
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0306397 A1

Fleming et al.

US 2011 0306397A1

(43) Pub. Date: Dec. 15, 2011

(54) AUDIO AND ANIMATION BLENDING

(75)

(73)

(21)

(22)

(60)

Inventors:

Assignee:

Appl. No.:

Filed:

James Fleming, Brighton, MA
(US); Marc A. Fury, Cambridge,
MA (US); Dean N. Tate,
Cambridge, MA (US); Matthew C.
Boch, Somerville, MA (US); Isaac
Adams, Revere, MA (US); Riseon
Kim, Dorchester, MA (US); Sachi
Sato, Belmont, MA (US)

Harmonix Music Systems, Inc.,
Cambridge, MA (US)

12/940,809

Nov. 5, 2010

Related U.S. Application Data

Provisional application No. 61/354,073, filed on Jun.
11, 2010.

Publication Classification

(51) Int. Cl.
A63F 9/24 (2006.01)
A63F I3/00 (2006.01)

(52) U.S. Cl. 463/7: 463/35; 463/31
(57) ABSTRACT

Presented herein are methods, apparatuses, programs, and
systems for providing a smooth animation transition in a
game. An event timeline is provided with event markers
denoting points in time on the event timeline. Each event
marker is associated with an animation segment from the
number of animation segments. A first marker on the event
timeline is provided, which indicates a first animation seg
ment to be displayed on the display (at a point in time with
respect to event timeline). A second marker on the event
timeline is also provided, which indicates a second animation
segment to be displayed on the display (at a second point in
time with respect to event timeline). Then as the game
progresses, and the second point time on the timeline is
approaching, a set of animation segments that need to be
blended together is determined, to provide a smooth transi
tion from the first animation segment to the second animation
segment. Once the set of animations have been determined, a
blend is performed among the set of animation segments.

05 110

Random

Memory
45

Access
Read-Only
Memory

40

Processing Unit

Graphics
Processor

130 150

Centra

Game Platform
120

125

US 2011/0306397 A1

Luopue}}

Dec. 15, 2011 Sheet 1 of 9

VI (514

Patent Application Publication

Patent Application Publication Dec. 15, 2011 Sheet 2 of 9 US 2011/0306397 A1

3

s 2

Patent Application Publication Dec. 15, 2011 Sheet 3 of 9 US 2011/0306397 A1

Patent Application Publication Dec. 15, 2011 Sheet 4 of 9 US 2011/0306397 A1

sea

e

s
same

Patent Application Publication Dec. 15, 2011 Sheet 5 of 9 US 2011/0306397 A1

fuuun uo peSeq eIOOS

Patent Application Publication Dec. 15, 2011 Sheet 6 of 9 US 2011/0306397 A1

Patent Application Publication Dec. 15, 2011 Sheet 7 of 9 US 2011/0306397 A1

O

s

uOISOduo posed aloos

US 2011/0306397 A1 Dec. 15, 2011 Sheet 8 of 9 Patent Application Publication

US 2011/0306397 A1 Dec. 15, 2011 Sheet 9 of 9 Patent Application Publication

US 2011/0306397 A1

AUDIO AND ANIMATION BLENDING

CROSS REFERENCE TO RELATED
APPLICATION

0001. This application claims benefit of priority to Appli
cation No. 61/354,073, filed Jun. 11, 2010 and entitled
“Dance Game and Tutorial' by Flury et al., the disclosure of
which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

0002 The present invention relates generally to gesture
based video games and, more specifically, to dance video
games based on positional input from a user.

BACKGROUND

0003. Although video games and video game consoles are
prevalent in many homes, game controllers, with their myriad
of buttons and joysticks, are still intimidating and confusing
to people that do not often play video games. For these
people, using a game controller to interact with the game is an
obstacle to enjoying it. Also, where the game is a dance game,
often an additional controller is required in the form of a
dance mat or dance pad. These dance mats have specific input
sections (similar to buttons on a traditional controller) that
react to pressure from the user's feet. But these mats take up
a lot of space and are often single use controllers—they are
used just for dance games and must be rolled up and stored
when not in use.
0004 To increase a user's feeling of immersion in the
game, as well as to overcome the cumbersome nature of game
controllers or dance mats for users not familiar with them,
Some game platforms forego the use of traditional controllers
and utilize cameras instead. The cameras detect a user's
physical movements, e.g., the waving of his arm or leg, and
then interpret those movements as input to the video game.
This allows the user to use a more natural-feeling input
mechanism he is already familiar with, namely the movement
of his body, and removes the barrier-to-entry caused by the
many-buttoned controller.
0005 One example of a camera-based controller is the
EyeToy camera developed by Logitech and used with the
Sony PlayStation 2 game console. The EyeToy, and similar
cameras, typically include a camera and a microphone. The
EyeToy sends a 640x480 pixel video stream to the PlaySta
tion, and the game executing on the PlayStation parses the
frames of the video, e.g., calculating gradations of color
between pixels in the frame, to determine what in the cam
era's field-of-view is the user (player') and what is the
background (“not player'). Then, differences in the stream
over time are used to determine and recognize the user's
movements, which in turn drive the user's interaction with the
game console.
0006. Other cameras used by game platforms include the
DreamEye for the Sega Dreamcast, The PlayStation Eye (a
successor to the EyeToy) for Sony's PlayStation 3, and the
Xbox Live Vision for Microsoft's Xbox 360. These cameras
all provide a typical single-input camera that can stream video
or take still photographs, and some. Such as the PlayStation
Eye, additionally provide a microphone for audio input.
0007 Microsoft is currently developing a depth-aware
camera system in the form of Project Natal. A Natal system
provides an RGB camera, a depth sensor, a multi-array micro
phone, and Software that processes the inputs from the cam

Dec. 15, 2011

era, depth sensor, and microphone. Beneficially, the Natal
Software provides, based on the input, a three-dimensional
skeleton that roughly maps to the user's body. Specifically,
rather than just determining a difference between “player
and “not player like prior game cameras, Natal determines
what is the user's right hand, left hand, head, torso, right leg,
and left leg. This skeleton is preserved as a user moves his
body in the camera's field of view, allowing for the tracking of
specific limbs. This skeleton framework, however, is the
extent of what Natal provides. Namely, no user interface is
provided by Natal, and users must still use a game controller
to interact with a game or menu system.
0008. Other systems, based on non-camera technologies,
have also been developed that attempt to track a user's move
ments. For example, the Nintendo Wii provides players with
an infrared transmitter"Wii remote' that the user holds in his
hand. The Wii remote is used as pointing device and has a
built-in accelerometer to track changes in the Wii remote's
position. The Wii remote is often paired with a “nunchuk”
(which also has an accelerometer) that is held in the player's
other hand, allowing the Wii to, in a sense, track the move
ments—or at least changes in the movements—of the user's
hands. Another technology based on a hand-held controller is
sixense, which is demonstrated at http://www.sixense.com
0009 High-end motion capture (“mocap) systems have
also been used to track a user's movements. Typically mocap
systems involve the user wearing a body Suit that has dozens
of white spheres located at relevant locations. The mocap
cameras detect these spheres and use them to infer positional
information about the user's body. Mocap systems, however,
are expensive and not practical for the average user.

SUMMARY OF THE INVENTION

0010. The invention includes methods, systems, computer
program products and means for providing a dance video
game that, by utilizing a camera-based system, obviates the
need for, or use of a typical game controller or dance mat for
input. Though Natal is used as an example herein, the inven
tion is not limited to a Natal implementation.
0011. In one embodiment, there is a filter system for cap
turing and scoring what a user is doing. The user's input is
normalized to a reference framework and compared against
key frames of a target performance, which has also been
normalized to the reference framework. The closer the user's
input is to the correct move at the correct time, the better the
rating awarded to the user.
0012 Advantageously, the game and its filters behave
similarly for a short person and a tall person relative to their
own bodies. In one embodiment of the invention, appendage
and body position determinations are made based on, and
relative to, the skeleton of the person interpreted by the sys
tem, not on an absolute coordinate system within the camera's
field of view. Other embodiments can utilize an absolute
coordinate system to infer information about the user's body
to create a skeleton for use with the invention.
0013 Typically, ranges are used to determine if a user has
Successfully performed a move because motion-tracking
input is inherently noisy. Determining precisely where a
user's appendages are is difficult due to the natural movement
of the user over time and the lag between receiving camera
input and processing it. This is complicated when the user is
trying to perform a particular dance move at a particular
time—he may start or end the move too early or too late, or
Some appendages may be positionally inaccurate, or a com

US 2011/0306397 A1

bination of these. Therefore, the filter system allows for varia
tion in both timing and position when scoring the user.
0014. The invention can also be used to teachauser how to
dance. In some implementations, there is a means for teach
ing a specific move or series of moves to a user using audible
cues and repetition. To facilitate this functionality, an addi
tional aspect of the invention is an animation blending tech
nique that uses animation transitions from an idle state into a
move, and from the move into an idle state, along with the
animation of the move in the context of the entire dance, to
allow the teaching avatar to demonstrate and repeat a single
OVC.

0015 There are also scripted transitions, or “bridge ani
mation segments' that allow for seamless reuse of portions of
a motion capture performance, that, in the performance, are
not actually adjacent. Beneficially, these bridge animation
segments can be used in a variety of contexts. For example, a
difficult dance routine with many different moves can be
simplified into a lower difficulty routine by repeating a subset
of the moves, which requires jumping to non-adjacent anima
tion segments. Also, the bridge animation segments can be
used in a practice mode to repeat moves until the player has
Successfully performed them. And, bridge animation seg
ments can be used to extend the motion capture performance
in a multiplayer mode by looping a segment of the motion
capture performance.
0016. The invention also provides seamless audio track
transition playback during multi-player modes. It is more fun
for users to trade off dancing during a song than it is for each
user to play all the way through while the other waits. But
Songs are often written for a single play-through and do not
facilitate smooth “rewinding from an audible standpoint.
Specifically, the music at time t (later in the song) does not
usually lend itself to a smooth transition to to (earlier in the
Song). The invention solves this by providing segments of
transition audio to use between different parts of the song,
selectively muting the original audio and unmuting the appro
priate transition segment when a transition to a different part
of the Song is necessary. As with bridge animations, these
bridge audio segments can be used in a variety of contexts.
For example, the bridge audio segments can be used in a
practice mode to repeat sections of the song the player is
practicing until the player has successfully performed them.
And, bridge audio segments can be used to extend the song in
a multiplayer mode by looping a segment of the Song audio.
0017. In one embodiment, there is a method, executed on
a game platform, for scoring a player performance that
includes one or more poses in a dance-based video game
based on input received via a sensor. The method and the
components it interacts with can also be expressed as a sys
tem, in the form of a computer program product, or as an
apparatus with means for accomplishing the interaction,
where the structures correspond to a game platform and a
sensor (e.g., a camera) in communication with the game plat
form. In cases where results are displayed, a display in com
munication with the game platform may also be used. The
method includes receiving a performance 3D skeleton indi
cating a pose of the player, then calculating a score by com
paring a position, a timing, or both, associated with one or
more joints of the performance 3D skeleton to a position, a
timing, or both, associated with one or more joints of a target
pose; and then altering one or more characteristics of the
dance-based video game based on the score.

Dec. 15, 2011

0018. In another embodiment, there is also a method,
executed on a game platform, for evaluating a player perfor
mance based on input from a sensor. As described above, the
method and the components it interacts with can also be
expressed as a system, in the form of a computer program
product, or as an apparatus with means for accomplishing the
interaction, where the structures correspond to a game plat
form and a sensor (e.g., a camera) in communication with the
game platform. In cases where results are displayed, a display
in communication with the game platform may also be used.
The method includes receiving a performance 3D skeleton
indicating a portion of the player performance, providing a
target 3D skeleton indicating a portion of a target perfor
mance, defining a perjointerror function, calculating an error
using the per joint error function based on the performance
3D skeleton and the target 3D skeleton, and producing, with
the game platform, an audio or visual indication of the error.
0019. In one implementation, there is a method, executed
on a game platform, for scoring a player performance that
includes one or more poses in a dance-based video game
based on input received via a sensor. As described above, the
method and the components it interacts with can also be
expressed as a system, in the form of a computer program
product, or as an apparatus with means for accomplishing the
interaction, where the structures correspond to a game plat
form and a sensor (e.g., a camera) in communication with the
game platform. In cases where results are displayed, a display
in communication with the game platform may also be used.
The method includes providing a target 3D skeleton indicat
ing a target pose and receiving a number of 3D performance
skeletons indicating player poses. Then an overall score for a
particular 3D performance skeleton is generated by compar
ing a position associated with one or more joints of the 3D
performance skeleton to a corresponding position associated
with one or more joints of the target 3D skeleton. Then the
score generating step is repeated for each of the of 3D per
formance skeletons that fall within a predetermined temporal
range. This generates a number of overall scores, and an audio
or visual indication of the accuracy of the performance, that is
based on one or more of the overall scores, is displayed on the
display.
0020. In one embodiment, there is a method, executed on
a game platform, for scoring a player performance that
includes one or more poses in a dance-based video game
based on input received via a sensor. As described above, the
method and the components it interacts with can also be
expressed as a system, in the form of a computer program
product, or as an apparatus with means for accomplishing the
interaction, where the structures correspond to a game plat
form and a sensor (e.g., a camera) in communication with the
game platform. In cases where results are displayed, a display
in communication with the game platform may also be used.
The method begins by receiving a performance 3D skeleton
indicating a pose of the player. Then a score is calculated by
comparing a measurement of one or more reference points,
e.g., joints, bones, or derivations of either, of the performance
3D skeleton to a measurement of one or more reference
points, e.g., joints, bones, or derivations of either, of a target
pose. Some examples of measurements are displacement,
Velocity, acceleration, but other measurements would be
understood by one of skill in the art. Then, one or more
characteristics of the dance-based video game are altered
based on the score.

US 2011/0306397 A1

0021 Any of the above embodiments may enjoy one or
more of the following benefits. In some versions, the target
pose, expressed as a 3D skeleton, is generated based on
motion capture data. This is then provided during the game
for weighting, comparison against the player's performance,
and/or scoring. And in Some instances, the target pose is
selected based on its importance to the target performance,
e.g., a transitional movement is not important, but a particular
orientation of the player's body at a particular time is for the
movement to be recognized as a particular dance move.
0022. Also, in some implementations, the position associ
ated with the one or more joints of the 3D skeleton and the
position associated with the one or more joints of the target
pose are based on a normalization of the spatial position of the
one or more joints of the 3D skeleton and the one or more
joints of the target pose, respectively. For example, normal
izing the spatial position of a joint can include computing a
unit vector reflecting an offset of the joint relative to an origin
joint. It can further involve defining a coordinate system
originated at the origin joint; and translating the unit vector
into the coordinate system. Examples of potential origin
points are the left shoulder, the right shoulder, the left hip, or
the right hip.
0023. Alternatively, normalizing the spatial position of a

joint could be based on computing a first vector reflecting the
offset of the joint relative to an origin joint, computing a
second vector reflecting the offset of an intermediate joint
relative to the origin joint, and then computing a third vector
reflecting the offset of the joint relative to the intermediate
joint. Then the first vector is divided by the sum of the mag
nitudes of the second and third unit vectors.
0024. In some implementations, a second target 3D skel
eton is provided indicating a second target pose and a second
number or group of 3D performance skeletons are received
indicating player poses. An overall score is generated for a
second particular 3D performance skeleton by comparing a
position associated with one or more joints of the second 3D
performance skeleton to a corresponding one or more joints
of the second target 3D skeleton. Then, the score generating
step is repeated for each of the second group of 3D perfor
mance skeletons that fall within a second predetermined tem
poral range to generate a second number of overall scores.
Lastly, a second audio or visual indication based on one or
more of the first and second plurality of overall scores is
produced on the display. The overall score can be based on a
positional score and/or a timing-based score. Additionally or
alternatively, the overall score can be based on a displacement
score, a Velocity score, or an acceleration score.
0.025 In some implementations, the target pose is associ
ated with a target performance timing, and a timing-based
score varies inversely as the difference between the target
performance timing and a timing of performance of the player
pose. In some implementations, the timing-based score is
based on a first constant if the difference is less than a first
predetermined threshold. In some, it varies inversely as the
difference if the difference is between the first predetermined
threshold and a second predetermined threshold. And in some
implementation, the score is a second constant if the differ
ence is greater than the second predetermined threshold. And
in Some implementations, computing the timing-based score
uses a combination of the foregoing techniques.
0026. In some embodiments, the positional score can
include one or more per-joint scores, where the contribution
of each per-joint score to the overall score is weighted. Addi

Dec. 15, 2011

tionally or alternatively, the positional score can include one
or more body part scores, with each body part score having
one or more per-joint scores. And as above, the contribution
of each body part score to the overall score can be weighted.
0027. In some versions, comparing the joints of the 3D
performance skeleton to the joints of the target 3D skeleton
includes calculating a Euclidean distance between the posi
tion associated with the more joints of the 3D performance
skeleton and the corresponding position associated with the
joints of the target 3D skeleton to generate a per-joint score.
And this per-joint score can vary inversely as the Euclidean
distance. In some embodiments, for example, the per-joint
score can be a first constant if the Euclidean distance is less
than a first predetermined threshold. In some embodiments, it
varies inversely as the Euclidean distance if the Euclidean
distance is between the first predetermined threshold and a
second predetermined threshold. And in some embodiments,
it is a second constant if the Euclidean distance is greater than
the second predetermined threshold. And in Some implemen
tations, computing the per-joint score uses a combination of
the foregoing techniques.
0028. Additionally or alternatively, calculating the Euclid
ean distance can include weighting the contributions of the X,
y, and Z axes to the Euclidean distance, with the orientations
of the x, y, and Z axes are relative to each body Zone. For
example, the X, y, and Z axes of an arm body Zone can origi
nate at a shoulder connected to the arm and are based on a first
vector from the shoulder to an opposite shoulder, a second
vector in the direction of gravity, and a third vector that is a
cross product of the first and second vectors. Alternatively, the
X, y, and Z axes of a leg body Zone can originate at a hip
connected to the leg and are based on a first vector from the
hip to an opposite hip, a second vector in the direction of
gravity, and a third vector that is a cross product of the first and
second vectors. And, the orientations of the x, y, and Z axes
can also be relative to the target 3D skeleton. That is, the x, y,
and Z axes are rotated based on an angle between a vector
normal to a plane of the target 3D skeleton and a vector
normal to a view plane.
0029. In some embodiments, the audio or visual indication
comprises a visual indication of a score for a body part, Such
as flashing the body part green or red for Success or poor
performance respectively. Or, the audio or visual indication
comprises an audible indication of the score for a body part,
e.g., “nice arms or “you need to move your feet more!' The
audio or visual indication can also include one more graphics,
with the number of graphics being based on the one or more
overall scores. The audio or visual indication can also be a
simulated crowd, where one or more characteristics of the
simulated crowd varies based on the one or more of the
plurality of overall scores, e.g., the number of people in the
crowd can grow or shrink. The audio or visual indication can
also be a simulated environment, where one or more charac
teristics of the simulated environment varies based on the one
or more of the plurality of overall scores, e.g., there can be
fireworks or flashing lights if the player is performing well
and destruction or dimming of the environment if the player is
performing poorly.
0030 There is also a method of providing a smooth ani
mation transition in a game. As described above, the method
and the components it interacts with can also be expressed as
a system, in the form of a computer program product, or as an
apparatus with means for accomplishing the interaction,
where the structures correspond to a game platform and a

US 2011/0306397 A1

display in communication with the game platform. The
method includes, during gameplay, providing an event time
line with event markers denoting points in time on the event
timeline. Each event marker is associated with an animation
segment from the number of animation segments. The first
marker on the event timeline is provided, which indicates a
first animation segment to be displayed on the display (at a
point in time with respect to event timeline). A second marker
on the event timeline is also provided, which indicates a
second animation segment to be displayed on the display (at
a second point in time with respect to event timeline). Then as
the game progresses, and the second point time on the time
line is approaching, a set of animation segments that need to
be blended together is determined, to provide a smooth tran
sition from the first animation segment to the second anima
tion segment. Once the set of animations have been deter
mined, a blend is performed among the set of animation
segments. For example, a blend between the first animation
segment and the second animation segment may be all that is
needed and portions of each are blended together. More spe
cifically, a number of beats at the end of the first animation
segment may be blended with a number of beats at the begin
ning of the second animation. Alternatively, a smoother result
may be achieved using a bridge animation segment, where a
portion of the first animation segment is blended with the
bridge animation segment and then a portion of the bridge
animation segment is blended with the second animation
segment. In some versions, the existence of a bridge anima
tion segment is determined by the presence of a bridge ani
mation segment or a reference to a bridge animation segment
listed in a lookup table, keyed off the animations that are
being blended from and to. If the entry in the lookup table
exists, the bridge animation segment is used. If not, no bridge
animation segment is used, and the first animation segment is
blended directly into the second animation segment.
0031. These blending techniques are useful for multi
player gameplay as well, where a first player is scored before
the blend occurs and a second player is scored after the blend.
Beneficially, the second animation can be based on the diffi
culty of the game. So if the first player is very good and is
performing a complex move, the transition to the second
player's move, which is easier, will not be jarring because of
the transition. Or, where a series of animations are recorded
and then "cut up’ and reused to form progressively easier
routines (with animation sequences from the hardest diffi
culty being arranged for each difficulty level), the transitions
can be used to create a dance routine using non-contiguous or
looping animation sequences. The technique can also be used
to blend an animation with itself, that is, blend the ending
position of the dancer with the starting position of the dancer.
This can be used for repeated moves.
0032. Another technique is to blend audio segments. In
one embodiment, there is a method, executed on a game
platform, for providing Smooth audio transitions in a song.
The method includes providing, during play of a game, an
event timeline with event markers denoting points in time on
the event timeline. The event timeline is associated with an
audio track played during play of the game. The audio track
has a first audio segment and a second audio segment. Then,
a first marker on the event timeline is provided to indicate a
first point in time (that is associated with the first audio
segment). Also, a second marker on the event timeline is
provided that indicates a second point in time with respect to
the event timeline (and is associated with the second audio

Dec. 15, 2011

segment). During game play it is determined that the second
time is approaching and a set of audio segments to be blended
is determined that will ensure a smooth transition from the
first audio segment to the second audio segment. Then, based
on the set of audio segments that will be used for blending, a
blend is applied among the set of audio segments based on the
prior determination made. For example, the set of audio seg
ments that are used for the blend could be just the first audio
segment and the second audio segment, and the blend could
be accomplished by crossfading between the two. Or, a bridge
audio segment may also be necessary, and the blend can be
applied to a portion of the first audio segment and blended
with a portion of the bridge audio segment, and then a blend
can be applied from a portion of the bridge audio segment to
a portion of the second animation. As above, a blend can be a
crossfade, but can also be an attenuation, e.g., the first audio
segment can be reduced in Volume or silenced completely
(muted) while the bridge audio segment is played and then the
bridge audio segment can be reduced in Volume or stopped
completely and the second audio would be played. For
example, the first audio segment can be muted for its final
beat, the second audio segment can be muted for its first two
beats, and the bridge audio segment is played in the three
beat-long “hole”, i.e., during the muted last beat of the first
audio segment and muted first two beats of the muted second
audio segment.
0033. In some implementations, the first audio segment
and the second audio segment are the same audio segment, as
would be the case of a repeated section of audio. The bridge
audio segment or a reference to a bridge audio segment can
also be stored in a lookup table that is keyed based on the
audio segment that is being transitioned from and the audio
segment that is being transitioned to.
0034. Other aspects and advantages of the present inven
tion will become apparent from the following detailed
description, taken in conjunction with the accompanying
drawings, illustrating the principles of the invention by way
of example only.

BRIEF DESCRIPTION OF THE DRAWINGS

0035. The foregoing and other objects, features, and
advantages of the present invention, as well as the invention
itself, will be more fully understood from the following
description of various embodiments, when read together with
the accompanying drawings, in which:
0036 FIG. 1A depicts a game platform with a Project
Natal camera system;
0037 FIG. 1B depicts an example of a skeleton provided
by Project Natal;
0038 FIG. 1C depicts an example of a skeleton that
includes vectors used in determining normalized joint posi
tion;
0039 FIG. 2A shows a series of movements spread over
four beats that begin a representative dance move;
0040 FIG. 2B shows a representative window to deter
mine a user's timing error in performing a move;
0041 FIG. 3A shows a distance calculation between the
target performance skeleton (shown in outline) and the user's
input (shown Solid);
0042 FIG. 3B shows a window of acceptable error for
position when performing a move;
0043 FIG. 4 depicts how a mocap for a dance routine may
be refactored to create a dance routine of an easier difficulty;

US 2011/0306397 A1

0044 FIG. 5 depicts one embodiment of an authoring
system for the dance game.

DETAILED DESCRIPTION

0045 One embodiment of the present invention is based
on the Project Natal framework developed by Microsoft Cor
poration of Redmond, Wash. As indicated in FIG. 1A, the
Project Natal system includes an RGB camera 105, a depth
sensor 110, a multi-array microphone 115, and a processor
(not shown). The RGB camera 105 delivers a three-color
(Red, Green, Blue) video stream to the game console,
enabling facial recognition and full-body tracking. The depth
sensor 110 is an infrared projector combined with a mono
chrome CMOS sensor. This allows a game console 120 uti
lizing Natal to recognize objects in the camera's field of view
in three dimensions instead of forcing the game console to
parse a two-dimensional video-stream. The multi-array
microphone 115 parses voices and Sound input, while simul
taneously extracting and nullifying ambient noise. Project
Natal also features a processor with proprietary software that
coordinates the inputs of the Natal system and provides a
three-dimensional, skeleton-based system to game develop
ers. Developers can use this system to utilize three-dimen
sional position information of the joints in the user's body to
interact with the game platform.
0046 Although Project Natal provides a framework for
determining positional information of a user's body, it does
not provide a means for grading a dance performance or
teaching a user to dance. While in some embodiments, a
camera-based system is used to determine positional infor
mation about the user's body in three dimensions to produce
a skeleton model, in other embodiments, transducers attached
to the user's body are used to detect the positions of the user's
limbs and produce a skeleton model. Other embodiments use
infrared pointing devices or other motion tracking peripher
als. All that is required is a system than can parse movement
in two dimensions to produce a skeleton model; adding
dimension information from a third dimension, typically
depth, simply makes the invention easier to implement due to
the additional information provided to the system. In embodi
ments where the system is already provided a skeleton, Such
as Natal, relative body scale mapping is easier to accomplish.
0047. Also shown in FIG. 1A is an exemplary game plat
form 120. The game platform typically includes a Central
Processing Unit (CPU) 125, agraphics processor 130, storage
component 135 such as a hard drive, Read Only Memory
(ROM) 140, Random Access Memory (RAM) 145, all in
signal communication via a bus 150. The bus 150 also con
nects to an input for the Project Natal System. In some
embodiments, the Natal system connects to the game plat
form 120, e.g., an Xbox 360, via a Universal Serial Bus (USB)
connection.
0048. As used herein, the terms joint”, “bone', and "skel
eton” are intended to have the meaning one of skill in the art
of motion capture and animation would ascribe to them. For
example, a skeleton can comprise bones, but the number of
bones and their positions are a function of the motion capture
equipment and the animation rig and do not necessarily cor
relate to the number and positions of bones in a human skel
eton. Similarly, a joint can be at the distal endpoint of a single
bone (e.g., a fingertip or the head), and need not be at a point
where two bones come together. An example of the Natal
skeleton is shown in FIG. 1B. The skeleton provided by the
Natal system provides a framework for the dance game, and

Dec. 15, 2011

allows for tracking of not only limbs generally, but specific
joints as well. For example, the wrist joint 160 on the right
arm is treated separately from the right elbow 165, which is
treated differently than the right shoulder 170. Additional
portions of the body are also recognized. Such as the pelvis,
middle of the torso, the head, the neck, and the knees and feet.
0049. One of the benefits provided by the skeleton-based
system is that the skeletal model can be used to calculate scale
vectors based on two or more joints. This provides a spatially
relative system, i.e., what is the positional distance from body
part X to body partY compared to the positional distance from
body part X to body part Z. instead of an absolute coordinate
system.
0050. A “filter as used herein, is in effect a test, e.g., is the
user's right hand in a particular position at time t? Although
typically a producing a Boolean outcome, e.g., if the condi
tion is true, the filter is satisfied and registers a success, and if
not, then the filter is not satisfied. Filters may also output a
contiguous score indicating the degree to which the condition
is being satisfied spatially or temporally. Advantageously,
multiple filters can be checked simultaneously, e.g., is the
user's right hand in positionX and is his left foot in position y?
These filters can then be combined to determine if a user has
Successfully completed a pose. But pose-matching, in and of
itself, is not a complete solution to scoring a sequence of
dance moves.

Creating a Target Representation

0051. The process of one implementation begins by using
motion capture technology (known in the art as "mocap) to
create a three-dimensional model of a target performance of a
dance or part of a dance. Motion capture is a recording of
human actor which can be used by a computer to reproduce
the actor's performance. When the mocap session is recorded,
sensors at various points on the actor's body provide the
recording computer with information Such as joint and limb
position data over time. In the case of a dance game, the
mocap is typically a recording of a dancer performing a
particular dance move, or series of movements that makes up
a dance move, and in one implementation, the mocap is a
recording of an entire dance routine for a song. The mocap
performance becomes a representation of the dance in a form
usable by the game system (i.e., a “target performance').
Beneficially, the positional information received during
mocap is similar to the positional information received by a
camera-based game system when a user is playing a game.
This similarity can be exploited to grade a user on how well he
is dancing at a particular time by comparing a user's perfor
mance (the input performance) to a keyframe of the target
performance. Also beneficially, the mocap data can be used to
drive on-screen animations of avatars, thus demonstrating to
the user the exact movements he must perform to maximize
his score.
0.052 At least one notable problem arises though that pre
vents a direct comparison between the user's performance
and the target performance: because the user and the mocap
actor could have different heights and appendage lengths, or
have different body types, a direct comparison of positional
information of the input performance and the target perfor
mance could result in the user scoring poorly, even if he is
performing the moves correctly. For example, the actor in the
target performance could have an arm fully extended which,
based on the dimensions of the actor's body, positions the
actor's wrist two and a half feet in front of his shoulder. The

US 2011/0306397 A1

user's input, also reflecting a fully extended arm, could have
the (shorter-in-stature) user's wrist positioned two feet in
front of his shoulder. In a purely comparative system, the user
has not satisfied a test of “is the user's wrist in the same
position as the wrist of target performance actor? because
the user's wrist, even though his arm is fully extended, is still
a half foot closer to the reference point, i.e., the shoulder.
Therefore, it is advantageous to express both the target per
formance and the user's performance in the same frame of
reference.

Normalizing the Input Performance and Target Performance
0053 To create a consistent frame of reference, the mocap
data, which is expressed in its own representation (in some
implementations even its own skeleton), and the user's input
are both normalized, creating a normalized target perfor
mance and a normalized input performance. In one imple
mentation, normalization of each joint is achieved by deriving
unit vectors reflecting offsets of one specific joint relative to
another specific joint.
0054. In one embodiment, there are four different player
normalized coordinate systems: left arm, right arm, left leg,
and right leg. The left arm coordinate system's origin is at the
left shoulder, the up vector is away from gravity (in Natal
systems, based on Natal’s accelerometer). The right vector is
from the left shoulder to the right shoulder, the forward vector
is the cross product of the up vector and the right vector. The
right arm coordinate system is just the mirror of this. The left
leg coordinate system's origin is the left hip, the up vector is
gravity, the right vector is from the left hip to the right hip, and
the forward vector is the cross product of the up vector and the
right vector. The right leg coordinate system is the mirror of
this.
0055 As an example, referring to FIG. 1C, the normalized
position of joints on the left arm can be determined as follows.
The left shoulderjoint 175 is treated as the origin of the vector
185 from the shoulder to the elbow 180 and that vector 185 is
transformed from the skeleton's coordinate system into the
left arm coordinate system. The vector is then normalized by
dividing it by its magnitude. The resulting vector is a “nor
malized elbow position.” A similar process is applied to the
input skeleton to determine a normalized elbow position for
the user. This method can be used for other joints as well, e.g.,
the wrist position can be normalized by determining the vec
tor 190 from the elbow 180 to the wrist 182, transforming that
vector from the skeleton's coordinate system into the left arm
coordinate system, and dividing it by the magnitude of that
vector 190. A knee's position can be normalized based on the
vector 195 between the hip and the knee, transformed from
the skeleton's coordinate system into the appropriate-side leg
coordinate system, and divided by the magnitude of that
vector. An ankle's position can be determined based on the
vector from the knee to the ankle, and so forth. Other joints
Such as hips are usable as well: foot raises are determined as
a “squish’ from foot to waist where the foot's position is
drawn in towards the waist. In one embodiment, the normal
ized joint positions in the entire skeleton are computed, using
the joint more proximal to the body core as the reference joint.
In other embodiments, only a subset of the joints that have a
correspondence in both skeletons are normalized, and nor
malization occurs on a limb-by-limb basis. In either embodi
ment, the normalization of the target performance can be
carried out in advance of gameplay, or can be carried out
during gameplay.

Dec. 15, 2011

0056. There are several options for normalizing joints that
are not directly connected to an origin joint. Continuing the
previous example with the shoulder 175 being the originjoint,
the wrist's position could be normalized by determining the
vector 197 from the shoulder 175 to the wrist joint 182,
transforming the vector 197 from the skeleton's coordinate
system into the left arm coordinate system, and dividing the
resulting vector by the sum of the magnitude of the vector 185
from the shoulder to the elbow and the magnitude of the
vector 190 from the elbow to the wrist. Alternatively, the
vector 197 from the shoulder to the wrist could be deter
mined, transformed, and divided by the magnitude of that
vector 197. For legs, an ankle position could be based on foot
position, transformed from the skeleton's coordinate system
into the appropriate-side leg coordinate system, and divided
by the sum of the magnitudes of the vector from the hip to the
knee and from the knee to the ankle
0057 Typically, normalizing the target performance and
the input performance yields positional information analo
gous to both, e.g., both have elbow position representations,
both have wrist position representations, etc. Where data is
not available in the mocap data or the user input for a particu
lar joint though, in Some embodiments, the game interpolates
between two joints to create a “pseudo-joint” that maps to a
joint in the other skeleton. For example, if the mocap skeleton
has a left hipjoint and a right hipjoint, but a user skeleton only
has a mid-pelvis joint, a mid-pelvis pseudo-joint can be syn
thesized for the mocap skeleton at the midpoint of the two hip
joints, and used in further normalization and scoring. Alter
natively, pseudo-joints could be interpolated from both data
sets/skeletons to map to a third idealized skeleton. Addition
ally, where the input camera system is a Project Natal system,
adjustments are typically made to conform the mocap skel
eton to the Natal skeleton, or vice versa, e.g., dropping the
hips, adjusting the shoulder height, and others. In some
embodiments, the game creates a “pseudo-joint even when
data is available in both the mocap data and the user input, in
order to provide a reference point or measurement that is
more stable than a joint in the existing skeleton.

Comparing the Input Performance to the Target Performance

0058. In one embodiment of the invention, every “frame
of the input performance is compared with the corresponding
frame of the target performance to produce a score for that
frame. This strategy, however, does not allow the game to
account for inaccuracies in the user's timing, such as dancing
a move with perfect position but slightly late or early. In
another embodiment, the invention addresses this issue by
scoring each frame of the input performance against the cor
responding frame of the target performance and a range of
adjacent frames. The scoring process incorporates positional
and temporal score using a technique described below. For a
given target frame, a score is determined by finding the maxi
mum score of all input frames scored against that target
frame.

0059. This approach, however, can be prohibitively
expensive computation-wise on some game consoles. To alle
viate this, in some embodiments, only a fraction of the input
frames are compared with target frames (e.g., half of the input
frames). The specific frames in the input performance that are
chosen for comparison can be regularly spaced, or the frames
can be chosen randomly with a probability matching that
fraction.

s

US 2011/0306397 A1

0060. This approach, however, does not capture the intent
behind a dance move where certain intermediate poses are
more important and the transition movements into or out of
those poses are less important. In a preferred embodiment, the
input frames should be compared to the target frames most
important to the dance itself.
0061. In one embodiment, each frame of the target perfor
mance is assigned a weight (e.g., in the range 0.0 to 1.0). As
stated above, each target frame receives a score based on the
maximum score of all input frames scored against that target
frame. In this embodiment, that score is multiplied by the
weight to produce a weighted score for each target frame. The
score for a move is determined by combining the weighted
scores using a sum or average.
0062. In one embodiment, each frame of the target perfor
mance is assigned a weight (e.g., in the range 0.0 to 1.0) that
is computed based on the target performance. The weight for
a frame of the target performance may be computed based on
any number of neighboring frames of the target performance.
The computation determines which target frames are the most
important to the dance by detecting inflections in direction of
parts of the target skeleton, or inflections in distance between
parts of the target skeleton.
0063 For example, the initial weight for a frame may be
0.0. A velocity vector can be computed for each joint in a
target frame by Subtracting its position in the previous frame
from its position in the current frame. Whenever any joints
velocity experiences a derivative of Zero with respect to time,
along the X, y, or Z axis in the camera-based coordinate sys
tem, or along the X, y, or Z axis in the skeleton-based coordi
nate system (see below for a technique for computing a skel
eton-based coordinate system), that frame's weight is
increased. For example, if the weight of the target frame
before considering the joint was w0, the new weight might be
(1+w0)/2, or it may be set to a predetermined “one joint
Zero-derivative value such as 0.5. If another joint's velocity
simultaneously experiences a derivative of Zero, the frame's
weight is increased by Substituting the previous weight into
(1+w0)/2 again, or it may be set to a predetermined “two joint
Zero-derivative' value such as 0.75. Likewise, additional
joints that experience simultaneous derivatives of Zero make
the current frame have a higher weight using the formula or a
lookup table that references number of contributing joints to
a weight value between 0.0 and 1.0.
0064. Although derivatives of joint positions can be used
to determine the weight for a frame of the target performance,
other measurements can also contribute to the weight. For
example, distances between specific joints can be computed
for each frame and tracked across frames, and Zero-derivative
measurements can contribute to the weight. For example, the
distance between wrist joints may be measured for each
frame. Frames in which the distance experiences a Zero
derivative would increase the frame's weight by substituting
its previous weight into (1+w0)/2 or looking up a value from
a table as above.

0065 Other measurements can also contribute to the
weight, such as Zero-derivative measurements of the overall
bounding rectangle of the skeleton along x, y, or Z axes in a
camera-centered coordinate system or x, y, or Z axes in a
skeleton-based coordinate system.
0066. However the target weight is computed, the final
weight assigned to each target frame is used in the same way
as described previously.

Dec. 15, 2011

0067. In a preferred implementation, a subset of the
frames of the target performance are marked as keyframes,
each keyframe representing a specific frame in the target
performance with which the input performance should be
compared. The target performance—comprising an entire
dance routine is aligned with a timeline, the performance
being divided into moves, each move having a start time and
an end time relative to the beginning of the dance, measured
in units of measures/beats/ticks. Alternatively, each move can
have a start time and a duration.
0068 All times and durations are typically measured in
units of measures, beats, and ticks, but alternatively can be
measured in units of seconds. Times are measured relative to
the beginning of the dance, but alternative reference points
are possible, such as the end of the dance, the start of the
previous move, the end of the previous move, or any other
moment in time within the timeline.
0069. Each keyframe includes a time offset relative to the
beginning of the move. In addition to timing information,
each keyframe can include weighting information for x, y,
and Z axes relative to the camera (explained below). Addi
tionally or alternatively, each keyframe can include weighting
information for x, y, and Z axes relative to the entire skeleton
in the target performance, or weighting information for X, y,
and Z axes relative to each “body Zone' (limb-centered coor
dinate systems) in the target performance (explained below).
In one implementation, relaxing the scoring is achieved by
unevenly weighting the contributions of the X, y, and Z axes to
the Euclidean distance measurement above, where x, y, and Z
are taken to be in the left arm coordinate systems, right arm
coordinate system, left leg coordinate system, or left leg
coordinate system.
0070. In addition to weighting information for the axes,
the keyframe also includes weights for different bone groups
themselves to emphasize performing a particular motion,
e.g., moving the user's arms during the 'shopping cart” or
deemphasizing other motions one, e.g., ignoring or forgiving
poor leg position during “the shopping cart'.
0071 Keyframes are placed wherever necessary on the
timeline to capture the most important poses in the dance
sequence. Often, keyframes are placed at eighth-note bound
aries, but they may be spaced irregularly depending on the
dance or move to be tested.
0072. In a preferred embodiment, the target performance

is expressed as mocap data associated with a Milo file. The
Milo file contains a timeline and allows for events, tags, or
labels to trigger events in the game. Advantageously, the
target performance is aligned to the timeline. The Milo file is
also typically associated with a music track, which is also
aligned to the timeline. This allows the developer to assign
events to certain portions of the music track. The Milo file also
has instructional timelines for providing audio cues to the
user (explained below). Another benefit of using the Milo file
is the ability to mark parts of the timeline, and therefore parts
of the target performance, as keyframes. Keyframes are
placed at specific measures or beats on the timeline and rep
resent times to test user input.
0073 Comparing the input performance to the target per
formance inputata particular keyframe may be accomplished
in several ways. In one embodiment, each keyframe has a
time window associated with it, beginning before the key
frame and extending beyond it. The time window is typically
symmetrical around the time of the keyframe, but may be
adjusted for a longer intro if a move is difficult to get into or

US 2011/0306397 A1

a longer outro if the move is harder to get out of. The time
window is typically of a fixed width in seconds. Alternatively,
the time window can be expressed as fixed width in a variable
unit of time Such as beats, so that the window expands and
contracts as the dance tempo slows down or speeds up,
respectively.
0074 FIG. 2A provides an illustrative example. FIG. 2A
shows a series of movements spread over four beats that begin
a move called “Push It.' The first beat is a move marked
“hands out', the second is a move marked "hands in the third
is a “right hand up', and the fourth is “left hand up' move. In
FIG. 2A, three keyframe windows are displayed, each cen
tering on a beat: the first keyframe 200 is for the “Hands out
move at beat 1, the second keyframe 205 is for the “Hands in
move on beat 2, and the third 210 is for the “Right hand up'
move on beat 3. The user's input, sampled a certain number of
times per second, e.g., 30, is examined to determine if it
matches the target performance. For example, on beat 1 (and
for a period before and after beat 1 illustrated by the umbrella
around 200) the user's input is sampled to determine if, in this
case, the user's hands are stretched out in front of him in away
that matches the target input which is based on the mocap
performance. Then, on beat 2 (and before and after), the user's
input is sampled to determine if it matches the target perfor
mance where the user's hands are pulled back in. The win
dows around each keyframe are to allow for variation in time
for the user to complete the move. Variation is allowed for in
both time and positional displacement because rarely will the
user have their limbs exactly in the expected position at
exactly the right time. Additionally, as stated above, some
leeway is provided because the camera is an inherently noisy
input.

Allowing for Variation in Time

0075 Referring to FIG. 2B, if any of the user's inputs
match the target performance within a certain inner time
window around the keyframe, e.g., in the range to di to
d, the user is given full score for performing that portion
of the move that aligns with that keyframe (+/- to allow for
the user to reach the move early or late, and the allowances
either before or after are not necessarily symmetrical). This is
accomplished by examining each frame of input during the
window and selecting the closest match.
0.076 Between an inner time window and an outer time
window, e.g., in the range de to di and the range
de to d, a score is still given for performing the
move, but the score for that performance is reduced as the
temporal “distance' outside the inner window increases. Out
side the outer windows, i.e., before d and after d
respectively, no score (or a score of Zero) is given for per
forming the move because the user is just too early or too late.
The fall off function for the score during the periods of d
to die, and d to d is typically a variation of 1-x.
This yields a parabolic shape that starts from 0 and builds to
1 between d and d, and then falls from 1 to 0
between de to d More specifically, in one embodi
ment, the scoring curve is assembled piecewise:

iPaper

--datief

--ippaea --datief

-date;

For frames before dy(X)=0.
For frames between d and d -datief -ief

Dec. 15, 2011

yo)-1-(it) d-outer - d. inner

For frames between de
For frames between d lief

and dinner
and d -date;

(including X), y(x)=1.

2 X- X0 - dinner
drouter dinner

For frames after di: y(X)=0.
0077 But other variations are possible as well, e.g., a
linear function, a constant, a parabolic function, a square
root, 1/x. 1/(x) (e.g., inverse square, inverse cube, etc.),
polynomial, exponential, logarithmic, hyperbolic, Gaussian,
sine, cosine, tangent, or any combination or piecewise com
bination thereof.
0078 Beneficially, in some embodiments, as shown in
FIG. 2A, the windows for keyframes can overlap, e.g., key
frame 205 overlaps 200. In these cases, an input frame in the
overlapping area is scored against both keyframes. The maxi
mum score of all input frames that are scored against a given
keyframe is assigned as the score for that keyframe. Any
keyframe that the user can match, i.e., that his input falls
within an umbrella for, is considered an “active keyframe' for
that input frame.

Allowing for Variation in Position
0079. As discussed above, the user's positional success is
determined based on comparing the normalized input perfor
mance to the normalized target performance. When compar
ing the input performance to a keyframe (again, preferably
done for each sampling of the input performance), the aggre
gate distance is taken between the two to determine how close
the normalized input performance is to the normalized target
performance of the keyframe. This can be done for the whole
skeleton of the target performance or can be done on a limb by
limb basis. Distances are calculated as the Euclidean distance
between the normalized input performance's joint position in
the input frame and the normalized target performance's joint
position in the keyframe.
0080 FIG. 3A shows a distance determination between
the target performance skeleton (shown in outline) and the
user's input (shown solid). The distance between the user's
elbow joint 300 and the target performance skeleton's elbow
305 is determined, reflecting the error the user is committing
in terms of positioning his limb. If a filter is just testing elbow
position, the analysis stops with comparing 300 and 305. If
the filter also tests wrist position, the distance is determined
between the user's wrist position 310 and the target perfor
mance skeleton's wrist position 315. As shown in FIG. 3A,
the user's elbow position is only slightly off the target perfor
mance's elbow, whereas the user's wrist significantly out of
position. These differences are then used to determine how
well the user is satisfying the filter. Although arms are shown
in FIG. 3A, differences between the user's leg and the target
performance's leg are determined similarly.
I0081 For hips, hip velocity is a vector from the hip posi
tion in the previous keyframe to the hip position in the current
keyframe. The vector is divided by the amount of time elapsed
between the keyframes. To normalize the hip velocity, the

US 2011/0306397 A1

velocity vector is then divided by the length of the spine. Then
the resulting vector is then used for Euclidean comparison
similar to that described with respect to arms and legs. Advan
tageously, dividing by the length of the spine normalizes the
Velocity measurement to account for the size of the user, e.g.,
a child needs to displace his hips a Smaller amount than a
taller adult, in order to receive the same score.
0082 In some embodiments, the total skeleton score is an
aggregate (e.g., Sum) of five different scores, i.e., left arm
score, right arm score, left leg score, right leg score, and hip
Velocity score. These are each made up of Score calculations
themselves for the individual joints and represent how well
the user performed the move for each “body Zone'. For
example, the left arm score is an aggregate of the wrist score
and elbow score, and the leg score is an aggregate of the knee
score and ankle score. Beneficially, displacement of the body,
measured by hip Velocity, may also be incorporated into the
score calculation. Also beneficially, contributions to the
aggregate skeleton score by the aggregate body Zone score
may be weighted per keyframe to enhance the contribution
from Zones that are more important to executing the keyframe
pose. For example, if the left arm is most important to a
particular pose, the weight of its contribution to the score can
be increased, or contributions of other body Zones' scores can
be decreased, or some combination thereof. Beneficially, con
tributions to aggregate body Zone score by individual joint
score may be weighted per keyframe, to enhance contribution
from individual joint positions that are more important to
executing the keyframe pose. For example, the elbow is more
important than the wrist for the “Funky Chicken” pose, so the
weight of the elbow joint's score can be increased, or the
weight of the wrist joint score can be decreased, or some
combination thereof. Typically though, if a user's joint or
body Zone is in the correct position, the user will be given full
credit for the correct position and the weight of that limb's
contribution will not be decreased.

0083) Referring now to FIG. 3B, like timing, there is a
window of acceptable error for position. The error for posi
tion is determined based on the distance between the normal
ized input joint position and the normalized target joint posi
tion. If the distance is below a threshold (using the same
convention as timing: de), e.g., 0.25 or less, the error is
considered Zero for that joint, so input frame receives a 100%
score. If the distance is greater than the d, the score will
fall off quickly as the distance increases to some outer bound
ary, die. Between die, and die, the input frame still
receives some score, but the further the scored limb or joint is
from the target position, i.e., the closer it is to d, the less
score the user receives. Once the joint's position is so far off
position that the distance falls outside d, the user
receives no score (or Zero score) for that frame. Unlike timing
errors, which may represent times before or after the key
frame and may therefore be positive or negative, distances are
always positive.
0084. The score of an input from for a particular keyframe

is determined aggregating the positional score and the timing
score. In a preferred embodiment, the positional score for an
input frame compared against a particular keyframe is then
multiplied by the timing score for that input frame to produce
an overall score for the input frame for that keyframe. If the
score for an particular input frame is greater than the score of
any other input frame for a particular keyframe, i.e., that input
frame is the “closest to the keyframe in terms of the combi
nation of weighted timing and position scores, that score is

Dec. 15, 2011

the assigned score for that keyframe and is used to determine
the player's overall score for the move. When the user has
satisfied a certain percentage of the filters for the bar, e.g.,
80%, the user is considered to have successfully performed
the entire move for that bar (because it is unlikely that a user
will satisfy 100% of the filters). In implementations with
graduated feedback (discussed below), completing 80% may
be “Perfect.” 60% may be “Good,” 40% may be “Fair” and
20% may be “Poor.”

Compensating for the Limits of the Camera and User
I0085. The present invention overcomes one limitation of
the user's ability to parse input presented on the display.
Certain movements of the on-screen dancer along the Z axis
(into and out of the screen) are difficult for the user to parse
precisely. For example, when the avatar's arm is held out
directly in front of its body, and the wrist is then moved closer
to or further from the avatar's body along the Z axis, the degree
of that motion is hard to see from the user's perspective. This
is problematic for a dance game because the game may
require the user to replicate this movement, and the user
cannot easily judge the distance well enough to execute the
movement well.
I0086. In one implementation of the present invention, this
is overcome by unevenly weighting the contributions of the X,
y, and Z axes to the Euclidean distance measurement above.
This has the effect of “flattening the error space in a dimen
sion if that dimension is difficult to detect visually. This is
typically expressed as a front-to-back relaxing of the scoring
along the Z axis, because movements in a camera-based sys
tem towards the camera (forward) or away from the camera
(back) are the ones being compensated for. The relaxation of
scoring along an axis is automatically provided by the inven
tion by reducing the contribution along that axis by a coeffi
cient in the Euclidean distance calculation. The developer
may also specify, for a given keyframe, coefficients for one or
more axis to reduce or enhance the contribution of error along
that axis to the final score.
I0087. The present invention also overcomes the limitation
caused by occlusion that is inherent to any camera-based
input. When a dance move requires one or more parts of the
body to be moved behind other parts of the body, the occlu
sion of the joints makes it very difficult to determine their
positions with accuracy. This is problematic because joints
can be occluded in normal dance moves, such as when an arm
goes behind the back, or when a move requires the user to turn
sideways to the camera.
I0088. The present invention additionally overcomes a
limitation with a user attempting to reproduce the target per
formance when the mocap for the target performance was
executed by a professional dancer who is very flexible. This is
problematic because a professional dancer can place his body
in positions that cannot be achieved by a casual user, and
therefore the user cannot score well on the move. For
example, a professional dancer can touch his elbows together
behind his back, but it would be unfair to penalize a typical
user for this lack of flexibility, so the scoring for these moves
can be relaxed.
I0089. In one implementation of the present invention,
relaxing the scoring is achieved by unevenly weighting the
contributions of the x, y, and Z axes to the Euclidean distance
measurement above, where x, y, and Z are taken to be in the
mocap performer's frame of reference. The frame of refer
ence of the mocap skeleton is computed per-frame as a rota

US 2011/0306397 A1

tion about the Z axis of the camera's frame of reference. The
angle of rotation can be computed by finding the plane created
by the shoulders and the center of the pelvis, finding the
forward-facing normal, and rotating the frame of reference
through the angle from the view plane normal to the forward
facing normal. Alternatively, the frame of reference of the
mocap skeleton can be computed by starting with the plane
created by both hips and the head.
0090. In one implementation, relaxing the scoring is
achieved by unevenly weighting the contributions of the x, y,
and Z axes to the Euclidean distance measurement above,
where x, y, and Z are taken to be in the left arm coordinate
systems, right arm coordinate system, left leg coordinate
system, or left leg coordinate system.
0091. One the frame of reference has been rotated, relax
ing scoring along an axis has the effect of “flattening the
error space in a dimension. For example, if a move requires
the elbows to be pulled back very far, relaxing scoring along
the Z axis in the frame of reference of the mocap performer
will reduce the distance the elbows need to be pulled back in
order to achieve a good score. The relaxation of scoring along
an axis is specified with the keyframe information as coeffi
cients for the Euclidean distance calculation.
0092 Beneficially, the game developer can manually
weight certain moves to be more forgiving along any axis
simply because a move is hard to perform.
0093. In some implementations, weighting is based on the
“confidence” that the camera system may provide for detect
ing a joint's position. For example, in Some versions of
Project Natal, the camera system provides “tracked’ posi
tional information in the form of a position for a joint and a
confidence level that the position is correct. When the joint is
off-screen, Natal also provides an “inferred position. When
a joint's position is inferred, e.g., when the joint is clipped or
occluded, neighboring joints can be examined to better assess
where the inferred joint is. For example, if an elbow is raised
above the user's ear, there are only a few possible locations of
the user's wrist, e.g., Straight up above the elbow, down near
the user's chin, or somewhere in between. In these scenarios,
because the object of the game is to be fun, the maximum
positional window, e.g. 0 to d, is widened so that the
filtering is looser to allow for greater variation in positional
differences. Additionally, the inner window of “perfect” posi
tion, Zero to d may also be widened.
0094. In some embodiments, the invention will suspend
the game if too much of the skeleton is occluded or off-screen
for more than a threshold amount of time, e.g., 10 second, or
6 beats, rather than continuing to reward the user for incorrect
positioning.
0095 To assist the user in completing moves correctly,
per-limb feedback is given to the user when performing a
move. In some embodiments, if the user is not satisfying a
filter for a limb, the game renders a red outline around the
on-screen dancer's corresponding limb to demonstrate to the
user where they need to make an adjustment. In some embodi
ments, the per-limb feedback is on the mirror-image limb
from the limb that is not satisfying the filter. For example, if
the user is satisfying the filter for both feet, the hips, and the
left arm, but not satisfying the filter for the right arm, the game
renders a red outline around the on-screen dancer's left arm.
This indicates to the user that his right arm is not correct, since
the user is facing the on-screen dancer and mimicking the
on-screen dancer in mirror image.

--ippaea

Dec. 15, 2011

0096. Other per-limb feedback is also possible. In some
embodiments, an indicator Such as a “phantom limb is drawn
in the target location. Alternatively or additionally, an indica
tor is anchored on the errant limb and its direction and length
are based on the direction and degree of error in the user's
limb position. For example, if the user's wrist is below the
target location, the game draws an arrow starting from where
the user's wrist is located in the input performance and ending
where the on-screen dancer's wrist is in the target perfor
mance. Alternatively, in embodiments where a representation
of what the user is doing is displayed on-screen, the arrow is
drawn starting from the user representation's wrist. In some
embodiments, the indicator persists until the user satisfies the
filters for the target performance's arms. In some embodi
ments, the intensity, geometry, material, or color characteris
tic of the indicator may be changed based on the degree of
error for that limb. For example, the color of the indicator may
become a more saturated red if the error for a limb becomes
greater. Other highlighting may also be used, as may verbal
cues such as “get your <limbs movin' where <limbs is any
body Zone that is not satisfying the filter.
0097. In some embodiments, there is an additional indica
tor showing how well the user is cumulatively satisfying all
filters in a move, such as a ring of concentric circles under the
on-screen dancer's feet. If the user has satisfied a certain
percentage of the filters, e.g., 20%, the inner ring of circles is
illuminated. When the user successfully performs the next
threshold percentage offilters, e.g., 40%, the next set of rings
is illuminated. This is repeated such that when the user has
successfully performed the entire move, the outermost set of
rings is illuminated. A notable side effect is that as the user is
satisfying filters, the ring grows under the on-screen dancer's
feet. In some embodiments, the Success indicator moves with
the on-screen dancer, e.g., is based on the position of the
mid-point of the pelvis of the skeleton of the target perfor
mance, so that the user does not have to look at a different part
of the screen to determine how well he is performing. While
described in terms of discrete rings, the effect can occur
continuously. Also, other shapes or graphical effects may be
used, e.g., a meter indicating how many filters are satisfied,
and bigger and bigger explosions or fireworks may be dis
played to indicate the user satisfying more and more filters.
Beneficially, in some embodiments, a qualitative evaluation is
also displayed, e.g., good, great, or awesome
0.098 Beneficially, the setting of the game may react to
changes in the user's performance. For example, as the user is
satisfying filters, a crowd of spectators may begin to circle or
gather near the on-screen dancer. Or the venue in which the
on-screen dancer is performing may become brighter, more
colorful, or transform into a more spectacular, Stimulating, or
elegant venue. Correspondingly, if the user is performing
poorly, on screen crowds may dissolve and walk away or the
venue may become darker, less colorful, or transform into a
less spectacular, stimulating, or elegant venue. Changes in
venue and setting can based on the consecutive number of
moves completed, e.g., after five successful moves the venue
and dancers on Screen change to an “improved mode. After
ten successful moves the venue and dancers may change to a
“more improved mode” and so forth. Changes in venue and
setting can also be based on the overall score of the input
performance, or on the overall score of the input performance
as compared to an average performance.
Dance Training
0099. In some implementations, there is a trainer mode to
assist the user in learning a dance. In trainer mode, a dance

US 2011/0306397 A1

move is demonstrated using the on-screen dancer and audible
cues and no score is kept. The user is then expected to mimic
the on-screen dancer's movements. If the user performs the
move correctly, an indicator indicates he has performed the
move correctly, the next move is demonstrated, and the user
may continue practicing. If the user does not perform the
move correctly, the move is repeated and the user must keep
trying to perform the move before he is allowed to continue.
0100 When the user does not perform the movement cor
rectly, additional instruction is provided. In some embodi
ments, a verb timeline, normal instructions, runs simulta
neously with the target performance, and has multiple verb
labels indicated on it. The verb labels refer to pre-recorded
audio samples that have both waveform data and offsets. The
offset indicates where the stress—or important accent is
located in the waveform data. For example, if the wave form
data represents the spoken word “together the offset indi
cates the first 'e' sound such that playback of “together
begins before the point of the verb label on the timeline and
the playback of the 'e' sound aligns with the point of the verb
label on the timeline. This allows the developer to specify
which point on the timeline aparticular syllable of the audible
cue falls on. As the target performance is displayed, the wave
form data is playedback according to the positions of the verb
labels and the offsets to provide instruction to the user that is
synchronized with the movement of the on-screen dancer.
0101. In some embodiments, a second verb timeline,
slow instructions, runs simultaneously with the target per
formance and may have a different or more detailed set of
verb labels indicated on it. These verb labels also refer to
pre-recorded audio samples with waveform data and offsets,
similar to those described above. When the user cannot suc
cessfully perform a particular move after a threshold number
of attempts, the game slows down and the slow instructions
timeline is used to provide additional, more detailed instruc
tion to the user. For example, on the normal instructions
timeline, there may be a verb label that refers to an audio cue
of “step and clap.” On the slow instructions timeline, this
may be represented by three labels, “left footout,” “rightfoot
together,” and “clap.” When the game is slowed down, rather
than referencing verb labels on the normal instructions time
line to trigger audio cues, the game references the verb labels
on slow instructions timeline. Beneficially, when the game is
slowed down, there is enough time between body movements
that the additional instructions can be played. In some imple
mentations, the slowed down audible cues are stored in a
different file or a different audio track than the normal speed
audible cues. When the user has successfully reproduced the
move, the game is sped back up and the normal instructions
timeline is used, or alternatively, the additional instructions
are muted or not played.

Fitness Mode

0102. In some embodiments, there is a calorie counter
displayed on the display during the dance game to encourage
users to dance. As the user dances, the calorie counter is
incremented based on the Metabolic Equivalent of Task
(“MET, and generally equivalent to one kcal/kg/hour) value
of what the user is doing. As an example, sitting on the couch
has a MET value of 1. Dancing and most low impact aerobics
have a MET value of approximately 5. High impact aerobics
has a MET value of 7. To determine the MET for a frame of
input skeleton data, the joint Velocities for all joints on the
user's input skeleton are Summed. To determine a joint's

Dec. 15, 2011

Velocity, the joint's position (in three dimensional space) in
the previous frame is subtracted from its position in the cur
rent frame. This yields a vector. The vector is divided by the
elapsed time between the previous frame and the current
frame. The length of the resulting vector is the velocity of that
joint.
0103) Once the sum is determined, it is exponentially
Smoothed to reduce transient noise. The result is a mapped to
a MET scale of 1 to 7 with, in some embodiments, a sum of 0
mapping to 1 and a Sum of 40 mapping to 7, with 1 represent
ing no movement and 7 being a large or vigorous movement.
Beneficially, any Sum less than five can map to 1 to account
for the noise inherent in the input. The mapping can be linear,
piecewise linear, or any interpolation function. Using the
MET value, and knowing the user's body weight (which can
be input via a menu, or can be inferred based on the camera's
input and a body/mass calculation), calories burned can be
estimated.

0104 METs are converted to calories-consumed-per-sec
ond using the equation of (METsbody weight in kilograms)/
seconds in an hour calories/second. This value can then be
displayed on the screen, or Summed over time to produce a
value displayed on the screen for total calories. The value for
calories/second or total calories can stored as a “high score”
and, in Some embodiments, can be used to increase or
decrease the tempo of a song or the difficulty of a series of
moves. Advantageously, this allows the user to track total
calories burned, average rate burned, and other statistics over
time.

Reusing Elements of a Mocap Performance

0105. In some embodiments of the dance game, the most
difficult or complex target performance is recorded as one
linear mocap session and only parts of the recorded perfor
mance are used to simulate easier versions of the perfor
mance. For example, in FIG. 4, the most difficult or “expert”
dance routine comprises a series of movements following
pattern of A, B, C, D, A, B, D.C. In some embodiments, these
moves are marked on the expert timeline using “move labels.”
which each denote the name of a move animation and where
in the timeline the move animation begins. In other embodi
ments, these moves are marked on a timeline that parallels the
expert timeline, called “anim clip annotations. Rather than
capture multiple target performances for each difficulty level,
e.g., a dance with the previous pattern for “expert, and pro
gressively simpler sequences for “hard,” “medium, and
“easy, the game can re-use the motion capture recorded for
expert to simulatea pattern for any of these difficulty levels by
referring to the move labels on the expert timeline. For
example, given the expert sequence above, the easy sequence
might be A, B, A, A, A, B, A, A. In other words, for the easy
routine, a repetition of the A move replaces both the C and D
OWS.

0106 The easier routines can be created programmati
cally, e.g., the game determines how often to repeat a move
ment based on a difficulty value for the move, favoring easier
moves for easier difficulty levels. The easier routines can also
be authored by the game developer by creating an “easy
timeline and referencing the move labels on expert track. An
example of this is the “easy” track in FIG. 4, where the A
sections reference the A move in the expert track and the B
sections reference the B move. Cand D sections, that involve
a more complicated knee raise (C) and knee slap (D), are

US 2011/0306397 A1

omitted from “Easy” so the user only needs to repeat the
“arms out move of A or “arms up' move of B.
0107 Reusing moves allows space savings on the storage
medium (only one target performance needs to be stored) and
it allows the game developerto later change the performances
of the other difficulties after the game is released if it is later
determined that the performance for a difficulty setting is too
hard or too easy or is boring. Since the expert performance is
linear, each. A section in expert will be slightly different
because the mocap actor likely did not have his limbs in the
exact same position every time. Examples of this are A and B'
where the skeletons are similar to A and B respectively, but
the arm positions are slightly different. To make an easier
difficulty target performance, the A move that is repeated in
the easier difficulties can be A or it can be A", or some com
bination. In some embodiments, a move that is repeated in an
easier difficulty uses the most recent version of that move in
the timeline. In some embodiments, a move that is repeated in
an easier difficulty uses the earliest version of that move that
appeared in the routine. Beneficially, the animations from the
expert track can also be reused when creating the “easy
performance.
0108. A sequence of moves for an easier routine may
correspond to a sequence of moves in the original expert
linear mocap Such that a specific pattern of moves is present
in both (although they may not correspond on the timeline). In
this case, the sequence of moves may be copied from the
expert performance into the desired position in the easier
routine's timeline. But if a sequence of moves for an easier
routine does not correspond to a sequence of moves in the
original expert linear mocap, individual moves may be sepa
rately copied from the expert performance into the desired
position in the easier routine's timeline. Beneficially, copying
larger sequences of moves from the linear mocap produces
sequences with fewer animation artifacts.

Animation Blending
0109 When moves or sequences of moves are used in
easier difficulties, the moves can abut other moves that were
not adjacent in the linear mocap. The transitions in the move
animations between these moves can be jarring, since the
skeleton in the last frame of one move can be in a completely
different pose than the first frame of the next move, which
would produce a sudden, nonlinear animation. Animation
blending can be used to transition smoothly from the end of
one move to the beginning of the next move in the sequence,
if the two moves were not adjacent in the linear mocap. Using
the example above of an expert performance following the
pattern of A, B, C, D, A, B, D, C, when creating the easier
difficulty performance, there may be a pattern of A. A that is
not part of the linear mocap. Animation blending is used to
transition from the end of the first A animation to the begin
ning of the same A animation to produce an A. A pattern. In
one embodiment, the last beat of the move before an anima
tion transition is blended with the beat before the beginning of
the next move. In the example of the A. A pattern, the last beat
of the A move is blended with the beat before the A move for
the duration of one beat. Then the animation continues with
the first beat of the second A move.
0110. In some cases, the animation blending technique
described above produces animations that are still jarring.
This is often due to the large differences between the pose at
the end of one move and the pose at the beginning of the next
move, that can’t be overcome through simple blending. In

Dec. 15, 2011

these cases, the animation can appear to jerk from one posi
tion to another during the transition, or to move in away that's
physically impossible. In some embodiments, additional
mocap is recorded to produce bridge animation segments. A
bridge animation segment is designed to make the transition
between two other animations Smooth. For example, using
the example above, if the end of the A move was a very
different pose than the beginning of the A move, a simple
animation blend might produce a poor result. An A. A bridge
animation segment would be recorded, wherein the actor
would actually perform the transition from the end of the A
move to the beginning of the A move. In one embodiment, the
bridge animation segment is three beats long. The next-to-last
beat of the first A move is blended with the first beat of the
bridge animation segment in Such a way that contribution
from the bridge animation segment is interpolated linearly
over the course of the beat from 0% to 100%. The second beat
of the bridge animation segment is played without blending,
then the first beat of the second A move is blended with the
third beat of the bridge animation segment in Such a way that
the contribution from the bridge animation segment is inter
polated linearly over the course of the beat from 100% to 0%.
The bridge animation segment may be any number of beats
long, for example two beats, and the blending can also be
done over the course of any number ofbeats, for example two
beats. The interpolation may be done in a way that is not
linear, Such as parabolic, inverse-squared, etc.
0111. In some embodiments, a table is provided that is
keyed by the start and end move labels associated with two
animations that may abut. If a bridge animation segment is
required to produce a smooth transition between the associ
ated animations, the table will contain an entry indicating the
bridge animation segment that should be used. This table is
consulted for all pairs of animations that are displayed.
0112 Beneficially, the move animations and the results of
the animation blending, e.g., from A to A, or from prior move
to first A or from second A to next move, can be used as the
target performance, and can therefore be scored similarly to
the normal gameplay performance. This provides a fluid
game experience and rewards users that accurately mimic the
dancer on the screen.

0113. In a training mode, it is often necessary to isolate
and repeat a move or series of moves, with a gap in between
the repetitions. For example, when demonstrating the A
move, it is useful for the game to count in the beat while the
animation is in an idling state, then execute the move anima
tion, then return to an idle animation. This can be accom
plished in a way that is similar to the bridge animation seg
ments described for gameplay above. In one embodiment, a
three beat bridge animation segment of the transition from an
idle state to the first beat of a move is recorded as mocap data.
This is blended with the idle animation and move animation
as described above.

0114 FIG. 5 shows one embodiment of an authoring sys
tem for the dance game. In FIG. 5, the keyframes 500 are
depicted with their respective timing umbrellas. Each body
Zone being tested 505 is shown as having a corresponding
portion of the filter to be satisfied (each square in the rectangle
510). The move is completely satisfied when all body Zone
filters are satisfied (although in Some difficulty settings, only
a percentage of the body Zone filters need to be satisfied). The
labels 515a, 515b, 515c (Hip Hop Break.move, Arm
Twist R.move, and Arm Twist L.move, respectively)
applied to each move are shown on the timeline 520. As stated

US 2011/0306397 A1

above, these labels can be reused to create easier dance rou
tines based on the mocap recording. The mocap skeleton 525
shows the desired joint movements, and the input skeleton
530 shows what the user is currently inputting. Look-ahead
icons show the user what move is coming next, e.g., Arm
Twist, and the current move icon 535 is displayed promi
nently. The dancer 540 on screen is a representation of what
the user is Supposed to input and the skeleton of the on-screen
dancer 540 resembles that of the mocap skeleton 525.
Determining an Active Player with Multiple Skeletons Avail
able
0115. When more than one player is within the field of
view of the camera, the system must determine which player
is the active player, and which player is the inactive player, for
the purposes of shell navigation and gameplay.
0116 For this discussion of determining the active player,

it is useful to define two terms. A skeleton is considered
“valid’ if it is not sitting and it is facing the camera. Also,
"queuing a skeleton for activation' means setting a timer to go
offat particular time, at which point the active skeleton is set
to be inactive and the queued skeleton is set to be active.
0117. In some embodiments, queuing a skeleton for acti
Vation does not set a timer if that skeleton is already queued
for activation. In some embodiments, queuing a skeleton for
activation does not set a timer if any skeleton is already
queued for activation. In some embodiments, the timer is
always set for 1 second in the future.
0118. In some embodiments, determining the active
player begins when a frame of skeleton data is received by the
system. In some embodiments, a frame of skeleton data is
received and processed every thirtieth of a second. In each
frame, there may be any number of distinct skeletons in the
skeleton data. At any time, one of the skeletons in the skeleton
data is considered active, and the rest, if any, are considered
inactive.
0119. In some embodiments, if the active skeleton is
behind—further from the camera than-an inactive skeleton,
or the active skeleton is near the edge of the camera's view,
then the system can search for an inactive skeleton to activate.
In some embodiments, the active skeleton is considered near
the edge of the camera's view if its centerline is in the left or
right fifth of the camera's view. If there is an inactive skeleton
nearer to the center of the camera's view than the active
skeleton, the inactive skeleton can be queued for activation.
0120 In some embodiments, if an inactive skeleton that is
queued for activation is not present in the current frame, or is
not valid, or is crossing its arms, or is behind the active
skeleton, the queued activation of that skeleton is cancelled.
In some of these embodiments, the queued activation of the
inactive skeleton is not cancelled if the active skeleton is near
the edge of the camera's view.
0121. In some embodiments, if the active skeleton is not in
the frame, or if the active skeleton is invalid, but there is at
least one inactive skeleton, the system immediately activates
one of the inactive skeletons.
0122. In some embodiments, if an inactive skeleton's hand
is raised and the active skeleton's hand is not raised, the
inactive skeleton is queued for activation or scoring for danc
ing. Beneficially, this allows a user to express intent to control
the shell or have their performance be the one that is graded by
raising their hand.
Multi-Player Modes—Animation
0123. A dance game can be more satisfying if it provides
multi-player competitive or cooperative game modes. One

Dec. 15, 2011

difficulty that arises is that the original Song and the chore
ography for the song may not be balanced Such that two
players can have equal opportunities to contribute to their
competing or combined scores (for competitive and coopera
tive modes, respectively). In addition, the Song may be too
short to give either player Sufficient opportunity to perform
for a satisfying duration.
0.124. In one embodiment, the invention addresses these
shortcomings by artificially extending the song and its cho
reography by looping back to previous parts of the Song to
give multiple players an opportunity to dance the same sec
tion. Beneficially, this provides the same potential scoring for
all players in a multi-player mode. Although animation blend
ing in this context is primarily intended for looping back to
previous parts of a song, the mechanism applies equally well
to any non-contiguous jump between points in the song, or
jumps between jumps points in more than one song.
0.125. In one embodiment, a section that is to be repeated
in multi-player mode is indicated in a MIDI file, in a track
called multiplayer markers, aligned with the audio timeline.
Alternatively, the markers can be located in the same MIDI
track as other MIDI data, or can be indicated across multiple
MIDI files, in respective tracks called multiplayer markers,
or can be located in the same MIDI track as other MIDI data,
spread across multiple MIDI files. The section indicators are
special multiplayer text events, MP START and MP END.
During gameplay, when the game time reaches the time of the
MP END text event the first time, the game time jumps to
MP START and the other player begins play. When the game
time approaches the time of MP END the second time, it
continues withoutjumping.
0.126 In one embodiment, when the game jumps to a
non-contiguous point in the song, for example to the point
designated by MP END, animation blending can be used, as
described above for creating easier difficulties, to make the
transition less jarring. For example, if it is determined that a
single section should be repeated, the animation of the last
beat of the section can be blended with the animation the beat
before the beginning of the first beat of the section. The
animation blending can take place over two beats, or it can
extend over multiple beats. In all cases, the animation for the
end of the section is blended with the animation before the
beginning of the section such that the blend begins with 100%
contribution from the end of the section and ends with 100%
contribution from before the beginning of the section. The
interpolation can be linear, or can use any other interpolating
function Such as polynomial.
I0127. As in animation blending for easier difficulties, the
blend from the end of a section to the beginning of the section
can produce an unrealistic movement. In this case, bridge
animation segments can be used, as discussed above regard
ing producing an easy difficulty.

Multi-Player Modes—Audio
0128. Extending a song by looping back to previous sec
tions brings with it some inherent difficulties in animation.
The invention addresses these difficulties using animation
blending and bridge animations. Non-contiguous jumps in
the timeline of the song, or jumps between Songs, also cause
difficulties with continuity of the audio track. As with anima
tion, the audio for the end of a section does not always merge
Smoothly into the audio for a section that is not adjacent in the
song's timeline. Jarring discontinuities in the audio track can
interfere with the users’ enjoyment of multi-player modes.

US 2011/0306397 A1

The invention provides seamless audio track transition play
back during multi-player modes to address this difficulty. For
example, if the audio follows the sequence of sections A, B, C,
it may be desirable in a multiplayer mode to loop from the end
of the B section back to the beginning of the B section. The
invention allows this extension to happen seamlessly.
0129. In one embodiment, a section that is to be repeated
in multi-player mode is indicated in a MIDI file in a track
called multiplayer markers, with MP START and MP END
text events, as described above. In the example above, an
MP START text event in the MIDI file would be aligned with
the beginning of the B section, and an MP END text event
would be aligned with the end of the B section, indicating that
the entire B section is to be repeated in multi-player mode.
Alternatively, a section that is to be repeated in multi-player
mode can be indicated across multiple MIDI files, in respec
tive tracks called multiplayer markers, or can be located in
the same MIDI track as other MIDI data, spread across mul
tiple MIDI file.
0130. In one embodiment, when there will be a transition
from one part of the song to a non-adjacent part of the song,
the audio track for a period of time before the origin of the
transition is blended with the audio track for the same dura
tion before the target of the transition, or the audio track for a
period of time after the origin of the transition is blended with
the audio track for the same duration after the target of the
transition, or some combination. This is similar to how ani
mations are blended when producing an easy difficulty. For
example, one beat worth of audio before the MP END event
could be blended with one beat worth of audio before the
MP START event, then one beat worth of audio after the
MP END event could be blended with one beat worth of
audio after the MP START event. The blending is done such
that at the beginning of the blend, the contribution from the
audio before the MP END event is 100%, and at the end of
the blend, the contribution of the audio from after
MP START is 100%. This can be a linear crossfade, or it can
use any other interpolating function, such as polynomial.
0131. In some cases, as with animation blending, the result
of audio blending is still jarring. This is often due to the
discontinuity in the harmonic progression of the song when
moving to a different place in the music, or presence or
absence of vocal or instrument parts before or after the tran
sition. In some embodiments, as with bridge animation seg
ments, additional audio is recorded to produce waveform data
for a bridge audio segment. The bridge audio segment is
designed to make the audio transition between two non-ad
jacent parts of the Song sound Smooth. Using the example
above with sections A, B, and C, if the game will repeat
section B, a bridge audio segment can be provided that
smoothly transitions from the last part of section B into the
first part of section B.
0.132. In one embodiment, the waveform data for bridge
audio segments are included in one or more additional bridge
audio tracks in the multi-track audio data, and the bridge
audio tracks are muted unless non-sequential looping is tak
ing place. However, each bridge audio segment could be
located in its own file referenced by the game authoring, or all
bridge audio segments could be located in a single file, and the
offset and duration of each segment of bridge audio in the
single file would be stored as unique text events in the MIDI
file.

0133. In some embodiments, all bridge audio segments are
of a fixed duration in beats, with a fixed number of beats

Dec. 15, 2011

before the transition. In these embodiments, the original song
audio is played until a fixed amount of time in beats before the
end of the transition. Then the original Song audio track or
tracks are muted, and the bridge audio segment is played until
the transition point. Then the “current time' is moved to the
target of the transition and the remainder of the bridge audio
segment is played. At this point, the bridge audio track is
muted and the original Song audio track or tracks are
unmuted. For example, all bridge audio segments might be
three beats long, with one beat before the transition. Using the
example above with sections A, B, and C, if the game will
repeat section B, a 3-beat-long bridge audio segment from the
end of B to the beginning of B may be provided. One beat
before end of B, the original audio tracks are muted and the
B-to-B bridge audio segment is played. When the end of B is
reached, the current time is moved to the beginning of B, and
the bridge audio segment continues playing for two more
beats. After two beats, the bridge audio track is muted and the
original tracks are unmuted. Beneficially, aligning the audio
and changing the current time in this way allows for a single,
consistent timeline for audio playback, animation, and other
aspects of gameplay. Alternatively, the current time may be
changed at the end of the bridge audio segment's playback,
and moved directly to two beats after the beginning of B
section. This example discusses bridge audio segments that
are all 3 beats long, which start playing one beat before the
transition, but other embodiments may have bridge audio
segments that are all longer or shorter, or that all begin earlier
or later with respect to the transition.
I0134. In some embodiments, the song audio and bridge
audio segments may be muted and unmuted, as described.
Alternatively, the Song audio and bridge audio segments may
be mixed, such as by lowering the normal Song audio Volume
to 10% and playing the bridge audio segment at 90%. It is also
possible to cross-fade the Song audio and bridge audio seg
ments. For example, the last beat of the B section would start
with 100% of the song audio and end with 100% of the bridge
audio segment, then the bridge audio segment would play at
100%, then the second beat of the B section would start with
100% of the bridge audio segment and end with 100% of the
second beat of the song audio. The interpolation can be linear,
but it can also use any other interpolating function, such as
polynomial.
0.135. In some embodiments, as described above, the
bridge audio segments can be of a fixed duration in beats or
seconds. In other embodiments, each bridge audio segments
can be of different durations. Beneficially, the ability to
specify bridge audio segments of different durations makes it
easier to provide a musically seamless transition, using more
time if necessary, to achieve the proper harmonic and orches
tration transitions, and less if possible, so that the playback
departs as little as possible from the original music.
0.136. In one embodiment, all the waveform data for
bridge audio segments is located on a single bridge audio
track, bridge audio, in the multi-track audio data file. The
bridge audio waveform data for a given transition is divided
into the Sub-segment before the transition and the Sub-seg
ment after the transition. The sub-segment before the transi
tion is positioned in the bridge audio track so that it ends
exactly at the transition point, corresponding to the MP END
text event in the associated MIDI file. The sub-segment after
the transition is positioned in the bridge audio track Such that
it begins exactly at the target of the transition, corresponding
to the MP START text event in the associated MIDI file.

US 2011/0306397 A1

0.137 In some embodiments, where the bridge audio seg
ments are of a fixed duration, the beginning and end of the
bridge audio segments is implicit in the fixed duration and the
fixed amount of time before the transition, as described
above.
0.138. In the preferred embodiment, the specification of
the beginning and end of bridge audio segments is provided in
a MIDI file, in the multiplayer markers track, although the
beginning and end of the bridge audio segments could be in
their own MIDI track, or in their own MIDI file whose time
line is aligned with the audio timeline. In the multiplayer
markers track, special multiplayer text events,
MP BRIDGE START and MP BRIDGE END, denote the
beginning and end of a bridge audio segment. As the game is
played in a multi-player mode, when an MP BRIDGE
START text event is encountered on the timeline of multi
player markers, the original audio track or tracks are muted
and the bridge audio track is unmuted. As described above,
attenuation of the original track or crossfading with the bridge
audio track can be used instead of muting and unmuting.
Playback continues until the transition point itself, which is
indicated by the MP END text event. At this point, the “cur
rent time' is set to the target of the transition, marked by the
MP START text event, and the bridge audio track continues.
When the MIDI MP BRIDGE END event is encountered,
the original audio track or tracks are unmuted, and the bridge
audio track is muted. Note that when the transition is back
wards in time, the MP BRIDGE END event occurs earlier
on the timeline than the MP BRIDGE START event, since
the current time is modified between them. Beneficially,
dividing the bridge audio segments and modifying the current
time at the transition point as described allows there to be a
single concept of current time for the audio, animation, and
gameplay. In other embodiments, the current time is modified
only after the playback of the bridge audio segment is com
plete, and at that point it is set to the location of MP START
plus the length of the second Sub-segment of the bridge audio
segment. As described above, a section that is to be repeated
in multi-player mode also can be indicated across multiple
MIDI files, in respective tracks called multiplayer markers,
or can be located in the same MIDI track as other MIDI data,
spread across multiple MIDI file.

Additional Variations

0.139. The examples given herein of a user satisfying a
filter by completing a series of moves can be adapted to satisfy
a “mirror mode” as well, where the user provides input that
mirrors the target performance, e.g., providing input using a
right hand when the target performance uses a left hand,
providing right leg input when the target performance uses a
left leg, and so forth.
0140. Additionally, where a target performance skeleton is
provided, it can be generated beforehand, or can be generated
during execution of the game based on the motion capture
data.
0141 Any system that can detect movement can be used as
long as positions of the scored joints can be determined in
either two-dimensional space or three-dimensional space to
create or simulate a skeleton. For two-dimensional imple
mentations, scoring is typically adjusted to compare the pro
jection of the target performance and the projection of the
input performance onto a plane parallel to the screen.
Although the system and technology has been described in
terms of a camera input system like Natal, camera systems

Dec. 15, 2011

that utilizes sensors on the user's body, e.g., PLAYSTA
TIONR) Move, or systems that use sensors held in the user's
hand, e.g., the NINTENDOR) Wii, may also be utilized. In
those implementations where only hand held sensors are uti
lized by the user, testing for leg input is ignored or not per
formed.

0142. Although the embodiments described herein use
dancing as an example, and the performance is typically
accompanied by a song, the performance can also be move
ments that occur on a timeline with no musical accompani
ment, e.g., a series of yoga poses, movements in a martial arts
kata, or the like.
0143. In some implementations, the mocap data is mapped
to a skeleton similar to that used to reflect the user's input.
Thus, the mocap data is used to generate an ideal skeleton that
represents a performance of the dance routine in a format that
is directly comparable to the skeleton representing the user's
input. Then, during the game, as the user provides input, the
user's skeleton is compared to the ideal skeleton, in effect
normalizing the target input (the target performance) and
actual inputs (the user's performance) to the same frame of
reference, i.e., both performances are expressed in terms of
the same skeleton-based technology.
0144. In some embodiments, rather than matching posi
tion necessarily within a time window as described above,
filter types are predefined and used to test user input. For
example, proximity filters tests if a joint in a particular posi
tion, or close to a particular other joint, e.g., “are the left wrist
and right wrist less than, greater than, or within a delta of a
certain distance of one another. Another filter is a displace
ment filter which tests if a joint has moved a certain distance
between times to and t. Another example is the angle filter,
which tests if a joint is at a particular angle from the origin.
One or more of these filters is then hand-inserted (or
“authored') into the timeline and bound to joints such that at
a particular time, the condition is tested, e.g., “has the RIGHT
WRIST moved from Xotox, since I began tracking it?” would
be a displacement filter. If the user's wrist had, the filter would
be satisfied. Yet another filter is an acceleration filter which
tests if a joint or bone has accelerated or decelerated between
times to and t. An acceleration filter can also test whether the
magnitude of the acceleration matches a predetermined
value.

0145. In these embodiments, multiple filters can be over
laid on the timeline, and tested, in effect, simultaneously. An
overall score for the frame is determined based on contribu
tions from all of the active filters during a given frame. The
filters can output a Boolean, and the score is computed from
those. Or in Some implementations—the outputs are con
tinuous, and the aggregate score is computed from those.
Similar to the system described above, contributions from
each active filter can be weighted differently in their contri
butions to the score. For Boolean filters, successfully com
pleting 3 out of 5 filters gives the user a score of 0.6. In some
implementations, each keyframe comparison gives a percent
age credit for the move as a whole being correct. The user's
score may be adjusted based on the aggregate score for a
keyframe. Or the aggregate score for a keyframe may be
quantized into groups, each group being compared to one or
more thresholds, each group associated with a score that is
added to the user's score. In any of these, if the user achieves
a threshold score for a move, where if the user meets or
exceeds the threshold, e.g., 80%, the user is considered to
have successfully performed the move.

US 2011/0306397 A1

0146 In some embodiments, execution of game software
limits the game platform 120 to a particular purpose, e.g.,
playing the particular game. In these scenarios, the game
platform 120 combined with the software, in effect, becomes
a particular machine while the Software is executing. In some
embodiments, though other tasks may be performed while the
software is running, execution of the software still limits the
game platform 120 and may negatively impact performance
of the other tasks. While the game software is executing, the
game platform directs output related to the execution of the
game software to a display, thereby controlling the operation
of the display. The game platform 120 also can receive inputs
provided by one or more users, perform operations and cal
culations on those inputs, and direct the display to depict a
representation of the inputs received and other data Such as
results from the operations and calculations, thereby trans
forming the input received from the users into a visual repre
sentation of the input and/or the visual representation of an
effect caused by the user.
0147 The above-described techniques can be imple
mented in digital electronic circuitry, or in computer hard
ware, firmware, software, or in combinations of them. The
implementation can be as a computer program product, i.e., a
computer program tangibly embodied in a machine-readable
storage device, for executionby, or to control the operation of
data processing apparatus, e.g., a programmable processor, a
computer, a game console, or multiple computers or game
consoles. A computer program can be written in any form of
programming language, including compiled or interpreted
languages, and it can be deployed in any form, including as a
stand-alone program or as a module, component, Subroutine,
or other unit Suitable for use in a computing environment. A
computer program can be deployed to be executed on one
computer or game console or on multiple computers or game
consoles at one site or distributed across multiple sites and
interconnected by a communication network.
0148 Method steps can be performed by one or more
programmable processors executing a computer or game pro
gram to perform functions of the invention by operating on
input data and generating output. Method steps can also be
performed by, and apparatus can be implemented as, a game
platform Such as a dedicated game console, e.g., PLAYSTA
TION.R. 2, PLAYSTATIONR 3, or PSPR manufactured by
Sony Corporation: NINTENDOWIITM, NINTENDO DSCR,
NINTENDO DSiTM, or NINTENDO DS LITETM manufac
tured by Nintendo Corp.; or XBOX(R) or XBOX360R manu
factured by Microsoft Corp. or special purpose logic cir
cuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application-specific integrated circuit) or other spe
cialized circuit. Modules can refer to portions of the computer
or game program and/or the processor/special circuitry that
implements that functionality.
0149 Processors suitable for the execution of a computer
program include, by way of example, special purpose micro
processors, and any one or more processors of any kind of
digital computer or game console. Generally, a processor
receives instructions and data from a read-only memory or a
random access memory or both. The essential elements of a
computer or game console are a processor for executing
instructions and one or more memory devices for storing
instructions and data. Generally, a computer or game console
also includes, or be operatively coupled to receive data from
or transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto-optical disks, or

Dec. 15, 2011

optical disks. Data transmission and instructions can also
occur over a communications network. Information carriers
Suitable for embodying computer program instructions and
data include all forms of non-volatile memory, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD-ROM and DVD-ROM disks. The pro
cessor and the memory can be supplemented by, or incorpo
rated in special purpose logic circuitry.
0150. To provide for interaction with a user, the above
described techniques can be implemented on a computer or
game console having a display device, e.g., a CRT (cathode
ray tube) or LCD (liquid crystal display) monitor, a television,
or an integrated display, e.g., the display of a PSPR, or Nin
tendo DS. The display can in some instances also be an input
device Such as a touch screen. Other typical inputs include a
camera-based system as described herein, simulated instru
ments, microphones, or game controllers. Alternatively input
can be provided by a keyboard and a pointing device, e.g., a
mouse or a trackball, by which the user can provide input to
the computer or game console. Other kinds of devices can be
used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, or auditory feedback;
and input from the user can be received in any form, including
acoustic, speech, or tactile input.
0151. The above described techniques can be imple
mented in a distributed computing system that includes a
back-end component, e.g., as a data server, and/or a middle
ware component, e.g., an application server, and/or a front
end component, e.g., a client computer or game console hav
ing a graphical user interface through which a user can
interact with an example implementation, or any combination
of such back-end, middleware, or front-end components. The
components of the system can be interconnected by any form
or medium of digital data communication, e.g., a communi
cation network. Examples of communication networks
include a local area network (“LAN”) and a wide area net
work (“WAN), e.g., the Internet, and include both wired and
wireless networks.
0152 The computing/gaming system can include clients
and servers or hosts. A client and server(or host) are generally
remote from each other and typically interact through a com
munication network. The relationship of client and server
arises by virtue of computer programs running on the respec
tive computers and having a client-server relationship to each
other.
0153. The invention has been described in terms of par
ticular embodiments. The alternatives described herein are
examples for illustration only and not to limit the alternatives
in any way. The steps of the invention can be performed in a
different order and still achieve desirable results.

What is claimed:
1. A method, executed on a game platform, for providing a

Smooth animation transition in a game comprising:
(a) providing, during play of the game, an event timeline

comprising event markers denoting points in time on the
event timeline, each event marker associated with an
animation segment from a plurality of animation seg
ments;

(b) providing a first marker on the event timeline indicating
a first animation segment to be displayed on the display
at a first time with respect to event timeline and a second

US 2011/0306397 A1

marker on the event timeline indicating a second anima
tion segment to be displayed on the display at a second
time with respect to event timeline;

(c) determining, during play of the game, that the second
time is approaching;

(d) determining a set of animation segments to be blended
together to provide a smooth transition from the first
animation segment to the second animation segment;
and

(e) blending among the set of animation segments based on
the determination made in step (d).

2. The method of claim 1 wherein the set of animation
segments to be blended comprises the first animation segment
and the second animation segment and blending comprises
blending at least Some of the first animation segment with at
least some of the second animation segment.

3. The method of claim 1 wherein the set of animation
segments to be blended comprises the first animation seg
ment, a bridge animation segment, and the second animation
segment, and blending comprises blending at least a Some of
the first animation segment with at least Some of the bridge
animation segment and blending at least some of the bridge
animation segment with at least some of the second animation
Segment.

4. The method of claim 1 further comprising:
before the first time, judging a first player's performance of

the game; and
at and after the second time, judging a second player's

performance of the game.
5. The method of claim 1 wherein the second animation

segment is determined based on a difficulty of the game.
6. The method of claim 1 wherein determining the set of

animation segments to be blended comprises determining if
there is a bridge animation segment in a table, where the
bridge animation segment is looked up based on the first
animation segment and the second animation segment.

7. The method of claim 1 wherein the first marker and the
second marker are associated with the same animation.

8. A method, executed on a game platform, for providing
Smooth audio transitions in a song comprising:

(a) providing, during play of a game, an event timeline
comprising event markers denoting points in time on the
event timeline, the event timeline associated with an
audio track played during play of the game, the audio
track comprising a first audio segment and a second
audio segment;

(b) providing a first marker on the event timeline indicating
a first time associated with the first audio segment and a
second marker on the event timeline indicating a second
time with respect to the event timeline associated with
the second audio segment;

(c) determining, during play of the game, that the second
time is approaching;

(d) determining a set of audio segments to be blended to
transition from the first audio segment to the second
audio segment; and

(e) blending among the set of audio segments based on the
determination made in step (d).

9. The method of claim 8 wherein the set of audio segments
to be blended comprises the first audio segment and the sec
ond audio segment.

10. The method of claim 9, wherein blending among the
first audio segment and the second audio segment comprises

Dec. 15, 2011

crossfading from at least Some of the first audio segment to at
least Some of the second audio segment.

11. The method of claim 8 wherein the set of audio seg
ments to be blended comprises the first audio segment, a
bridge audio segment, and the second audio segment.

12. The method of claim 11, wherein blending among the
first audio segment, the bridge audio segment, and the second
audio segment comprises:

crossfading from at least Some of the first audio segment to
at least some of the bridge audio segment; and

crossfading from at least some of the bridge audio segment
to at least Some of the second audio segment.

13. The method of claim 11, wherein blending among the
first audio segment, the bridge audio segment, and the second
audio segment comprises muting at least Some of the first
audio segment, playing at least Some of the bridge audio
segment, and muting at least some of the second audio seg
ment.

14. The method of claim 13 wherein muting at least some
of the first audio segment, playing at least Some of the bridge
audio segment, and muting at least some of the second audio
segment comprises muting the first audio segment for its final
beat, muting the second audio segment for its first two beats,
and playing the bridge audio segment for three beats during
the muted last beat of the first audio segment and muted first
two beats of the muted second audio segment.

15. The method of claim 9 wherein the first marker and the
second marker are associated with the same audio segment.

16. The method of claim 11 wherein the first marker and the
second marker are associated with the same audio segment.

17. The method of claim 11 wherein determining the set of
audio segments to be blended comprises determining if there
is a bridge audio segment in a table, where the bridge audio
segment is looked up based on the first audio segment and the
second audio segment.

18. A computer program product, tangibly embodied in a
non-transitory computer readable storage medium, for pro
viding a Smooth animation transition in a game, the computer
program product including instructions being operable to
cause a data processing apparatus to:

(a) provide, during play of the game, an event timeline
comprising event markers denoting points in time on the
event timeline, each event marker associated with an
animation segment from a plurality of animation seg
ments;

(b) provide a first marker on the event timeline indicating a
first animation segment to be displayed on the display at
a first time with respect to event timeline and a second
marker on the event timeline indicating a second anima
tion segment to be displayed on the display at a second
time with respect to event timeline;

(c) determine, during play of the game, that the second time
is approaching:

(d) determine a set of animation segments to be blended
together to provide a smooth transition from the first
animation segment to the second animation segment;
and

(e) blend among the set of animation segments based on the
determination made in step (d).

19. A computer program product, tangibly embodied in a
non-transitory computer readable storage medium, for pro
viding Smooth audio transitions in a song, the computer pro
gram product including instructions being operable to cause a
data processing apparatus to:

US 2011/0306397 A1

(a) provide, during play of a game, an event timeline com
prising event markers denoting points in time on the
event timeline, the event timeline associated with an
audio track played during play of the game, the audio
track comprising a first audio segment and a second
audio segment;

(b) provide a first marker on the event timeline indicating a
first time associated with the first audio segment and a
second marker on the event timeline indicating a second
time with respect to the event timeline associated with
the second audio segment;

(c) determine, during play of the game, that the second time
is approaching:

(d) determine a set of audio segments to be blended to
transition from the first audio segment to the second
audio segment; and

(e) blend among the set of audio segments based on the
determination made in step (d).

20. An apparatus for providing a smooth animation transi
tion in a game, the apparatus comprising:

(a) means for providing, during play of the game, an event
timeline comprising event markers denoting points in
time on the event timeline, each event marker associated
with an animation segment from a plurality of animation
Segments;

(b) means for providing a first marker on the event timeline
indicating a first animation segment to be displayed on
the display at a first time with respect to event timeline
and a second marker on the event timeline indicating a
second animation segment to be displayed on the display
at a second time with respect to event timeline;

(c) means for determining, during play of the game, that the
second time is approaching;

(d) means for determining a set of animation segments to
be blended together to provide a smooth transition from
the first animation segment to the second animation
segment; and

(e) means for blending among the set of animation seg
ments based on the determination made by element (d).

21. An apparatus for providing Smooth audio transitions in
a song, the apparatus comprising:

(a) means for providing, during play of a game, an event
timeline comprising event markers denoting points in
time on the event timeline, the event timeline associated
with an audio track played during play of the game, the
audio track comprising a first audio segment and a sec
ond audio segment;

(b) means for providing a first marker on the event timeline
indicating a first time associated with the first audio
segment and a second marker on the event timeline
indicating a second time with respect to the event time
line associated with the second audio segment;

(c) means for determining, during play of the game, that the
second time is approaching;

Dec. 15, 2011

(d) means for determining a set of audio segments to be
blended to transition from the first audio segment to the
second audio segment; and

(e) means for blending among the set of audio segments
based on the determination made by element (d).

22. A system for providing a smooth animation transition
in a game, the System comprising:

a display; and
a game platform configured to:

(a) provide, during play of the game, an event timeline
comprising event markers denoting points in time on
the event timeline, each event marker associated with
an animation segment from a plurality of animation
Segments;

(b) provide a first marker on the event timeline indicating
a first animation segment to be displayed on the dis
play at a first time with respect to event timeline and a
second marker on the event timeline indicating a sec
ond animation segment to be displayed on the display
at a second time with respect to event timeline;

(c) determine, during play of the game, that the second
time is approaching;

(d) determine a set of animation segments to be blended
together to provide a smooth transition from the first
animation segment to the second animation segment;
and

(e) blend, for display on the display, among the set of
animation segments based on the determination made
in step (d).

23. A system for providing Smooth audio transitions in a
Song, the System comprising:

an audio output; and
a game platform configured to:

(a) provide, during play of a game, an event timeline
comprising event markers denoting points in time on
the event timeline, the event timeline associated with
an audio track played during play of the game, the
audio track comprising a first audio segment and a
second audio segment;

(b) provide a first marker on the event timeline indicating
a first time associated with the first audio segment and
a second marker on the event timeline indicating a
second time with respect to the event timeline associ
ated with the second audio segment;

(c) determine, during play of the game, that the second
time is approaching;

(d) determine a set of audio segments to be blended to
transition from the first audio segment to the second
audio segment; and

(e) blend, for output through the audio output, among the
set of audio segments based on the determination
made in step (d).

