A patient garment. The garment is configured to highlight the intercostal area of a patient during an echocardiographic examination. The garment comprises a front panel having a front top edge, a front bottom edge, a front left side and a front right side. The front panel has an access opening defined there through. The garment further comprise a back panel having a back top edge that is connected to the front top edge, a back bottom edge, a back left side and a back right side. The access opening is positioned on the front panel to expose an area of the patient’s torso between a 3rd intercostal area and a 5th intercostal area of the patient’s torso.
GARMENT FOR AN ECHOCARDIOGRAPHIC PATIENT

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] Not Applicable.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0002] Not Applicable.

BACKGROUND

[0003] The present disclosure relates to a patient garment, and in particular, relates to a garment configured to highlight the intercostal area of a patient during an echocardiographic examination using ultrasound imaging.

[0004] Patients in hospitals, clinics, or doctors' offices are typically provided with garments in an effort to help patients maintain their privacy and modesty during examinations. A much used and well known garment has a split-open, dual rear section back, a solid-closed front, and dual short sleeves, made of a single sheet of cloth material. The garment is secured by drawing together one or more vertically spaced-apart ties that extend from opposite edges of the two rear sections of the split-open back, and by tying the drawn ties into bows.

[0005] The rear opening of commercially available garments provides direct access for examination of underlying posterior areas of a patient. However, to examine a frontal portion of a patient's torso, it may be required for the patient to at least partially remove the garment to expose the desired area for examination. In such a case, the patient is subjected to a more intrusive exposure than that required simply to complete the examination.

[0006] For routine medical examinations, should medical personnel need to examine, e.g. a portion of the patient's front left torso, the patient is required to remove the left sleeve of the garment, essentially unflap their entire upper left quadrant, to provide unrestricted visible access to the medical personnel. In such case, the patient is required to expose a significant portion of their body simply to provide access to a frontal site.

[0007] During an echocardiograph examination, the patient is positioned in the supine position. Typically, the patient is positioned in the left lateral decubitus position and, occasionally, in the right lateral decubitus position. This left lateral approach uses gravity, bringing more of the heart to the left of the sternum and facilitating the recording of most intracardiac echoes.

[0008] Once the patient is properly positioned, the medical personnel then position the ultrasound probe on the patient's torso for an echo reading. In order to create images for a proper reading, the probe must be positioned to contact the bare skin of the patient. Accordingly, the garment is either removed or opened to expose the patient's torso (FIG. 1). Existing garments expose the patient's breast or impede the quick access needed for imaging the targeted areas immediately after exercise for a stress echocardiogram.

[0009] After the echocardiograph reading, the patient undergoes a stress test such as running on a treadmill. Stress echocardiography is used to determine the presence of significant coronary artery disease. Subsequent the stress test, the medical personnel has only 90 seconds to properly place the patient in the supine position, handle and position the probe and place the probe in the proper position on the patient's torso for the post-stress reading.

[0010] Due to the critical, but yet short, time period between the stress test and the echocardiograph reading, the patient typically wears the existing garment with the torso portion open during the stress test. Some patients even perform the stress test topless. The patient exposes the torso during the stress test to minimize the time for the medical personnel to properly position the ultrasound probe on the patient's torso. Accordingly, the exposed torso assists the medical personnel in acquiring the echocardiographic images within the 90 second time frame.

[0011] Performing the stress test while exposing the torso, however, causes the patient anguish from coldness and drafts in the room, or by unnecessarily compromising their modesty and privacy. Accordingly, patients and medical personnel require a garment that covers the torso during a stress test and subsequent imaging; but, highlights, targets and allows access to a portion of the torso in a time efficient and convenient manner to the medical personnel for a post-stress, echocardiographic reading.

SUMMARY

[0012] The present disclosure relates to a garment configured to highlight the intercostal area of a patient during an echocardiographic examination. The garment comprises a front panel having a front top edge, a front bottom edge, a front left side and a front right side. The front panel has an access opening defined there through. The garment further comprises a back panel having a back top edge that is connected to the front top edge. The access opening is positioned on the front panel to expose an area of the patient's torso between a 3rd intercostal area and a 5th intercostal area of the patient's torso.

[0013] The present disclosure also relates to a method of highlighting, targeting and exposing the intercostal area of a patient during an echocardiograph examination.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0014] FIG. 1 illustrates a perspective view of a patient wearing an existing garment illustrating the garment opened which exposes the patient's breast during an echocardiographic examination;

[0015] FIG. 2 illustrates a plan view of the garment constructed in accordance with and embodying the present disclosure;

[0016] FIG. 3 illustrates a front view of the garment of FIG. 2 illustrating an access opening, a privacy flap and pocket for holding a cardiac monitoring device;

[0017] FIG. 4 illustrates a front view of patient wearing the garment of FIG. 2 while undergoing a stress test;

[0018] FIG. 5 illustrates the position of the ultrasound probe within the imaging area with the privacy flap in an open position;

[0019] FIG. 6 illustrates a perspective view of an echocardiographic probe positioned within the access opening and the privacy flap in a closed position;

[0020] FIG. 7 illustrates a perspective view of the ultrasound probe inserted under the patient's breast with a side opening of the garment; and
FIG. 8 illustrates a front view of an embodiment of the garment in a full length, gown configuration.

Corresponding reference numerals indicate corresponding parts throughout the several figures of the drawings.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The following detailed description illustrates the invention by way of example and not by way of limitation. The description clearly enables one skilled in the art to make and use the invention, describes several embodiments, adaptations, variations, alternatives, and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.

The present disclosure relates to a patient garment. The garment can be used for any medical examination. However, for purposes of illustration only, the garment will be described for use by a patient during an echocardiographic examination. Components of the garment can have a variety of cross sectional shapes such as elliptical, oval, circular, triangular, square, rectangular or other appropriate geometric configuration. The garment can be of any size to accommodate patients of any size and to accommodate right handed or left handed medical personnel during the echocardiographic examination.

The ability to obtain a high-quality echocardiographic recording is an important factor in determining how useful an echocardiographic examination will be. No matter how expertly one interprets echocardiograms, it is not possible to obtain useful information from an inadequate tracing. Examinations must be customized for each patient. Medical personnel cannot place the transducer in routine positions over the chest as one does electrocardiographic leads and hope that the recording will be comparable from one patient to another. The echocardiographic examination has become a highly sophisticated technique that requires experience, skill, and an understanding of the requirements for an adequate echocardiogram.

Almost all echocardiographic examinations are done with the patient in some variation of the supine position. Occasionally, the patient is flat, but more often the patient is in the left lateral decubitus position and, occasionally, in the right lateral decubitus position. As noted, this left lateral approach uses gravity, bringing more of the heart to the left of the sternum and facilitating the recording of most intracardiac echoes. The most common place to begin an examination is along the left sternal border, which has been designated left parasternal or just parasternal. Both of these examinations are conducted with the patient in the left lateral decubitus position.

The right parasternal window, however, can be particularly helpful in looking at the aorta or the interventricular septum. When examining from the right side of the sternum, the patient is best positioned in the right lateral decubitus. This approach is commonly used when recording blood flow across the aortic valve.

An improved garment according to the present disclosure, and generally indicated at 10, is illustrated by a plan view in FIG. 2 and front elevational view in FIG. 3. The garment 10 may be described as having a front panel 12 and a back panel 14 joined together to form a neck opening 16. Alternatively, neck opening 16 may be formed in a single, folded over, and contiguous, panel. Neck opening 16 may be oval shaped, its longer axis being aligned with that of the top edge. In an embodiment, the neck opening 16 has a size ranging from about 5 inches wide to about 10 inches wide and from about 4 inches long to about 10 inches long. The front panel 12 and back panel 14 have sizes ranging from about 14 inches wide to about 30 inches wide and from about 18 inches long to about 30 inches long.

The front panel 12 has a front top edge 18, a front bottom edge 20, a front left side 22 and a front right side 24. The front panel 12 covers the patient’s torso. In particular, the front panel 12 covers the patient’s sternum and intercostal areas of the torso. The external intercostal muscles originate in ribs #1-11 and have their insertion on ribs #2-12. The internal intercostal muscles originate on ribs #2-12 and their insertion on ribs #1-11. The area generally defined by the 3rd rib and 5th rib is designated as the area between the 3rd intercostal area and the 5th intercostal area of the patient’s torso.

The back panel 14 has a back top edge 26, a back bottom edge 28, a back left side 30 and a back right side 32. The back top edge 26 connects to the front top edge 18 along a common axis or top edge 34. The back panel 14 is configured to cover the patient’s back area. Since the front panel 12 and the back panel 14 connect to each other along the common top edge 34, the front left side 22 and the back left side 30 do not contact each other. Accordingly, a left side opening 36 (FIGS. 5 and 6) exists between the front left side 22 and the back left side 30. Additionally, the front right side 24 and the back right side 32 do not contact each other. A right side opening 38 (FIGS. 5 and 6) exists between the front right side 24 and the back right side 32.

As shown, left side opening 36 and right side opening 38 are provided at left and right sides of a garment 10, respectively. The openings 36, 38 may be full length, as illustrated in FIGS. 5 and 6, or may be partial length. The side 36, 38 are configured to allow access by an echocardiographic probe 39 to the sides of the patient’s torso.

A sleeve of any length may additionally be provided at openings 36, 38 although it is currently preferred for a garment 10 to be sleeveless. The garment 10 may be regarded as having substantially open left and right sides which may be held substantially closed, and even overlapping, by a fastener 40. It should be noted that the fastener 40 is positioned on the sides for easy patient access. Locating fastening structure at the patient’s sides also affords the patient lump-free front and rear supine support surfaces.

In an embodiment, the fastener 40 comprises a pair of tassels with one tassel attached to the front right side 24 of front panel 12 and a second tassel attached to the back right side 32 of the back panel 14. Still further, in an embodiment, the fastener 40 comprises a pair of tassels with one tassel attached to the front left side 22 of front panel 12 and a second tassel attached to the back left side 30 of the back panel 14. The tassels are positioned from the top edge 34 at a distance represented by “A” (FIG. 3) from about 5 inches to about 15 inches. The pair of tassels is configured to removably fasten to one another to partially close the openings 36, 38 between the front panel 12 and the back panels 12, 14. Multiple pairs of tassels may be positioned on opposite sides of the front and back panels 12, 14. Any fastening member that can be employed to support, stabilize or fasten together the front panel 12 to the back panel 14 is intended to be within the scope of the disclosure. In general, fasteners 40 may be any sort of structure adaptable releasably to hold an opening in a closed configuration. Fastening structure within contempla-
tion nonexclusively includes: tassels, snaps, catches, latches, toggles, buttons, straps and strings, and hook-and-loop closures.

[0034] As shown in FIGS. 2, 3 and 5, the front panel 12 includes an access opening 42 defined therethrough. The access opening 42 is configured to highlight and target a specific area of the patient’s torso for an echocardiographic reading. In an embodiment, the access opening 42 is oval-shaped having a top 44, a bottom 46 and opposing sides 48. The access opening 42 is generally positioned over the sternum area of the patient. The top 44 of the access opening 42 is positioned at a distance represented by “B” (FIG. 3) from about 2 inches to about 8 inches from the top edge 34. The access opening 42 has a width, as measured between the opposing sides 48, from about 2 inches to about 6 inches. The access opening 42 has a length, as measured between the top 44 and the bottom 46, from about 2 inches to about 8 inches.

[0035] The access opening 42 surrounds a portion of the patient’s torso between the 3rd intercostal area and the 5th intercostal area. The access opening 42 highlights and targets the area between the 3rd intercostal area and the 5th intercostal area for the medical personnel to position the echocardiographic probe 39 during examination. As shown in FIG. 5, the access opening 42 exposes the proper location of the patient’s torso for the echocardiographic examination.

[0036] Returning to FIGS. 2 and 3, the garment 10 further includes a flap 50 attached to the front panel 12. In an embodiment, the flap 50 is removable attached to the front panel 12 of the garment 10 via fastener (not shown) such as but not limited to a hook and loop fastener. Alternatively, the flap 50 may be integrally connected to the front panel 12. The flap 50 is configured to overlap the access opening 42. The flap 50 is moveable between an open position (FIG. 5) to expose the access opening 42 and a closed position (FIG. 6) to cover the access opening 42.

[0037] The flap 50 covers the access opening 42 to provide privacy to the patient as the patient undergoes the echocardiographic reading and undergoes a stress test as will be discussed. In an embodiment, the flap 50 is rectangular shaped having a top 52, bottom 54 and opposing sides 56. The flap 50 is positioned generally centered on the front panel 12. The top 52 of the flap 50 is connected to the front panel 12 at a position between the top edge 34 and the access opening 42. The top 52 of the flap 50 is positioned at a distance represented by “C” (FIG. 3) from about 2 inches to about 7 inches from the top edge 34. The flap 50 has a width, as measured between the opposing sides 56, from about eight inches to about 12 inches. The flap 50 has a length, as measured between the top 52 and the bottom 54, from about 8 inches to about 12 inches.

[0038] The garment 10 further comprises a pocket 58 attached to the front panel 12. The pocket 58 is configured to hold a cardiac telemetry monitoring device (not shown). In an embodiment, the pocket 58 is rectangular shaped having a top 60, a bottom 62 and opposing sides 64. The pocket 58 is positioned generally centered on the front panel 12 in a position below the bottom of the access opening 42. The top 60 of the pocket 58 is positioned from the top edge 34 a distance represented by “D” (FIG. 3) from about 6 inches to about 10 inches. The pocket 58 has a width, as measured between opposing sides 64, from about 3 inches to about 6 inches. The pocket 58 has a length, as measured between the top 60 and the bottom 62, from about 3 inches to about 6 inches. The flap 50 in the closed position (FIG. 6) covers the pocket 58.

[0039] The garment may be manufactured from any sort of drappable cloth-like material, including without limitation: cloth made from any material, plastic, paper, natural and synthetic fiber, and the like. Currently, it is preferred to manufacture garments from a durable cloth material which may be laundered for reuse. However, alternate material may be employed for single sterile use prior to disposal. One material that is suitable for construction of the garment is poly-cotton blend. Tables 1-5 below illustrate embodiments of the garment 10 for varying sized patients.

TABLE 1

<table>
<thead>
<tr>
<th>Component</th>
<th>Position From Top Edge 34</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Opening 42</td>
<td>“C” Dimension = 6/8 inches from the top edge 34</td>
<td>Oval Shape - 4 inches wide x 6 inches long oval shape</td>
</tr>
<tr>
<td>Flap 50</td>
<td>“D” Dimension = 5/8 inches from the top edge 34</td>
<td>Square Shape - 12 inches x 12 inches</td>
</tr>
<tr>
<td>Neck Opening 16</td>
<td>9 inches wide x 8 inches long oval shape</td>
<td>27 inches wide x 25/8 inches long</td>
</tr>
<tr>
<td>Front Panel 12</td>
<td>“A” Dimension = 11 inches from top edge 34</td>
<td></td>
</tr>
<tr>
<td>Fastener 40</td>
<td></td>
<td>27 inches wide x 25/8 inches long</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Component</th>
<th>Position From Top Edge 34</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Opening 42</td>
<td>“C” Dimension = 6/8 inches from the top edge 34</td>
<td>Oval Shape - 4 inches wide x 6 inches long oval shape</td>
</tr>
<tr>
<td>Flap 50</td>
<td>“D” Dimension = 5/8 inches from the top edge 34</td>
<td>Square Shape - 12 inches x 12 inches</td>
</tr>
<tr>
<td>Neck Opening 16</td>
<td>9 inches wide x 8 inches long oval shape</td>
<td>27 inches wide x 28 inches</td>
</tr>
<tr>
<td>Front Panel 12</td>
<td>“A” Dimension = 14 inches from top edge 34</td>
<td></td>
</tr>
<tr>
<td>Fastener 40</td>
<td></td>
<td>37/2 inches wide x 28 inches</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Component</th>
<th>Position From Top Edge 34</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Opening 42</td>
<td>“C” Dimension = 6/8 inches from the top edge 34</td>
<td>Oval Shape - 4 inches wide x 6 inches long oval shape</td>
</tr>
<tr>
<td>Flap 50</td>
<td>“D” Dimension = 4 inches from the top edge 34</td>
<td>Square Shape - 10 inches x 10 inches</td>
</tr>
<tr>
<td>Neck Opening 16</td>
<td>9 inches wide x 8 inches long oval shape</td>
<td>23 inches wide x 23 inches</td>
</tr>
<tr>
<td>Front Panel 12</td>
<td>“A” Dimension = 11 inches from top edge 34</td>
<td></td>
</tr>
<tr>
<td>Fastener 40</td>
<td></td>
<td>10 inches wide x 10 inches</td>
</tr>
</tbody>
</table>

May 19, 2011
TABLE 4

<table>
<thead>
<tr>
<th>Component</th>
<th>Position From Top Edge 34</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Opening 42</td>
<td>“C” Dimension = 4/3 inches from the top edge 34</td>
<td>Oval Shape - 3 inches wide x 4 inches long</td>
</tr>
<tr>
<td>Flap 50</td>
<td>“B” Dimension = 4 inches from the top edge 34</td>
<td>Square Shape - 10 inches x 10 inches</td>
</tr>
<tr>
<td>Neck Opening 16</td>
<td>7 inches wide x 6 inches long oval shape</td>
<td></td>
</tr>
<tr>
<td>Front Panel 12</td>
<td>18 inches wide x 18 inches long</td>
<td></td>
</tr>
</tbody>
</table>

Fastener 40 “A” Dimension = 9 inches from top edge 34

TABLE 5

<table>
<thead>
<tr>
<th>Component</th>
<th>Position From Top Edge 34</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Opening 42</td>
<td>“C” Dimension = 3/3 inches from the top edge 34</td>
<td>Oval Shape - 3 inches wide x 3 1/3 inches long</td>
</tr>
<tr>
<td>Flap 50</td>
<td>“B” Dimension = 3 inches from the top edge 34</td>
<td>Square Shape - 9 inches x 9 inches</td>
</tr>
<tr>
<td>Neck Opening 16</td>
<td>7 inches wide x 5 inches long oval shape</td>
<td></td>
</tr>
<tr>
<td>Front Panel 12</td>
<td>16 inches wide x 16 inches long</td>
<td></td>
</tr>
</tbody>
</table>

Fastener 40 “A” Dimension = 7 inches from top edge 34

[0040] The noted dimensions are representative of an embodiment and not intended to limit the scope of the disclosure. Many other dimensions may also function well; and it is anticipated that, for different sized patients or different types of examinations, other dimensions may be representative as well. [0041] During use of the garment 10, the patient inserts their head through the neck opening 16. The first panel covers the patient’s torso and the back panel 14 covers the patient’s back. The access opening 42 is positioned around the patient’s sternum and over and around the 3rd intercostal area to the 5th intercostal area of the patient. The access opening 42 highlights and targets the intercostal areas of the patient’s torso. In particular, the access opening 42 exposes the 3rd intercostal area to the 5th intercostal area of the patient. [0042] After the patient puts on the garment 10, the medical personnel place the patient in the supine position. The flap 50 covers the access opening 42 to provide privacy to the patient while in the supine position. The medical personnel insert the probe 39 under the flap 50 and through the access opening 42. The access opening 42 highlights the patient’s torso by exposing a discreet portion of the patient’s chest. The access opening 42 assists in directing the medical personnel to properly position the probe 39 on the patient’s torso during the examination. [0043] During the examination, the medical personnel positions the probe 39 through the access opening 42 so that the probe 39 contacts the patient’s torso. The flap 50, however, folds over to cover the probe 39, the medical personnel’s hand and the access opening 42 to provide privacy to the patient during the examination. During this examination, the garment 10 covers the patient’s breasts. For a particular examination, the medical personnel can also insert the probe 39 through either the left side opening or right side opening to contact the parasternal areas of the patient’s torso. The medical personnel can also insert the probe 39 through the side openings to contact the apical areas located under the patient’s breast without exposing the breast. The first panel and flap 50 covers the patient’s torso to maintain privacy of the patient during examination. During this procedure, the medical personnel can also leave the patient’s cardiac telemetry monitor attached to the patient and store the telemetry monitor in the pocket 58. [0044] After the echocardiographic examination for obtaining rest images, the patient performs a stress test while wearing the garment 10. During the stress test, the front panel 12 provides privacy by covering the patient’s breast. Typically, the patient runs on a treadmill for a predetermined amount of time. Additionally, the flap 50 covers the access opening 42 while the patient runs on the treadmill. This flap 50 covering covers the torso that is exposed by the access opening 42 to provide privacy to the patient during the stress test. [0045] Upon completion of the stress test, the patient returns to the supine position. Since the access opening 42 highlights and exposes the preferred area of the patient to the medical personnel, the access opening 42 targets the probe 39 against the preferred area such as the area between the 3rd intercostal area and the 5th intercostal area. The access opening 42 assists medical personnel in obtaining and echocardiographic reading within the 90 second time window. During the examination, the medical personnel positions the probe 39 through the access opening 42 so that the probe 39 contacts the patient’s torso. The flap 50, again, folds over to cover the probe 39, the medical personnel’s hand and the access opening 42 to provide privacy to the patient during the examination. [0046] For imaging of apical views located under the left breast by the probe 39, the medical personnel conveniently insert the probe 39 through the right side opening 38. Since the openings 36, 38 exist between the front panel 12 and back panel 14, the openings 36, 38 assist the medical personnel in targeting the probe 39 on the apical areas of the patient. [0047] Thus, the access opening 42 of the garment 10 allows access to both sides of the sternum to obtain echocardiographic images from the parasternal windows. The access opening 42 or side openings provide access to the apical window. Quick and convenient access to the left parasternal and apical windows are imperative for the successful completion of imaging within the required time limit of 90 seconds after the stress test since some critical coronary artery lesions can recover within the first 15 seconds after the stress test has been completed. Images obtained after 90 seconds from the stress test are considered invalid for the purpose of interpretation as post exercise images in determining the presence of significant coronary artery disease. The access opening 42 over the 3rd to 5th intercostal areas allows the medical personnel to quickly identify and target the area for probe placement for completing the imaging within the 90 seconds. [0048] Some stress tests are chemically induced and require intravenous (“IV”) access. The front panel 12 and back panel 14, which are separated by openings 36, 38, allow for convenient putting on and pulling off the garment 10 while maintaining IV access should an outpatient need to be converted to inpatient status and remain on IV access. Addition-
ally, some echocardiographic images need contrast enhancement which also requires IV access. Still further, during the stress test or during the echocardiographic examination of the patient, if the patient experiences cardiac arrest, the medical personnel can easily unloosen the fastener 40 and flap 50 to move or remove the front panel 12 to expose the torso for proper medical procedures.

[0049] Turning to FIG. 8, another embodiment of the garment 66 is shown. In this embodiment, the garment 66 comprises a full length garment wherein a front panel 68 and a back panel (not shown) are connected together. The garment 66 includes a neck opening 72, an access opening 74 and a flap 76. The garment 66 also includes a side access opening 78. The side access opening 78 is configured to allow access by the echocardiographic probe 39 to the sides of the patient’s torso. As shown, the garment 66 further includes snap fasteners 80 positioned along the top edge areas of the garment 66. These snap fasteners 80 allow access to the patient’s upper body should the patient experience cardiac arrest during the stress. In an embodiment, the garment 10 further includes a pocket for holding the cardiac telemetry monitoring device. The dimensions for garment 66 can also be used for garment 66.

[0050] In view of the above, it will be seen that the several objects of the disclosure are achieved and other advantageous results are obtained. As various changes could be made in the above constructions without departing from the scope of the disclosure, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

1. A garment for covering a patient’s torso during an echocardiographic examination comprising:
 a front panel having a front top edge, a front bottom edge, a front left side and a front right side, the front panel having an access opening defined there through; a back panel having a back top edge that is connected to the front top edge, a back bottom edge, a back left side and a back right side; a fastener removable connecting together the front left side and the back left side, wherein the access opening is positioned on the front panel to expose an area of the patient’s torso between a 3rd intercostal area and a 5th intercostal area of the patient’s torso.

2. The garment of claim 1 wherein the access opening is oval shape having a top, a bottom and opposing sides.

3. The garment of claim 2 wherein the access opening has a width as measured between the opposing sides of about 2 inches to about 6 inches.

4. The garment of claim 2 wherein the access opening has a length as measured between the top and the bottom of about 2 inches to about 8 inches.

5. The garment of claim 2 wherein the access opening is positioned from the front top edge at a distance of about 2 inches to about 8 inches.

6. The garment of claim 1 wherein the fastener is positioned from the top edge at a distance of about 7 inches to about 15 inches.

7. The garment of claim 1 further comprising a movable flap attached to the front panel, the flap being configured to cover the access opening.

8. The garment of claim 7 wherein the flap is positioned from the top edge at a distance of about 3 inches to about 7 inches.

9. The garment of claim 1 further comprising a pocket attached to the front panel at a positioned below the access opening.

10. The garment of claim 1 wherein the front panel and back panel form a gown.

11. A garment for covering a patient’s torso during an echocardiographic examination comprising:
 a front panel having a front top edge, a front bottom edge, a front left side and a front right side, the front panel having an access opening defined there through, the access opening being positioned from the top edge at a distance of about 3-7 inches to expose an area of the patient’s torso between a 3rd intercostal area and a 5th intercostal area of the patient’s torso; a back panel having a back top edge that is connected to the front top edge, a back bottom edge, a back left side and a back right side; a fastener connected to the front left side and the back left side at a distance from the front top edge of about 7-15 inches, the fastener being configured to removably connect together the front left side and the back left side; and a flap attached to the front panel at a distance from the front top edge of about 3-7 inches wherein the flap is configured to move between an open position that exposes the access opening and a closed position that covers the access opening.

12. The garment of claim 11 wherein the access opening is oval shape having a top, a bottom and opposing sides.

13. The garment of claim 12 wherein the access opening has a width as measured between the opposing sides of about 2 inches to about 6 inches.

14. The garment of claim 12 wherein the access opening has a length as measured between the top and the bottom of about 2 inches to about 8 inches.

15. The garment of claim 11 further comprising a pocket attached to the front panel at a positioned below the access opening.

16. The garment of claim 11 wherein the front panel and back panel form a gown.

17. The garment of claim 11 wherein the front panel and back panel form a vest.

18. A method of exposing the intercostal area of a patient during an echocardiographic examination, the method comprising:
 providing a garment having a front panel and a second panel;
 putting the garment on the patient such that the front panel covers the torso of the patient and the back panel covers the back of the patient;
 fastening together the front panel and the back panel;
 inserting echocardiographic probe through an access opening positioned through the front panel, the access opening configured to expose the patient’s chest between the 3rd intercostal area and the 5th intercostal area; covering the access opening; and
 obtaining echocardiographic readings from the probe.

19. The method of claim 18 further comprising inserting the probe through the access opening within 90 seconds of the patient completing a stress test.

20. The method of claim 18 wherein fastening the front panel and the second comprises fastening the panels in a configuration that exposes an opening between the front panel and the back panel.

* * * * *