区画にすると反応槽の
内部において、上記光導波路の上記表面に対相化されたリガンドと上記反応槽に
注入された測定対象溶液と、蛍光物質で標識され、かつ上記反応槽に注入された
リガンドを含む試薬とで所定の反応を行なわせ、上記光導波路内を全反射しなが
ら伝播するように励起光を導入するとともに、蛍光物質が放射する蛍光のうち、
光導波路内を反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的
特性を測定する光学的測定方法であって、上記反応槽内に、蛍光物質の励起波長、
発光波長の少なくとも一方の波長の光を吸収する性質を有する水溶性色素を含有
させた状態で、上記光導波路内を反射しながら伝播する成分を受光して反応槽内
における上記光導波路の上記表面近傍の光学的特性を測定する方法である。

請求項2の光学的測定方法であれば、光導波路の表面を1の区画にすると反
応槽の内部において、上記光導波路の上記表面に対相化されたリガンドと上記反
応槽に注入された測定対象溶液と、蛍光物質で標識され、かつ上記反応槽に注入
されたリガンドを含む試薬とで所定の反応を行なわせ、上記光導波路内を全反射
しながら伝播するように励起光を導入するとともに、蛍光物質が放射する蛍光の
うち、光導波路内を反射しながら伝播する成分に基づいて光導波路の表面近傍の
光学的特性を測定する光学的測定方法であって、上記反応槽内に、蛍光物質の励
起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する水溶性色
素を含有させた状態で、上記光導波路内を反射しながら伝播する成分を受光して
反応槽内における上記光導波路の上記表面近傍の光学的特性を測定するのである
から、光導波路の表面において励起光が散乱されることにより光導波路の表面近
傍には拘束されていない蛍光物質が励起されること、および／または光導波路の
表面において放射された励起光により励起される蛍光物質が放射する蛍光が光導

WO 95/06872 PCT/JP94/01431

- 9 -
波路に導入されることを防止することができ、ひいては光学的測定のS/N比を
高めることができる。

請求項11の光学的測定方法は、光導波路の表面を1の区画面とする反応槽の
内部において、上記光導波路の上記表面に固相化されたリガンドと上記反応槽に
注入された測定対象溶液と、蛍光物質で標識され、かつ上記反応槽に注入された
リガンドを含む試薬とで所定の反応をなわせ、上記光導波路に対して所定の相
対角度で励起光を照射し、蛍光物質に起因する蛍光のうち、上記光導波路に対し
て所定の相対角度で出射される成分を受光して反応槽内部における上記光導波路の
上記表面近傍の光学的特性を測定する光学的測定方法であって、上記反応槽内に、

蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有
する物質を含有させた状態で、上記光導波路に対して所定の相対角度で出射され
る成分を受光して反応槽内部における上記光導波路の上記表面近傍の光学的特性を
測定する方法である。

請求項11の光学的測定方法であれば、光導波路の表面を1の区画面とする反
応槽の内部において、上記光導波路の上記表面に固相化されたリガンドと上記反
応槽に注入された測定対象溶液と、蛍光物質で標識され、かつ上記反応槽に注入
されたリガンドを含む試薬とで所定の反応をなわせ、上記光導波路に対して所定の相
対角度で励起光を照射し、蛍光物質に起因する蛍光のうち、上記光導波路に対し
て所定の相対角度で出射される成分を受光して反応槽内部における上記光導波

波路の上記表面近傍の光学的特性を測定するに当て、上記反応槽内部に、蛍光物
質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物
質を含有させた状態で、上記光導波路に対して所定の相対角度で出射される成分
を受光して反応槽内部における上記光導波路の上記表面近傍の光学的特性を測定す
るのであるから、光導波路の表面近傍には拘束されていない蛍光物質が励起光に
より励起されること、および/または光導波路の表面近傍には拘束されていない
蛍光物質が放射する蛍光が出射されることを防止することができ、ひいては光学
的測定感度（S/N比）を高めることができる。

請求項12の光学的測定方法は、上記光学的測定方法として、光導波路を通し
て反応槽に導入されるように励起光を照射するとともに、蛍光物質が放射する蛍
光のうち、光導波路内を反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性を測定する方法を採用している。

請求項１２の光学的測定方法であれば、上記光学的測定方法として、光導波路を通して反射線に導入されるように励起光を照射するとともに、蛍光物質が放射する蛍光のうち、光導波路内を反射しながら伝播する成分に基づいて光導波路の表面近傍の光学的特性を測定する方法を採用するのであるから、光導波路の表面近傍には拘束されていない蛍光物質が光導波路を通して導入される励起光により励起されること、および／または光導波路の表面近傍には拘束されていない蛍光物質が放射する蛍光が光導波路に導入されることを防止することができ、ひいては光学的測定感度（Ｓ／Ｎ比）を高めることができる。

請求項１３の光学的測定方法であれば、上記光学的測定方法として、光導波路内を全反射しながら伝播するように励起光を導入するとともに、蛍光物質が放射する蛍光のうち、光導波路を通して外部に放射される成分に基づいて光導波路の表面近傍の光学的特性を測定する方法を採用するのであるから、光導波路の表面において励起光が散乱されることにより光導波路の表面近傍には拘束されていない蛍光物質が励起されること、および／または光導波路の表面近傍には拘束されていない蛍光物質が放射する蛍光が光導波路を通して出射されることを防止することができ、ひいては光学的測定感度（Ｓ／Ｎ比）を高めることができる。

請求項１４の光学的測定方法は、上記光学的測定方法として、光導波路を所定角度で通して反射線に導入されるように励起光を照射するとともに、蛍光物質が放射する蛍光のうち、励起光と異なる所定角度で光導波路を通して外部に放射される成分に基づいて光導波路の表面近傍の光学的特性を測定する方法を採用している。

請求項１４の光学的測定方法であれば、上記光学的測定方法として、光導波路を所定角度で通して反射線に導入されるように励起光を照射するとともに、蛍光
物質が放射する蛍光のうち、励起光と異なる所定角度で光導波路を通して外部に放射される成分に基づいて光導波路の表面近傍の光学的特性を測定する方法を採用するのであるから、光導波路の表面近傍には拘束されていない蛍光物質が光導波路を通して出射されることを防止することができ、ひいては光学的測定感度（S/N比）を高めることができる。

請求項１５の光学的測定方法は、上記蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質として、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する微粒子を採用する方法である。

請求項１５の光学的測定方法であれば、上記蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質として、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する微粒子を採用するのであるから、光導波路の表面近傍には拘束されていない蛍光物質が光導波路を通して導入される励起光により励起されること、および／または光導波路の表面近傍には拘束されていない蛍光物質が放射する蛍光が光導波路に導入されることを防止することができ、ひいては光学的測定感度（S/N比）を高めることができる。

請求項１６の光学的測定方法は、上記蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質として、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する水溶性色素を採用する方法である。

請求項１６の光学的測定方法であれば、上記蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質として、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する水溶性色素を採用するのであるから、光導波路の表面において励起光が散乱されることにより光導波路の表面近傍には拘束されていない蛍光物質が励起されること、および／または光導波路の表面近傍には拘束されていない蛍光物質が放射する蛍光が光導波路を通して出射されることを防止することができ、ひいては光学的測定感度（S/N比）を高めることができる。
図面の簡単な説明

第1図はこの発明の光学的測定装置の一実施例を示す概略縦断面図である。
第2図はカーボンブラック微粒子の分散体の濃度に対するエンドポイント信号およびオフセット信号の変化を示す図である。
第3図は蛻光免疫測定信号の経時変化を示す図である。
第4図はシアノ1PとBlue50pの吸光度の波長異常性を示す図である。
第5図は蛻光免疫測定信号の経時変化を示す図である。
第6図はこの発明の光学的測定装置の他の実施例を模式的に示す縦断面図である。
第7図はこの発明の光学的測定装置のさらに他の実施例を模式的に示す縦断面図である。
第8図はこの発明の光学的測定装置のさらに他の実施例を模式的に示す縦断面図である。
第9図はこの発明の光学的測定方法の一実施例を説明するフローチャートである。
第10図は図9のフローチャートが適用される光学的測定装置の概略構成を示すブロック図である。

発明を実施するための最良の形態

以下、実施例を示す添付図面によって詳細に説明する。
図1はこの発明の光学的測定装置の一実施例を示す概略縦断面図であり、一端
部に励起光導入用のプリズム1aが一体形成されたスラブ型光導波路1の一側に
反応槽2が一体形成されてあるとともに、スラブ型光導波路1の上記一側に多数
の抗体3が固定されている。また、励起光導入用のプリズム1aを通して導入さ
れる励起光の光路と、プリズム1aを通して出射される蛻光の光路を分離する
ダイクロイックミラー4、励起光光源5、および光電子増倍管等からなる受光素
子等がスラブ型光導波路１に対して所定の相対位置に配置されている。

上記の構成の光学的測定装置を用いて蛍光免疫測定を行なう場合には、励起光光束を動作させた状態において先ず測定対象溶液を反応槽２に収容して、測定対象溶液中の抗原７との間で抗原抗体反応を行なわせ、次いで、反応槽２から測定対象溶液を排出して、蛍光色素８aで標識された標識抗体８を含む、かつ粒径約２００ｎｍのカーポンブラック微粒子の分散体９（０．０４％（w／v））を添加してなる試薬溶液を反応槽２に収容することにより、抗原抗体反応を行なった抗原７との間で抗原抗体反応を行い、測定対象溶液中の抗原７の濃度に対応する量の標識抗体８をスラブ型光導波路１の一側近傍に拘束する。この一連の処理を行なっている間、励起光に起因するエバネッセント波成分が生じているのみならず、スラブ型光導波路１の表面において励起光が散乱されている。しかし、試薬溶液にはカーポンブラック微粒子の分散体９が添加されているのであるから、励起光散乱成分、スラブ型光導波路１の表面近傍に拘束されていない標識抗体８の蛍光色素８aが放射する蛍光（以下、試薬基光と称する）が効果的に吸光され、光学的免疫測定のＳ／Ｎ比を著しく高めることができる。図２はカーポンブラック微粒子の分散体の濃度に対するエンドポイン信号およびオフセット信号の変化を示す図であり、aがエンドポイン信号を、bがオフセット信号をそれぞれ示している。但し、カーポンブラックの濃度は、３１．５％（w／v）のカーポンブラック微粒子を含む吸光剤に対する希釈倍率で表示している。図２から明らかのように、エンドポイン信号の減少が著しくならないのでに対して、オフセット信号の減少が著しく急峻であることが分かる。即ち、カーポンブラック微粒子の分散体を添加するだけの簡単な処理で、蛍光免疫測定のＳ／Ｎ比を著しく高めることができる。尚、エンドポイン信号の低下が１０％以内であり、しかもオフセット信号が低下している範囲を有効範囲と定めれば、カーポンブラック微粒子を含む吸光剤の希釈倍率は１０⁻⁴〜１０⁻²になる。これをカーポンブラック微粒子の濃度に換算すると、ほぼ０．００４〜０．３％になる。

また、カーポンブラック微粒子の分散体を添加した場合、添加しない場合のそれぞれに対応する蛍光免疫測定信号の経時変化を図３に示す。尚、図３中aが前者の場合を、bが後者の場合をそれぞれ示している。
図3から明らかなように、カーボンブラック微粒子を添加していない場合には、bに示すように信号が大きくならず、試薬暗光も大きくなる。これに対して、カーボンブラック微粒子を添加した場合には、aに示すように信号がやや小さくなるが、試薬暗光が著しく小さくなるので、S/N比を著しく高めることができる。

尚、カーボンブラック微粒子に代えて、プラチナ、金等の金属の微粒子、ポリスチレン微粒子等を採用することも可能であり、同様の効果を達成することができる。

実施例2

図1の構成の光学的測定装置を用い、励起光光源5として励起波長が633nmのHe-Neレーザーを用い、標識抗体およびシアン1P（日本化薬株式会社製）を添加してなる試薬溶液を用いて蛍光免疫測定を行なった。また、標識抗体のみを添加した試薬溶液、シアン1Pに代えてBlue50p（日本化薬株式会社製）を添加してなる試薬溶液をそれぞれ用いて蛍光免疫測定を行なった。

この結果、標識抗体のみを添加した試薬溶液を用いた場合における試薬暗光が61.1であったのに対し、シアン1Pを添加した場合には、試薬暗光が36.0になり、著しい試薬暗光低減効果を達成することができた。これに対して、図204中bで示すように、上記励起波長633nmの光を吸光しないBlue50pを添加した場合には試薬暗光が497であった。試薬暗光が著しく大きくなったのは、Blue50pが励起光の散乱を助長したためであると思われる。尚、図4中aはシアン1Pの吸光特性を示しており、波長633nmの光に対してかなり高い吸光度を有していることがわかる。

また、標識抗体のみを添加した場合、シアン1Pをも添加した場合のそれぞれに対応する蛍光免疫測定信号の経時変化を図5に示す。

図5から明らかのように、標識抗体のみを添加した場合には、bに示すように信号が大きくなるだけでなく、試薬暗光も大きくなる。これに対して、シアン1Pをも添加した場合には、aに示すように信号がやや小さくなるが、試薬暗光が
著しく小さくなるので、S/N比を著しく高めることができる。

以上には、励起光波長に対する吸光度が高い水溶性色素を添加した場合について説明したが、蛻光色素が放射する蛻光の波長に対する吸光度が高い水溶性色素を採用することが可能であるほか、励起光波長に対する吸光度および蛻光色素が放射する蛻光の波長に対する吸光度が高い水溶性色素を採用することが可能であり、その他、この発明の要旨を変更しない範囲内において種々の設計変更を施すことが可能である。

実施例3

10

図6はこの発明の光学的測定装置の他の実施例を模式的に示す縦断面図であり、一端部に信号光導出用のブリズム11aが一体形成されたスラブ型光導波路11の一側に反応槽12が一体形成されてあるとともに、スラブ型光導波路11の上記一側に多数の吸収体13が固定されている。また、信号光導出用のブリズム11aを通じて導出される信号光を図示しないシャープカットフィルタ等を介して光電子増倍管からなる受光素子16に導いている。さらに、レーザ光源等からなる励起光光源15からの出射光をコリメータレンズ14a、ニュートラルデンシティフィルタ（以下、NDフィルタと略称する）14b等を通して上記スラブ型光導波路11の、上記一側と対向する他側に平面波として照射し、スラブ型光導波路11を厚み方向に通して反応槽12に導入している。また、上記励起光光源15は、図示しない温度制御部によってその温度が制御され、ひいては出射光強度の変動が防止されている。さらに、上記スラブ型光導波路11および反応槽12は、励起光の光軸（またはこの光軸と平行な軸）と交差せず、しかも信号光の光軸（またはこの光軸と平行な軸）とも交差しない面（図6において紙面に垂直な方向の面、以下、単に側面と称する）に黒色の塗料等が塗布されている。したがって、上記側面から光が出射することを未然に防止し、仮に光が出射したと仮定した場合に、出射した光が種々の経路を経て受光素子16により受光される可能性があるので、このような光が受光素子16に入射することを未然に防止する。もちろん、上記側面を通じて外部から光が入射することも防止できる。
上記の構成の光学的測定装置を用いて蛻光免疫測定を行なう場合には、励起光
光源を動かした状態において先ず測定対象溶液を反応槽１２に収容して、
測定対象溶液中の抗原１７とスラブ型光導波路１１に固定されている抗体１３と
の間で抗原抗体反応を行わせ、次いで、反応槽１２から測定対象溶液を排出し
て、蛻光色素１８αで標識された標識抗体１８を含み、かつ、所望の粒径のカー
ボンブラック微粒子１９（所望の濃度）を添加してなる試薬溶液を反応槽１２に
収容することにより、抗原抗体反応を行なった抗原１７との間で抗原抗体反応を
行わせ、測定対象溶液中の抗原１７の濃度に対応する量の標識抗体１８をスラ
ブ型光導波路１１の一側近傍に拘束する。この一連の処理を行なっている間、励
起光に起因する平面波はスラブ型光導波路１１を厚み方向にして反応槽１２内
に導入されている。しかし、試薬溶液にはカーボンブラック微粒子１９が添加さ
れているのであるから、上記平面波が反応槽１２の内部において早期に効果的に
吸光され、スラブ型光導波路１１の表面から離れた位置における標識抗体１８の
蛻光色素１８αを励起するという不都合を大幅に低減することができる。また、
仮に、スラブ型光導波路１１の表面から離れた位置における標識抗体１８の蛻光
色素１８αが蛻光を放射しても、この蛻光が効果的に吸光され、スラブ型光導波
路１１内を伝播する信号光に混入される可能性を大幅に低減することができる。
したがって、光学的免疫測定感度（S/N比）を著しく高めることができる。

上記の構成の光学的測定装置において、スラブ型光導波路１１の上記一側に多
数の抗体１３を固定する代わりに、プロッキング剤として、ミルクプロテイン原
液とアジ化ナトリウム（NaNO₃；0.02％）とを混合したものを作成して涂るものを用
い、カーボンブラック微粒子１９（希釈液で希釈して１重量％に設定したものを）が添加された試薬（CM₁（Carboxymethyl
indocyanine）－IgG（Immunoglobulin－G），4 μ
g/ml）、カーボンブラック微粒子１９が添加されていない試薬（CM₁－IgG，4 μ g/ml）を400 µ l注入して、注入前後の出力光強度を測定した。
また、上記の構成のスラブ型光導波路１１の信号光導出面に近接する面に適光遮
光のために、黒色の塗料等を塗布してなるものを用い、カーボンブラック微粒子
１９（希釈液で希釈して１重量％に設定したもの）が添加された試薬（CM₁－
IgG, 4μg/ml)、カーボンブラック微粒子19が添加されていない試薬
(CML-1gG, 4μg/ml)を400μl注入して、注入前後の出力光強
度を測定した。尚、この測定に当ては、励起光光源15としてレーザ光源を用
い、出力を3mWに設定し、NDフィルタにより10%カットし、3×10mm
の平面波をスラブ型光導波路11の下部から照射した。

上記測定の結果、カーボンブラック微粒子19を添加していない試薬を用い、スラブ型光導波路11に速光遮光のための黒色の塗料等を塗布していない場合には、試薬注入前後の信号値（光電子増倍管の出力パルス数であり、出力光強度に対応する）は、0.2397kilo pulse per second（以下、kppsと略称する）、140.2016kppsであり、カーボンブラック微粒子19を添加していない試薬を用い、スラブ型光導波路11に速光遮光のための黒色の塗料等を塗布した場合には、試薬注入前後の信号値は、0.2234kpps、42.4969kppsであった。また、カーボンブラック微粒子19を添加した試薬を用い、スラブ型光導波路11に速光遮光のための黒色の塗料等を塗布していない場合には、試薬注入前後の出力光強度は、0.2717kpps、0.2563kppsであり、カーボンブラック微粒子19を添加した試薬を用い、スラブ型光導波路11に速光遮光のための黒色の塗料等を塗布した場合には、試薬注入前後の信号値は、0.2048kpps、0.2076kppsであった。

これらの測定においては、プロッキング剤としてのミルクプロテイン（アジ化ナトリウム0.02％混合）がスラブ型光導波路11の表面にコーティングされている関係上、スラブ型光導波路11の表面近傍には試薬が存在していないことになる。また、試薬注入前の出力光はスラブ型光導波路11自体の蛍光によるオフセット値であり、何れの場合にもほぼ同様の信号値が得られている。しかし、試薬注入後においては、カーボンブラック微粒子19、速光遮光用の黒色塗料等の塗布の何れも適用されていない場合に最も大きい信号値が得られ、速光遮光用の黒色塗料等の塗布のみが適用された場合に次に大きい信号値が得られ、カーボンブラック微粒子19が適用された場合に試薬注入前とほぼ等しい信号値が得られている。この結果から明らかのように、前2者の場合には試薬遮光がかなり検
出されているのに対して、後2者の場合には試薬溶液を十分に低減できていることが分かる。尚、試薬注入後の信号値が試薬注入前の信号値よりも僅かながら小さくなっているのは、試薬注入による屈折率の変化の影響である。

さらに、ミルクプロテインのコーティング（アジ化ナトリウム0.02％混合）を省略した他の上記と同じ構成のスラブ型光導波路（逆光遮光用の黑色塗料等の塗布を行なっていないもの）を採用して、反応槽12に1重量％の濃度の着色試薬インクを200μL注入し、注入前後の信号値を測定したところ、0.080
kpps, 1.600kppsであった。この場合には、スラブ型光導波路11の表面にブロッキング剤としてのミルクプロテイン（アジ化ナトリウム0.02
10％混合）がコーティングされていない関係上、スラブ型光導波路11の表面近傍の励起領域に試薬が存在することとなるので、実際の免疫反応による信号成分は十分に取り出せると推察できる。また、上記の測定における着色試薬インク注入前の信号値よりも、ミルクプロテイン（アジ化ナトリウム0.02％混合）をブロッキング剤としてスラブ型光導波路11の表面にコーティングを施した状態で測定を行なった前記4者者の試薬注入前の信号値が大きいのは、ブロッキング剤としてのミルクプロテイン（アジ化ナトリウム0.02％混合）がスラブ型光導波路11の表面にコーティングされているためであると思われる。

尚、この実施例においては、スラブ型光導波路11の下面から反応槽12内に励起光を導入し、スラブ型光導波路11内を伝播させ、プリズム11aを通過して信号光を出射するようにしているが、図7に示すように、プリズム11aを通じてスラブ型光導波路11内に励起光を導入して伝播させ、スラブ型光導波路11を通じてスラブ型光導波路11の下面から出射する信号光を受光素子16により受光させること、図8に示すように、スラブ型光導波路11の下面に対して所定の角度で励起光を照射して反応槽12内に励起光を導入し、スラブ型光導波路11の下面に対して、励起光のなす角度と異なる角度でスラブ型光導波路11の下面から出射する信号光を受光素子16により受光させることが可能である。

また、図6～図8の光学的測定装置において、カーポンブラック微粒子に代えて、プラチナ、金等の金属の微粒子、ポリスチレン微粒子等を採用することが可能であり、さらに、カーポンブラック微粒子に代えて、励起光波長に対する吸光
度が高い水溶性色素、蛻光色素が放射する蛻光に対する吸光度が高い水溶性色素、上記両光に対する吸光度が高い水溶性色素を採用することも可能である。

実施例4

図9はこの発明の光学的測定方法の一実施例を説明するフローチャートであり、上記実施例のどれかに記載された光学的測定装置を用いて光学的測定を行なう場合を示している。したがって、反応槽2、12の一区画面を構成するスラブ型光導波路1、11の表面に、例えば抗体3、13が予め固定化されている。

免疫測定の開始が指示された場合に、ステップSP1において、反応槽2、12内に、分注ノズル32a（図10参照）を用いて測定対象溶液を注入して、上記予め固定化されている抗体3、13と測定対象溶液中の抗原7、17との間で抗原抗体反応を行なわせる。上記抗原抗体反応を所定時間行なわせた後、ステップSP2において、分注ノズル32aを用いて反応槽2、12から測定対象溶液を除去し、ステップSP3において、所望の濃度の吸光性物質（蛻光色素の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質）を含有させてなる試薬を、分注ノズル32aを用いて反応槽2、12に注入して、既に抗原抗体反応を行なってスラブ型光導波路1、11の表面近傍に拘束された抗原7、17と試薬中の標識抗体8、18との間で抗原抗体反応を行なわせる。また、ステップSP4において、抗原抗体反応によりスラブ型光導波路1、11の表面近傍に拘束された標識抗体8、18の蛻光色素8a、18aから放射される蛻光のうち、適用される光学的測定装置により定まる蛻光成分を受光素子6、16により受光して測定対象溶液中の抗原7、17の濃度に対応すべき信号を得、ステップSP5において、得られた信号を予め得られている検量線に基づいて測定対象溶液中の抗原7、17の濃度を得、そのまま一連の処理を終了する。

尚、ステップSP3の処理とステップSP4の処理とは同時に行なわれるのであるが、ステップSP4の処理をステップSP3の処理よりも先に開始することが好ましく、スラブ型光導波路1、11に起因するオフセットノイズを、図示しない後のデータ処理により得ることができる。また、ステップSP4において得
である信号としては、抗原抗体反応の進行により変化する信号値がほぼ飽和するまで待つ、ほぼ飽和した時点における信号値を得るようにしてもよいが、抗原抗体反応の進行により変化する信号の時間微分値を算出し続け、時間微分値の最大値を採用するようにしてもよい。

また、図10は図9のフローチャートが適用される光学的測定装置の概略構成を示すブロック図であり、図示しない試薬収容槽、図示しない測定対象溶液収容槽、図示しない希釈液収容槽および抗原抗体反応を行なわせる反応槽12を備え、抗体13が固定されたスラブ型光導波路11が反応槽12の所定面に形成されている測定用セル31と、何れかの槽に溶液を注入し、または何れかの槽から溶液10を吸引して除去するための分注ノズル32aを備えた分注装置32と、測定用セル31に対して所定位置に配置され、スラブ型光導波路11に対して所定角度で励起光を照射するとともに、スラブ型光導波路11から所定角度で出射される信号光を検出することにより免疫反応の程度を検出する光学的測定部33と、使用者からの指示が入力される指示部34と、検査対象、測定項目、測定数等の条件15に対応して所定のデータを保持するデータ部35と、指示部34およびデータ部35の情報に基づいて分注ノズル32aの吸引、吐出および吸収量、吐出量を制御する分注コントローラ部36と、光学的測定部33および分注コントローラ部36に指令を送るメインコントローラ部37とを有している。

この光学的測定装置においては、図9のフローチャートの各ステップに対応し20てメインコントローラ部37が対応するデータをデータ部35から読み出し、読み出されたデータおよび使用者の指示に基づいて分注コントローラ部36を動作させ、分注ノズル32aを制御する。即ち、分注ノズル32aにより測定対象溶液収容槽から測定対象溶液を吸引し、分注ノズル32aを反応槽12まで移動させて、吸引した測定対象溶液を反応槽12に吐出することにより第1回目の抗原25抗体反応を行なわせる。但し、測定対象溶液を希釈する必要がある場合には、測定対象溶液を吸引する前、または後に、希釈液収容槽から希釈液を吸引する。その後、分注ノズル32aにより反応槽12内の測定対象溶液を吸引して図示しない廃液タンクに吐出する。次いで、分注ノズル32aにより試薬収容槽から標識抗体18およびカーボンプラックの微粒子19を含む試薬を吸引し、分注ノズル
32aを反応槽12まで移動させて、吸引した試薬を反応槽12に吐出することにより第2回目の抗原抗体反応を行なわせる。尚、これらの場合において液体吸引量の調節は、例えば、分注ノズル32aの吸引量、吐出量を制御するパルスモータ（図示せず）に与える単位時間当たりのパルス数を、分注コントローラ部36により吸引量に対応する最適値に設定することにより達成される。また、試薬、測定対象溶液をこの順に吸引し、測定対象溶液、試薬の順に吐出させることも可能であり、この場合には、試薬と測定対象溶液との間にエアギャップを形成することにより、分注ノズル32a内における両液の混合を防止することができる。

したがって、光学的免疫測定を行なう状態において、反応槽2、12内には必ず光吸収性物質が含有されているのであるから、上述の実施例からも明らかのように、試薬混光を十分に低減して、光学的免疫測定感度（S/N比）を著しく高めることができる。

尚、この実施例においては、反応槽2、12内に測定対象溶液を注入して第1回目の抗原抗体反応を行なわせ、次いで、測定対象溶液を除去した後に上記試薬15を注入して第2回目の抗原抗体反応を行なわせる、いわゆる2ステップ法を採用しているが、予め測定対象溶液と上記試薬を混合しておくことにより抗原抗体反応を行なわせる。この混合液を反応槽2、12に注入することにより、スラブ型光導波路1、11の表面に固定化された抗原3、13との間で抗原抗体反応を行なわせる、いわゆる1ステップ法を採用することが可能である。

さらに、以上の何れの実施例においても、光吸収性物質が予め試薬に含有されている場合について説明しているが、試薬注入前、または試薬注入後に光吸収性物質を反応槽に注入することが可能である。

産業上の利用可能性

スラブ型光導波路と一体に反応槽を形成し、反応槽に測定対象溶液および試薬を注入し、かつスラブ型光導波路に励起光を導入してスラブ型光導波路の表面近傍における光学的特性を計測する測定装置に好適に適用することができ、光学的測定のS/N比を高めることができる。
特許請求の範囲

1. 光導波路（1）内を全反射しながら伝播するように励起光を導入することにより生じるエバネッセント波成分によって光導波路（1）の表面近傍に拘束された蛻光物質を励起し、蛻光物質が放射する蛻光のうち、光導波路（1）内を反射しながら伝播する成分に基づいて光導波路（1）の表面近傍の光学的特性を測定する光学的測定装置であって、光導波路（1）の表面を1の区画とし、反応槽（2）に、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する微粒子（9）（19）を添加してあることを利用して、特徴とする光学的測定装置。

2. 光導波路（1）内を全反射しながら伝播するように励起光を導入することにより生じるエバネッセント波成分によって光導波路（1）の表面近傍に拘束された蛻光物質を励起し、蛻光物質が放射する蛻光のうち、光導波路（1）内を全反射しながら伝播する成分に基づいて光導波路（1）の表面近傍の光学的特性を測定する光学的測定装置であって、光導波路（1）の表面を1の区画とする反応槽（2）に、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する水溶性色素を含有させてあることを特徴とする光学的測定装置。

3. 蛻光物質を含む試薬と測定対象溶液とを収容して所定の反応を行なう反応槽（2）（12）の一部が光導波路（1）（11）で構成されているとともに、光導波路（1）（11）に対して所定の相対角度で励起光を照射して蛻光物質を励起し、蛻光物質に起因する蛻光のうち、光導波路（1）（11）に対して所定の相対角度で出射される成分を受光して反応槽（2）（12）内における光導波路（1）（11）の表面近傍の光学的特性を測定する光学的測定装置であって、上記反応槽（2）（12）に、蛻光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質（9）（19）を添加してあることを特徴とする光学的測定装置。

4. 上記光学的測定装置は、光導波路（11）を通して反応槽（12）に導入されるように励起光を照射して蛻光物質を励起し、蛻光物質が放射する蛻光のうち、光導波路（11）内を反射しながら伝播する成分に基づいて光導波路（1）（11）の表面近傍の光学的特性を測定するものをある請求項3に記載の光学的測定装置。
装置。

5. 上記光学的測定装置は、光導波路（11）内を全反射しながら伝播するように励起光を導入することにより生じるエバネッセント波成分によって光導波路（11）の表面近傍に拘束された蛍光物質を励起し、蛍光物質が放射する蛍光のうち、光導波路（11）を通して外部に放射される成分に基づいて光導波路（11）の表面近傍の光学的特性を測定するものである請求項3に記載の光学的測定装置。

6. 上記光学的測定装置は、光導波路（11）を所定角度で通して反応槽（12）に導入されるように励起光を照射して蛍光物質を励起し、蛍光物質が放射する蛍光のうち、励起光と異なる所定角度で光導波路（11）を通して外部に放射される成分に基づいて光導波路（11）の表面近傍の光学的特性を測定するものである請求項3に記載の光学的測定装置。

7. 上記蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質（9）（19）は、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する微粒子である請求項3から請求項6の何れかに記載の光学的測定装置。

8. 上記蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質（9）（19）は、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する水溶性色素である請求項3から請求項6の何れ20かに記載の光学的測定装置。

9. 光導波路（1）の表面を1の区画面とする反応槽（2）の内部において、上記光導波路（1）の上記表面に固相化されたリガンド（3）と上記反応槽（2）に注入された測定対象溶液と、蛍光物質（8 a）で標識され、かつ上記反応槽（2）に注入されたリガンド（9）を含む試薬とで所定の反応を行なわせ、上記光導波路（1）内を全反射しながら伝播するように励起光を導入するとともに、蛍光物質が放射する蛍光のうち、光導波路（1）内を反射しながら伝播する成分に基づいて光導波路（1）の表面近傍の光学的特性を測定する光学的測定方法であって、上記反応槽（2）内に、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する微粒子（9）を含有させた状態で、上記光
導波路（1）内を反射しながら伝播する成分を受光して反応槽（2）内における
上記光導波路（1）の上記表面近傍の光学的特性を測定することを特徴とする光学的測定方法。

10. 光導波路（1）の表面を1の区画面とする反応槽（2）の内部において、
上記光導波路（1）の上記表面に固相化されたリガンド（3）と上記反応槽（2）に注入された測定対象溶液と、蛍光物質（8a）で標識され、かつ上記反応槽（2）に注入されたリガンド（8）を含む試薬で所定の反応を行なわせ、
上記光導波路（1）内を全反射しながら伝播するように励起光を導入するとともに、
蛍光物質が放射する蛍光のうち、光導波路（1）内を反射しながら伝播する成分に基づいて光導波路（1）の表面近傍の光学的特性を測定する光学的測定方法であって、上記反応槽（2）内に、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する水溶性色素を含有させた状態で、上記光導波路（1）内を反射しながら伝播する成分を受光して反応槽（2）内における上記光導波路（1）の上記表面近傍の光学的特性を測定することを特徴とする光学的測定方法。

11. 光導波路（1）（11）の表面を1の区画面とする反応槽（2）（12）の内部において、上記光導波路（1）（11）の上記表面に固相化されたリガンド（3）（13）と上記反応槽（2）（12）に注入された測定対象溶液と、
蛍光物質（8a）（18a）で標識され、かつ上記反応槽（2）（12）に注入されたリガンド（8）（18）を含む試薬で所定の反応を行なわせ、上記光導波路（1）（11）に対して所定の相対角度で励起光を照射し、蛍光物質に起因する蛍光のうち、上記光導波路（1）（11）に対して所定の相対角度で出射される成分を受光して反応槽（2）（12）内における上記光導波路（1）（11）の上記表面近傍の光学的特性を測定する光学的測定方法であって、上記反応槽（2）（12）内に、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質（9）（19）を含有させた状態で、上記光導波路（1）（11）に対して所定の相対角度で出射される成分を受光して反応槽（2）（12）内における上記光導波路（1）（11）の上記表面近傍の光学的特性を測定することを特徴とする光学的測定方法。
12. 上記光学的測定方法は、光導波路（11）を通して反応槽（12）に導入されるように励起光を照射するとともに、蛍光物質が放射する蛍光のうち、光導波路（11）内を反射しながら伝播する成分に基づいて光導波路（11）の表面近傍の光学的特性を測定する方法である請求項11に記載の光学的測定方法。

13. 上記光学的測定方法は、光導波路（11）内を全反射しながら伝播するように励起光を導入するとともに、蛍光物質が放射する蛍光のうち、光導波路（11）を通して外部に放射される成分に基づいて光導波路（11）の表面近傍の光学的特性を測定する方法である請求項11に記載の光学的測定方法。

14. 上記光学的測定方法は、光導波路（11）を所定角度で通じて反応槽（12）に導入されるように励起光を照射するとともに、蛍光物質が放射する蛍光のうち、励起光と異なる所定角度で光導波路（11）を通して外部に放射される成分に基づいて光導波路（11）の表面近傍の光学的特性を測定する方法である請求項11に記載の光学的測定方法。

15. 上記蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質（19）は、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する微粒子（19）である請求項11から請求項14の何れかに記載の光学的測定方法。

16. 上記蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する性質を有する物質（19）は、蛍光物質の励起波長、発光波長の少なくとも一方の波長の光を吸収する水溶性色素である請求項11から請求項14の何れかに記載の光学的測定方法。
第1図

第2図
第3図
第4図

波長 (nm)
第5図
第8図

第9図

START

SP1 反応槽内に測定対象溶液注入

SP2 測定対象溶液を除去

SP3 反応槽内に試薬を注入

SP4 蛍光色素から放射される蛍光

SP5 得られた信号と検量線から

END

蛍光成分を受光して測定対象溶液中の抗原濃度に対応するべき信号を得る

抗原濃度を得る
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP94/01431

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl6 G01N21/64, G01N21/27
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. Cl5 G01N21/00-21/01, G01N21/17-21/74

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1926 - 1994
Kokai Jitsuyo Shinan Koho 1971 - 1994

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP, A, 62-261036 (A.V.L. AG.), November 13, 1987 (13. 11. 87), Upper left column to upper right column, page 9, Figs. 1 to 9</td>
<td>1, 3-7, 9, 11-15</td>
</tr>
<tr>
<td>Y</td>
<td>& DK, 203587 & EP, A, 244394 & AT, B, 390330 & AT, B, 390678 & US, A, 5039490</td>
<td>2, 8, 10</td>
</tr>
<tr>
<td>X</td>
<td>JP, A, 2-167448 (A.V.L. AG.), June 27, 1990 (27. 06. 90), Lower right column, page 4</td>
<td>1-3, 7-8, 9-11, 15, 16</td>
</tr>
<tr>
<td>Y</td>
<td>& DK, A, 376389 & EP, A, 354204 & AT, B, 390517</td>
<td>4-6, 12-14</td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 61-226644 (Toshiba Corp.), October 8, 1986 (08. 10. 86), Fig. 1, (Family: none)</td>
<td>4, 12</td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 62-503053 (Kurt Tiefenthaler), December 3, 1987 (03. 12. 87), Figs. 1 to 8 & WO, A, 8607149</td>
<td>4-6, 12-14</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.

** See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 31, 1994 (31. 10. 94)</td>
<td>November 22, 1994 (22. 11. 94)</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA/
Japanese Patent Office
Facsimile No.

Authorized officer
Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
INTERNATIONAL SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>& AU, A, 5815886 & EP, A, 226604</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& CH, A, 669050 & US, A, 4815843</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& DE, C, 3680999</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 63-98548 (A.V.L. AG.), April 30, 1988 (30. 04. 88), Figs. 1 to 5, 7 & DK, A, 203687</td>
<td>4-6, 12-14</td>
</tr>
<tr>
<td></td>
<td>& EP, A, 263805 & US, A, 4755667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& AT, B, 390677 & DE, C, 3768900</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 2-25749 (Daikin Industries, Ltd.), January 29, 1990 (29. 01. 90), (Family: none)</td>
<td>4, 5, 12, 13</td>
</tr>
<tr>
<td></td>
<td>Figs. 1, 3, 4, 6, 8</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 1992)
A. 発明の属する分野の分類（国際特許分類（IPC））

Int.C2 G01N21/64, G01N21/27

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.C2 G01N21/00-21/01, G01N21/17-21/74

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926-1994年
日本国公表実用新案公報 1971-1994年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>J P, A, 62-261036 (アー・ファウ・エル・アー・ジー), 13.11.1987 (13.11.87), 第9頁左上-右上端, 第1-9図</td>
<td>1, 3-7, 9, 11-15</td>
</tr>
<tr>
<td>Y</td>
<td>& DK, A, 203587 & EP, A, 244394 & AT, B, 390330 & AT, B, 390678 & US, A, 5039490</td>
<td>2, 8, 10</td>
</tr>
<tr>
<td>X</td>
<td>J P, A, 2-167448 (アー・ファウ・エル・アー・ジー), 27.6.1990 (27.06.90),</td>
<td>1-3, 7-8, 9-11, 15, 16</td>
</tr>
</tbody>
</table>

☑ 引用文献のカテゴリ

「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
「B」先行文献でないが、国際出願後に公表されたもの
「L」優先権主張に疑義を含む公表文献又は他の文献の発行日若しくは他の特徴等を確認するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願前で、かつ優先権の主張の基礎となる出願日後の公表された文献

「T」国際出願後又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

☑ バレントファミリーに関する別紙を参照。
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>第4頁右下欄
&DK, A, 376389 & EP, A, 354204
&AT, B, 390517</td>
<td>4-6, 12-14</td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 61-226644 (株式会社 東芝),
8. 10月. 1986 (08. 10. 86),
第1図 (ファミリーなし)</td>
<td>4, 12</td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 2-25749 (ダイキン工業株式会社),
29. 1月. 1990 (29. 01. 90) (ファミリーなし)
第1, 3, 4, 6, 8図</td>
<td>4, 5, 12, 13</td>
</tr>
</tbody>
</table>