Office de la Proprieté Canadian CA 2342322 C 2011/10/18

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 342 322
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2000/06/28 (51) CLInt./Int.Cl. GO6F 9/45(2006.01),

GO6F 9/445 (2006.01)

(72) Inventeurs/Inventors:
GOIRE, CHRISTIAN, FR;

(87) Date publication PCT/PCT Publication Date: 2001/01/11
(45) Date de délivrance/lssue Date: 2011/10/18

(85) Entree phase nationale/National Entry: 2001/02/238 JENSEN. THOMAS, FR:

(86) N° demande PCT/PCT Application No.: FR 2000/001815 FRADET, PASCAL, FR;
o o LE METAYER, DANIEL, FR;

(87) N® publication PCT/PCT Publication No.: 2001/002955 DENNEY EWEN ER

(30) Priorité/Priority: 1999/07/01 (FR99/08460) (73) Propriétaire/Owner:

CP8 TECHNOLOGIES, FR
(74) Agent: GOUDREAU GAGE DUBUC

(54) Titre : PROCEDE DE VERIFICATION DE TRANSFORMATEURS DE CODES POUR UN SYSTEME EMBARQUE,

NOTAMMENT SUR UNE CARTE A PUCE
54) Title: METHOD FOR VERIFYING CODE TRANSFORMERS FOR AN EMBEDDED SYSTEM, IN PARTICULAR IN A

CHIP CARD

(57) Abréegée/Abstract:
The invention relates to a method for verifying a transformer of a source code into a transformed code designed for an embedded

system (7). The method comprises at least the following steps: determining a single virtual machine that factors in the behavior of
both of these codes (1, 3), determining for each of said source (1) and transformed (3) codes a plurality of so-called auxiliary
functions representing the residual differences between said source (1) and transformed (3) codes, and a step consisting of
verifying a correspondence property between the auxiliary functions, the verification of the code transformer (2) being obtained

from this last step. It particularly applies to chip cards (7).

R N
RO TR S o
N "'c‘-‘-.u:-:{\: . N7
S
N

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

2f— 2-01,16:48 ;brevets | gnugdreay ; 12 # 31/ 33
| CA 02342322 2001-02-28

PATENT

METHOD FOR VERIFYING CODE TRANSFORMERS FOR AN
EMBEDDED SYSTEM, IN PARTICULAR IN A CHIP CARD

S
Inventors: Ewen DENNEY, Pascal FRADET, Chrstian GOIRE, Thomas
JENSEN and Daniel LE METAYER
Applicants: - BULL CPS8
10 - Institut National de 1a Recherche en Informatique et en Automatique
- Le Centre National de la Recherche Scientifique (CNRS)
ABSTRACT
15 The invention relates to a method for verifying a transformer of a source code

Into a transformed code designed for an embedded system (7). The method comprises
at least the following steps: determining a single virtual machine that factors in the
behavior of both of these codes (1, 3), determining for each of said source (1) and
transtformed (3) codes a plurality of so-called auxiliary functions representing the

20 residual differences between said source (1) and transformed (3) codes, and a step

consisting of verifying a correspondence property between the auxiliary functions, the
verification of the code transformer (2) being obtained from this last step.

It particularly applies to chip cards (7).

29

FIG. 3

18

® P S b e Ay S U P B SR B Grbedeghy v W SN (Y EES N AW

07— 2-01:16:48 ;brevets noudreay .12

10

15

20

25

30

CA 02342322 2001-02-28

METHOD FOR VERIFYING CODE TRANSFORMERS FOR AN
EMBEDDED SYSTEM, IN PARTICULAR IN A CHIP CARD

The invention relates to a method for verifying code transforiners for an
embedded system.

The invention also relates to the application of such a method to a transformer
for generating a code for a chip card. ‘

In the context of the invention, the termn "embedded system' should be
considered in its most general sense. It specifically includes systems designed for a
chip card, which constitutes the preferred application of the invention, but also any
system designed for a portable or mobile device comprising means capable of
processing computer data, which will hereinafter be called "processing resources.”

Modem embedded systems are equipped with data processing resources that
make it possible to fulfill increasingly complex and increasingly numerous functions.
However, despite the arrival on the market of technologies and components that are
increasingly high-performance, a distinctive characteristic of embedded systems, as
compared to conventional computer systems (microcomputers, workstations, etc,),
involves the limitations they impose on resources (memory size and microprocessor
power especially). In order to satisfy these constraints, it 18 necessary to transformn the
code designed to be executed in an embedded system. The purpose of the
transformations is to produce a code that is more efficient and less resource-intensive.

To illustrate the concept, and to give a non-limiting exampie of a code, the
description below will center on a program written in a virtual machine in the
"JAVA" language (a registered trademark of SUN MICROSYSTEMS), which has the
advantage of being able to be executed in various environmnents. The fields of
application of this language have multiplied considerably, particularly with the
extensive growth of the Internet. Many computer applications of small size, called
"applets,” are wntten in this language and are executable by a "web" browser.

The description will also focus on the preferred application of the invention,
i.e., the execution of a code of this type by computer resources specific to a chip card.
As indicated above, despite substantial technological progiess, the memory size of the
chip card and the power of the microprocessor with which it is equipped remain

relatively limited. It is also important for the code to be resident in the ¢chip card, since

1

#

14/ 33

27— 2-01;16:48 ;brevets . ooudreay - 12

10

15

20

25

30

CA 02342322 2001-02-28

the transmissions between the Iatter and a host terminal of any type, take place at low
speexl. The current standards only provide for serial transmissions. A need has
therefore arisen for a code that can be qualified as "reduced,” or in any case optimized

for this use. To this end, it has been proposed to use a language derived from "JAVA,"

existing in the form of a limitation of this language, i.e. the lJanguage "JAVA CARD"

(also a registered trademark of SUN MICROSYSTEMS).

An additional complication aris¢s from the fact that embedded systems are
generally used 1n environments that require the highest guarantees in terms of both
reliability and security. For example, there are new versions of chip cards in which it
1S necessary to install multiple software applications that rnust cooperate
harmoniously without revealing any confidential information. In fact, a priorz, these
multiple applications may involve different users, Despite the aforementioned
cooperation, it 1$ necessary to maintain strict partitioning, so that the information
related to a given user remains confidential, or at least cannot be made available to a
user who 1s not authorized to see it (read operations) and/or manipulate it (write
operations and the like: erasure, modification). In addition to the "confidentiality"”
aspect, there are other things to be taken into account, including the so-called |
"integrity"” requirement, data losses, illegal modifications, etc.

In terms of "source" code, in the sense of "initial code,” for example the "byte
code” in the aforementioned "JAVA" language, the latter offers all the necessary
guarantees and fulfills the aforementioned requirements, the "byte code” being a
program written in the virtual machine of the "JAVA" language..In fact, many tests
have been performed, over long periods of time.

The so-called "transformed" code is obtained from the "source code" by
means of a code transformer, which is generally outside the embedded system, but
can also be resident in the latter. It is therefore necessary to show equivalence

between the source code and the transformed code.

Thas can be done by guaranteeing that the transformations performed on the
code do not 1n any way change its behavior (from an external point of view) and do
not introduce any security loopholes. In other words, the initial code (before

transformation) must, from a logical point of view, be equivalent to the resulting code

(after transformation).

15/ 33

P7—- 2-01;168:48 ;brevets goudreay ; 12

10

15

20

23

30

CA 02342322 2001-02-28

It is especially difficult to guarantee this property in general, because the
transformations have a global effect on the code and on the representations of the data
it manipulates. In a practical sense, the complexity implied by this operation does not
allow it to be implemented under realistic economic and/or technological conditions.
Moreover, it must be clearly understood that such needs have arisen only quite
recently, particularly in connection with the development of the aforementioned
multi-application and/or multi-user chip card technologies.

The object of the invention is to meet these needs, without requiring extremely
long and expensive procedures.

The method according to the invention makes it possible to verify, in
systematic and modular fashion, the accuracy of the code fransformations.

Within the context of the invention, two intrinsically known formalisms will
essentially be used: operational semantics and logical relations. For a more detailed
description of these formalisms, it would be advantageous to retfer, first of all, to the

book by H. R. Nielson and F. Nielson entitled "Semantics with Applications: A

Formal Introduction,” Wiley, 1992, and secondly, to the book by J. Mitchell,
"Foundations for Programming Languages," MIT Press, 1996.

According to an e¢ssential characteristic of the invention, the method for
vertfying code transformers consists of specifying the meaning of two codes by means
ot a common virtual machine parameterized by functions that will be called "auxiliary
functions." The differences between the two codes are expressed and grouped into the

aforementioned auxiliary functions. There are two versions of each auxiliary function:
a version in the source code and a version in the transformed code. The first modules
being identical, since they are common to both codes, there is no need to verify that
they are equnvalent. In order to show the equivalence of the two codes, one therefore
need only show that the so-called auxiliary functions, considered two by two, are
equivalent. These two subsets can be made much more complex than the two sets
represented by the two codes, source and transformed, considered in their entirety. It
tollows that, according to the method of the invention, the difficulty inherent in the
verification process is substantially reduced, and correlatively, the verification process
becomes economically and technologically feasible.

The subject of the invention is a method for verifying a transformer of a so-

called source code into a so-called transformed code designed for an embedded

3

16/ 33

- — - - - skalila :
27— 2-01;168:48 ;brevets Ay 09349799 3007100 28 AN 12 # 177 33

system, said source and transformed codes being associated with virtnal machines,
characterized in that it comprises at least the following steps:

- determining, for each of said source and transformed codes, a first commmon
subset, constituting a single virtual machine that factors in the behavior of these two

5 codes:

- determining, for each of said source and transformed codes, a second subset
constituted by a plurality of so-called auxiliary functions, said auxiliary functions
representing residual differences between said source and transformed codes;

- associating said auxihary functions in pairs, a first auxiliary function of each

10 pair belonging to said second subset associated with said source code and a second
auxiliary function of each pair belonging to said second subset associated with said
transformed code;

- verifymng a given correspondence property between said auxiliary functions
of all of said pairs; and '

{5 - verifying that said transformation of the source code into a transformed code

by said converter satisfies said given correspondence property.

Another subject of the invention 1s the application of such a method to a
transformer for generating a code designed to be stored in a chip card.

The 1mvention will now be described in greater detail in reference to the

20 attached drawings, in which:

- Fig. 1 schematically i1llustrates the process for transforming a source code

into a final transformed code:

- Figs. 2A and 2B schematically illustrate one of the essential characteristics

of the method according to the invention; and

25 - F1g. 3 schematically illustrates the application of the method according to the
invention to a chip card.

The following will describe in detail the method for verifying code

transformers according to the invention.

Fig. 1 schematically illustrates the method for transforming a code 1, which

30 will be called a "source code” in the sense of an original or initial code, into a final

code 3, called a "transformed code", by means of a code transformer 2. The latter

device can be a computing means or a specific piece of software. Ordinarily, the

transformed code is designed to be resident in the embedded system 4 (solid line).

4

|!\

27— 2-01;18:48 ;brevets aoudragay 12

10

15

20

30

CA 02342322 2001-02-28

The transformer 2 can also be resident in or downloaded into the embedded system:

reference 4' (broken line).
After being loaded into or stored in the ernbedded system 4-4', the transformed
code 3 makes it possible to execute one or more tasks as necessary, represented by the

single reference 5. The embedded system 4 is assumed to have standard autonomous

computing resources {not represented).

A priori, the code transformation is performed once and for all by a given
transformer 2, or on rare occasions, involves a modification of a version of the
original code or source code 1, for example.

It is therefore necessary to be able to establish a formal proof that the
transformed code 3 is equivalent to the source code 1. This process makes it possible
to yel'ify whether the transformer 2 1s working correctly.

However, as mentioned, if the two sets formed by the source and transformed
codes are considered in their entirety, the theory goes that such a determination 1s
generally not realistically possible.

An essential characteristic of the method according to the invention will
consist of finding, for cach of the two codes, two subsets that will be called the first
and second subsets. According to an important characteristic of the method according
to the invention, the first subsets form a virtual machine common to the two codes,

source and transformed. For this reason, it is not necessary to verify the equivalence
of the first subsets.

On the other hand, the second subsets, constituted by the auxihiary functions,
are different from on¢ code to the other. The determination of the equivalence of the
source and transformed codes is therefore reduced to determining the equivalence of
all the pairs of auxiliary functions of the second subsets. The residual complexity of
the auxihary functions can be greatly reduced. It follows that determining the

atorementioned equivalence becomes possible.

Figs. 2A and 2B illustrate, in highly schematic fashion, the method according

to the 1nvention.

As shown more particularly in Fig. 2A, the first subsets of the source code 1

and the transformed code 3 form a comunon virtual machine 13. The second subsets,

10 and 30, are each constituted by a series of so-called auxiliary functions, the

- 4 . N Ry) A Be) v @ o el o § Gl hedbedipy ekl G] TR ¢ Pt S & | - 1 e b B § A 4 S A A - n-— - - -

18/ 33

S i 21 & 04 12 211

2¥— 2-01,;168:.48 s hravetrs anudraay , 12

15

20

25

30

CA 02342322 2001-02-28

equivalence of which must be verified. These auxiliary functions 10 and 30
parameterize the common virtual machine 13.

The equivalence of the two codes, source 1 and transformed 2, 1s therefore
reduced to verifying the equivalence of the auxiliary functions 10 and 30, two by two,
as will be shown below in reference to Fig. 2B.

The steps of the method will now be described in greater detail.

The source and transformed codes are associated with first and second virtual
machines, respectively.

The first step consists in defining a single virtual machine {or set of
operational semantics) that makes it possible to factor in the behavior of the source
code and the transformed code. The differences between the two codes therefore
appear through auxiliary functions that will be interpreted or implemented differently
in the two codes.

A virtual machine may be represented by a set of rules with the tollowing

form:

premise 1

>

premise n

statel [Instructionl] = state2 (1).

The premises are either conditions for applying a rule, 1.e. boolean
expressions, or assignments of variables used to express a change of state. The
premises use auxiliary functions to extract information on the state or to express
conditions. Each rule indicates how the state of the machine changes when the
premises are verified and the instruction "Instructionl” is encountered. One or more
rules in this form are defined for each type of instruction in the code.

. The second step consists In defining the data types or structures used in the

two codes. It defines basic types, such as for example:

6

18/ 33

27— 2-01;,16:48 ,brevets aoudreay .12

wee by dewdrere e

10

15

20

25

30

CA 02342322 2001-02-28

Basic ::= Nat | Bool | Name... . (2,
or constructed types, for example:

Environment ;= Name — Value

Instructions ::= Instructionl | Instruction2 | ... (3),

The third step consists in interpreting the types, referenced 8, used in the
virtual machines. For each type 8, it defines an interpretation for the source code
[[8]1s and an interpretation for the transformed code [[]]7, plus a relation Ry between
the two interpretations [[.]1. and [[.]]z. These relations, called logical relations, satisfy
the structure of the types. For simple types, they must be explicitly defined: for
structured types, they are deduced from the types of the components of the structure.

For example for the pairs:

(a, b) Rosxp (2, b)) <aRppa ADRgb'’ (4),

a relation wherein 87 and 62 are types and a, b, a' and b' are type elements.

The same is true for the functions:
fRoy e ffewVa, a'.aRpa’ =>faRepfa (5),

The logacal relations must be "identity” relation for the observable types, 1.¢€.
the types for which it is desirable to show that the two codes produce the same result.
These are usually types that are printable and/or displayable on a computer screen.
They can be basic types, but also structured types representing, for example, a stack
or variables of a given program.

'The fourth step consists in interpreting the auxiltary functions used in the
virtual machines. For each auxiliary function £, its defimtion for the source code,

written [{f]]s, and its definition for the transformed code, written [[f]], are given.

207 33

27— 2-01,16:.48 ,brevets | aoudreay .12 # 21/ 33
CA 02342322 2001-02-28

Determining the equivalence consists of showing that the definitions of the
auxiliary functions correspond to the logical relations. More precisely, for each

auxiliary function f> @ — @', we show

5 L7 lls Rese’ [LFIL (6),

It follows that the two virtual machines are related, i.e. that:

[[smte]] s Rype-state Hstate]] T (7)-
10

Sice the relations are the identity for the observable types, the source and
transformed codes are observationally identical. ‘
The last step consists of showing that there exists a transformer I' (Fig. 1: 2)
that satisfies the logical relations. This can be done by verifying that a given
15 transtormer I: § — T satisfies the logical relation associated with the type of its
argument, S being the source code (Fig. 1: 1) and 7" being the transformed code (Fig.

1: 3). In order to do this, it is necessary for it to obey the following relation:

vx [[8)ls . xRsI7x) (8).

20

It has just been shown that the logical relations specify a set of constraints. It
1s therefore possible to extract the transformer 2 that is correct by construction, by
applying refinement or extraction techniques, using one of the appropriate proof
assistants.

25 The method according to the invention therefore offers an important
advantage, since it allows for a substantial mechanization of the verification process,
and above all makes it possible to perform it successfully, since this verification is
performed on less complex subsets.

Since the transformation of the source code 1 can be described as a succession

30 of simpler transformations, this method can be applied so as to show each

transformation independently. It follows that it offers a the great advantage in terms of

modularity.

27— 2-01,;,16:48 ,brevets onudraay ; 12

10

15

20

25

30

CA 02342322 2001-02-28

The venfication need only be perfor@ed on the subsets of auxiliary functions
10 and 30, as illustrated by Fig. 2B, by means of a hardware or software device 6.
There are assumed to be » auxiliary functions, referenced 1041, 104, ---, 104, -.., 10,1,
10,, and 2047, 20p7, -5 20;, ...204,, 20, respectively. If the device 6 1s hardware, 1t
comprises as many verification circuits 60,4y, 60p;_ ..., 60;, ...60,1, 60, (arbitrarily
represented in Fig. 2B by the symbol of a comparator), as there are pairs of auxiliary
functions to be verified, for example the verification circuit 60; for the pair of
functions 10; and 30;. The output or outputs of this device 6, with the single reference
61, indicate(s) that the logical relation between all the possible pairs of corresponding
auxiliary functions of the source 1 and tra.nsfonned 3 codes 1s satisfied. This senes 6f
operations 1s enough to provide formal proof of the equivalence of the two codes 1n
their entirety.

It must bé noted that the method according to the invention 1s just as usable a
posteriori, 1.e. in order to verify an existing transformer, as it 18 @ priori, as an aid 1n
developing a new transformer. It specifically makes it possible, 1n the latter case, to’
determine its characteristics so that 1t works correctly, in other words so that the
transformed code that will be generated by this transformer from the source code
satisfies the aforementioned equivalence requirement.

The method will now be described in the chip card context. Fig. 3
schematically illustrates the architecture of a chip card, referenced 7. In this figure,

only these elements essential to a proper understanding of the method according to the

invention are represented.

The chip card 7 specifically comprnses an mnput/output device 70 that allows

communications with the outside world, a first fixed or programmable memory device

71 (of the ROM, PROM, EPROM or EEPROM type), and a read-write memory 72.
1.astly, the chip card 7 compriscs a microprocessor or microcontroller 73 that
dialogues with the other components of the chip card 7 through a bus.

The software architecture of such a chip card 7 complies with the ISO 7816-3
standard, which translates into protocol layers ranging from the lowest layers

assoclated with the input/output devices 70 to the highest layers associated with the

software applications stored i the chip card 7. These standards provide for the

transmissions to take place in the serial mode.

BRIl P

| ! 4

#

227 33

27— 2—-01,16:48

10

15

20

25

30

aoadragy ;12

bravets CA 02342322 2001-02-28

The source code 1, once transformed by the code transformer 2, 1s transmitted
to the chip card 7 in order to be stored, generally in the fixed or "semi-fixed" memory
device 71 via the input/output device 70. The software application or applications run
by the chip card 7 can be stored permanently in the chip card 7, i.e. in the memory
device 71, or temporarily in the read/write memory 72. In the latter case, the
applications are downloaded via the input/output device 70. In the example described,
it is assumed that the chip card 7 is a multi-application or multi-user type card. It is
therefore assumed that the chip card runs m software applications .4; through 4.,
written 1n the transformed language 3.

One of the languages commonly used for chip cards, as mentioned above, is
the "Java Card" language. It is a language dedicated to chip card programming, a
language that constifutes a limitation of the "Java" language.

The card 7 can also store an additional converter that performs conversions on
code segments in situ as they load.

The steps of the method according to the invention that have just been
described in a general context, will be illustrated more specifically within the context

of the preferred application.

As 18 known, an installation of the "Java Card" language involves a converter
that transforms so-called "class" files into "CAP" files. A class file is a unit of
complication and representation of the object code of a "Java" program. A CAP file
groups all the classes of the same "Java Card package" and includes only one
"constant pool.” A "Java Card package" is a "Java" construction for grouping classes
and creating name spaces. A "constant pool” is a table associated with each class file
for "Java" and with each "CAP" file for "Java Card." This table contains constants
(character strings, integers, etc.). It is used in "Java” and "Java Card" virtual
machines. The transformation is nontrivial and global: it replaces all the names of
packages, classes, fields, methods) with entities called "tokens," 1.€., 7- or 8-bit whole
numbers. These "tokens" serve as indices for accessing tables. In addition, the

transformation groups all the class files of the same package into a CAP file (with a

merging of the "constant pools" and a reorganization of the method tables).

The "Java Card” language is specifically designed to be used in banking chip
cards. It is therefore imperative to verify the accuracy of the transformation of a

program (or "byte code™) written in the “Java" virtual machine into a program written

10

23/ 33

27- 2-01;16:48 ,;pbrevets ronAdrogy .12

10

15

20

25

30

CA 02342322 2001-02-28

in the "Java Code" virtual machine, i.e. to prove of the equuvalence of these two
programs.

This formal proof is provided by executing the steps of the method according
to the invention.

The first step consists in defining a set of operational semantics.

One or more semantic rules are associated with each instruction of the "byte
code."” The "byte code" is a portable assembler code. Tt is the object code for "Java" or
"Java Card"” virtual machines. For example, the semantic rule associated with one of

the instructions of this code, the "getfield” instruction, can be described as follows:

1 ref = constant pool (¢)(i)
<c_ref, iv>: = h(t)

v = iv({f ref)

<getfield i; be, r :- ops.l, ¢, k> = <bc, v :: ops, 1, ¢, h> (9)-

In the example, the state 1s composed of the code executed with the current
instruction (getfield i; &¢) leading, a stack of operands (= - ops), the local variables
(D), a reference to the current class {(¢) and the heap (k). The rule specifies the
operations performed during the execution of getfield i:

- The auxiliary function “constant pool" uses the index i to obtain the
reference £ _ref of the field (a signature or a "token," depending on whetheritis a
source code or a transformed code) in the appropriate "constant pool.”

- The reference 7 to the object whose field must be read is found at the top of
the stack. This reference makes 1t possible to find in the heap (A(r)) the dynamic class
of the object ¢ _ref (a qualified name or a pair of tokens, depending on whether 1t 1s a
source code or a transformed code) and a list of the fields of the object (iv).

- Using the reference previously calculated and the list of fields, the field 1s
read (v ;= iv(f ref)).

- The getfield instruction changes the state by replacing the reference to the

object with the value of the field, and the execution continues with the rest of the code

(be).

11

24/ 33

L _an o d o 4 A o -

. 5-n1:1R: - | Ara .12 # 25/ 33
27~ 2-01,;16:48 ,pbrevets CA 02342325 20010_%5_2r84=au

The second step ¢onsists in defining the types.
In the case of the "Java Card" language, it defines the Word type tor

representing the unit of storage:

Word = Object ref + Null + Boolean + Byte + Short (10),
b

As an example of the constructed type, the type of a constant pool 1s:

Constant pool = CP_index—CP infO (11),
10 with

CP _info = Class_ref + Method ref + Ficld_ret (12),

In the example, a "constant pool” is seen as a function that takes an index (the

15 type CP index is considered to be basic¢) and renders an input (in this case a reference

to a class, a method or a field).
The type of the "byte code” is:

Bytecode = Instruction + Bytecode; Bytecode
20 Instruction = getfieldCP_index + Invokevirtual Cp index + ... (13),

The "byte code” is an instruction sequence. The instruction type lists all of the

instructions used in the "byte code” of "Java Card."

25 The third step consists in interpreting the types.

In the case of "Java Card," the interpretation for the source code, 1 the form

of class files (which use names) is written [[.]]seme and the interpretation tor the

| transformed code, in the form of CAP files (which use "tokens™) is written [[.]]ok-

For example the type [[CP__"indtf::u:]]mﬂ,ﬂg is verified for the source code:

30

= Class name x Index (14).

[f[cP_index|]

tamne

12

27— 2~-01,18:48 ;brevets‘ . qougreay ;12

10

15

20

25

30

CA 02342322 2001-02-28

In the name-based model, a "constant pool” index is constituted by a class

name (to indicate the "constant pool” being referred to) and an index.

The type |[[CP_index]]. , is verified for the transformed code:

[[CP_index]|] , = Package token x Index (15).

tok

A "constant pool"” index is constituted by a "package token" (in the example

described, there 1s only one "constant pool” per "package"” or CAP tile) and an index.

The relation Rep_index is defined as a bijection such as: (16)
(c_name, i) Rcp_index (p_tok, i') => pack_name(c_name) Rpsckage res P10k

The name of the "package" of the class containing the "constant pool” being
referred to 1n the name-based module should be 11 relation with the "token" of the
"package” contaiming the "constant pool” being rcferréd to 1n the "token"-based
model. The only constraint on the indices i and /' 1s that Rep index Inust be a bijection
(the inputs of the ”constant pools" can then be regrouped and reordered).

‘The ftourth step consists 1n interpreting the auxiliary functions.

For example, the version of the auxiliary function "constant_pool" for the

name-based module 1s:

I‘f‘

\
[[constant_pool]], = cp name (17),
with:
cp name c=1let (..., cp, ...) = env_name(pack name(c))c) (18).
1n Cp

The function pack name takes a class name and renders a "package" name,
and the function env_name takes a package name and a class name and finds in the

class hierarchy the structure representing the desi gnated class file. The constant pool

is extracted from the class file.

13

|l,

268/ 33

27~ 2-01;16:48 ;pbravets goudreau .12

10

15

20

25

30

CA 02342322 2001-02-28

For the "token"-based model, the version of the auxiliary function

[[constant _pool]l . is:

[[constant poolll,, =cp rok (19),
with:

cp_tok c=let (..., cp, ...) = env_tok(p) (20),

in cp

The "constant pool” is found in the environment (i.e., the CAP files) by means

of the function env_tok and the package token.
The fifth step consists of proving that the auxihiary functions satisfy the logical

relations.

Referring again to the example of the function for accessing the "constant

pool,” 1t 1s necessary to determine that:

[[constant _pool]]me Re¢p index — CP info ﬂconstant _po-ol:[lm " (21).

The relation Rep index — cP_info 1S completely defined as a function of the
relations Rep index and Rep . Based on this definition, one need only verify that:

V(c_name, i) (p_tok, i') such that {c_name, i) Rcp inaex (p_tok, i)
¢p(1) Rer_info cp'(1') ‘ (22),

with:

(..., €p, ...) = env name(pack name(c name))(c_name)

(..., cp', ...) = env_tok(p tok) . (23).

The proof is based on the definition of Rcp inf and the property mentioned
above : (24)

14

27/ 33

27— 2-01,16:48 s brevets apudreau ;12

10

15

20

25

CA 02342322 2001-02-28

(¢_name, i) Rep index (P_t0Kk, i) => pack name(c_name) Rouiuee rs P 10k

The sixth and last step of the method consists of determining a transformer
such that the transformation of the code and the data by this converter satisfies given
logical relations. For example, the referénces to "packages” are either names or
"tokens” depending on the model. The associated logical relation Ryackase rer ks sSimply
defined as a bijection between the "package" names and the "package tokens.”" One

need only verify that the function of the converter performing the transformation of

h g

the package names into "tokens" is actually a bijection.

By reading the above, it is easy to see that the invention achieves the objects
set forth.

It must be clear, however, that the invention is not limited to just the
exemplary embodiments explicitly described, particularly in relation to Figs. 2 and 3.
Finally, although the method has been described in detail in the case of the

transformation of a pro gram of the "Java" virtual machine into a program of the "Java
Card" virtual machine, which is particularly advantageous for chip card or similar
applications, the invention is not in any way limited to this particular application.

The invention can be applied whenever the device involved has relatively
hmited computing resources, particularly in terms of memory size (read/write or
fixed) and/or the computational power of the processor used. For example, it applies
to electromic books, for examplé of the "e-book" type, designed to download and store
data from Internet sites, palmtop computers, for example like the so-called

“orgamzers," certain mobile telephones that can connect to the Internet, etc. In all of

these cases, 1t Is necessary to use an optimized language in order to use the integrated

computing resources to best advantage.

15

28/ 33

10

15

20

23

CA 02342322 2009-05-06

CLAIMS

1. A method for verifying transformation of a source code into a transtormed code
designed for an embedded system, said source and transformed codes being associated with
virtual machines, comprising:

determining, for each of said source and transformed codes, a first common subset,
constituting a single virtual machine that factors in the behavior of said source and
transtormed codes:

determining, for each of said source and transformed codes, a second subset
constituted by a plurality of auxiliary functions used by said single virtual machine, said
auxiliary functions representing residual differences between said source and transformed
codes and parameterizing the single virtual machine;

associating said auxiliary functions in pairs, a first auxiliary function of each pair
belonging to said second subset associated with said source code and a second auxiliary
function of each pair belonging to said second subset associated with said transtormed code;

verifying a given correspondence property between said auxiliary functions of all ot
said pairs; and

verifying that said transformation of the source code into a transformed code satisties

said given correspondence property.

2. The method according to claim 1, wherein said correspondence property 1s a logical

relation, so that said auxiliary functions of each of said pairs, when executed, generate results

linked by said logical relation.

3. The method according to claim 1, wherein said logical relation is an 1dentity relation
for observable entities of each of said source and transformed codes, for any pair of auxihary
functions, so that the functionalities of said source code are retained when said transformation

into said transformed code, and said verification of the code transformation are performed.

4. The method according to claim 1 further comprising applying the steps ot the
verification of transformation to a code transformer and generating from said source code, a

transformed code in a memory a chip card.

16

10

13

20

CA 02342322 2009-05-06

. The method according to claim 2 further comprising applying the steps of the
verification of transformation to a code transformer and generating from said source code, a

transformed code 1n a memory of a chip card.

6. The method according to claim 4, wherein said transformed code 1s a program written
in the virtual machine of a given computer language, and said chip card stores a plurality of

software applications written in said transformed code.

7. The method according to claim 5, wherein said transformed code 1s a program written
in the virtual machine of a given computer language, and said chip card stores a plurality of

software applications written in said transformed code.

8. The method according to claim 4, wherein said source code 1s a program written 1n a
"JAVA" virtual machine and said transformed code 1s a program written in a "JAVA CARD"

virtual machine.

9. The method according to claim 5, wherein said source code 1s a program written 1n a

"JAVA" virtual machine and said transformed code i1s a program written in a "JAVA CARD"

virtual machine.

10. The method according to claim 6, wherein said source code 1s a program written 1n a

"JAVA" virtual machine and said transformed code is a program written in a "JAVA CARD"

virtual machine.

11. The method according to claim 7, wherein said source code is a program written 1n a

"JAVA" virtual machine and said transformed code 1s a program written in a "JAVA CARD"

virtual machine.

17

C peg1-16: ; aoudreau 12 “ # 32/ 33
27— 2-01516:48 brevets CA 092342399 200L-hoog

s &
& o

: .
L4 - -,
v - L d

>

9.

g (5P e Mol

27— 2-01;16:48

- brevets

T L e el Ty T T A R R S A M S A T U T T N A A W o R R P T T R R R b N N Y T g VN A AR A A I R g 2 LY 4T N ARG 0 ST I s L S PN g T BN TR L T
d

aoudreau

CA 02342322 2001-02-28

2/2

r 4 "W R WY Y - —— LA L -

by shighipnd | Rpllandh M-S ¢ B 4 MM BRI 4IE ERE R PES I W I R 0

12

33/ 33

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - abstract drawing

