
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0144195 A1

Nair et al.

US 2012O144195A1

(43) Pub. Date: Jun. 7, 2012

(54)

(75)

(73)

(21)

(22)

(63)

(60)

METHOD AND SYSTEM FOR UNIFIED
MOBILE CONTENT PROTECTION

Inventors: Raj Nair, Lexington, MA (US);
Mikhail Mikhailov, Newton, MA
(US)

Assignee: AZUKI SYSTEMS, INC., Acton,
MA (US)

Appl. No.: 13/370,537

Filed: Feb. 10, 2012

Related U.S. Application Data

Continuation of application No. PCT/US2010/
045596, filed on Aug. 16, 2010.

Provisional application No. 61/234,092, filed on Aug.
14, 2009.

CONTENT (SCP/STFP/ASCP)
PUBLISHER 16

CLIENT
DEVICE 10

Publication Classification

(51) Int. Cl.
G06F2L/24 (2006.01)
H04L 9/32 (2006.01)

(52) U.S. Cl. ... 713/168; 726/29

(57) ABSTRACT

Media content is delivered to a variety of mobile devices in a
protected manner based on client-server architecture with a
symmetric (private-key) encryption scheme. A media prepa
ration server (MPS) encrypts media content and publishes
and stores it on a content delivery server (CDS), such as a
server in a content distribution network (CDN). Client
devices can freely obtain the media content from the CDS and
can also freely distribute the media content further. They
cannot, however, play the content without first obtaining a
decryption key and license. Access to decryption keys is via a
centralized rights manager, providing a desired level of DRM
control.

CONTENT
(HTTP) CONTROLLER

28

3, 4
(HTTP)

RIGHTS
MANAGER 24

(HTTP)

SECURE
FACILITY 30

Patent Application Publication Jun. 7, 2012 Sheet 1 of 7 US 2012/O144195 A1

CONTENT NGESTION
PUBLISHER 16 ENGINE 18

MEDIA PREP20

CLIENT PLAY
DEVICE 10 MANAGER 26

RIGHTS
MANAGER 24

SERVERS 12

Patent Application Publication Jun. 7, 2012 Sheet 2 of 7 US 2012/O144195 A1

CONTENT NGESTION
PUBLISHER 16 | ENGINE 18

MEDIA PREP20

CLIENT PLAY
DEVICE 10 MANAGER 26

RIGHTS
MANAGER 24

SERVERS12

Patent Application Publication

Fig. 3

Jun. 7, 2012 Sheet 3 of 7 US 2012/O144195 A1

NH--1
1024-byte key

original content

original content

1024 bytes 1024 bytes
P1

1024 bytes
v

1024 bytes

encrypted content

device-id-domain key Hkey nonce

Fig. 4

MD5

K2

Encrypted RO

RO

Patent Application Publication Jun. 7, 2012 Sheet 4 of 7 US 2012/O144195 A1

CONTENT (SCP/STFP/ASCP)
PUBLISHER 16

CONTENT
(HTTP) CONTROLLER

28

9
(HTTP)

1, 8 |
CLIENT (HTTP) RIGHTS

DEVICE 10 MANAGER 24

2, 5, 6, 7
(HTTP)

SECURE
FACILITY 30

Patent Application Publication Jun. 7, 2012 Sheet 5 of 7 US 2012/O144195 A1

PLAYER CLIENT DEV RM DRM CC CDN

Red Dev RegToken .:

Ret Token (Launch App)
Red DevlD

Reg Dev (DeviD)

Red MediaToken (Download Streams)

Ret Token Red Download

Patent Application Publication Jun. 7, 2012 Sheet 6 of 7 US 2012/O144195 A1

PLAYER CLIENT DEV RM DRM CC CDN

Red Dev RegToken

Ret Token (Launch App)
Red DevlD

Reg Dev (DeviD)

Req MediaToken (Download Streams)

Red Download

getRights -

Ret DLnfo

DL/Play Media (DLinfo)

Offline Play

Fig. 7

Patent Application Publication Jun. 7, 2012 Sheet 7 of 7 US 2012/O144195 A1

CLIENT DEV DRM CA

Send (Svir Cert)

CA Priv (Svir Cert)
Auth Challenge

-- Activ. Code (A)

(S Stored)
Y

Credential ID, X
(X Stored)

Dev Fingerprint, D ?
First time

Per Session Security Code, C Validate using X,C

(2-factor Auth) Content
Encrypted with D

VALIDATED

US 2012/O 144195 A1

METHOD AND SYSTEM FOR UNIFIED
MOBILE CONTENT PROTECTION

BACKGROUND

0001. The growing number of large form factor mobile
devices such as the iPad has revolutionized mobile media
consumption leading to revolutionary initiatives Such as “TV
EverywhereTM” (TVE) with a mandate to make premium
content available on a wide range of devices with great diver
sity in capabilities. This type of distribution, sometimes
known as “Over-The-Top' (OTT) distribution, has under
scored the need for a new and more robust trust model that
builds on a 2-part trust model of user authentication and
device identification and can offer the same level of content
protection that content owners have had in the closed Con
Sumer Electronics ecosystems of the past. The added level of
protection can enable publishers to fully realize the potential
for content distribution through this new open ecosystem of
devices.
0002 Content protection is challenging in mobile devices
for a number of reasons. Mobile devices do not uniformly
support Digital Rights Management (DRM) standards. In
particular, most mobile devices do not currently support the
most comprehensive form of content protection, the Open
Mobile Alliance (OMA) V2.0DRM standard. Mobile devices
also vary in their CPU performance and memory capacity. An
additional complication is the need to Support multiple modes
of delivery required in the mobile environment, such as live
Streaming, watching short Video segments, rentals, or media
download for watching later.
0003 Current media protection schemes depend on send
ing the license information in-band with the media or using a
pre-distributed license key in the media viewing device.
Examples are Playready, WMDRM, Widevine, and Flash
Access. However, TVE requires that the rights are transfer
able across devices in a seamless manner.

SUMMARY

0004. The present invention relates in general to protect
ing media on mobile devices and more specifically to imple
menting a content protection system for media that may be
streamed or watched offline on mobile devices. This system is
particularly useful in the deployment of TVE services for
protecting media on any Internet-connected device in an
“Over-The-Top' (OTT) manner where the digital rights to the
media are delivered to the device over the network and made
specific to the device and user.
0005 Methods and apparatus are disclosed for protecting
content delivered to a variety of mobile devices based on
client-server architecture with a symmetric (private-key)
encryption scheme. In one embodiment, a media preparation
server (MPS) encrypts all media content and publishes and
stores it on a content delivery server (CDS), such as a server
in a content distribution network (CDN). Clients can freely
obtain media content from the CDS and can also freely dis
tribute it further. They cannot, however, play the content
without first obtaining a decryption key. Access to decryption
keys is via a centralized rights manager, providing a desired
level of DRM control.

BRIEF DESCRIPTION OF THE DRAWINGS

0006. The foregoing and other objects, features and
advantages will be apparent from the following description of

Jun. 7, 2012

particular embodiments of the invention, as illustrated in the
accompanying drawings in which like reference characters
refer to the same parts throughout the different views. The
drawings are not necessarily to scale, emphasis instead being
placed upon illustrating the principles of various embodi
ments of the invention.
0007 FIGS. 1 and 2 are block diagrams of systems
capable of conducting procedures, in accordance with various
embodiments of the invention;
0008 FIG. 3 is a diagram of the content encryption, in
accordance with an embodiment of the present invention;
0009 FIG. 4 is a diagram of the key wrapping, in accor
dance with an embodiment of the present invention; and
0010 FIG. 5 is a block diagram of a system showing
interfaces and message formats between system components;
0011 FIGS. 6-8 are diagrams of message flows during
system operation in accordance with an embodiment of the
present invention.

DETAILED DESCRIPTION

0012 FIG. 1 is a block diagram for one embodiment of the
present invention. It shows a client device 10 and a plurality of
servers 12 that are connected together in a secure network and
together form an instance of what is referred to herein as a
“wireless platform” (WP). The client device 10 and WP serv
ers 12 are typically computerized devices which include one
or more processors, memory, storage (e.g., magnetic or flash
memory storage), and input/output circuitry all coupled
together by one or more data buses, along with program
instructions which are executed by the processor out of the
memory to perform certain functions which are described
herein. Part or all of the functions may be depicted by corre
sponding blocks in the drawings, and these should be under
stood to covera computerized device programmed to perform
the identified function.
0013. In one embodiment, the servers 12 (referred to as
servers herein) may be collocated in a single data center. In
another embodiment, the servers 12 may be geographically
distributed in multiple data centers. In another embodiment,
the servers 12 may be physically in the same region, but
connected to the client 10 through separate network paths
(e.g. through different network service providers). In one
embodiment, the servers 12 are situated as part of a content
delivery network (CDN) 14. In one embodiment, the content
from a content publisher 16 is ingested via an ingestion
engine 18, and the ingested content is then segmented by a
media preparation engine (MEDIA PREP) 20. The media
preparation engine 20 obtains a content encryption/decryp
tion key from a digital rights management (DRM) server 22
and uses it to encrypt the content for storage and later delivery
in encrypted form. An example of streaming of content is
shown in published PCT application WO 2010/045109.
0014. In part of the description below, the combination of
the ingestion engine 18, media prep 20 and a play manager 26
are referred to as a “content controller”. Thus in one embodi
ment the system is constituted by a content controller along
with a DRM server 22 and a rights manager 24.
0015. A media preparation profile in the media prepara
tion server 20 specifies an encryption type on a per-media
item basis. Candidate ciphers may include XOR, RC4.
HC-128, AES, and along with the specification of encryption
type is stored a corresponding key and a key length. Each
media item has its own randomly generated key value. In the
case of AES and XOR encryption, this randomly generated

US 2012/O 144195 A1

key value is used as the actual key for encryption/decryption,
whereas for RC4 and HC-128 it is the seed key to initialize a
stream cipher. AES key length is typically 128 bits. XOR key
length may be 1024 bytes, and may be configurable. RC4 and
HC-128 use 128 bit seed keys. The media preparation profile
also specifies, on a per-media basis, the length of the byte
stream which should be generated (this is the actual key used
for media encryption, and the length is the same as the block
length described elsewhere herein). Each media item is
transcoded in multiple formats for different target platforms,
and each of the resulting transcoded media files is immedi
ately encrypted with the chosen cipher and key and the
encrypted files are then pushed to the CDN 14. Additional
details regarding encryption are provided below.
0016. In order to use the system for downloading content,
the client device 10 first authenticates with the rights manager
24 and registers its device with the DRM server 20. During
this process the client 10 obtains a logical device id from the
rights manager 24 that is a token to represent a user of the
client device 10, and associates this token with the specific
client device 10 via a device “fingerprint” which is a unique
identifier for the client device 10. The unique identification
may be based on certain physical properties that may include
an international mobile equipment identifier (IMEI) number,
media access control (MAC) address, or certain file system
properties. Each of the supported client devices 10 provides
an Application Programming Interface (API) via which the
unique identifier of that device can be obtained. Some devices
have an IMEI number, some a mobile equipment identifier
(MEID) number, some an electronic serial number (ESN).
The iPhone has a unique device identifier (UDID).
0017. The client device 10 has a built-in domain key that is
used to encrypt the exchange of the logical device ID with the
rights manager 24. For enhanced security, the domain key is
divided into a number of separate components which are
stored so as to be difficult to locate. For example, each may be
stored as an array, with elements of the array represented as
strings containing an integer and some special characters
which are commonly found in binary files. When the arrays
are examined, it is difficult to detect where the components
are located. At run-time, all arrays are processed, special
characters are discarded, and elements of these arrays are
converted into characters and concatenated together to pro
duce the actual domain key.
0018 Device registration is carried out as follows. A DRM
Agent running on the client 10 generates an encrypted token
containing a device id and a randomly generated long nonce.
That information (device id and the random long nonce) is
encrypted with the domain key and is sent to the DRM server
22. The DRM server 22 decrypts this registration message
using the same domain key, and stores an association between
this user, device id, and key nonce in a database. The DRM
server 22 generates a response containing a unique logical id
assigned to this user. This response is encrypted with a ses
sion key constructed from domain key, device id, and the
random key nonce provided by the DRM Agent, and the
encrypted response is sent to the client 10. Details regarding
the construction of the session key are provided below.
0019. Once the client 10 receives the response, it decrypts
the response and stores registration information into an
encrypted rights file on the client device 10. The rights file is
encrypted with the key constructed from the combination of
the domain key and the device id.

Jun. 7, 2012

0020. The session key may be constructed as follows:
0021. A shared or domain key is combined with the device
id and the randomly generated key nonce: shared key+de
Vice id+key nonce. The resulting string is fairly long, so a
hash or checksum is computed on it. In one embodiment, a
hex representation of the hash, which may be 32 bytes long, is
chosen to be the key. In different embodiments, the raw hash
output (which may be a 128-bit integer) may be used. In one
embodiment a Message Digest 5 (MD5) hash may be used.
Other embodiments might use a 64-bit RACE Integrity Primi
tives Evaluation Message Digest (RIPEMD) hash function
instead of MD5.
0022. In other embodiments, it is possible to include other
individualization parameters into these keys. Thus, the client/
server session key, as well as the key used to encrypt the rights
file on the device, could be enhanced further by adding unique
user information (user token) and/or application information,
Such as the application name or identifier. That way, keys will
be application-specific and user-specific as well as device
specific.
0023 FIG. 2 shows a slightly different embodiment of the
system, in which there is a connection directly between the
rights manager 24 and the DRM server 22 to enable the DRM
server 22 to directly consult with the rights manager 24 as
may be required.
0024. As previously mentioned, any of various content
encryption schemes may be employed. The following pre
sents several specific examples along with corresponding
details regarding how encryption/decryption is carried out. In
Some embodiments, the encryption can be applied to portions
of the file such as key frames for video in order to reduce
processing load.

XOR

0025. In one embodiment the following simple and fast
symmetric (private key) encryption scheme is used. Opera
tion is illustrated in FIG. 3. The media preparation server 20
performs an exclusive-OR operation (XOR) between the con
tents of the media file and a secret (private) key K1 (not
shown). In one embodiment the key K1 is 1024 bytes long.
The XOR operation starts at a random position P1 within the
media file and continues until the end of the file. The random
position P1 is preferably chosen to be close to the beginning
of the file, e.g. within the first 10% of the file. P1 can also be
a predetermined fixed position, for example the very begin
ning of the file (location 0).
0026. The key K1 may be chosen in a variety of ways. For
example, it may be generated randomly. Alternatively, it may
be generated by first choosing another random position P2
(not shown) within the same file, and selecting 1024 bytes
from the media file starting at position P2. If there are not
1024 bytes remaining between P2 and the end of the file, then
1024 bytes are selected starting at position P2-1024+1. As
noted, the key length may be other than 1024 bytes, and may
be configurable.
(0027. The media preparation server 20 stores P1 and P2 in
a database for each media file. In addition, the media prepa
ration server 20 associates an expiration time with the encryp
tion keys, stores the expiration time in the database, and
re-encrypts content with new keys upon key expiration.

RC4-Drop(n)
0028. RC4-drop(n) is a stream-cipher algorithm generally
known to those skilled in the art. It includes the dropping of

US 2012/O 144195 A1

the first 3072 bytes from each generated keystream. Also,
RC4 does not have a formal notion of an initialization vector
(IV). Instead, a checksum is computed on a concatenated key
and an arbitrarily chosen initialization value, and the check
Sum is used as the key.
0029. In one embodiment of stream cipher encoding, the
entire media file is divided into smaller blocks of a selected
block size. With a stream cipher, one can generate an infi
nitely-long stream of bytes. Theoretically, if a content item
(e.g., movie) were to be played only from start to finish,
without rewinding or fast-forwarding (i.e. without scrub
bing), a stream cipher could be used on the streaming media
without specialization. However, since the user may scrub
during playback, decryption requires a modification to the
stream cipher. The media is divided into fixed-size blocks and
a new stream of key bytes is generated for each block by using
the same seed key and a different IV. The IV in this case can
be just the sequential block number, starting from 0. In one
embodiment the blocks can have length 32 k, but the block
length can be different in other embodiments and may be
configurable.

HC-128

0030 HC-128 is another well-known stream cipher whose
block size can be adapted as described above. Also, in addi
tion to block size, both RC4 and HC-128 can take into account
a segment number for live streaming and for video on demand
(VOD). The entire long-form content is represented as many
segments, and each segment is then divided into multiple
blocks from the encryption/decryption point of view.

AES

0031. The same approach to block sizing may be taken for
AES unless of course in some embodiments the decryption is
done in hardware. It may be desirable to use the same form of
AES encryption supported by iPhone(R) and iPad(R), which is
AES bit with Cipher-Block-Chaining (CBC mode). Each seg
ment is encrypted individually, and the same key is used
across all segments, but each segment has its own initializa
tion vector which is the sequence number of the segment.
0032. It is briefly described how a user obtains a rights
object (RO) to use in downloading and streaming, as well as
playing, content. The user registers with a content provider
using, in one embodiment, OpenID technology and obtains a
user token which uniquely identifies that user. Before the user
can play a given media content file, the user must obtain the
decryption key. A DRM agent running on the client device 10
contacts the rights manager 24 and provides three items:
<device-id, media-id, user-token, where device-id is a
unique identifier specific to that particular mobile device,
media-idis a unique identifier specific to the particular media
content the user wants to play, and user-token is the unique
user identifier. Device id could be the unique address of the
mobile device, or it may be one of the types of device iden
tifiers discussed above.
0033. The rights manager 24 receives the request for the
RO from the client 10, containing <device-id, media-id, user
token. The rights manager 24 validates the user-token using
OpenID technology and also validates that media-idis correct
and has not expired. It then generates the requested RO, which
contains a key value K1 for media content decryption, a
remaining play count for that media, and a media license
expiration time. Even though communications between the

Jun. 7, 2012

client 10 and rights manager 24 is carried over a secure
connection (SSL), the rights manager 24 may optionally
encrypt the RO so that encrypted RO can be safely stored on
the client device 10.
0034. The encryption of the RO is illustrated in FIG. 4. To
encrypt the RO, the rights manager 24 uses the following
symmetric encryption scheme. The RO is encrypted with
64-bit Blowfish key constructed from the checksum (domain
key+device id+key nonce). To compute K2, the rights man
ager 24 applies an MD5 checksum function to the device-id.

Message Flow
0035 FIG. 5 contains a block diagram showing interfaces
(numbered reference points) between system components.
The following is a description of messaging flows (including
message formats) among the components.
0036. The ingestion flow consists of secure transfer of
content from the content publisher 16 via a secure transfer
method such as scp, Sftp, or ascp (Aspera) to the content
controller back-end server 28, which in turn transcodes and
encrypts the content using the chosen content cipher (e.g.,
AES or HC-128) and publishes it into the CDN 14.
0037. The interfaces and associated protocols are
described next for each of the numbered reference points in
FIG.S.
0038 1. Over this HTTP interface, the client 10 performs
a one-time device registration with the rights manager 24 (and
DRM Server 22) passing the device-id, key nonce, and mes
sage nonce encrypted with the Blowfish algorithm using the
domain key that is stored in an obfuscated manner in the
application binary as described above. The registration infor
mation is passed through to the DRM Server 22 via the
interface 2 described below. Depending on specific deploy
ment requirements, the client may 10 may alternatively go to
the DRM server 22 first, and the DRM server 22 then com
municates with the rights manager 24.
0039. Also, on the same interface, every time the client 10
needs to play a media, it sends media rights requests to the
rights manager 24 also encrypted via Blowfish with a device
specific key. The media rights request contains device id,
media id, logical id (a unique abstract user identifier) pro
vided by the DRM server 24 when the device was registered,
message nonce, and the current play count.
0040 2. This HTTP interface is used as a pass-through
interface, where the rights manager 24 relays requests (device
registration and media location and rights requests) received
from the client 10 and destined to the DRM server 22. These
messages are encrypted as noted in #1. The rights manager 24
maintains user information which the DRM server 22 does
not have access to, and the rights manager 24 maps individual
users to logical ids maintained by the DRM server 22. The
rights manager 24 appends the logical id, uniquely identify
ing the current user, to all requests being forwarded to the
DRM server 22. The only exception is the initial device reg
istration because it does not have a logical id for that user at
that point. The logical ids need not be encrypted when these
servers are in a secure facility 30 with restricted access as
shown. In environments where these servers need to be
remote, a secure connection would be needed between them.
The secure connection may take the form of a virtual private
network (VPN) or a Secure Sockets Layer (SSL) connection.
0041) 3. This HTTP interface is used by the DRM server
22 to request media information from the back-end content
controller 28. This interface is used to obtain information

US 2012/O 144195 A1

needed to play a media item. The request by itself does not
have any commercial value and is therefore not encrypted nor
sent over a secure channel.
0042. 4. This HTTP interface carries the response of the
content controller 26 to the DRM server request described
under item #3 above. The response is an XML document,
containing media URL pointing to an encrypted media file
located in the CDN 14 and an encrypted message which
contains information about the cipher and the key used to
encrypt this media. The message is encrypted with the Blow
fish algorithm and the domain key.
0043 5. Via this HTTP interface the DRM server 22 asks
the rights manager 24 for media rights for the current user.
The request contains logical id, media id, and the play count
reported by the client 10. This interface is used when the
client 10 is requesting media rights as described in #1. The
information need not be encrypted when the DRM server 22
and rights manager 24 are in a secure facility 30. Alterna
tively, a secure connection may be employed.
0044 6. This HTTP interface carries the response of rights
manager 24 to the DRM server request described under item
#5 above. The response is an XML document containing
rights information for the requested media and the current
user. This interface is used only when the client 10 is request
ing media rights. The response need not be encrypted when
the DRM server 22 and rights manager 24 are in a secure
facility 30. Alternatively, a secure connection may be
employed.
0045 7. This HTTP interface sends the response of the
DRM server 22 to the rights manager 24. Two types of
responses are sent over this interface: the device registration
response and the media location and rights in response to
requests described under item #2 above.
0046. The device registration response is an XML docu
ment that contains an encrypted message (containing the
logical id) destined for the client 10, and also the logical id
and total device count for the current user in the clear. The
rights manager 24 uses the device count to check against the
total count of authorized devices for the user. It removes the
logical id and device count from the response, before for
warding it to the client 10 on interface 8. The client completes
the registration on its end when it can receive the encrypted
message and Successfully decrypt and verify the nonce and
checksum in the message.
0047. The media rights and location response is an XML
document that contains the media URL pointing to an
encrypted media file located in a CDN 14, and an encrypted
message (destined for the client) which contains information
about the cipher and the key needed to decrypt this media and
media rights information for the current user. This response is
forwarded to the client 10.
0048. In both types of responses, the message is encrypted
with a key produced from the domain key, device id, and the
key nonce.
0049 8. This is a pass-through interface where the rights
manager 24 simply forwards the responses it received from
the DRM server 22 to the client 10, in response to the client’s
requests described under item #1 above. The contents of these
responses are described fully in #7.
0050. 9. This is the interface by which the contentis deliv
ered to the client 10 from the CDN 14.
0051 FIG. 6 is a message flow ladder-diagram for one
embodiment of the present invention. It describes the mes
sage flow for device registration and obtaining the rights

Jun. 7, 2012

object containing the content key for playing the content.
FIG. 7 contains another message flow ladder-diagram for an
alternate embodiment where the client 10 is in direct commu
nication with the intervening rights manager 24, which in turn
communicates with DRM server 22.
0.052 FIG. 8 illustrates a work flow for integrating func
tionality of a certificate authority (CA) into the content pro
tection scheme. The work flow consists of the following
steps:
0053 1. Have a server certificate signed by the CA
0054 2. Distribute the application to devices via applica
tion stores
0055 3. Initially, a client 10 authenticates with a server via
SSL via the following:

0056 A. Authentication could be passed through to a
customer authentication server 12

0057 B. The customer authentication server 12
receives an activation code from the CA and passes it to
the client 10

0.058 C. The client 10 uses the activation code (using
tools of a software development kit (SDK) of the CA) to
obtain an encrypted security credential from the CA,
wherein the security credential=(the shared secret, a cre
dential ID, and a creation time)

0059) D. The client 10 sends the credential ID to the
server 12 which is linked to an authentication record

0060 E. The client 10 registers by sending the device
fingerprint to the server 12 and gets a device-specific key

0061 4. For a session, a client 10 is validated as follows:
0062 A. The client uses the CA SDK to dynamically
generate a security code from the security credential and
sends it to the server 12 via SSL

0063 B. The server 12 contacts the CA to validate the
client 10 using the stored credential ID together with the
security code

0.064 C. The server 12 returns the content key
encrypted with the device-specific key

0065 D. In offline mode, the DRM agent of the client 10
will offer protection with an offline timeout that forces
contact with server 12 (which includes protection
against clock tampering as described below)

Anti-Clock Rollback Protection

0.066 Clock rollback is a technique employed to illegally
extend time-based licenses. A user manipulates the clock on
a playback device so that the time-based license expiration is
reached later than it should (or not at all). To detect clock
roll-back, time is sampled on the client device 10 when the
application is registered and every time it starts up, and the
time is stored into the encrypted file. When a player is instan
tiated to play a media item, a separate thread is also started to
monitor the progression of time during playback. The thread
sleeps for a short time period, wakes up, and increments an
elapsed time counter. That elapsed time is added to the last
known local time. Thus, the application always has informa
tion about what the time should be (to an approximation).
This technique can be augmented to include time information
from a server 12.

Rights File Integrity Protection
0067. The rights file (also referred to as rights object
herein) is stored on the client device 10 and contains the
device-specific key and the content-keys encrypted with the

US 2012/O 144195 A1

device-specific key. The rights file itself is encrypted with the
key constructed from the domain key and the unique identifier
of the device. The contents of the file are checksummed and
the checksum itself is stored within the file. When the file is
decrypted, the contents are checksummed again and the com
puted checksum is compared with the checksum stored in the
file to verify that the file has not been tempered with. The
rights file also has a copy protection feature, in a sense that an
outdated copy of the file cannot be written over the fresh copy
without being detected by the DRM Agent. The copy protec
tion is platform-dependent. On the iPhone/iPad platforms,
DRM Agent obtains a unique property of the file and stores it
within the encrypted file. The unique file value is not some
thing that can be controlled at will, it is a property that is
assigned by the operating system. Those skilled in the art may
choose this file property such that copying the file would force
a change in the unique value. On Android the rights file is
stored within the application-specific directory which is pro
tected from other applications and from user access via stan
dard Linux permissions. Furthermore, DRM Agent generates
a random long number and stores it within the encrypted file
as well as within the application-specific directory on the
device. The two numbers are compared when mobile appli
cation starts. On the Blackberry platform, a similar randomly
generated long number is stored inside the encrypted file as
well as within the application-specific persistent secure Stor
age offered by the Blackberry platform.
0068. In the description herein for embodiments of the
present invention, numerous specific details are provided,
Such as examples of components and/or methods, to provide
a thorough understanding of embodiments of the present
invention. One skilled in the relevant art will recognize, how
ever, that an embodiment of the invention can be practiced
without one or more of the specific details, or with other
apparatus, systems, assemblies, methods, components, mate
rials, parts, and/or the like. In other instances, well-known
structures, materials, or operations are not specifically shown
or described in detail to avoid obscuring aspects of embodi
ments of the present invention.
0069. Although the above description includes numerous
specifics in the interest of a fully enabling teaching, it will be
appreciated that the present invention can be realized in a
variety of other manners and encompasses all implementa
tions falling within the scope of the claims herein.
What is claimed is:
1. A system for protecting media items delivered over the

Internet to mobile devices wherein a license to each media
item for a given mobile device is individualized to the given
mobile device.

2. The system of claim 1 wherein the delivery is via seg
mented files over a hypertext transfer protocol.

3. The system of claim 1 wherein the license is also indi
vidualized to a specific user.

4. The system of claim 1 wherein the media item may have
a plurality of representations for different bitrates.

5. The system of claim 4 wherein the player may switch
arbitrarily between bitrates.

6. The system of claim 1 wherein the content is played
offline.

7. A method for protecting content to be delivered to client
devices via a content delivery network, comprising:

creating a media encryption key on a per-media basis dur
ing ingestion of media;

encrypting the media using the media encryption key:

Jun. 7, 2012

pushing the encrypted media to the content delivery net
work for later delivery to client devices.

8. A method according to claim 7, further including per
media configuration of specific distinct encryption ciphers on
a per-media basis.

9. A method according to claim 7, wherein the encryption
ciphers include one or more stream ciphers for which a final
key length is also per-media configurable.

10. A method according to claim 7, wherein encrypting the
media uses one or more encryption ciphers selected from
advanced encryption standard (AES), RC4, HC-128 and
XOR.

11. A method according to claim 10, wherein encrypting
the media includes performing an XOR operation using a key
of a certain length L combined with data of protected content,
the XOR operation comprising:

exclusive-ORing the key with L content bytes starting at a
selected position of the content file;

exclusive-ORing the key with subsequent sets of L con
tent bytes of the content file until all content bytes have
been XOR'ed with the key.

12. A method according to claim 11, wherein the selected
position is a predetermined position at or near a beginning of
the content file.

13. A method according to claim 11, wherein the selected
position in a beginning portion of the content file and chosen
just prior to encrypting the content file.

14. A method according to claim 11, further including:
downloading an encrypted media item to a client device;
decrypting the encrypted media item only during playback

and only in Small quantities necessary for immediate
playback, each Small quantity spanning a range of con
tent bytes determined by operation of a video player
performing the playback and also by user Scrubbing
actions during playback, the Scrubbing actions including
rewinding and fast forwarding, the decrypting further
including receiving a byte range and an offset of a first
byte in the byte range from the beginning of the
encrypted, and computing a mapping between the key
and content bytes which need to be decrypted.

15. A method according to claim 10, wherein encrypting
the media includes performing an HC-128 operation using a
key of a certain length combined with data of protected con
tent, the HC-128 operation comprising:

initializing an HC-128 stream cipher algorithm and gener
ating a stream of bytes of a preconfigured length, the
length being configured on a per-media basis, the initial
ization including setting the value of an initialization
vector employed by the HC-128 stream cipher algorithm
to Zero;

for a first set of content bytes of the preconfigured length,
exclusive-ORing the stream of bytes with the set of
content bytes;

for Subsequent sets of the content bytes, (1) incrementing
the initialization vector, (2) re-initializing the HC-128
stream cipher algorithm with the incremented initializa
tion vector, and (3) repeating the generating of the
stream of bytes and the exclusive ORing the stream of
bytes with the subsequent sets of content bytes until the
entire content file is fully encrypted.

16. A method according to claim 15, further including:
downloading an encrypted media item to a client device;
decrypting the encrypted media item only during playback

and only in Small quantities immediately necessary for

US 2012/O 144195 A1

playback, each Small quantity spanning a range of con
tent bytes determined by operation of a video player
performing the playback and also by user Scrubbing
actions during playback, the Scrubbing actions including
rewinding and fast forwarding, the decrypting further
including (1) receiving a range of bytes located any
where within the media item along with an offset from
the beginning of the media item, (2) identifying one or
more initialization vectors needed to decrypt the bytes,
(3) initializing the HC-128 algorithm using one of the
identified initialization vectors, (4) generates a key
stream, (5) exclusive-ORing the key stream with the
bytes, and (6) repeating the above steps (3), (4) and (5)
using distinct other ones of the initialization vectors for
Subsequent ranges of content bytes as necessary until the
media item is fully decrypted.

17. A method according to claim 10, wherein encrypting
the media includes performing an RC4 operation using a key
of a certain length combined with data of protected content,
the RC4 operation comprising:

initializing an RC4 stream cipheralgorithm and generating
a stream of bytes of a preconfigured length, the length
being configured on a per-media basis, the initialization
including setting the value of an initialization vector
employed by the RC4 stream cipher algorithm to zero;

for a first set of content bytes of the preconfigured length,
exclusive-ORing the stream of bytes with the set of
content bytes;

for Subsequent sets of the content bytes, (1) incrementing
the initialization vector, (2) re-initializing the RC4
stream cipher algorithm with the incremented initializa
tion vector, and (3) repeating the generating of the
stream of bytes and the exclusive ORing the stream of
bytes with the subsequent sets of content bytes until the
entire content file is fully encrypted.

18. A method according to claim 17, further including:
downloading an encrypted media item to a client device;
decrypting the encrypted media item only during playback

and only in Small quantities immediately necessary for
playback, each Small quantity spanning a range of con
tent bytes determined by operation of a video player
performing the playback and also by user Scrubbing
actions during playback, the Scrubbing actions including
rewinding and fast forwarding, the decrypting further
including (1) receiving a range of bytes located any
where within the media item along with an offset from
the beginning of the media item, (2) identifying one or
more initialization vectors needed to decrypt the bytes,
(3) initializing the RC4 algorithm using one of the iden
tified initialization vectors, (4) generates a key stream,
(5) exclusive-ORing the key stream with the bytes, and
(6) repeating the above steps (3), (4) and (5) using dis
tinct other ones of the initialization vectors for subse
quent ranges of content bytes as necessary until the
media item is fully decrypted.

19. A method according to claim 10, wherein encrypting
the media includes performing an AES operation using a key
of a certain length combined with data of protected content,
the AES operation comprising:

randomly generating AES encryption keys on a per-media
basis at the time of ingestion of the media;

representing the media as multiple segments having corre
sponding sequence numbers;

establishing distinct initialization vectors for the segments;

Jun. 7, 2012

performing an AES encryption algorithm on each segment
using the respective initialization vector, the AES
encryption algorithm including cipher block chaining
within each segment and not spanning multiple seg
mentS.

20. A method according to claim 19, further including:
downloading an encrypted media item to a client device;
decrypting the encrypted media item using a native player

of the client device, the native player having access to a
playlist specifying a content decryption key, the playlist
being served from a local HTTP server executing on the
client device, the key being delivered to the client device
from a digital rights management server via an
encrypted message.

21. A method for delivering protected content to a client
device, comprising:

registering the client device;
obtaining the license for use of the protected content;
decrypting the protected content; and
playing the decrypted content using a player of the client

device.
22. The method of claim 21, further including detecting

clock roll-back by use of a DRM agent executing on the client
device to:

monitor a local clock to ensure that a time reported by the
local clock is continuously incrementing:

at a time of starting a playback application, sampling the
time and comparing it to a last known time stored in an
encrypted rights file on the client device; and

employing a separate thread which wakes up at regular
intervals as playback proceeds and (1) keeps track of
elapsed playback time, (2) adding the elapsed playback
time to the previously sampled local time on the client
device, and (3) writing the result to the encrypted file.

23. The method of claim 21, further including detecting
content expiration by:

maintaining rights information including an expiration
time and/or maximum play count in association with
each media item, the right information being received
from a digital rights management (DRM) server in an
encrypted form, and storing the rights information in an
encrypted file on the client device;

upon initiating playback of the media item, employing a
DRM agent on the client device to determine whether
the media item has expired by comparing a current time
on the client device to the expiration time of the media,
and/or comparing the maximum play count to a stored
actual play count, the DRM Agent ensuring that clock
rollbacks on the client device are detected and disallow
ing media playback if time is not steadily incrementing,
the DRM Agent executing a separate thread, in parallel
with a thread performing playback Such that the media
item can expire not only upon initiating playback but
also during playback.

24. The method of claim 21, further including
uniquely identifying the client device using a unique physi

cal device identifier, the unique physical device identi
fier being obtained from the client device using an appli
cation programming interface offered by an execution
environment of the client device, the unique physical
device identifier being encrypted with a domain secret
and stored in an encrypted file on the client device and
also sent to a digital rights management (DRM) server
via an encrypted message, the encrypted unique physi

US 2012/O 144195 A1 Jun. 7, 2012
7

cal device identifier being stored by the DRM server in a 26. The method of claim 24, further comprising:
database of registered client devices and being mapped combining the unique physical device identifier with a
to a unique logical device identifier representing a user domain key to generate a device-specific key to encrypt
of the client device, the unique logical device identifier a rights file stored on the client device and containing
being sent encrypted with the domain secret. content decryption keys used to decrypt the protected

25. The method of claim 24, wherein the unique physical COntent.
device identifier is selected from an IMEI number, an MEID,
an ESN and a UDID. ck

