PCT

land, MI 48640 (US).

(74) Agent: RUSSELL, H., David; The Dow Chemical Company, P.O. Box 1967, Midland, MI 48641-1967

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 85/ 05355 (51) International Patent Classification 4: (11) International Publication Number: **A1** (43) International Publication Date: 5 December 1985 (05.12.85) C07C 39/17, 51/09 (81) Designated States: AU, BE (European patent), CH (Eu-PCT/US85/00939 (21) International Application Number: ropean patent), DE (European patent), FR (European patent), GB (European patent), IT (European 20 May 1985 (20.05.85) (22) International Filing Date: patent), JP, NL (European patent). (31) Priority Application Number: 612,164 Published 21 May 1984 (21.05.84) With international search report. (32) Priority Date: (33) Priority Country: (71) Applicant: THE DOW CHEMICAL COMPANY [US/ US]; 2030 Dow Center, Abbott Road, Midland, MI 48640 (US). (72) Inventor: SO, Ying-Hung; 1524 Dilloway Drive, Mid-

(54) Title: A PROCESS FOR THE PREPARATION OF CYCLOBUTENE-SUBSTITUTED AROMATIC HYDRO-CARBONS

(57) Abstract

Process for the preparation of an aromatic hydrocarbon with a cyclobutene ring fused to the aromatic hydrocarbon which comprises, dissolving an ortho-alkyl halomethyl aromatic hydrocarbon in an inert solvent and pyrolyzing the solution of ortho-alkyl halomethyl aromatic hydrocarbon in the inert solvent under conditions such that the ortho-alkyl and the halomethyl substituents form a cyclobutene ring thereby forming an aromatic hydrocarbon having a fused cyclobutene ring. The ortho-alkyl group has the structural formula $(R')_2$ -CH-, wherein R' is separately in each occurance hydrogen or a C_{1-20} alkyl. The aromatic hydrocarbons with a cyclobutene ring fused to the aromatic hydrocarbon are useful in the preparation of monomers, which are then useful in the preparation of high performance polymers.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	GA	Gabon	- MR	Mauritania
AU	Australia	GB	United Kingdom	MW	Malawi
BB	Barbados	HU	Hungary	NL	Netherlands
BE	Belgium	rr	Italy	NO	Norway
BG	Bulgaria	JP	Japan	RO	Romania
BR	Brazil	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SN	Senegal
CH	Switzerland	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
DK	Denmark	MC	Мопасо	US	United States of America
FI	Finland	MG	Madagascar		
FR	France	ML	Mali		

A PROCESS FOR THE PREPARATION OF CYCLOBUTENE-SUBSTITUTED AROMATIC HYDROCARBONS

This invention relates to a process for the preparation of aromatic hydrocarbons with cyclobutene rings fused thereto.

Aromatic hydrocarbons with cyclobutene rings

fused thereto are useful in the preparation of monomers,
which are useful in the preparation of high performance
polymers. These high performance polymers are useful
as films, moldable compositions, adhesives, and in the
preparation of composites.

10 Processes for the preparation of aromatic hydrocarbons with cyclobutene rings fused thereto suffer from two major problems. The first problem is that such synthesis involves complex multi-step sequences. Furthermore, some processes result in low yields of the desired product.

What is needed is a process for the preparation of cyclobutene-substituted aromatic hydrocarbons

which is simple and results in high yields of said hydrocarbons.

The invention is a process for the preparation of an aromatic hydrocarbon with a cyclobutene ring fused to the aromatic hydrocarbon which comprises, dissolving an ortho alkyl halomethyl aromatic hydrocarbon in an inert solvent and pyrolyzing the solution of ortho-alkyl halomethyl aromatic hydrocarbon in the inert solvent under conditions such that the ortho-alkyl and the halomethyl substituents form a cyclobutene ring thereby 10 forming an aromatic hydrocarbon having a fused cyclobu-The ortho-alkyl group having the structural tene ring. formula $(R')_2$ -CH-, where R' is separately in each occurance hydrogen or a C_{1-20} alkyl, preferably hydrogen or C_{1-3} alkyl, and most preferably hydrogen. 15

This process results in a one-step preparation of cyclobutene-substituted aromatic hydrocarbons in which the hydrocarbons are prepared in high yields.

The starting materials for this process include
any aromatic hydrocarbon which has a (R')₃-CH- alkyl
group and a halomethyl group ortho to one another. Preferred aromatic hydrocarbons include benzene, naphthalene, phenanthracene, anthracene, biphenyl, binaphthyl,
or a diaryl alkane. More preferred aromatic hydrocarbons
include benzene, naphthalene, biphenyl, binaphthyl, or a
diphenylalkane. The most preferred aromatic hydrocarbon
is benzene.

The R' substituent of the $(R')_2$ -CH- group is preferably hydrogen or a C_{1-3} alkyl and more preferably hydrogen. The halomethyl hydrocarbon is preferably bromomethyl or chloromethyl.

The aromatic hydrocarbon can be further substi-5 tuted with one or more of the following substituents: carbonyloxyhydrocarbyl, oxycarbonylhydrocarbyl, carboxyamide, carboxy, carbonylhalo, cyano, nitro, hydroxy, hydrocarbyloxy, or halo group. It is preferable that the aromatic hydrocarbon be substituted with one or more of 10 such substituents. Preferred substituents are carbonyloxyhydrocarbyl, oxycarbonylhydrocarbyl, carboxamide, carboxy, carbonylhalo, nitro, or hydrocarbyloxy. More preferred substituents are carbonyloxyhydrocarbyl, oxycarbonylhydrocarbyl, carboxamide or oxyhydrocarbyl. 15 more preferred substituents are the carbonyloxyalkyl hydrocarbons with carbonyloxymethyl being most preferred.

In one preferred embodiment wherein the aromatic hydrocarbon is benzene the starting materials correspond to the following formula

CH₂X

 $(R^2)_z$

25

WO 85/05355 PCT/US85/00939

4 ---

wherein

5

 R^1 is separately in each occurrence hydrogen or C_{1-20} alkyl; and

R² is separately in each occurrence carbonyl-oxyhydrocarbyl, oxycarbonylhydrocarbyl, carboxamide, carboxylate, carbonylhalo, cyano, nitro, hydroxy, hydrocarbyloxy or halo;

X is chloro or bromo; and a is an integer of between 0 and 4 inclusive.

10 Examples of preferred starting reactants include: ortho-methylchloromethylbenzene, ortho-ethylchloromethylbenzene, ortho-propylchloromethylbenzene, ortho--butylchloromethylbenzene, ortho-pentylchloromethylbenzene, ortho-hexylchloromethylbenzene, 3- or 4-methoxy 15 ortho-methylchloromethylbenzene, 3- or 4-methoxy orthoethylchloromethylbenzene, 3- or 4-methoxy ortho-propylchloromethylbenzene, 3- or 4-methoxy ortho-butylchloromethylbenzene, 3- or 4-ethoxy ortho-methylchloromethylbenzene, 3- or 4-ethoxy ortho-ethylchloromethylbenzene, 3- or 4-ethoxy ortho-propylchloromethylbenzene, 3- or 20 4-ethoxy ortho-butylchloromethylbenzene, 3- or 4-propoxy ortho-methylchloromethylbenzene, 3- or 4-propoxy ortho--ethylchloromethylbenzene, 3- or 4-propoxy ortho--propylchloromethylbenzene, 3- or 4-propoxy ortho-butylchloromethylbenzene, 3- or 4-butoxy ortho-methylchloro-25 methylbenzene, 3- or 4-butoxy ortho-ethylchloromethylbenzene, 3- or 4-butoxy ortho-propylchloromethylbenzene, 3- or 4-butoxy ortho-butylchloromethylbenzene, 3- or 4-pentoxy ortho-methylchloromethylbenzene, 3- or 4-pentoxy ortho-ethylchloromethylbenzene, 3- or 4-pentoxy 30

ortho-propylchloromethylbenzene, 3- or 4-hexoxy orthomethylchloromethylbenzene, 3- or 4-hexoxy ortho-ethylchloromethylbenzene, 3- or 4-hexoxy ortho-propylchloromethylbenzene, 3- or 4-hexoxy ortho-butylchloromethylbenzene, methyl 3,4-ortho-methylchloromethylbenzoate, 5 methyl 3,4-ortho-ethylchloromethylbenzoate, methyl 3,4ortho-propylchloromethylbenzoate, methyl 3,4-orthobutylchloromethylbenzoate, ethyl 3,4-ortho-methylchloromethylbenzoate, ethyl 3,4-ortho-ethylchloromethylbenzoate, ethyl 3,4-ortho-propylchloromethylbenzoate, ethyl 10 3.4-ortho-butylchloromethylbenzoate, propyl 3,4-orthomethylchloromethylbenzoate, propyl 3,4-ortho-ethylchloromethylbenzoate, propyl 3,4-ortho-propylchloromethylbenzoate, propyl 3,4-ortho-butylchloromethylbenzoate, butyl 3,4-ortho-methylchloromethylbenzoate, butyl 3,4-15 ortho-ethylchloromethylbenzoate, butyl 3,4-ortho-propylchloromethylbenzoate, butyl 3,4-ortho-butylchloromethylbenzoate, pentyl 3,4-ortho-methylchloromethylbenzoate, pentyl 3,4-ortho-ethylchloromethylbenzoate, pentyl 3,4-ortho-propylchloromethylbenzoate, pentyl 3,4-ortho-20 -butylchloromethylbenzoate, hexyl 3,4-ortho--methylchloromethylbenzoate, hexyl 3,4-ortho-ethylchloromethylbenzoate, hexyl 3,4-ortho-propylchloromethylbenzoate, hexyl 3,4-ortho-butylchloromethylbenzoate, benzyl 3,4ortho-methylchloromethylbenzoate, benzyl 3,4-ortho-25 -ethylchloromethylbenzoate, benzyl 3,4-ortho-propylchloromethylbenzoate, benzyl 3,4-ortho-butylchloromethylbenzoate, phenyl 3,4-ortho-methylchloromethylbenzoate, phenyl 3,4-ortho-ethylchloromethylbenzoate, phenyl 3,4-orthopropylchloromethylbenzoate, and phenyl 3,4-ortho-butyl-30 chloromethylbenzoate. For the preferred starting reactants, the butyl groups are selected from normal, iso or secondary butyl groups, but not tertiary butyl groups.

In one even more preferred embodiment, the starting material is methyl 3,4-ortho-methylchloromethylbenzoate.

The product prepared by the process of this
invention is an aromatic hydrocarbon with a cyclobutene
ring fused to one of the rings of the aromatic hydrocarbon. The preferred aromatic hydrocarbons are described
hereinbefore. The product can be substituted as described
hereinbefore.

In one preferred embodiment, wherein the aromatic hydrocarbon is benzene the products correspond generally to the formula

$$(R^1)_2$$

$$(R^2)_a$$

20

wherein R^1 , R^2 and a are as defined hereinbefore.

Among preferred classes of aromatic hydrocarbons with cyclobutene rings fused thereto include cyclobutabenzene (bicyclo(4.2.0)octa-1,3,5,7-tetraene) 1-alkyl-cyclobutabenzenes, hydrocarbyl cyclobutabenzoate, hydrocarbyl 1-alkylcyclobutabenzoate, hydrocarboxy cyclobutabenzene, hydrocarboxy 1-alkylcyclobutabenzene, cyclobutabenzamides, and 1-alkylcyclobutabenzamides. Even more preferred classes include alkyl cyclobutabenzoates, cyclobutabenzamides, and alkoxy cyclobutabenzenes.

25

30

Examples of some preferred aromatic hydrocarbons with fused cyclobutene rings include methylcyclobutabenzene, ethylcyclobutabenzene, propylcyclobutabenzene, butylcyclobutabenzene, pentylcyclobutabenzene, hexylcyclobutabenzene, benzylcyclobutabenzene, phenylcyclobutaben-5 zene, methyl cyclobutabenzoate, ethyl cyclobutabenzoate, propyl cyclobutabenzoate, butyl cyclobutabenzoate, pentyl cyclobutabenzoate, hexyl cyclobutabenzoate, benzyl cyclobutabenzoate, phenyl cyclobutabenzoate, methoxycyclobutabenzene, ethoxycyclobutabenzene, propoxycyclobutabenzene, 10 butoxycyclobutabenzene, pentoxycyclobutabenzene, hexoxycyclobutabenzene, benzoxycyclobutabenzene, phenoxycyclobutabenzene, N-methylcyclobutabenzamide, N-ethylcyclobutabenzamide, N-propylcyclobutabenzamide, N-butylcyclobutabenzamide, N-pentylcyclobutabenzamide, N-hexylcyclobu-15 tabenzamide, N-benzylcyclobutabenzamide, and N-phenylcyclobutabenzamide.

Examples of even more preferred aromatic hydrocarbons with cyclobenzene rings fused thereto are methyl cyclobutabenzoate, ethyl cyclobutabenzoate, propyl cyclobutabenzoate, pentyl cyclobutabenzoate, and hexyl cyclobutabenzoate.

In one of the most preferred embodiments the aromatic hydrocarbon with a cyclobutene ring fused thereto is methyl cyclobutabenzoate.

Hydrocarbyl means herein an organic moiety containing carbon and hydrogen atoms. The term hydrocarbyl includes the following organic moieties: alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, aliphatic and cycloaliphatic aralkyl and alkaryl. Aliphatic refers herein to straight- and branched-, and

25

saturated and unsaturated, hydrocarbon chains, that is, alkyl, alkenyl or alkynyl. Cycloaliphatic refers herein to saturated and unsaturated cyclic hydrocarbons, that is cycloalkenyl and cycloalkyl. The term aryl refers herein 5 to biaryl, biphenylyl, phenyl, naphthyl, phenanthranyl, anthranyl and two aryl groups bridged by an alkylene group. Alkaryl refers herein to an alkyl-, alkenyl- or alkynyl-substituted aryl substituent wherein aryl is as defined hereinbefore. Aralkyl means herein an alkyl, 10 alkenyl or alkynyl group substituted with an aryl group, wherein aryl is as defined hereinbefore. C_{1-20} alkyl includes straight- and branched-chain methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, penta-15 decyl, hexadecyl, heptadecyl, octadecyl, nonadecyl and eicosyl groups.

Cycloalkyl refers to alkyl groups containing one, two, three or more cyclic rings. Cycloalkenyl refers to mono-, di- and polycyclic groups containing one or more double bonds. Cycloalkenyl also refers to cycloalkenyl groups wherein two or more double bonds are present.

Hydrocarbylcarbonyloxy refers to a substituent in which a hydrocarbyl moiety is bonded to a carbonyl moiety which is further bonded to an oxygen atom and includes substituents which correspond to the formula

Hydrocarbylcarbonyl refers herein to a substituent which is a hydrocarbyl moiety bonded to a carbonyl moiety and includes substituents which correspond to the formula

5

0 2". R²C.

Hydrocarbyloxycarbonyl refers herein to a substituent in which a hydrocarbyl moiety is bonded to an oxygen atom which is further bonded to a carbonyl moiety and includes substituents which correspond to the formula

15

o R²oč-

The term carboxamide refers to a substituent which corresponds to the formula

20

wherein R² is a hydrocarbyl moiety.

The term carbonylhalo refers to a substituent which corresponds to the formula

0 -CX

wherein X is a halogen.

5 The term carboxy refers herein to a substituent which corresponds to the formula

о -сон

The term hydrocarbyloxy refers herein to a substituent which corresponds to the formula

 R^2-0-

wherein R² is a hydrocarbyl moiety....

In the process of this invention the ortho
alkyl halomethyl aromatic hydrocarbon is dissolved in
an inert solvent, and thereafter pyrolyzed to form a
cyclobutene ring. Dissolving the aromatic hydrocarbon
in a suitable solvent is critical to the invention, as
this allows the preparation of the aromatic hydrocarbon
with the cyclobutene ring fused thereto in high yields.

In general suitable solvents are those which dissolve the ortho alkyl halomethyl aromatic hydrocarbons and which are stable at pyrolysis conditions. Preferable

10

25

solvents include benzene, substituted benzenes, biphenyl or substituted biphenyls. Preferred solvents are benzene, toluene, xylene, chlorobenzenes, nitrobenzenes, alkylbenzoates, phenylacetates, or diphenylacetates. The most preferred solvent is xylene.

In general the ratio of solvent to the starting material, the ortho-alkyl halomethyl aromatic hydrocarbon, is such that the starting material is dissolved and results in an acceptable yield of products. It is preferable that the ratio of solvents to starting material be at least 2:1. Preferable solvent to starting material ratios are between 2:1 and 10:1; and more preferred, between 3:1 and 4:1.

During the pyrolysis the starting material

dissolved in solvent is exposed to temperatures at which
the ortho-alkyl halomethyl aromatic hydrocarbon eliminates
a hydrogen halide and forms a cyclobutene ring. Suitable
temperatures are those at which this takes place.

Preferable temperatures are 550°C or greater. More

preferred temperatures are between 550°C and 750°C, with
between 700°C and 750°C being most preferred.

The pyrolysis can take place at any pressure at which good yields of the aromatic hydrocarbons with cyclobutene rings fused thereto are prepared. Preferable pressures are between 760 mm and 10 mm of mercury (101.3 and 1.3 kPa). More preferred pressures are between 25 mm and 75 mm of mercury (3.3 and 10.0 kPa), with between 25 mm and 35 mm of mercury (13.3 and 4.7 kPa) being most preferred.

WO 85/05355 PCT/US85/00939

12

In one preferred embodiment the pyrolysis takes place by flowing a solution of the ortho alkyl halomethyl aromatic hydrocarbon through a hot tube reactor at the pyrolysis temperatures. In this embodiment is preferred to pack the hot tube with a packing material. Any packing material which is inert to the reactants and stable to the reaction conditions is suitable, examples include quartz chips and stainless steel helices.

5

of the materials after pyrolysis. In the embodiment wherein a low boiling solvent is used, the solvent comes off in the first cut of a distillation while the product comes off in the second cut. The starting material is usually left as a residual material in the distillation pot and can thereafter be recycled. When high boiling solvents such as biphenyl, substituted biphenyls or diphenylacetates are used, the product is distilled out and the starting material left in the solvent is recycled.

This process generally results in the preparation of cyclobutene fused aromatic hydrocarbons with a yield of about 40 percent, in more preferred embodiments the yield is about 50 percent.

The following examples are included for illustrative purposes only, and do not limit the scope of the claims or the invention.

The experimental setup is a quartz tube packed with quartz chips. The central portion of the tube is placed in a furnace. A 250 millimeter portion of the 5 tube above the furnace serves as a preheating zone and the temperature in the middle of such preheating zone is between 250°C and 300°C. Attached to the top of the tube is an addition funnel. Attached to the bottom portion of the tube are cold traps and a means for pulling a vacuum 10 on the tube. Methyl 3-(chloromethyl)-4-methylbenzoate (50 g) is dissolved in 200 g of ortho xylene and placed in the addition funnel. The furnace is heated up to 730°C. A vacuum pump is turned on and pressure is adjusted to 25 mm of mercury (3.3 kPa). The solution of 15 methyl 3-(chloromethyl)-4-methylbenzoate is added dropwise for a period of 1 hour and 15 minutes. Product and unreacted starting material are collected in cold traps. The pyrolytic tube is flushed with 200 ml of acetone after a cooling down period. The acetone solution is 20 combined with the ortho-xylene solution collected in the cold traps. Acetone and ortho-xylene are distilled off with a 16-inch Vigreaux column under normal pressure. When most of the ortho-xylene is distilled, the system is brought to 0.5 mm mercury (67 Pa) and 15.5 g of pure 25 methyl 3,4-cyclobutabenzoate is collected at 61°C. The residue left in the distillation pot is methyl 3-(chloromethyl)-4-methylbenzoate, 23 g.

Experimental Procedure Examples 2-12

A quartz tube packed with quartz chips is placed in an electric furnace such that a 120 mm portion

WO 85/05355 PCT/US85/00939

14

above the furnace serves as a preheating zone, the temperature of which is 250°C. At the top of the quartz tube is inserted an addition funnel. The quartz tube is connected at the bottom to cold traps and a vacuum pump or water aspirator.

A furnace is heated to the desired temperature as indicated by the thermal couple inside a thermal well extended to the middle of the heated zone. Vacuum is then applied. The solution in the addition funnel is then added. The products and unreacted starting material are collected by the cold traps. Product yields are determined by gas chromatography. The material in the addition funnel is the starting material dissolved in ortho-xylene or toluene.

15 Examples 2-5

5

10

20

In Examples 2-5 the ratio of solvent to starting material is varied. The results are contained in Table I. Table I shows that the pyrolysis of methyl 3-(chloromethyl)--4-methylbenzoate using a solvent to starting material ratio of between 21 and 4 results in good selectivity and yield. The selectivity and material balance goes down when the ratio of solvent to starting material is only 2.

TABLE I

Material Balance ⁶	68	86	.88	71
<u>Yield</u> 5	45	32	31	37
Selectivity4	79	70	69	55
Conversion ³	57	46	45	99
Addition ² Rate ml/min.	2.5	3.0	3:0	2,5
Diluent ¹ Substrate	21.0	5.5	4.0	2.0
Temp	730	725	725	730
Experiment	7	က	4	ιΩ

¹Ratio of diluent (solvent) to substrate.

²Addition rate of diluent and substrate to the pyrolysis tube.

 3 Conversion refers to the mole percent of reactants converted to products and by-products. ⁴Selectivity refers to the mole percent of the desired product recovered compared to the total products and by-products.

⁵Yield refers herein to mole percent of the desired product compared to the total reactants fed. ⁶Material balance is the mole percent of the unreacted reactant and desired product compared to the total reactants fed to the reactor.

Examples 6-8

The pressures were varied for the pyrolysis of methyl 3-(chloromethyl)-4-methylbenzoate. The results are contained in Table II. Table II demonstrates that lower reaction pressures result in better yields of product.

TABLE II

	Material		89.0	72.0	58.5
		Yield ⁵	45.0	23.5	28.0
		Selectivity4	79	46	40
		Conversion ³	57	51	70
Addition2	Rate	ml/min.	2.5	2.5	2.5
	Diluent1	Substrate	21	24	06
		(၁)	730	200	715
	Pressure	Hg (kPa)	25 (3.3)	150 (20.0)	150 (20.0)
	P.		7	12(15(
	,	Experiment	9	7	œ

'Ratio of diluent (solvent) to substrate.

²Addition rate of diluent and substrate to the pyrolysis tube.

³Conversion refers to the mole percent of reactants converted to products and by-products. 4Selectivity refers to the mole percent of the desired product recovered compared to the total products and by-products.

⁵Yield refers herein to mole percent of the desired product compared to the total reactants fed. ⁶Material balance is the mole percent of the unreacted reactant and desired product compared to the total reactants fed to the reactor.

Examples 9-12 - Pyrolysis of 2-chloromethyl-1-methyl-benzene and methyl 3-(halomethyl)-4--methylbenzoate

In Examples 9-12, 2-chloromethyl-1-methylben-5 zene and methyl 3-(chloromethyl)-4-methylbenzoate are pyrolyzed. The results are contained in Table III.

TABLE III

				19		
Material Balance ⁴	80	82		41	72	
<u>Yield³</u>	37.0	26.5		30.0	23.5	
Selectivity ²	65	63		34	46	
Conversion1	57	42		68	51	
Pressure (kPa)	25-35	25-35	here or a co	150-175 (20.0-23.3)	150-175	(20.0-23.3)
Temp	710	710		700	700	
Reactant		CI	co_2 cH $_3$	ฮ	CI	co_2 CH $_3$
Experiment	o	10		11	12	

¹Conversion refers to the mole percent of reactants converted to products and by-products. ²Selectivity refers to the mole percent of the desired product recovered compared to the total products and by-products.

 3 Yield refers herein to mole percent of the desired product compared to the total reactants fed. ⁴Material balance is the mole percent of the unreacted reactant and desired product compared to the total reactants fed to the reactor.

WHAT IS CLAIMED IS:

- 1. A process for the preparation of an aromatic hydrocarbon with a cyclobutene ring fused to the aromatic hydrocarbon which comprises, dissolving an ortho-alkyl halomethyl aromatic hydrocarbon in an inert solvent and pyrolyzing the solution of ortho-alkyl halomethyl aromatic hydrocarbon in the inert solvent under conditions such that the ortho-alkyl and the halomethyl substituents form a cyclobutene ring thereby forming an aromatic hydrocarbon having a fused cyclobutene ring. The ortho-alkyl group having the structured formula (R!)₂-CH-, wherein R' is separately in each occurance hydrogen or a C₁₋₂₀ alkyl.
- 2. The process of Claim 1 wherein the weight ratio of solvent to the ortho alkyl halomethyl aromatic hydrocarbon is at least 2:1.
- 3. The process of Claim 1 wherein the solvent is benzene, a substituted benzene, diphenyl or a substituted diphenyl.

- 4. The process of Claim 3 wherein the solvent is a benzene, toluene, xylene, a chlorobenzene, nitrobenzene, alkyl benzoate, phenylacetate, or diphenylacetate.
- 5. The process of Claim 1 wherein the pyrolysis is conducted at a temperature of 550°C or greater.
- 6. The process of Claim 5 wherein the pyrolysis is conducted at a pressure between 10 and 760 mm Hg (1.3 and 101.3 kPa).
- 7. The process of Claim 7 wherein the pressure is between 25 and 75 mm Hg (3.3 and 10.0 kPa).
- 8. The process of Claim 8 wherein the aromatic radical of the substituted aromatic hydrocarbon is benzene, naphthalene, phenanthracene, anthracene, biphenyl, binaphthyl or a diarylalkane.
- 9. The process of Claim 1 wherein the ortho--alkyl halomethyl aromatic hydrocarbon corresponds to the formula

CH₂X

$$(R^2)_a$$

and the aromatic hydrocarbon with a fused cyclobutene ring corresponds to the formula

 $(R^1)_2$

 $(R^2)_a$

wherein

 ${\tt R}^1$ is separately in each occurrence hydrogen or ${\tt C}_{1-20}$ alkyl; and

R² is separately in each occurrence carbonyl-oxyhydrocarbyl, oxycarbonylhydrocarbyl, carboxamide, carboxy, carbonylhalo, cyano, nitro, hydroxy, hydrocarbyloxy or halo;

X is chloro or bromo; and a is an integer of between 0 and 4, inclusive.

10. The process of Claim 9 wherein R^1 is hydrogen or C_{1-3} alkyl; R^2 is carbonyloxyhydrocarbyl, oxycarbonylhydrocarbyl, carboxamide, carboxy; carbonylhalo, nitro or hydrocarbyloxy; X is chlorine; and a is 1.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US85/00939

			ternational Application No	
CLASS	SIFICAT	ON OF SUBJECT MATTER (if several classificati ational Patent Classification (IPC) or to both National	on symbols apply, indicate all) ³ Classification and IPC 3	
co7C	39/17	, 51/09		
I. FIELD	S SEAR	CHED		
		Minimum Documentation		
lassificati	on Systen		sification Symbols	
σ.	s.	260/1,8,80,108,138,41 560/405,488;562/153,1	55,1/2;5/0/129,14	F,L,P; 3,182,183;
		Documentation Searched other than to the Extent that such Documents are	Minimum Documentation Included in the Fields Searched 5	
		CONSTRUCTOR OF DELEVANTIA		
III. DOCU	MENTS	CONSIDERED TO BE RELEVANT 14 ation of Document, 16 with indication, where appropri	ate, of the relevant passages 17	Relevant to Claim No. 18
Y	<u> </u>	Journal of the American Society, Vol. 91 No. 27 A.G. Louden et al. "Gas- tions. XI. The pyrolys o-xylene"	<u>Chemical</u> December 1969 Phase Elimina-	1-16
Y	N	Tetrahedron Letters, No. Schiess et al "Preparati cyclobutenes by Flash Va	OII OI BEILLO	1-16
Y	N	Tetrahedron Letters, No. Boekelheide et al, "The cyclobutenes as Intermed Synthesis of Multibridge	1-16	
Y	N	Pyrolytic Methods in Org Brown, Academic Press, N pages 105-6	anic Chemistry,	1-16
* Specia	al categor	les di cited documents.	'T" later document published after to priority date and not in confli	ict with the application ou
"E" ear filir "L" doc whi cita	nsidered to lier document would in cite is cite in cin cite in	nich may throw doubts on priority claim(s) or	cited to understand the principl invention 'X" document of particular relevan cannot be considered novel or involve an inventive step 'Y" document of particular relevan cannot be considered to involve document is combined with one ments, such combination being	e or theory underlying the cannot be considered to ce; the claimed inventior an inventior are other such docu-
oth "P" doc late	er means cument pu or than th	blished prior to the international filing date but a priority date claimed	in the art. '&" document member of the same	
IV. CERT			ate of Mailing of this International Sc	earch Report ²
17	July	1985	0 1 AUG 198	35
	nal Searc	ning Authority ¹ J	ignature of Authorized Officer of Sullivan	Paul

FURTHER INFORMATION CONTINUED FROM THE FIRST SHEET (Not for publication)

The formulas in the specification are incomplete; see page 3, line 21 and page, 6, line 13.

The formulas in claim 9 are incomplete. Applicants have to drawn in the rings.