发明名称
车载后视镜及其切换安全模式的方法

摘要
本发明适用于车辆技术领域，提供了一种车载后视镜及其切换安全模式的方法。所述方法包括：检测所述车载后视镜预设的第一条件是否满足；当所述第一条件满足时，所述车载后视镜从当前的系统模式切换至预设的安全模式。本发明提供的车载后视镜及其切换系统模式的方法提高了用户驾驶的安全性。
1. 一种车载后视镜切换安全模式的方法，其特征在于，所述方法包括：
检测所述车载后视镜预设的第一条件是否满足；
当所述第一条件满足时，所述车载后视镜从当前系统模式切换至预设的安全模式。
2. 如权利要求1所述的方法，其特征在于，所述预设的第一条件包括车速、车内亮度、
预定的时间和/或后视镜是否上电。
3. 如权利要求1或2所述的方法，其特征在于，所述安全模式为启动某一预置的应用、
关闭显示器、保存所述车载后视镜内存的导航数据和/或关闭导航功能。
4. 如权利要求1或2所述的方法，其特征在于，在执行所述进入安全模式之后，还包括：
当预设的第二条件满足时，所述车载后视镜恢复切换前的系统模式。
5. 如权利要求4所述的方法，其特征在于，所述切换前的系统模式为导航开启、显示器开启和/或数据网络开启。
6. 一种车载后视镜，其特征在于，包括：
检测模块，用于检测所述后视镜预设的第一条件是否满足；
切换模块，用于当所述第一条件满足时，所述车载后视镜从当前的系统模式切换至预
置的安全模式。
7. 如权利要求6所述的车载后视镜，其特征在于，所述预设的第一条件包括车速、车
内亮度、预定的时间和/或后视镜是否上电。
8. 如权利要求6或7所述的方法，其特征在于，所述安全模式为启动某一预置的应用、
关闭显示器、保存所述车载后视镜内存的导航数据和/或关闭导航功能。
9. 如权利要求6或7所述的方法，其特征在于，还包括：
恢复模块，用于当预设的第二条件满足时，所述车载后视镜恢复切换前的系统模式。
10. 如权利要求9所述的方法，其特征在于，所述切换前的系统模式为导航开启、显示
器开启和/或数据网络开启。
车载后视镜及其切换安全模式的方法

技术领域
[0001] 本发明属于车辆技术领域，尤其涉及一种车载后视镜及其切换安全模式的方法。

背景技术
[0002] 随着车辆的日益普及，以及车辆领域的技术的不断发展和成熟，车辆具备的功能越来越丰富。以导航为例，目前车载导航仪已经被普遍使用，已经出现结合导航功能的后视镜，即在需要时，为用户提供导航；而在不需要导航时，仍作为正常的反射后视镜使用。目前，这样的后视镜在导航功能开启时，如要暂停导航功能只能用手动操作后视镜的屏幕，这样的操作在用户驾驶时会存在不安全因素。

发明内容
[0003] 本发明实施例的目的在于提供一种车载后视镜及其切换安全模式的方法，旨在解决现有的车载后视镜在驾驶过程中的安全问题。
[0004] 本发明实施例是这样实现的，一种车载后视镜切换安全模式的方法，所述方法包括：
 检测所述车载后视镜预设的第一条件是否满足；
 当所述第一条件满足时，所述车载后视镜从当前系统模式切换至预置的安全模式。
[0005] 进一步地，所述预设的第一条件包括车速、车内亮度、预定的时间和/或后视镜是否上电。
[0006] 进一步地，所述安全模式为启动某一预置的应用，关闭显示器，保存所述车载后视镜内存的导航数据和/或关闭导航功能。
[0007] 进一步地，在执行所述进入安全模式之后，还包括：
 当预设的第二条件满足时，所述车载后视镜恢复切换前的系统模式。
[0008] 进一步地，所述切换前的系统模式为导航开启，显示器开启和/或数据网络开启。
[0009] 本发明还提出一种车载后视镜，包括：
 检测模块，用于检测所述后视镜预设的第一条件是否满足；
 切换模块，用于当所述第一条件满足时，所述车载后视镜从当前的系统模式切换至预置的安全模式。
[0010] 进一步地，所述预设的第一条件包括车速、车内亮度、预定的时间和/或后视镜是否上电。
[0011] 进一步地，所述安全模式为启动某一预置的应用，关闭显示器，保存所述车载后视镜内存的导航数据和/或关闭导航功能。
[0012] 进一步地，所述车载后视镜还包括：
 恢复模块，用于当预设的第二条件满足时，所述车载后视镜恢复切换前的系统模式。
[0013] 进一步地，所述切换前的系统模式为导航开启，显示器开启和/或数据网络开启。
[0014] 在本发明实施例中，车载后视镜可在满足一定条件的情况下自动切换至安全模
式，减少了用户在驾驶过程中的干扰，用户可集中注意力于驾驶，大大提高了车辆驾驶的安全性。

附图说明
[0015] 图 1 是本发明实施例一提供的车载后视镜切换系统模式的方法的流程图；
图 2 是本发明实施例二提供的车载后视镜的结构图。

具体实施方式
[0016] 为了使本发明的目的、技术方案及优点更加清楚明白，以下结合附图及实施例，对本发明进行进一步详细说明。应当理解，此处所描述的具体实施例仅仅用以解释本发明，并不用于限定本发明。
[0017] 实施例一
本发明实施例一提出一种车载后视镜切换安全模式的方法。如图 1 所示，本发明实施例一的方法包括如下步骤：
步骤 S1，车载后视镜上电，车载后视镜进入默认的系统模式。车辆后视镜可设置多个系统模式，如针对不同的用户设置不同的系统模式，每个系统模式下具有对应的一组系统参数。如用户当前的系统模式可以是显示器开启和/或导航开启，如该车辆后视镜还包括数据网络功能、语音通话功能等，也可设置数据网络功能、语音通话功能的开启或关闭。
[0018] 步骤 S2，检测车载后视镜的第一条件是否满足，该第一条件为系统默认或用户自定义，可以是车速（车速低于 20 码），车内亮度（通过后视镜上的光传感器检测车内亮度高于一阈值），预定的时间（如晚上 12 点）和/或后视镜断电等。第一条件根据需要设置，不仅限于上述示例。本发明实施例一为说明方便，以车速为例进行解释。
[0019] 步骤 S3，当第一条件成就时，车载后视镜从当前的系统模式切换至预置的安全模式。安全模式可以是启动某一预置的应用，关闭显示器，保存所述车载后视镜内存的导航数据和/或关闭导航功能等，实际应用中，安全模式可根据需要进行设置，不仅限于上述示例。以第一条件为车速、第一系统模式为导航和显示器开启，安全模式为显示器关闭、导航关闭为例，当车速降低 20 码以下时，传感器检测到该车速后，发送至车载后视镜，车辆后视镜从当前系统模式切换至安全模式，将显示器关闭，将当前的导航数据全部保存至车辆后视镜的硬盘内，并停止导航。
[0020] 进一步地，还可设置不同的第一条件，切换至不同的安全模式。如当车速不足 20 码时，切换至显示器关闭，将当前的导航数据全部保存至车辆后视镜的硬盘内，并停止导航的系统模式；而当时间到达晚上 12 点时，切换至另一系统模式，该系统模式为一显示时间的待机屏幕程序。
[0021] 步骤 S4，当第二条件满足时，车载后视镜恢复切换前的系统模式。如当车速大于 20 码时，重新启动导航功能，并开启显示器。第二条件可以是后视镜上电、车速（如车速高于 30 码）、车内亮度、预定的时间（如早上 9 点）等。
[0022] 本发明实施例一通过自动切换车载后视镜的安全模式，使得用户无需手动操作，即可实现安全模式的自动开启或关闭，即方便了用户，提高了驾驶的安全性，也可节约电源。
说明书

[0023] 实施例二

本发明实施例二提出了一种车载后视镜。如图2所示，本发明实施例二的车载后视镜检测模块10，用于检测所述后视镜预设的第一条件是否满足。

切换模块20，用于当所述第一条件满足时，所述车载后视镜对当前的系统模式切换至预置的安全模式。

[0024] 恢复模块30，用于当预设地第二条件满足时，所述车载后视镜恢复切换前的系统模式。

[0025] 车载后视镜上电后，车载后视镜进入默认的系统模式。车辆后视镜可设置多个系统模式，如针对不同的用户设置不同的系统模式，每个系统模式下有对应的一组系统参数。如当前的系统模式可以是显示器开启/或导航开启，如该车家后视镜还包括数据网络功能、语音通话功能等，也可设置数据网络功能、语音通话功能的开启或关闭。

[0026] 检测模块10检测车载后视镜的第一条件是否满足。该第一条件为系统默认或用户自定义，可以是车速（如车速低于20码）、车内亮度（如通过后视镜上的光传感器检测车内亮度高于一阈值）、预定的时间（如早上12点）和/或后视镜断电等。第一条件根据需要设置，不仅限于上述示例。本发明实施例二为说明方便，以车速为例进行阐释。

[0027] 当第一条件成就时，切换模块20将车载后视镜从当前的系统模式切换至预置的安全模式。安全模式可以是启动某一预置的应用、关闭显示器，保存所述车载后视镜内存的导航数据和/或关闭导航功能等，实际应用中，安全模式可根据需要进行设置，不仅限于上述示例。以第一条件为车速，第一系统模式为导航和显示器开启、安全模式为显示器关闭、导航关闭为例，当车速降低20码以下时，传感器检测到该车速后，发送至车载后视镜的检测模块10，切换模块20收到检测模块10的信号后，将车载后视镜从当前的系统模式切换至安全模式，将显示器关闭，将当前的导航数据全部保存至车辆后视镜的硬盘内，并停止导航。

[0028] 进一步地，还可设置不同的第一条件，切换至不同的安全模式。如当车速不足20码时，切换至显示器关闭、将当前的导航数据全部保存至车辆后视镜的硬盘内，并停止导航的系统模式；而当时间到达晚上12点时，切换至另一系统模式，该系统模式为一显示时间的待机屏幕程序。

[0029] 当第二条件满足时，恢复模块30将车载后视镜恢复切换前的系统模式。如当车速大于20码时，重新启动导航功能，并开启显示器。第二条件可以是后视镜上电、车速（如车速高于30码）、车内亮度、预定的时间（如早上9点）等。

[0030] 本发明实施例二的装置通过自动切换车载后视镜的安全模式，可实现安全模式功能的自动开启或关闭，即方便了用户，提高了驾驶的安全性，也可节约电源。

[0031] 以上所述仅为本发明的较佳实施例而已，并不用以限制本发明。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等，均应包含在本发明的保护范围之内。
图 1
图 2