United States Patent [19]

Yamaguchi et al.

[11] E Patent Number: Re. 33,745

[45] Reissued Date of Patent: Nov. 19, 1991

[54] THIADIAZABICYCLONONANE DERIVATIVES, PROCESSES FOR THEIR PRODUCTION AND HERBICIDAL COMPOSITIONS

[75] Inventors: Mikio Yamaguchi, Shimada;

Yukihiro Watase, Shizuoka; Takeshi Kambe, Tokyo; Susumu Katou,

Shizuoka, all of Japan

[73] Assignees: Kumiai Chemical Industry Co., Ltd.;

Ihara Chemical Industry Co., Ltd.,

both of Tokyo, Japan

[21] Appl. No.: 394,351

[22] Filed: Aug. 15, 1989

Related U.S. Patent Documents

Reissue of:
[64] Patent No.: 4,816,063
Issued: Mar. 28, 1989
Appl. No.: 910,978
Filed: Sep. 24, 1986

[30] Foreign Application Priority Data

Mar	. 25, 1986 [JP] Japa	n 61-66567
[51]	Int. Cl.5	. C07D 513/04; A01N 43/82
[52]	U.S. Cl	71/90; 71/87;
	544/22	4; 544/232; 544/235; 544/238
[58]	Field of Search	71/90, 87; 544/224,
•		544/232, 235, 238

[56] References Cited

U.S. PATENT DOCUMENTS

3,726,891	4/1973	Pilgram et al	71/90
4,906,279	3/1990	Yamaguchi	544/238
		Chang	
		Yamaguchi et al	

FOREIGN PATENT DOCUMENTS

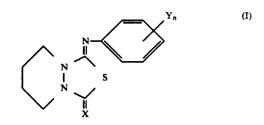
OTHER PUBLICATIONS

Bodenhausen, "Guide: Paris Convention for the Protec-

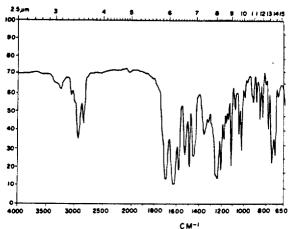
tion of Industrial Property", BIRPI, Geneva, 1966, pp. 45-47

Wakabayashi et al., in *Advances in Pesticide Science* (H. Geissbühler, Editor) pp. 256-260 (1978).

Patent Abstracts of Japan, vol. 8, No. 85(C-219)[1522], Apr. 18, 1984; for JP-A-59 7180 (Fujisawa Yakuhin K.K.).

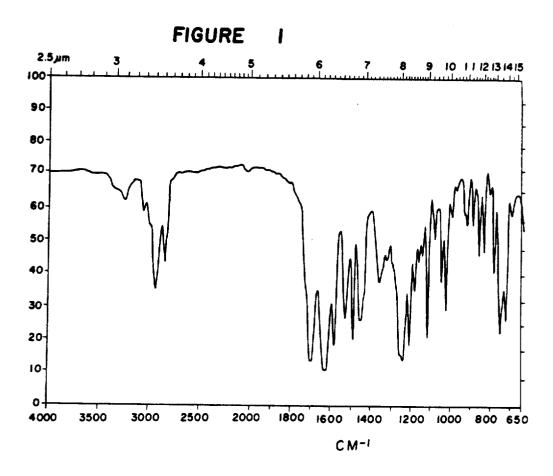

S. W. Moje et al: Journal of Organic Chemistry, vol. 39, No. 20, 1974, pp. 2951-2956, "Syntheses and Reactions of 3,4-Dialkyl-1, 3, 4-Thiadiazolidine -2, 5-Diones". Patent Abstracts of Japan, vol. 8, No. 130, Jun. 16, 1984 (C-229)[1567]; for JP-A-59 42384 (Nippon Kayaku K.K.).

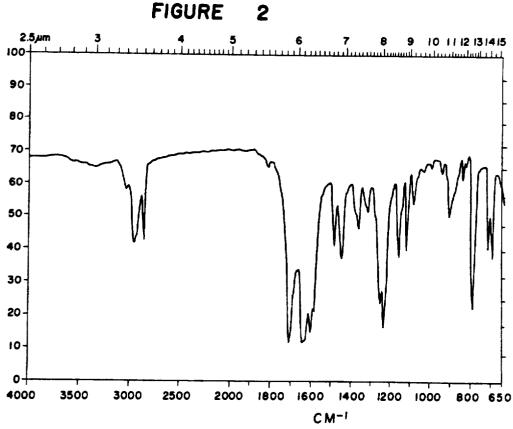
Chemical Abstracts, vol. 107, No. 15, Oct. 12, 1987, p. 725, Abstract No. 134316u, for JP 6200091.

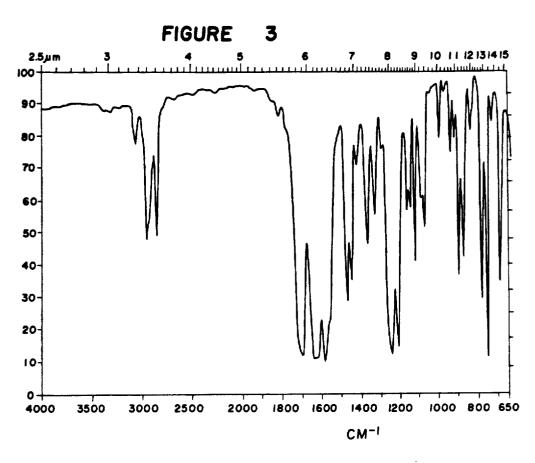

Primary Examiner—Donald G. Daus Attorney, Agent, or Firm—Oblon, Spivak, McClelland, Maier & Neustadt

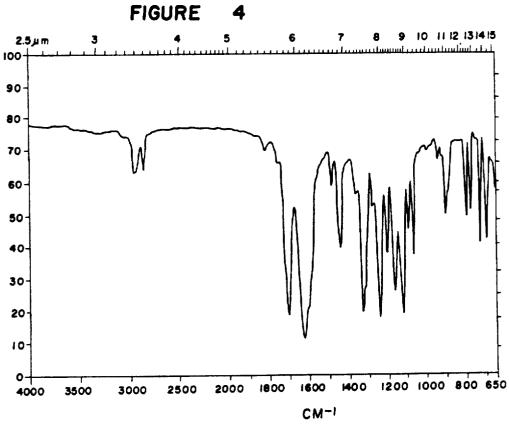
[57] ABSTRACT

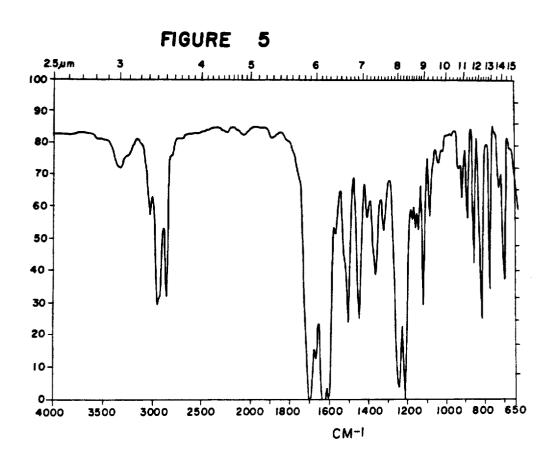
As a herbicide 9-phenylimino-8-thia-1,6-diazabicy-clo[4.3.0]nonane-7-(one or thione) compound having the formula:

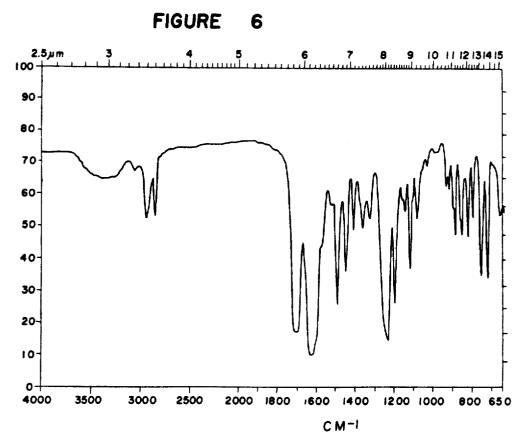



wherein Y represents halogen, hydroxyl, alkyl, alkoxy which may be substituted by halogen, alkenyloxy, alkynyloxy, phenoxy, cycloalkyloxy, alkoxycarbonylalkyloxy alkoxycarbonylalkyloxy, alkythiocarbonylalkyloxy, alkynyloxycarbonylalkyloxy, benzyloxycarbonylalkyloxy, trifluoromethyl, benzyloxy, alkenyl, cyanoalkyl, alkylcarbomoyloxy, benzyl, alkoxyalkyl, alkynyloxyalkyl, cycloalkylmethyloxy, alkoxyalkyloxy, phenethyloxy, cycloalkyloxycarbonylalkyloxy, pyrrolidinocarbonyl, phenylcarbonyl,

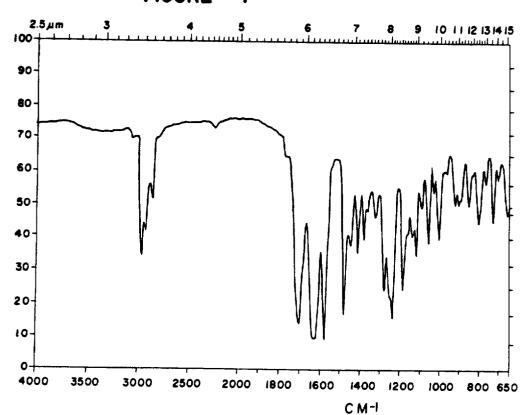

n is an integer of from 0 to 3; and X is oxygen or sulfur.

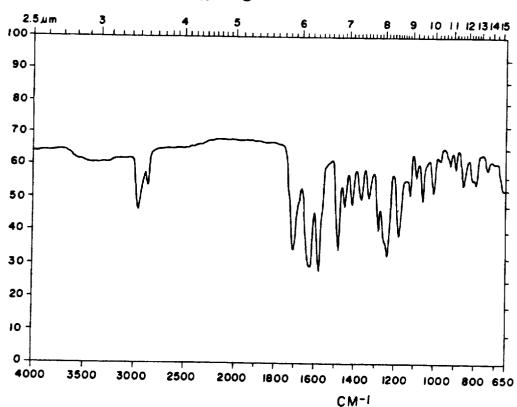

15 Claims, 25 Drawing Sheets

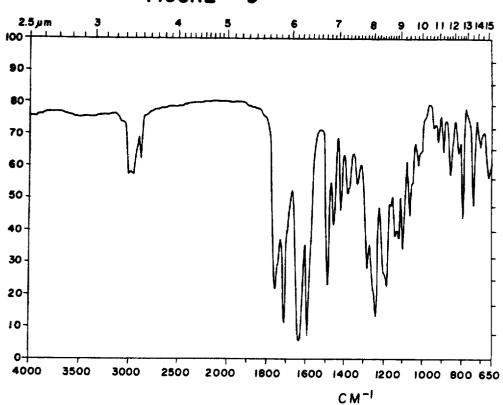


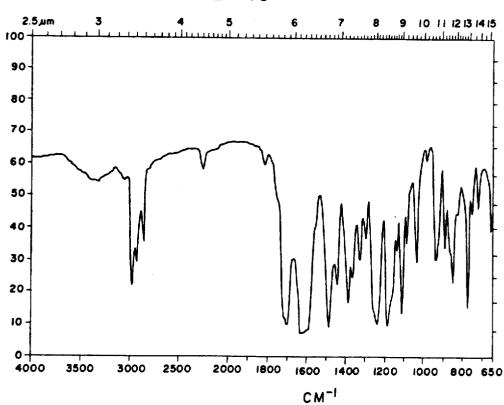


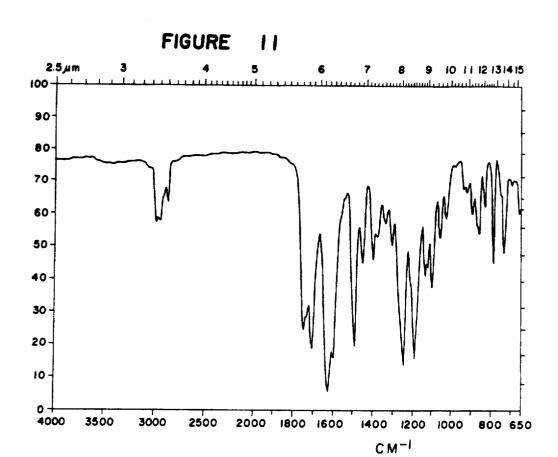
U.S. Patent

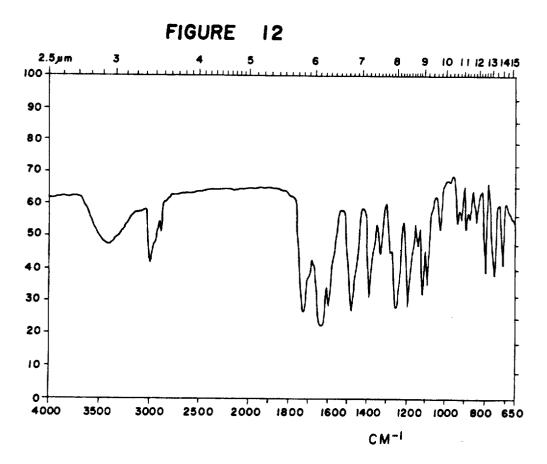


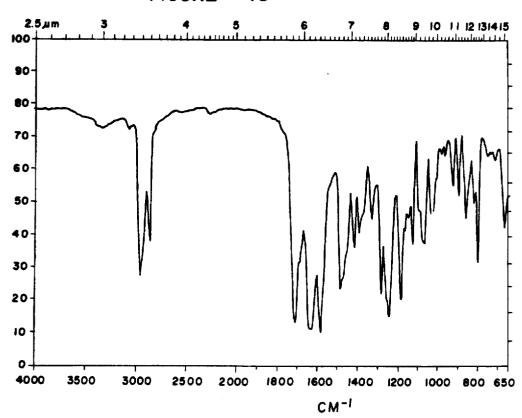


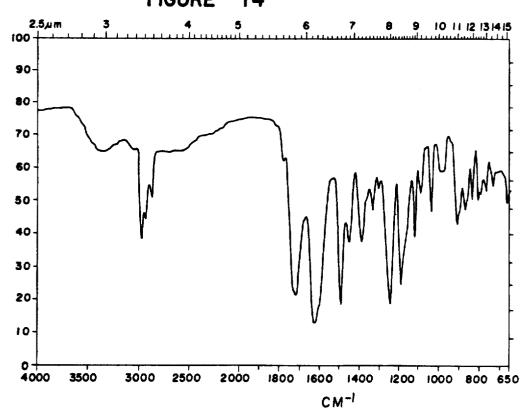

FIGURE 7


FIGURE 8




FIGURE 9


FIGURE 10



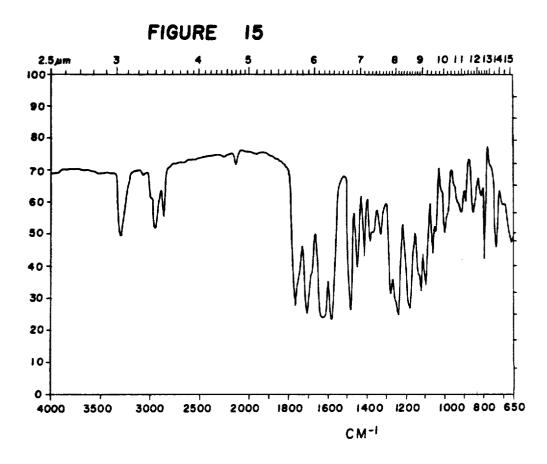


FIGURE 13

FIGURE 14

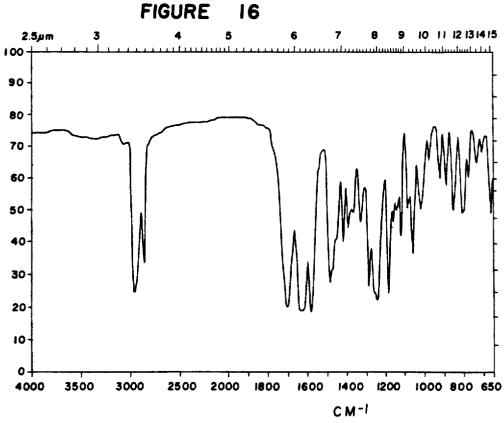
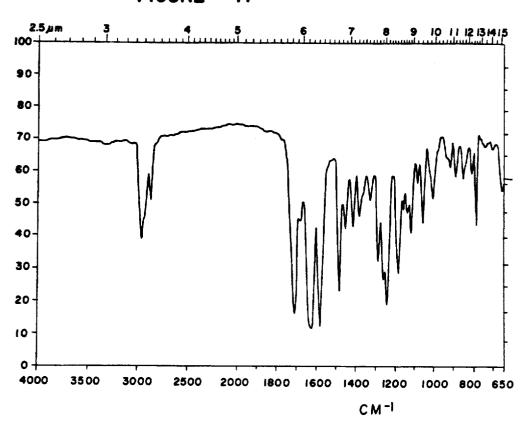
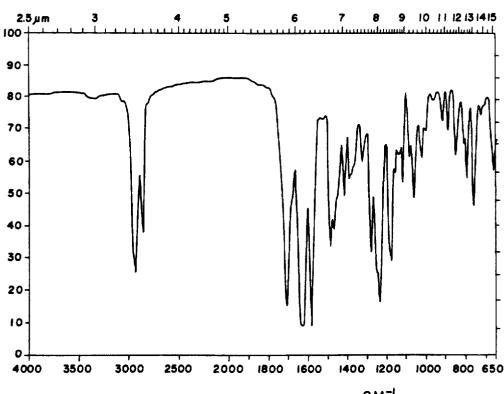
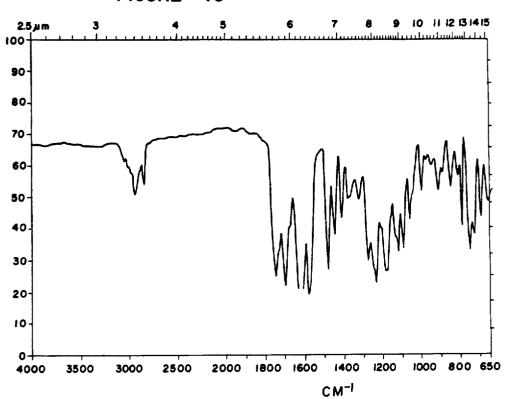
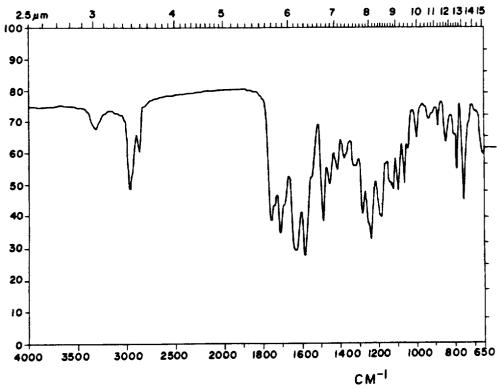
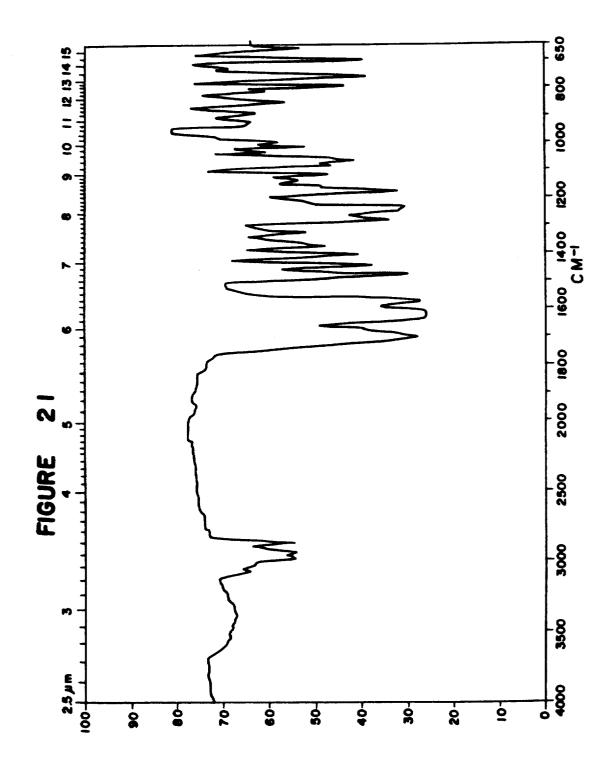
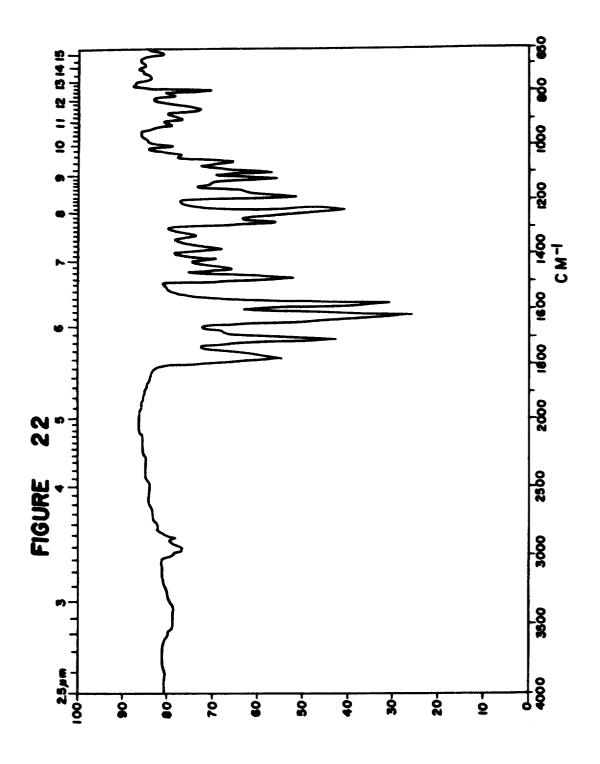




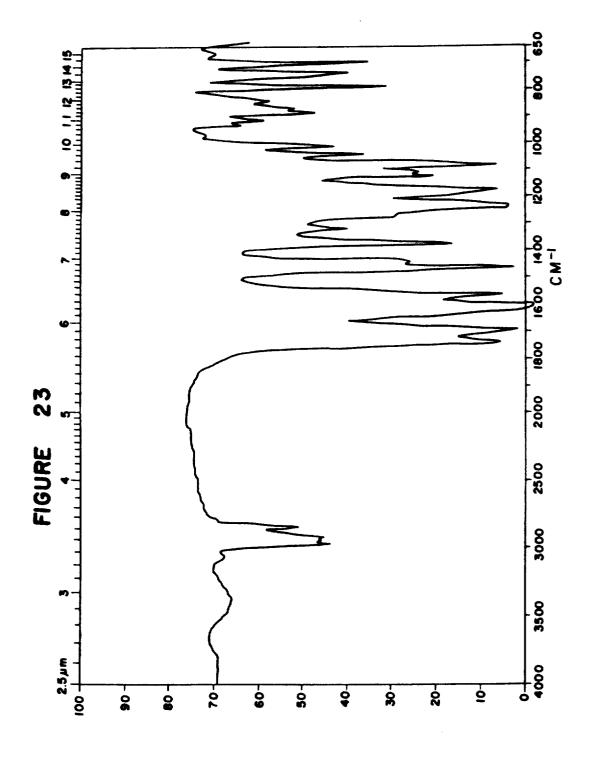
FIGURE 17

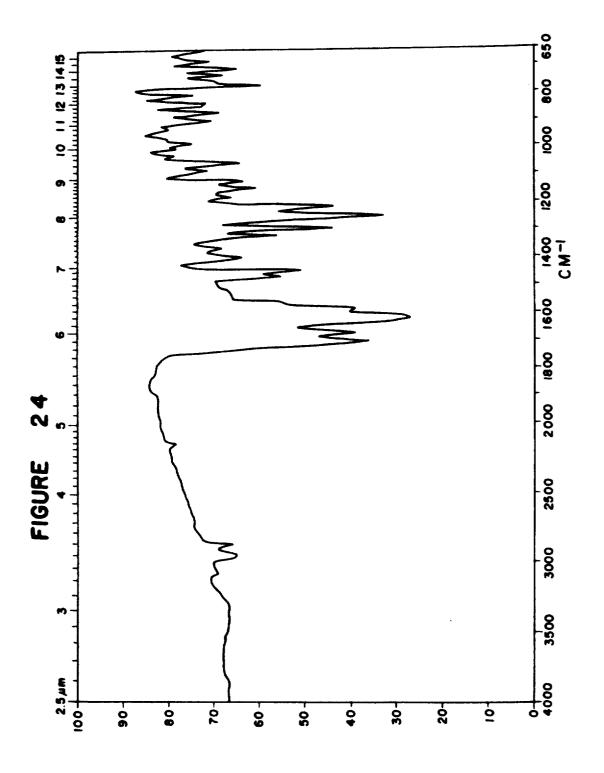


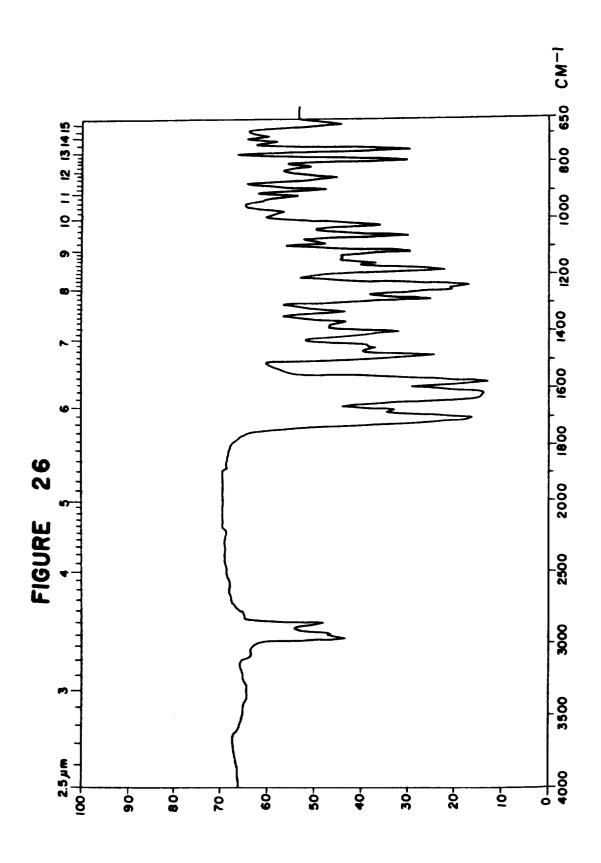


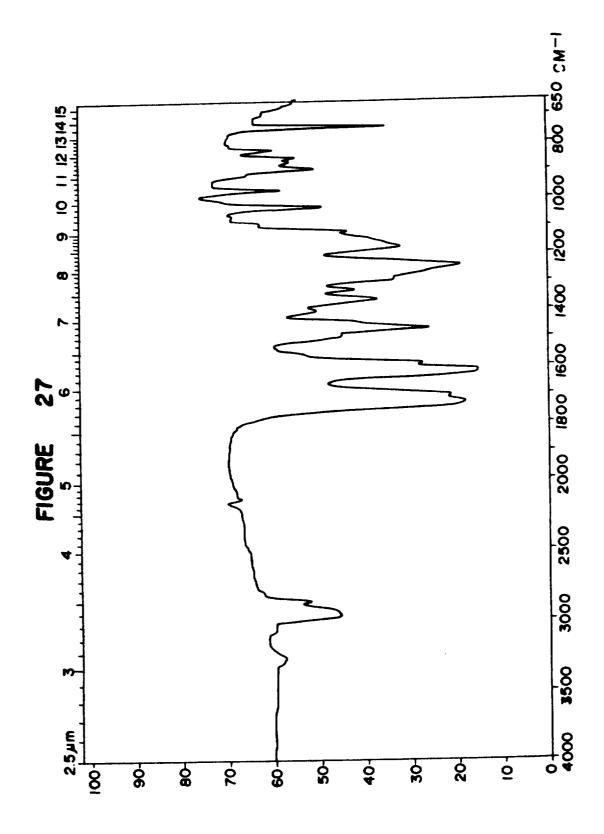

CM-I

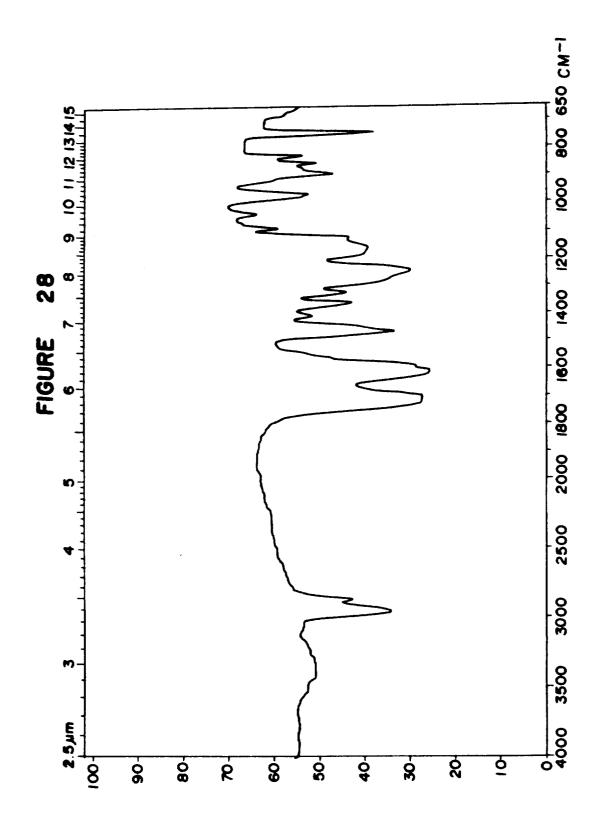


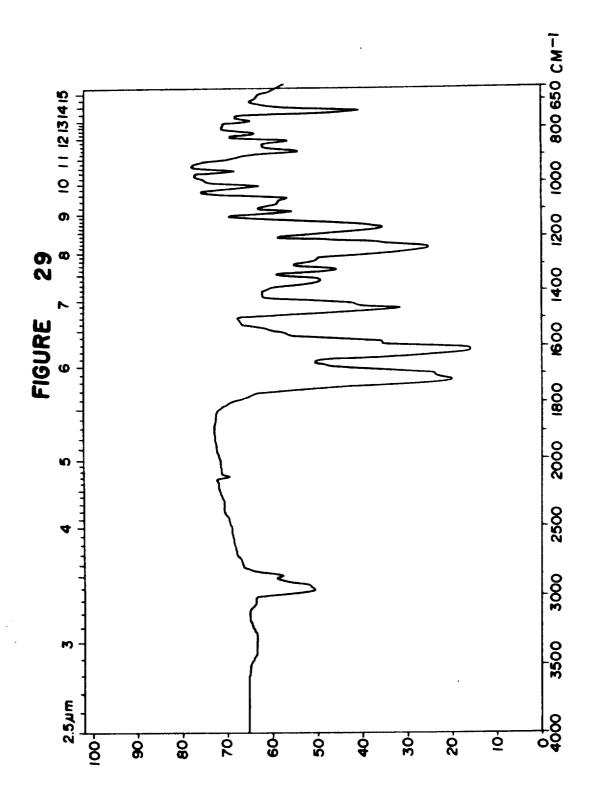


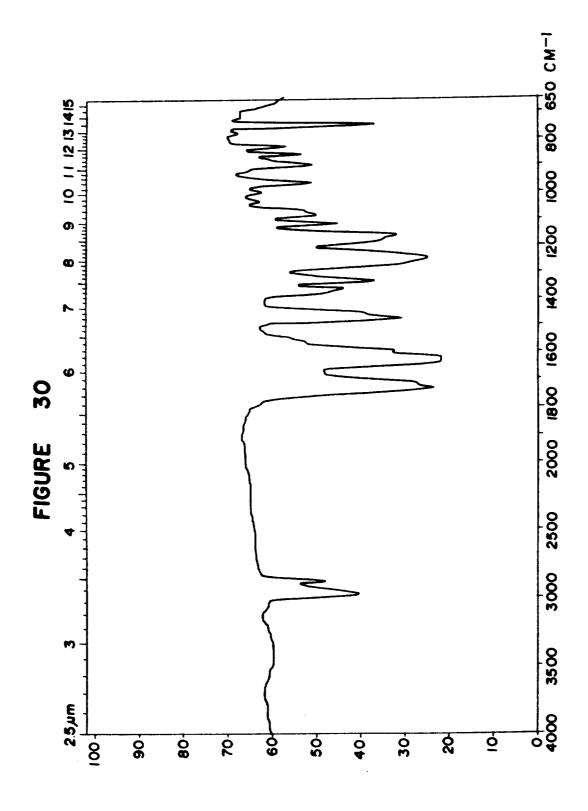


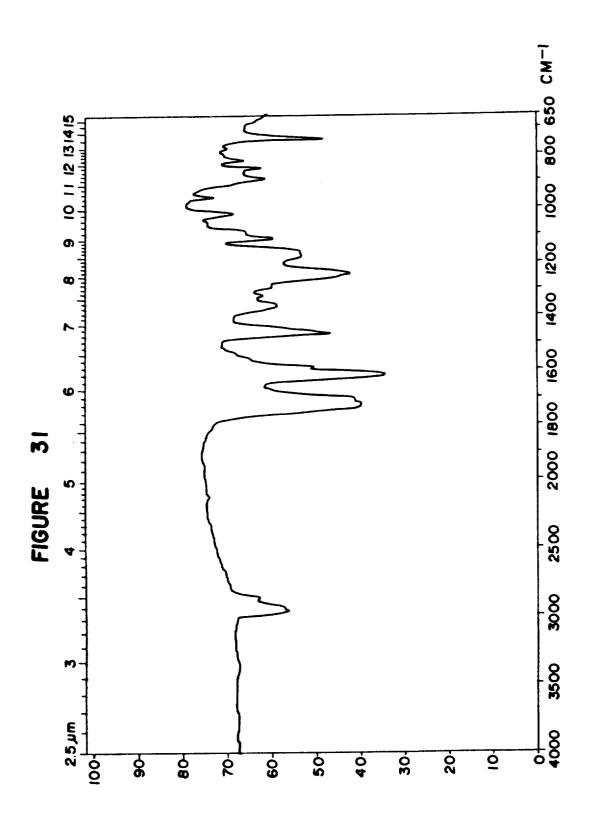


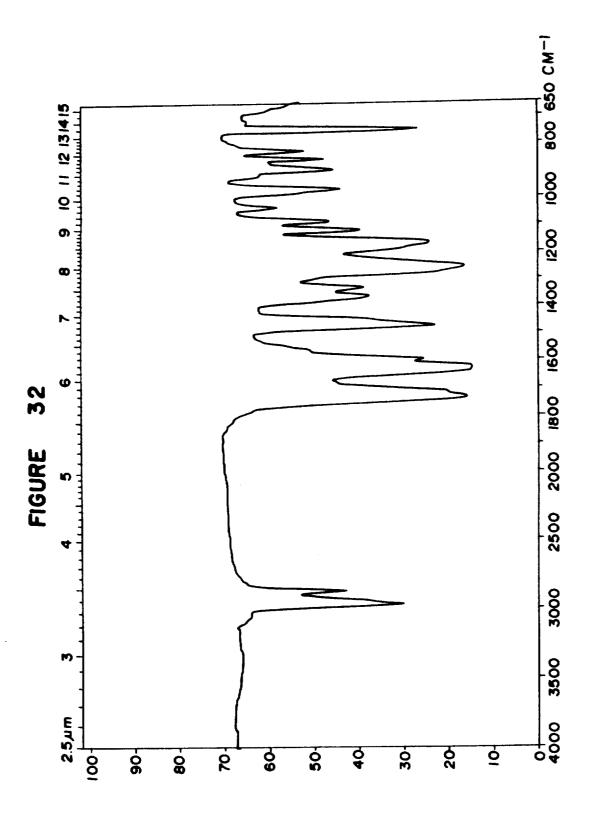


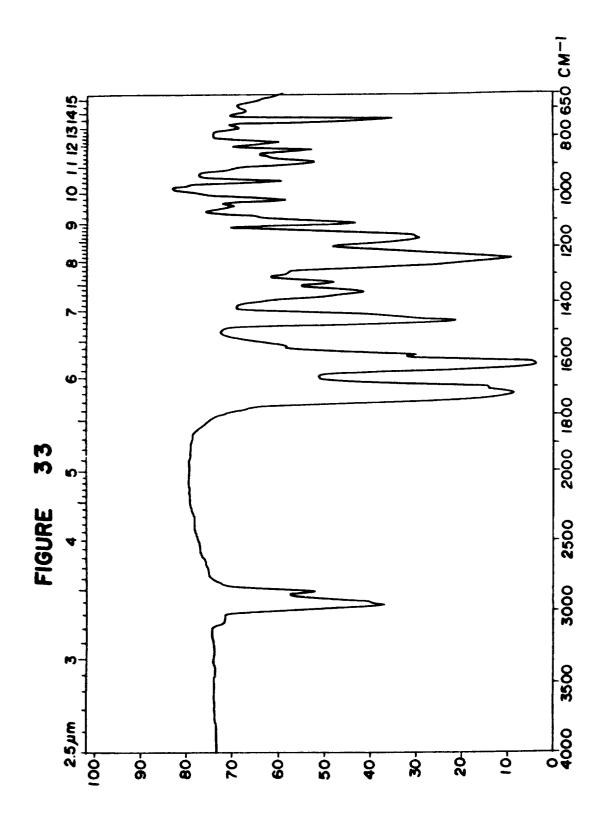


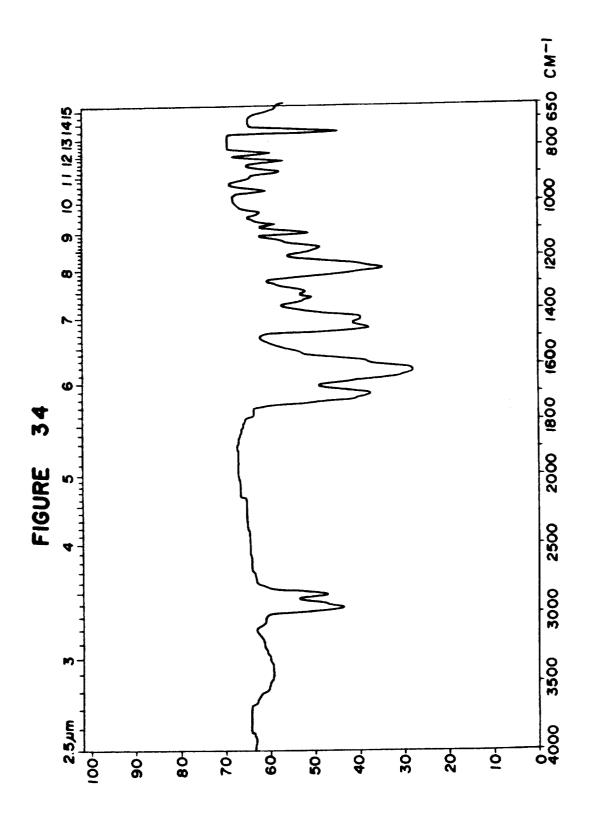


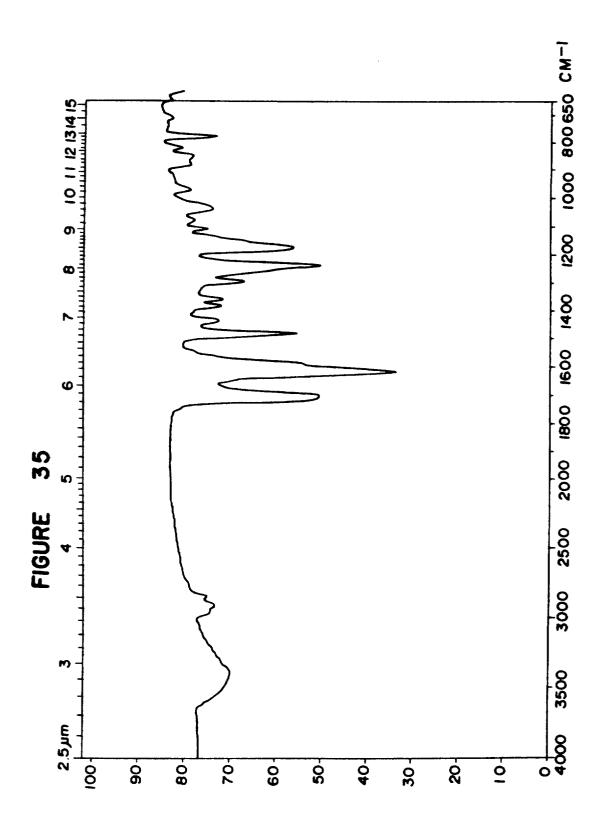











U.S. Patent

10

40

THIADIAZABICYCLONONANE DERIVATIVES, PROCESSES FOR THEIR PRODUCTION AND HERBICIDAL COMPOSITIONS

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

The present invention relates to novel 9-phenylimino-8-thia-1,6-diazabicyclo[4.3.0]nonane-7-(one or thione) derivatives, processes for their production and herbicidal compositions containing them.

In recent years, a number of herbicides have been developed and actually used, and they have contributed to the reduction of the agricultural work load and to the improvement of the productivity. As a herbicide having a hetero ring, Ronstar [i.e. 5-t-butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazoline-2-one] is widely used. However, Ronstar has drawbacks that it is likely to bring about phytotoxicity, and it is not effective against perennial weeds, particularly against Sagitaria pygmaea. Accordingly, a development of a herbicide having improved effectiveness and safety has been desired.

Under the circumstances, the present inventors have conducted extensive researches with an aim to develop a herbicide which satisfies the following conditions, and have finally accomplished the present invention.

- (1) It is effective at a low dose.
- (2) It is effective against paddy field weeds and (or) against upland field weeds.
 - (3) It is also effective against perennial weeds.
- (4) It is effective in a wide range covering the germination stage to the growing stage.
- (5) It has excellent residual effects and can be expected to provide stabilized effects.
 - (6) It exhibits excellent herbicidal effects.
 - (7) It is highly safe to crop plants.

Thus, the present invention provides a 9-phenylimino-8-thia-1,6-diazabicyclo[4.3.0]nonane-7-(one or thione) derivative having the formula:

wherein Y which may be the same or different, represents halogen, hydroxy, alkyl, alkoxy which may be substituted by halogen, alkenyloxy which may be substituted by halogen, alkynyloxy, phenoxy, cycloalkyloxy, alkoxycarbonylalkyloxy, alkoxycarbonylalkyloxy, alkynyloxycarbonylalkyloxy, alkynyloxycarbonylalkyloxy, benzyloxycarbonylalkyloxy, trifluoromethyl, benzyloxy which may be substituted by chlorine or alkyl, alkenyl, cyanoalkyl, alkylcarbamoyloxy, benzyl which may be substituted by one or two alkyl, alkoxyalkyl, alkynyloxyalkyl, cycloalkylmethyloxy which may be substituted by halogen, alkoxyalkyloxy, phenethyloxy, cycloalkyloxycarbonylalkyloxy, pyr-

rolidinocarbonyl, phenylcarbonyl which may be substituted by alkyl,

[wherein R₁ is hydrogen, alkyl, phenyl, cycloalkyl, alkoxyalkyl, alkoxycarbonylalkyl or

(wherein R_2 is hydrogen or alkoxy), X is oxygen or sulfur,

(wherein R₃ is alkyl, alkenyl or alkynyl, and m is 0 or 2),

[wherein R₄ is hydrogen or alkyl, and R₅ is hydrogen, alkyl, alkoxyalkyl, tetrahydrofurfuryl, alkoxyalkyloxyalkyl, alkoxycarbonylalkyl, cycloalkyl or —N=C(CH-35 3)—R₆ (wherein R₆ is alkyl or phenyl)], —NHR₇ (wherein R₇ is alkylcarbonyl or alkoxycarbonylalkyl),

(wherein R₈ is hydrogen or alkyl, and R₉ is alkoxy, cycloalkyloxy or 1-pyrrolidinyl), or

50 (wherein X is as defined above); n is an integer of from 0 to 3; and X is oxygen or sulfur.

The present invention also provides a process for producing a 9-phenylimino-8-thia-1,6-diazabicy-clo[4.3.0]nonane-7-(one or thione) derivative having the formula:

wherein Z which may be the same or different, represents halogen, alkyl, alkoxy which may be substituted

40

60

by halogen, alkenyloxy which may be substituted by halogen, alkynyloxy, phenoxy, cycloalkyloxy, alkoxycarbonylalkyloxy, alkylthiocarbonylalkyloxy, alkynyloxycarbonylalkyloxy, benzyloxycarbonylalkyloxy, trifluoromethyl, benzyloxy which may be substituted by chlorine or alkyl, alkenyl, cyanoalkyl, alkylcarbamoyloxy, benzyl which may be substituted by one or two alkyl, alkoxyalkyl, alkynyloxyalkyl, cycloalkylmethyloxy, alkoxyalkyloxy, phenethyloxy, cycloalkyloxycarbonylalkyloxy, pyrrolidinocarbonyl, phenylcarbonyl which may be substituted by alkyl,

[wherein R₁ is hydrogen, alkyl, phenyl, cycloalkyl, 20 alkoxyalkyl, alkoxycarbonylalkyl or

(wherein R_2 is hydrogen or alkoxy), X is oxygen or sulfur],

(wherein R₃ is alkyl, alkenyl or alkynyl, and m is 0 or 2),

[wherein R₄ is hydrogen or alkyl, and R₅ is hydrogen, alkyl, alkoxyalkyl, tetrahydrofurfuryl, alkoxyalkyloxyalkyl, alkoxycarbonylalkyl, cycloalkyl or —N=C(CH₃)—R₆ (wherein R₆ is alkyl or phenyl)], —NHR₇ (wherein R₇ is alkylcarbonyl),

(wherein R₈ is hydrogen or alkyl, and R₉ is alkoxy, cycloalkyloxy or 1-pyrrolidinyl), or

(wherein X is as defined above); n is an integer of from 0 to 3; and X is oxygen or sulfur, which comprises reacting a compound of the formula:

$$\begin{array}{c|c}
S & & \\
N-CHN & & \\
N+CHN & & \\
N+CHN & & \\
\end{array}$$
(II)

wherein Z and n are as defined above, with a compound of the formula:

CXCl₂

wherein X is as defined above.

Further, the present invention provides a process for producing a 9-phenylimino-8-thia-1,6-diazabicy-clo[4.3.0]nonane-7-(one or thione) derivative having the formula:

$$\bigvee_{\substack{N \\ | \\ N \\ | \\ X}} \bigvee_{\substack{S \\ OR}} W_n \qquad (V)$$

wherein W which may be the same or different, represents halogen; R is alkyl which may be substituted by halogen, alkenyl which may be substituted by halogen, alkynyl, alkoxycarbonylalkyl, alkoxycarbonylalkenyloxy, alkylthiocarbonylalkyl, alkynyloxycarbonylalskyl, benzyloxycarbonylalskyl, benzyloxycarbonylalsubstituted by chlorine or alkyl, alkylcarbamoyl, cycloalkylmethyl which may be substituted by halogen, phenethyl,

45 [wherein R₄ is hydrogen or alkyl, and R₅ is alkyl, alkoxyalkyl, tetrahydrofurfuryl, alkoxyalkyloxyalkyl, alkoxycarbonylalkyl, cycloalkyl or —N=C(CH₃)—R₆ (wherein R₆ is alkyl or phenyl)], or

55 (wherein X is oxygen or sulfur); n is an integer of from 0 to 3; and X is oxygen or sulfur, which comprises reacting a compound of the formula:

wherein W, X and n are as defined above, with a compound of the formula RT wherein R is as defined above, and T is halogen.

Furthermore, the present invention provides a herbicidal composition comprising a herbicidally effective amount of a compound of the formula I as defined above and a carrier.

Now, the present invention will be described in detail with reference to the preferred embodiments.

In the accompanying drawings:

FIG. 1 is the infrared absorption spectrum of Compound No. 3.

FIG. 2 is the infrared absorption spectrum of Compound No. 6.

FIG. 3 is the infrared absorption spectrum of Com- 15 pound No. 7.

FIG. 4 is the infrared absorption spectrum of Compound No. 8.

FIG. 5 is the infrared absorption spectrum of Compound No. 9.

FIG. 6 is the infrared absorption spectrum of Compound No. 16.

FIG. 7 is the infrared absorption spectrum of Compound No. 24.

FIG. 8 is the infrared absorption spectrum of Com- 25 pound No. 25.

FIG. 9 is the infrared absorption spectrum of Compound No. 28.

FIG. 10 is the infrared absorption spectrum of Compound No. 33.

FIG. 11 is the infrared absorption spectrum of Compound No. 36.

FIG. 12 is the infrared absorption spectrum of Compound No. 39.

pound No. 48.

FIG. 14 is the infrared absorption spectrum of Compound No. 49.

FIG. 15 is the infrared absorption spectrum of Compound No. 50.

FIG. 16 is the infrared absorption spectrum of Compound No. 51.

FIG. 17 is the infrared absorption spectrum of Compound No. 52.

pound No. 55.

FIG. 19 is the infrared absorption spectrum of Compound No. 56.

FIG. 20 is the infrared absorption spectrum of Compound No. 59.

FIG. 21 is the infrared absorption spectrum of Compound No. 75.

FIG. 22 is the infrared absorption spectrum of Compound No. 84.

FIG. 23 is the infrared absorption spectrum of Com- 55 pound No. 86.

FIG. 24 is the infrared absorption spectrum of Compound No. 96.

FIG. 25 is the infrared absorption spectrum of Compound No. 102.

FIG. 26 is the infrared absorption spectrum of Compound No. 144.

FIG. 27 is the infrared absorption spectrum of Compound No. 147.

FIG. 28 is the infrared absorption spectrum of Com- 65 pound No. 148.

FIG. 29 is the infrared absorption spectrum of Compound No. 149.

FIG. 30 is the infrared absorption spectrum of Compound No. 150.

FIG. 31 is the infrared absorption spectrum of Compound No. 151.

FIG. 32 is the infrared absorption spectrum of Compound No. 152.

FIG. 33 is the infrared absorption spectrum of Compound No. 153.

FIG. 34 is the infrared absorption spectrum of Compound No. 155.

FIG. 35 is the infrared absorption spectrum of Compound No. 157.

In the formula I, Y is preferably halogen, alkoxy which may be substituted by halogen, alkenyloxy which may be substituted by halogen, alkynyloxy, phenoxy, benzyloxy which may be substituted by chlorine or alkyl,

swherein R₁ is hydrogen, alkyl, phenyl, cycloalkyl, alkoxyalkyl, alkoxycarbonylalkyl or

FIG. 13 is the infrared absorption spectrum of Com- 35 (wherein R₂ is hydrogen or alkoxy), X is oxygen or sulfur).

[wherein R4 is hydrogen or alkyl, and R5 is hydrogen, FIG. 18 is the infrared absorption spectrum of Com- 45 alkyl, alkynyl, benzyl, alkoxyalkyl, tetrahydrofurfuryl, alkoxyalkyloxyalkyl, alkoxycarbonylalkyl, cycloalkyl or $-N=C(CH_3)R_6$ (wherein R_6 is alkyl or phenyl)].

A compound having the formula:

wherein A is hydrogen or halogen, B is halogen, and R₅ is hydrogen, alkyl, alkynyl, benzyl, alkoxyalkyl, tetrahydrofurfuryl, alkoxyalkyloxyalkyl, alkoxycarbonylalkyl, cycloalkyl, or $-N = C(CH_3)R_6$ (wherein R6 is alkyl or phenyl), is effective particularly as a herbicide for a soybean field. Particularly preferred in this respect is a compound of the formula:

5 •

10

wherein A is hydrogen or halogen, B is halogen, and R₁₀ is hydrogen, alkyl, alkynyl, alkoxyalkyl, alkoxyalkyloxyalkyl, or tetrahydrofurfuryl.

As a herbicide for a non-agricultural field, a compound of the formula:

wherein A is hydrogen or halogen, B is halogen, and R_1 is hydrogen, alkyl, phenyl, cycloalkyl, alkoxyalkyl, 30 alkoxycarbonylalkyl or

(wherein R2 is hydrogen or alkoxy), is particularly useful. Particularly preferred in this respect is a compound 40 having the formula:

wherein Hal is halogen, and R₁₁ is hydrogen or alkyl. Typical examples of the compound of the formula I are presented in Table 1.

		TABLE 1	
Com- pound No.	x	Y _n	60
1	0	н	
2	0	2-CH ₃	
3	0	2-OCH ₃	
4	О	2-F	
5	0	2-Cl	
6	0	3-CH ₃	65
7	О	3-Cl	03
8	О	3-CF ₃	
9	0	4-CH ₃	
10	0	4-OCH ₃	

		TABLE 1-continued
Com-		
pound		
No.	X	Y_n
11	О	4-F
12	О	4-Cl
13	0	4-Br
14	0	4-I
15	0	4-OCH ₂ -C ₆ H ₄ -Cl (para)
16	ō	2-F, 4-Cl
17	ŏ	2-F, 4-Br
18	ŏ	3-OCH ₃ , 4-Cl
19	0	3-OC ₂ H ₅ , 4-Cl
20	o	3-OC ₃ H ₇ -n, 4-Cl
21	0	3-OC ₃ H ₇ -i, 4-Cl
22	0	$3-OCH_2CH=CH_2$, $4-Cl$
23	О	3-OCH ₂ C≡CH, 4-Cl
24	О	3-OC4H9-s, 4-Cl
25	0	3-Cyclopentoxy, 4-Cl
26	О	3-O-C ₆ H ₅ , 4-Cl
27	О	3-OCH ₂ C ₆ H ₅ , 4-Cl
28	0	3-OCH(CH ₃)CO ₂ —C ₂ H ₅ , 4-Cl
29	0	3-OCH ₂ CO ₂ C ₂ H ₅ , 4-Cl
30	О	3,4-Cl ₂
31	Ó	3-OCH ₃ , 4-Br
32	ō	3-OCH ₂ C≡CH, 4-Br
33	ŏ	2-F, 4-Cl, 5-OC ₃ H ₇ -i
34	ŏ	
35	ö	2-F, 4-Cl, 5-OCH ₂ CH=CH ₂
		2-F, 4-Cl, 5-OCH ₂ C≡CH
36	0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₅
37	0	2-F, 4-Cl, 5-OCH ₂ —C ₆ H ₅
38	0	2-F, 4-Cl, 5-O-C ₆ H ₅
39	0	2,4-Cl ₂ , 5-OC ₃ H ₇ -i
4 0	О	2,4-Cl ₂ , 5-O—C ₆ H ₅
4]	S	4-Cl
42	S	3-OC ₃ H ₇ -i, 4-Cl
43	S	2-F, 4-Cl, 5-OC ₃ H ₇ -i
44	S	2-F, 4-Cl, 5-O—C ₆ H ₅
45	S	2,4-Cl ₂ , 5-OC ₃ H ₇ -i
46	0	3-OH, 4-Cl
47	ō	2-F, 4-Cl, 5-OCH ₂ CO ₂ C ₂ H ₅
48	ō	3-OC ₄ H ₉ -n, 4-Cl
49	ŏ	2-F, 4-Cl, 5-OC ₄ H ₉ -s
50	ŏ	3-OCH(CH ₃)CO ₂ —CH ₂ C≡CH, 4-Cl
51	ŏ	3-OC5H ₁₁ -n, 4-Cl
52	ŏ	
		3-OC ₅ H ₁₁ -s, 4-Cl
53	0	3-OC ₄ H ₉ -i, 4-Cl
54	0	4-CF ₃
55	0	3-OC ₈ H ₁₇ -n, 4-Cl
56	0	3-OCH(CH ₃)CO ₂ -CH ₂ -C ₆ H ₅ , 4-Cl
57	0	$3\text{-OCH}_2\text{CH}=\text{CH}-\text{CH}_3$, 4-Cl
58	О	3-OC ₃ H ₇ -i, 4-Br
59	О	3-OCH(CH ₃)CO ₂ —C ₄ H ₉ -n, 4-Cl
60	О	$3-OC_2H_4CH=CH_2$, $4-Cl$
61	О	$3\text{-OCH}_2\text{C(CH}_3) = \text{CH}_2$, 4-Cl
62	О	3-OCH ₂ C ₆ H ₄ Cl (para), 4-Cl
63	О	3-OC ₄ H ₉ -i, 4-Br
64	0	3-OCH ₂ CH=CH ₂ , 4-Br
65	0	3-OCH ₂ -C ₆ H ₄ -Cl (ortho), 4-Cl
66	О	3-OCH ₂ -C ₆ H ₄ -CH ₃ (para), 4-Cl
67	Ō	2-F, 4-Cl, 5-CH ₂ OCH ₃
68	Ō	3-OCH ₂ CH=C(CH ₃) ₂ , 4-Cl
69	Ō	3-OCH(CH ₃)COS-C ₂ H ₅ , 4-Cl
70	ŏ	3-OCH(CH ₃)CO ₂ —C ₄ H ₉ -i, 4-Cl
71	ŏ	3-OCH(CH ₃)CO ₂ C ₂ H ₄ OCH ₃ , 4-Cl
72	ŏ	3-NHCH(CH ₃)CO ₂ C ₂ H ₅ , 4-Cl
73	ŏ	3-OC2H4Cl, 4-Cl
74	ŏ	3-OCH ₂ —C ₆ H ₄ —Cl (metha), 4-Cl
75 76	0	3-OCH(CH ₃)—C ₆ H ₅ , 4-Cl
76	0	3-CH ₂ OC ₂ H ₅ , 4-Cl
77 70	0	3-Cyclohexyloxy, 4-Cl
78 70	ŏ	3-Cyclohexyimethyloxy, 4-Cl
79	Ó	3-OC2H4C≡CH, 4-Cl
80	Õ	3-(1-Cyclohexyloxycarbonylethoxy), 4-Cl
81	0	3-OCH(CH ₃)CH=CH ₂ , 4-Cl
82	О	2-F, 4-Cl, 5-OCH ₂ -C ₆ H ₄ -Cl (para)
83	О	2-Br, 4-Cl, 5-OCH ₂ CO ₂ C ₂ H ₅
84	0	$3-OCH(CH_3)CO_2N=C(CH_3)_2, 4-CI$
85	0	3-OPO(OC ₂ H ₅) ₂ , 4-Cl
86	0	2,4-Cl ₂ , 5-OCH(CH ₃)CO ₂ C ₂ H ₅
87	0	3-CH ₂ OCH ₂ C≡CH, 4-Cl
88	0	3-OCONHC ₂ H ₅ , 4-Cl
89	Ō	3-NHCOC ₂ H ₅ , 4-Cl
		* *·

TABLE 1-continued

TARI	F	l-continued
IADL	د نسه،	-commuca

Com- pound No.	v	Υ,,		Com- pound No.	x	Y _n	
			– 5	150	0		
90 91		3-OCONHCH ₃ , 4-Cl 3,5-Cl ₂		130	Ŭ		\Box
92		3-OCH(CH ₃)CO ₂ -N=C(CH ₃)C ₆ H ₅ , 4-Cl				2-F, 4-Cl, 5-SCH(CH ₃)CO ₂ -	⊣ н
93		3-CH ₂ -C ₆ H ₅ , 4-Cl					\
94		3-OCH ₂ CH=CHCl, 4-Cl					
95 96		3-CO ₂ C ₂ H ₅ , 4-Cl 3-COC ₆ H ₅ , 4-Cl	10	151	0	2-F, 4-Cl, 5-SCH(C2H5)CO2C	2H ₅
97		3-CO ₂ —C ₃ H ₇ -i, 4-Cl			_		
98		3-CO ₂ -C ₄ H ₉ -n, 4-Cl		152	О		
9 9		3-C ₃ H ₇ -n, 4-Cl				2-F, 4-Cl, 5-SCH(C ₂ H ₅)CO ₂ -	_/ u
100		3-CH ₂ -C ₆ H ₄ -CH ₃ (para), 4-Cl				2-F, 4-Ci, 3-3CH(C2H3)CO2-	```I
101 102		3-CH ₂ —C ₆ H ₃ —(CH ₃) ₂ (2,5), 4-Cl 3-CO—C ₆ H ₄ —CH ₃ (para), 4-Cl	15				\
102		3-CH=CHCH ₃ , 4-Cl		162	_	A F A CL & BCH/C-H-YCO-C	r.u.
104		3-SC2H5, 4-Cl		153	U	2-F, 4-Cl, 5-SCH(C ₃ H ₇)CO ₂ C	-2115
105		3-SO ₂ C ₂ H ₅ , 4-Cl		154	0		
106		3-Pyrrolidinocarbonyl, 4-Cl				/	
107 108		3-CO ₂ —CH(CH ₃)CO ₂ C ₂ H ₅ , 4-Cl 3-CO ₂ —C ₂ H ₄ OCH ₃ , 4-Cl	20			2-F, 4-Cl, 5-SCH(CH ₃)CON	
109		3-SCH ₂ CH=CH ₂ , 4-Cl				\	
110		3-SCH ₂ C≡CH, 4-Cl					
111		$3-SO_2CH_2CH=CH_2$, $4-Cl$		155	0		
112		2-F, 4-Cl, 5-CO ₂ C ₂ H ₅					/
113 114		3-Cyclopentoxycarbonyl, 4-Cl 3-COSC ₂ H ₅ , 4-Cl	25			2-F, 4-Cl, 5-SCH(C ₂ H ₅)CON	
115		3-CH ₂ CN, 4-Cl					igsquare
116		3-CO ₂ -C ₆ H ₅ , 4-Cl					
117		3-CO ₂ —CH ₂ —C ₆ H ₅ , 4-Cl		156		2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ H	
118		3-OCH ₂ CH=CCl ₂ , 4-Cl		157		2-F, 4-Cl, 5-OCH(CH ₃)CH= 2-F, 4-Cl, 5-CO ₂ CH ₃	CHCO ₂ C ₂ H ₅
119 120		2-F, 4-Cl, 5-CO ₂ —CH ₂ C ₆ H ₄ —OCH ₃ (para) 2-F, 4-Cl, 5-CO ₂ H	30	158 159		2-F, 4-Cl, 5-CO ₂ C ₃ H ₇ -n	
121		2-F, 4-Cl, 5-CO ₂ —C ₃ H ₇ -i		160		2-F, 4-Cl, 5-CO ₂ C ₄ H ₉ -n	
122		2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ CH ₃				The state of the s	
123		2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₇ -i		The		alting points and rafes	ative indexes of the
124		2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₄ H ₉ -i				elting points and refract	
125 126		2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ C=CH 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —N=C=(CH ₃) ₂	35	Comp	oun	d Nos. 1 to 157 are show	wn in Table 2.
127						TABLE 2	
	·	2-F. 4-Cl. 3-UCH(CH1)CU2-N=C(CH1)-C6H1					
128		2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —N=C.(CH ₃)—C ₆ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃		Co	mpo		
128 129	0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅		Со	mpo No.	und	Refractive index n _D ²⁰
128 129 130	0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₃ H ₇ -i		Co		und	Refractive index n_D^{20}
128 129 130 131	0 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₃ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n	40	Co	No. 1 2	und Melting point ('C.)	
128 129 130	0 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₃ H ₇ -i	40	Co	No. 1 2 3	und Melting point (*C.) 78-82 74-78	Refractive index n_D^{20}
128 129 130 131 132 133	0 0 0 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₃ H _{7-i} 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H _{9-n} 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃	40	Co	No. 1 2 3 4	Melting point (°C.) 78-82 74-78 83-85	
128 129 130 131 132 133	0 0 0 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₃ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₄ H ₆ OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-(1-Tetrahydrofurfuryloxy-	40	Co	No. 1 2 3 4 5	und Melting point (*C.) 78-82 74-78	
128 129 130 131 132 133 134 135	000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₃ H _{7-i} 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H _{9-n} 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-(1-Tetrahydrofurfuryloxy-carbonylethoxy)	40	Co	No. 1 2 3 4 5 6 7	Melting point (°C.) 78-82 74-78 83-85	1.6124 1.6208 1.6368
128 129 130 131 132 133 134 135	00000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₃ H ₇₋₁ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH.(CH ₃)CH ₂ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-(1-Tetrahydrofurfuryloxy-carbonylethoxy) 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅	40 45	Со	No. 1 2 3 4 5 6 7 8	Melting point (°C.) 78-82 74-78 83-85	1.6124 1.6208 1.6368 1.5641
128 129 130 131 132 133 134 135	0000000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₃ H _{7-i} 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H _{9-n} 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-(1-Tetrahydrofurfuryloxy-carbonylethoxy)		Со	No. 1 2 3 4 5 6 7 8 9	Melting point (°C.) 78-82 74-78 83-85 73-75	1.6124 1.6208 1.6368
128 129 130 131 132 133 134 135 136 137 138 139	00000000 0000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₄ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₄ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₄ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl		Co	No. 1 2 3 4 5 6 7 8 9 10	Melting point (*C.) 78-82 74-78 83-85 73-75	1.6124 1.6208 1.6368 1.5641
128 129 130 131 132 133 134 135 136 137 138 139 140	00000000 00000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₄ H ₆ —OC ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ C ₆ H ₅ , 4-Cl		Со	No. 1 2 3 4 5 6 7 8 9	Melting point (°C.) 78-82 74-78 83-85 73-75	1.6124 1.6208 1.6368 1.5641
128 129 130 131 132 133 134 135 136 137 138 139 140 141	00000000 000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₄ CH ₃ CH ₂ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₄ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₄ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ C ₆ H ₃ , 4-Cl 3-OC ₂ H ₄ C ₆ H ₃ , 4-Cl		Co	No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70	1.6124 1.6208 1.6368 1.5641
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	00000000 0000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₃ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₂ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-CH ₃ , 4-Cl		Co	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82	1.6124 1.6208 1.6368 1.5641
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	00000000 0000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₄ CH ₃ CH ₂ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₄ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₄ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ C ₆ H ₃ , 4-Cl 3-OC ₂ H ₄ C ₆ H ₃ , 4-Cl	45	Co	No. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70	1.6124 1.6208 1.6368 1.5641 1.6256
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	00000000 00000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl	45	Co	No. 1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154	1.6124 1.6208 1.6368 1.5641
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	00000000 00000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₃ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl	45	Co	No. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82	1.6124 1.6208 1.6368 1.5641 1.6256
128 129 130 131 132 133 134 135 136 137 138 140 141 142 143 144	00000000 00000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₂ C ₂ C=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl	45	Co	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145	1.6124 1.6208 1.6368 1.5641 1.6256
128 129 130 131 132 133 134 135 136 137 138 140 141 142 143 144	00000000 00000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl	45	Co	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105	1.6124 1.6208 1.6368 1.5641 1.6256
128 129 130 131 132 133 134 135 136 137 138 140 141 142 143 144	00000000 00000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₂ C ₂ C=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl	45	Co	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69	1.6124 1.6208 1.6368 1.5641 1.6256
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	000000000000000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₂ C ₂ C=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl	45	Co	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105	1.6124 1.6208 1.6368 1.5641 1.6256
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	000000000000000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₂ C ₂ C=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl	45	Co	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69 119-122	1.6124 1.6208 1.6368 1.5641 1.6256
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	000000000000000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -1 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OC ₂ H ₄ C ₆ H ₅ , 4-Cl 3-OC ₂ H ₄ C ₆ H ₅ , 4-Cl 3-OC ₂ H ₂ Ccl=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-C(2,2-Dichlorocyclopropylmethoxy), 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl CH ₃ 3-SCHCO ₂ C ₂ H ₅ , 4-Cl	45	Co	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69 119-122 130-132	1.6124 1.6208 1.6368 1.5641 1.6256
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	000000000000000000	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-CCH ₂ CCl=CH ₂ , 4-Cl 3-CCH ₂ CCl=CH ₂ , 4-Cl CH ₃ CCH ₃	45 50	Co	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69 119-122 130-132	1.6124 1.6208 1.6368 1.5641 1.6256
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	00000000 00000000 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -1 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OC ₂ H ₄ C ₆ H ₅ , 4-Cl 3-OC ₂ H ₄ C ₆ H ₅ , 4-Cl 3-OC ₂ H ₂ Ccl=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-C(2,2-Dichlorocyclopropylmethoxy), 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl CH ₃ 3-SCHCO ₂ C ₂ H ₅ , 4-Cl	45	Co	No. 1 2 3 4 4 5 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69 119-122 130-132	1.6124 1.6208 1.6368 1.5641 1.6256
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	00000000 000000000 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-CCH ₂ CCl=CH ₂ , 4-Cl 3-CCH ₂ CCl=CH ₂ , 4-Cl 3-CCH ₂ CCl=CH ₂ , 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl CH ₃ 3-SCHCO ₂ C ₂ H ₅ , 4-Cl	45 50	Co	No. 1 2 3 4 4 5 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69 119-122 130-132 83-85 114-116 94-96	1.6124 1.6208 1.6368 1.5641 1.6256 1.6121
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	00000000 00000000 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-CCH ₂ CCl=CH ₂ , 4-Cl 3-CCH ₂ CCl=CH ₂ , 4-Cl 3-CCH ₂ CCl=CH ₂ , 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl CH ₃ 3-SCHCO ₂ C ₂ H ₅ , 4-Cl	45 50	Co	No. 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 23 24 25 26 27 28 29 30	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69 119-122 130-132 83-85 114-116 94-96 116-118	1.6124 1.6208 1.6368 1.5641 1.6256 1.6121
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	00000000 000000000 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -1 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₃) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₂ C ₆ H ₅ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-C(2,2-Dichlorocyclopropylmethoxy), 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl CH ₃ 3-SCHCO ₂ —H, 4-Cl CH ₃ 3-SCHCO ₂ —H, 4-Cl	45 50	Co	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69 119-122 130-132 83-85 114-116 94-96 116-118 118-121	1.6124 1.6208 1.6368 1.5641 1.6256 1.6121
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	00000000 000000000 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -i 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₅) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-CCH ₂ CCl=CH ₂ , 4-Cl 3-CCH ₂ CCl=CH ₂ , 4-Cl 3-CCH ₂ CCl=CH ₂ , 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl CH ₃ 3-SCHCO ₂ C ₂ H ₅ , 4-Cl	45 50 55 60	Co	No. 1 2 3 4 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 6 27 28 29 30 1 32	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69 119-122 130-132 83-85 114-116 94-96 116-118	1.6124 1.6208 1.6368 1.5641 1.6256 1.6121 1.5794 1.6145
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	00000000 000000000 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -1 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₃) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₂ C ₆ H ₅ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-C(2,2-Dichlorocyclopropylmethoxy), 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl CH ₃ 3-SCHCO ₂ —H, 4-Cl CH ₃ 3-SCHCO ₂ —H, 4-Cl	45 50	Co	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69 119-122 130-132 83-85 114-116 94-96 116-118 118-121	1.6124 1.6208 1.6368 1.5641 1.6256 1.6121
128 129 130 131 132 133 134 135 136 137 138 140 141 142 143 144 145	00000000 00000000 0 0 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -1 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OCH ₂ CCl==CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-C(2-Dichlorocyclopropylmethoxy), 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl CH ₃ 2-F, 4-Cl, 5-SCH(CH ₃)CO ₂ C ₂ H ₅	45 50 55 60	Co	No. 1 2 3 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69 119-122 130-132 83-85 114-116 94-96 116-118 118-121 132-135	1.6124 1.6208 1.6368 1.5641 1.6256 1.6121 1.5794 1.6145 1.5840 Not measurable
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	00000000 00000000 0 0 0 0	2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₇ -1 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₄ H ₉ -n 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₂ H ₄ —OC ₂ H ₄ OCH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —C ₃ H ₆ —OC ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ —CO ₂ C ₂ H ₅ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ CH ₃ 2-F, 4-Cl, 5-OCH(CH ₃)CO ₂ —CH ₂ (CH ₃)CO ₂ C ₂ H ₅ 3-OPS(OC ₂ H ₃) ₂ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₄ OCH ₃ , 4-Cl 3-OC ₂ H ₂ C ₆ H ₅ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-OCH ₂ CCl=CH ₂ , 4-Cl 3-C(2,2-Dichlorocyclopropylmethoxy), 4-Cl 3-SCHCO ₂ C ₂ H ₅ , 4-Cl CH ₃ 3-SCHCO ₂ —H, 4-Cl CH ₃ 3-SCHCO ₂ —H, 4-Cl	45 50 55 60	Co	No. 1 2 3 4 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 30 31 32 2 33 33 34	Melting point (*C.) 78-82 74-78 83-85 73-75 116-119 69-72 82-85 69-70 80-82 150-154 98-100 125-128 143-145 102-105 66-69 119-122 130-132 83-85 114-116 94-96 116-118 118-121 132-135 106-109	1.6124 1.6208 1.6368 1.5641 1.6256 1.6121 1.5794 1.6145

TABLE 2-continued

т	Δ	D	E	7	-continued

	TABLE 2-contin	ued	_		TABLE 2-contin	ued
Compound No.	Melting point (*C.)	Refractive index np ²⁰		Compound No.	Melting point (°C.)	Refractive index n _D ²
			_	118		1.6058
38 39	116–119	1.6050	5	119		1.6052
40	711 114	1.6030		120	223-226	1.0032
41	111-114 96-97			121	223-220	1.5734
	98-101			122	106-109	1.5754
42 43	77-80			123	100-109	1.5549
44	138-141			124	69-72	1.5549
			10	125	09-72	1.5735
45	71-73				116 110	1.5735
46	130-132			126	116-119	
47	93-96			127	52-55	
48		1.6050		128		1.5749
49		Not measurable		129		1.5678
50		1.5915		130		1.5590
51		1.5951	15	131		1.5575
52		1.5878		132		1.5672
53	72-75			133		1.5580
54	103-107			134		1.5691
55		1.5673		135		1.5751
56		1.5961		136		1.5690
57	83-86	2.270	20	137		1.5647
58	84-88			138		1.5538
59	04-00	1.5732		139		1.5995
	77-78	1.3732			116 110	1.3993
60				140	115-118	
61	89-95			141	68-71	
62	94-96			142	82-84	
63	92-95		25	143	77-79	
64	116-119			144		Not measurable
65	100-103			145		1.5969
66	162-164			146		1.5972
67	84 –87			147		1.5990
68	78-81			148		Not measurable
69		1.5962	20	149		1.5925
70		1.5661	30	150		1.602
71		1.5710		151		1.5738
72		1.5755		152		1.5963
73	110-114	5.5.25		153		1.5761
74	120-122			154	136-138	1.5701
75	120-122	Not measurable		155	150-150	Not measurable
	73-76	NOT IIICASULADIC	35	156	120-122	140t measurable
76	73-76	1.6042			120-122	N
77		1.6043		157		Not measurable
78	97-103			158	79-81	
79	85-88			159	57-59	
80		1.5771		160		1.5791
81		1.5970				
82	129-132		40			
83	116-118				and of the formula	may be prepared
84		Not measurable		the following	processes.	
85		1.5759		.	-	
86		Not measurable				
87		1.6946			Z _n	
88	143-146		45	∧ §		
89	117-120				J_/ \	CYCl.
90	167-170			N-CHI	'_\\	- CXCl ₂
91	111-114] [
92	44-46			NH	**************************************	
93	154-156			\/		
94	87-90			•	(11)	(III)
95		1.6043	50			
96		Not measurable				
97		1.5843				/>
		1.5775				N_/ \
98					^	
99		1.5678			/ \	"
100	*** ***	1.6255	55		(N	· \ —
101	127-129	Mar				S
102		Not measurable			ĹŃ	,
103		1.6320			\ \ \ . "	\checkmark
104	120-122				\vee	И
105		1.6213				X
106	119-121					
107		1.5881	60			(IV)
108		1.5936				
109	66-68			wherein V 7	and n are as defined	labous This sees
110		1.6641				
		1.6225			cted by reacting th	
		1.6002			h the compound of	
111						
111 112						
111 112 113		1.5979	65	presence of a l	base.	
111 112 113 114	120		65	As the base	base. e, there may be me	entioned an alipha
111 112 113 114 115	120–122	1.5979 1.6321	65	As the base	, there may be me	
111 112 113 114	120–122	1.5979	65	As the base tertiary amine	base.	ne or trimethylamin

quinoline; or an inorganic base such as sodium hydroxide, potassium hydroxide, potassium carbonate or sodium carbonate.

The above reaction is preferably conducted in a solvent. As such a solvent, there may be mentioned a chlorine-containing hydrocarbon such as dichloromethane,
chloroform or carbon tetrachloride; an ether such as
diethyl ether, tetrahydrofuran or dioxane; a hydrocarbon such as n-hexane, benzene or toluene; an aliphatic
ketone such as acetone or methyl ethyl ketone; dimethylsulfoxide; or N,N-dimethylformamide.

The above-mentioned condensation reaction can be 15 completed in from 1 to 7 hours at a temperature within a range of from -20° C. to the boiling point of the solvent.

$$\begin{array}{c|c}
N & & \\
\downarrow & & \\
N & & \\
N & & \\
N & & \\
X & & \\
(VI) & & \\
\end{array}$$

wherein X, W, R and n are as defined above.

This process can be conducted by reacting the compound of the formula V with an acid such as hydrobromic acid or aluminum chloride in the presence of a solvent, for instance, a fluorine-containing hydrocarbon such as chloroform or carbon tetrachloride, or a hydrocarbon such as benzene or toluene. This reaction can be completed in from 1 to 7 hours at a temperature within a range of from 0° C. to the boiling point of the solvent.

$$(c)$$

$$\downarrow N$$

14

wherein W, X, R, T and n are as defined above.

This process can be conducted by reacting the compound of the formula VI with the compound of the formula VII in the presence of the same base and solvent as used in process (a) at a temperature within a range of from -20° C. to the boiling point of the solvent for from 1 to 7 hours.

Now, the present invention will be described in further detail with reference to Examples. However, it should be understood that the present invention is by no 25 means restricted by these specific Examples.

Firstly, Examples for the preparation of the compounds of the present invention will be described.

Preparation Example 1

9-(4-Chlorophenylimino)-8-thia-1,6-diazabicyclo[4.3.0-]nonane-7-one (Compound No. 12)

In a reaction flask, 3.2 g (13 mmol) of 1,2-tetramethy-lene-1-(4-chlorophenylthiocarbamoyl)-hydrazine, 2.2 g (28 mmol) of pyridine ad 20 ml of dichloromethane, were charged, and a dichloromethane solution containing 1.5 g (15 mmol) of phosgene was dropwise added while cooling the mixture with ice water. After the dropwise addition, the mixture was stirred at room temperature for 3 hours to complete the reaction. The reaction solution was washed with water, and dried over anhydrous sodium sulfate, and then the solvent was distilled off to obtain a crude product. This crude product was recrystallized from isopropyl ether to obtain 3.2 g (yield: 74%) of white crystals. Melting point: 82°-85° C.

Preparation Example 2

9-(4-Chlorophenylimino)-8-thia-1,6-diazabicyclo[4.3.0-]nonane-7-thione (Compound No. 41)

Into a reaction flask, 2.4 g (9 mmol) of 1,2-tetramethylene-1-(4-chlorophenylthiocarbamoyl)-hydrazine, 2.0 g (25 mmol) of pyridine and 20 ml of dichloromethane, were charged, and 1.3 g (11 mmol) of thiophosgene was dropwise added while cooling the mixture with ice water. After the dropwise addition, the
mixture was stirred at room temperature for 3 hours to
complete the reaction. After the completion of the reaction, the reaction solution was washed with water, and
dried over anhydrous sodium sulfate, and the solvent
was distilled off to obtain a crude product. This crude
product was recrystallized from isopropyl ether to obtain 2.1 g (yield: 75%) of brown crystals. Melting point:
96°-97° C.

Preparation Example 3

9-(4-Chloro-3-hydroxyphenylimino)8-thia-1,6diazabicyclo[4.3.0]nonane-7-one (Compound No. 46)

Into a reaction flask equipped with a Dimroth condenser, 1.7 g (5 mmol) of 9-(4-chloro-3-isopropoxyphenylimino)-8-thia-1,6-diazabicyclo[4.3.0]nonane-7-one, 1.3 g (10 mmol) of aluminum chloride and 50 ml of chloroform, were charged, and refluxed under heating for 2 hours to complete the reaction.

The reaction solution was poured into ice water, and the organic layer was washed with water and dried over anhydrous sodium sulfate, and the solvent was distilled off to obtain a crude product.

tography to obtain 1.2 g (yield: 80%) of colorless crystals. Melting points: 130°-132° C.

Preparation Example 4

9-(4-Chloro-2-fluoro-3-propargyloxyphenylimino)-8thia-1,6-diazabicyclo[4.3.0]nonane-7-one (Compound No. 35)

Into a reaction flask equipped with a Dimroth condenser, 2.2 g (7 mmol) of 9-(4-chloro-2-fluoro-3-hydrox-25 yphenylimino)-8-thia-1,6-diazabicyclo[4.3.0]nonane-7-one, 1.1 g (9 mmol) of propargyl bromide, 1.3 g (9 mmol) of potassium carbonate and 20 ml of acetonitrile, were charged, and refluxed under heating for 3 hours to complete the reaction.

extracted with ethyl acetate, and then washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain a crude product, which was then recrystallized from isopropyl ether to obtain 1.6 g (yield: 64%) of white crystals. Melting 35 point: 132°-134° C.

Preparation Example 5

9-(4-Chloro-2-fluoro-5-ethoxycarbonylphenylimino)-8thia-1,6-diazabicyclo[4.3.0]nonane-7-one (Compound No. 112)

Into a reaction flask, 3.8 g (11 mmol) of 1,2-tetramethylene-1-(4-chloro-2-fluoro-5-ethoxycarbonylphenylthiocarbamoyl)hydrazine, 2.1 g (26 mmol) of 45 pyridine and 20 ml of dichloromethane, were charged, and a dichloromethane solution containing 1.3 g (13 mmol) of phosgene, was dropwise added while cooling the mixture with ice water. After the dropwise addition, the mixture was stirred at room temperature for 1 hour 50 to complete the reaction. The reaction solution was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off to obtain a crude product. This crude product was purified by column chromatography to obtain 2.8 g (yield: 68%) of 55 colorless sticky substance. Refractive index: n_D²⁰ 1.6002.

Preparation Example 6

9-{4-Chloro-2-fluoro-5-(1-methoxyethoxycarbonylethoxy)phenylimino}-8-thia-1,6-diazabicyclo[4.3.0]nonane-7-one (Compound No. 128)

Into a reaction flask equipped with a Dimroth condenser, 1.9 g (6 mmol) of 9-(4-chloro-2-fluoro-3-hydroxyphenylimino)-8-thia-1,6-diazabicyclo[4.3.0]nonane-7-one, 1.3 g (6 mmol) of methoxyethyl 2-bromopropionate, 1.0 g (6 mmol) of potassium carbonate and 20 ml of acetonitrile, were charged, and refluxed under heating for 40 minutes to complete the reaction. The reaction solution was filtered, concentrated, extracted with ethyl ether, and then washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off to obtian a crude product, which was purified by column chromatography to obtain 1.2 g (yield: 46.1%) of slightly brown liquid. Refractive index: n_D²⁰ 1.5749

Preparation Example 7

9-{4-Chloro-3-[1-(ethoxycarbonyl)ethylamino]phenylimino}-8-thia-1,6-diazabicyclo[4.3.0]nonane-7-one (Compound No. 72)

Into a reaction flask equipped with a Dimroth con-The crude product was purified by column chroma. 15 denser, 2.2 g (7.4 mmol) of 9-(4-chloro-3-aminophenylimino)-8-thia-1,6-diazabicyclo[4.3.0]nonane-7-one, 15 ml of ethyl 2-bromopropionate and 2.0 g (24 mmol) of sodium hydrogen carbonate, were charged, and refluxed under heating for 4 hours to complete the reaction. The reaction solution was filtered, concentrated and extracted with ethyl acetate, and then washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain a crude product, which was purified by column chromatography to obtain 1.5 g (yield: 52%) of colorless oily substance. Refractive index: n_D²⁰ 1.5755

The 9-phenylimino-8-thia-1,6-diazabicyclo[4.3.0]nonane-7-(one or thione) derivative of the formula I is The reaction solution was filtered, concentrated, used as a herbicide for a paddy rice field, an upland field, an orchard or a non-agricultural field, the active ingredient can be used in a suitable formulation depending upon the particular purpose. Usually, the active ingredient is diluted with an inert liquid or solid carrier, and used in the form of a formulation such as a dust, a wettable powder, an emulsifiable concentrate, a granule, etc., if necessary by adding a surfactant and other additives. Further, the compound of the present invention may be used in combination with an insecticide, a nematocide, a fungicide, other herbicides, a plant growth controlling agent, a fertilizer, etc., as the case requires.

> Now, the formulations will be described in detail with reference to typical Formulation Examples. In the following Formulation Examples, "parts" means "parts by weight".

Formulation Example 1

Wettable power

10.0 parts of Compound No. 43, 0.5 part of Emulgen (trademark of Kao Soap Co., Ltd.) 810, 0.5 part of Demol trademark of Kao Soap Co., Ltd.) N, 20.0 parts of Kunilite (trademark of Kunimine Kogyo K.K.) 201, and 69.0 parts of Zeeklite (trademark of Zeeklite Co., Ltd.) CA, were mixed and pulverized to obtain a wettable powder containing 10% of an active ingredient.

Formulation Example 2

Wettable powder

10.0 parts of Compound No. 33, 0.5 part of Emulgen 65 810, 0.5 part of Demol N, 20.0 parts of Kunilite 201, 5.0 parts of Carplex 80 and 64.0 parts of Zeeklite CA, were mixed and pulverized to obtain a wettable powder containing 10% of the active ingredient.

Formulation Example 3

Emulsifiable concentrate

To 30 parts of Compound No. 19, 60 parts of a mixture of xylene and isophorone in equal amounts and 10⁵ parts of surfactant Sorpol (trademark of Toho Kagaku Kogyo K.K.) 800A, were added, and the mixture was thoroughly mixed to obtain 100 parts of an emulsifiable concentrate.

Formulation Example 4

Granules

10 parts of water was added to 10 parts of Compound No. 21, 80 parts of a filler obtained by mixing talc and 15 bentonite in a ratio of 1:3, 5 parts of white carbon and 5 parts of surfactant Sorpol N 800A, and the mixture was thoroughly kneaded to obtain a paste, which was extruded from sieve openings having a diameter of 0.7 mm and dried, and then cut into a length of from 0.5 to 1 20 mm, to obtain 100 parts of granules.

The compounds of the formula of the present invention exhibit excellent herbicidal effects at a very low dose in a wide range from the germination stage to the growing stage of annual weeds such as barnyardgrass (Echinochloa crus-galli), umbrella-plant (Cyperus difformis L.), monochoria (Monochoria vaginalis Presl), spike-flowered rotala (Rotalal indica Koehne), false pimpernel (Lindernia procumbens Philcox) and Dopatrium junceum Hamilt, and perennial weeds such as 30 bulrush (Scirpus juncoides Roxb.), slender spikerush (Eleocharis acicularis Roem. et Schult.), water plantain (Alisma canaliculatum A. Br. et Bouche), Sagittaria (Sagittaria pygmaea Miq.) and cyperus sp. (Cyperus serotinus Rottb.) which grow in paddy fields. At the 35 same time, they have high selectivity for paddy field rice. Further, they exhibit high herbicidal effects, by soil treatment or by foliage treatment, against various weeds in the upland fields, for example, broad leaf weeds such as smart weed (Polygonum nodosum L.), 40 pigweed (Amaranthus retroflexus), lambsquaters (Chenopodium album), common chickweed (Stellaria media), speed well (Veronica persica), wild mustard (Brassica kaber var. pinnatifida) and cocklebur (Xanthium strumarium), cyperaceous weeds such as rice 45 flatsedge (Cyperus iria L.), and gramineous weeds such as barnyardgrass, large crabgrass (Digitaria sanguinalis) and green foxtail (Setaria viridis). At the same time, they have a feature that they are highly safe to crop plants such as upland rice, wheat, soybean and corn.

The dose of the compound of the present invention is usually within a range of from 10 g to 15 kg/ha. More specifically, the dose is usually from 30 g to 5 kg/ha for upland fields, from 10 g to 1 kg/ha for paddy rice fields,

and from 200 g to 5 kg/ha for non-agricultural fields.

Further, the compounds of the present invention

55 have excellent residual effects, and show stabilized effects for a long period of time also in paddy fields. They are also useful for orchard, grassland, lawn and nonagricultural fields.

Now, the herbicidal effects of the herbicides of the 60 present invention will be described with reference to Text Examples.

Text Example 1

Herbicidal test by soil treatment of paddy field

Into a 100 cm² porcelain pot, paddy field soil was filled and puddled. Then, seeds of barnyardgrass, umbrella plant, monochoria and bulrush were sown, and water was introduced to a depth of 3 cm.

Next day, the wettable powder prepared in accordance with Formulation Example 1, was diluted with water and dropwise applied to the surface of the water. The amount of the active ingredient applied, was 400 g/10a. Then, the pot was left in a green house. Twenty one days after the application, the herbicidal effects were evaluated in accordance with the standards identi-10 fied in Table 3. The results are shown in Table 4.

		IABLE 3
	Index	Herbicidal effects and phytotoxicity
_	5	Withered
5	4.5	Herbicidal effect (or phytotoxicity) in a range of 90 to 99%
	4	Herbicidal effect (or phytotoxicity) in a range of 80 to 89%
	3.5	Herbicidal effect (or phytotoxicity) in a range of 70 to 79%
0	3	Herbicidal effect (or phytotoxicity) in a range of 60 to 69%
	2.5	Herbicidal effect (or phytotoxicity) in a range of 50 to 59%
	2	Herbicidal effect (or phytotoxicity) in a range of 40 to 49%
5	1.5	Herbicidal effect (or phytotoxicity) in a range of 30 to 39%
	1	Herbicidal effect (or phytotoxicity) in a range of 20 to 29%
	0.5	Herbicidal effect (or phytotoxicity) in a range of 1 to 19%
^	0	No herbicidal effect (or no phytotoxicity)

TABLE 4

			I ABLE 4	·	
			Herbic	idal effects	
	Compound	Barnyard-	Umbrella		
35	No.	grass	plant	Monochoria	Bulrush
•	1	4	5	5	4
	2	2.5	2	5	3.5
	3	4	5	5 5 5	2.5
	4	4	4	5	4
40	6	4	5	5	3.5
40	7	5	5	5	4
	8	3	4	5	5
	9		5	5	5
	10	5 5	5	5	5
	11	5	5	5	5
	12	5	5	5	5
45	13	5	5	5	5
	14	5	5	5	5
	15	4	4	5	5
	16	5	5	5	5
	17	5	5	5	5
	18	5	5 5	5	5
50	19	5	5	5	5
	20	5	5	5	5 5 5 5 5
	21	5	5	5 5	5
	22	5	5	5	
	23	5	5	5 5 5	5 5
	24	5	5	5	
55	25	5	5	5	5
	26	5 5	5	5 5	5
	27	5	5	5	5
	28	5	5	5	5
	29	5 5	5	5 5	5
	30	5	5	5	5
60	31	5	5	5	5
	32	5	5	5 5	5
	33	5	5	5	5
	34	5	5	5	5
	35	5	5	5	5
	36	5	5	5	5
65	37	5	5	5	5
	38	5	5	5 5 5 5 5	5
	39	5	5	5	5
	40	5	5	5	5
	41	5	5	5	5

TABLE 4-continued

		Herbic	idal effects	
Compound No.	Barnyard- grass	Umbrella plant	Monochoria	Bulrush
42	5	5	5	5
43	5	5	5	5
44	5	5	5	5
45	5	5	5	5
46	5	5	5	5
47	5	5	5	5
48	5	5	5	5
49	5	5	5	5
50	5	5	5	5
51	5	5	5	5
52	5	5	5	5
53	5	5	5	5
54	5	5	5	5
55	5	5	5	5

In pot A, three germinated tubers of each of flat sedge and sagittaria, were embedded in the surface layer of the soil, and two seedlings of two rice plants of 2.2 leaf stage, were transplanted in a depth of 2 cm.

In pot B, seeds of barnyardgrass, hardstem bulrush, narrow leaf water plantain, monochoria and umbrella plant were sown in the surface layer of the soil.

The day after the seeding and transplantation, a prescribed amount of a wettable powder of each com-10 pound formulated in accordance with Formulation Example 1, was diluted with water and dropwise applied by a pipette.

Thirty days after application, the herbicidal effect and phytotoxicity were evaluated in accordance with 15 the standards identified in Table 3. The results are shown in Table 5.

TABLE 5

	Dose of					(Part 2)				
Compound No.	active ingredient (g/10 a)	Barnyard- grass	(Pa Umbrella plant	Monochoria	Bulrush	- Water plantain	Sagittaria	Cyperus sp	Transplanted paddy field rice	
13	50	5	5	5	4.5	5	5	5	0.5	
13	25	4.5	5	5	4	5	5	5	0.5	
18	50	4.3 5	5	5	5	5	5	5	0	
18	25	5	5	5	5	5	5	5	Ö	
**	12.5	5	5	5	5	5	5	5	0	
19	6.3	5	5	5	5	5	4.5	5	o	
20			5	5	5	5	4.3 5	5	0	
20	25	5				5	5	5	0	
	12.5	5	5	5	5					
21	25	5	5	5	5	5	5	5	0	
	12.5	5	5	5	5	5	5	5	0	
22	25	5	5	5	5	5	5	5	0	
	12.5	5	5	5	5	5	5	5	0	
23	25	5	5	5	5	5	5	5	0	
	12.5	5	5	5	5	5	5	5	0	
24	25	5	5	5	5	5	5	5	0	
	12.5	5	5	5	5	5	4	5	0	
26	25	5	5	5	5	5	4	5	1	
	12.5	5	5	5	5	5	2	5	0	
30	50	5	5	5	5	5	5	5	0.5	
	25	5	5	5	5	5	5	5	0	
31	50	5	5	5	5	5	5	5	0	
٠.	25	5	5	5	5	5	5	5	0	
32	6.3	5	5	5	5	5	5	5	1	
J.	3.2	5	5	5	5	5	5	5	0.5	
33	6.3	5	5	5	5	5	5	5	0.5	
33	3.2	5	5	5	5	5	5	5	0	
34	6.3	5	5	5	5	5	5	5	1	
34	3.2	5	5	5	5	5	5	5	0.5	
35	6.3	5	5	5	5	5	5	5	3.5	
33	3.2	5	5	5	5	5	5	5	3.3	
34	12.5	5	5	5	5	5	5	4	2	
36	6.3		5	5	4	5	5		1	
		5			•			2		
37	25	5	5	5	5	5	5	5	0	
	12.5	5	5	5	5	5	5	5	0	
38	25	5	5	5	5	5	5	5	0	
	12.5	5	5	5	5	5	5	5	0	
39	25	5	5	5	5	5	5	5	1	
	12.5	5	5	5	3.5	5	5	2	0	
42	25	5	5	5	5	5	5	5	0	
	12.5	5	5	5	5	5	5	5	0	
43	12.5	5	5	5	5	5	5	5	0	
	6.3	5	5	5	5	5	5	5	0	
Ronstar	50	5	5	5	5	5	4.5	5	2	
	25	5	5	5	5	5	2.5	5	2	
	12.5	5	5	5	5	5	1.5	3	1	

Test Example 2

Low dose test in soil treatment of irrigated paddy field 65 Into a 1/5,000a Wagner pot, paddy field soil was filled and puddled, and water was introduced to a depth of 3 cm.

Text Example 3

The herbicidal test in soil treatment of upland field

Into a 120 cm² plastic pot, upland field soil was filled, and seeds of barnyardgrass, large crabgrass, smart weed, pigweed, lambsquaters and rice flatsedge were sown and covered with soil.

A wettable powder of each test compound formulated in accordance with Formulation Example 1, was diluted with water in an amount of 100 liter/10a and uniformly applied to the surface of soil by means of a small size spray at a dose of 400 g/10a of the active 5 ingredient. After the application, the pot was left for 21 days in a green house, and then the herbicidal effects were evaluated in accordance with the standards identified in Table 3. The results are shown in Table 6.

TABLE 6

Com-		He	rbicidal	effects			•
pound No.	Barnyard- grass	Large crabgrass	Smart weed		Lambs- quaters	Rice flatsedge	_
4	4	5	5	5	5	5	•
11	5	5	5	5	5	5	
12	5	5	5	5	5	5	
16	5	5	5	5	5	5	
17	5	5	5	5	5	5	
20	5	5	5	5	5	5	
22	4	5	5	5	5	5	
23	4	5	5	5	5	5	•
24	5	5	5	5	5	5	
28	5	5	4	5	5	5	
31	5	5	5	5	5	5	
33	5	5	5	5	5	5	
34	5	5	5	5	5	5	
35	5	5	5	5	5	5	•
36	5	5	5	5	5	5	

Text Example 4

The herbicidal test in foliage treatment in upland field

Into a 120 cm² plastic pot, upland field soil was filled, and seeds of barnyardgrass, large crabgrass, smart weed, pigweed, lambsquater and rice flatsedge, were sown, and grown in a green house until barnyardgrass 35 grew to the 3 leaf stage. When barnyardgrass reached the 3 leaf stage, a wettable powder of each test compound formulated in accordance with Formulation Example 1 was diluted with water in an amount of 100 liter/10 a and applied to the foliage of the plants from 40 above by a small size spray at a dose of 400 g/10 a of the active ingredient. After the application, the pot was left for 21 days in a green house, and then the herbicidal effects were evaluated in accordance with the standards identified in Table 3. The results are shown in Table 7. 45

TABLE 7

Com-		He	rbicidal	effects			
pound No.	Barnyard- grass	Large crabgrass	Smart weed	Pig- weed	Lambs- quaters	Rice flatsedge	:
7	5	5	5	5	5	5	•
11	5	5	5	5	5	5	
12	5	5	5	5	5	5	
13	5	5	5	5	5	5	
14	5	5	5	5	5	5	
16	5	5	5	5	5	5	
17	5	5	5	5	5	5	
20	5	5	5	5	5	5	
21	4	5	5	5	5	5	
22	5	5	5	5	5	5	
23	5	5	5	5	5	5	6
24	5	5	5	5	5	5	•
28	5	5	5	5	5	5	
31	4	5	5	5	5	5	
32	4	5	5	5	5	5	
33	5	5	5	5	5	5	
34	5	5	5	5	5	5	6
35	5	5	5	5	5	5	•
36	5	5	5	5	5	5	
37	5	5	5	5	5	5	
38	Á	4	Ś	5	5	4	

TABLE 7-continued

Com-	Herbicidal effects									
pound No.	Barnyard- grass	Large crabgrass	Smart weed		Lambs- quaters	Rice flatsedge				
39	5	5	5	5	5	5				
41	4	5	5	5	5	5				
42	4	5	5	5	5	5				
43	5	5	5	5	5	5				
44	4	5	5	5	5	5				

Text Example 5

Herbicidal test in the soil treatment of paddy rice field

Into a 10 cm² porcelain pot, paddy field soil was filled and puddled, and seeds of barnyardgrass, umbrella plant, monochoria and bulrush were sown. Then, water was introduced to the depth of 3 cm.

Next day, a wettable powder prepared in accordance with Formulation Example 1, was diluted with water and dropwise applied to the surface of water. The amount of the active ingredient applied was 400 g/10a. The pot was left in a green house, and twenty one days after the application, the herbicidal activities were evaluated in accordance with the standards identified in Table 3. The results are shown in Table 8.

TABLE 8

	Herbicidal effects						
Compound	Barnyard-	Umbrella					
No.	grass	plant	Monochoria	Bulrush			
56	5	5	5	5			
57	5	5	5 5	5 5			
58	5	5	5	5			
59	5	5	5	5			
60	5	5	5	5			
61	5	5	5	5			
62	5	5 5	5	5			
63	5	5	5	5			
64	5	5 5	5	5			
65	5	5	5	5			
66	5	5	5	5			
67	5	5	5	5			
68	5 5	5 5 5 5	5	5			
69		3	5 5	5			
70 71	5	3	5 5	,			
72	5 5 5	3	5	3			
73	5	5 5 5 5 5 5	5	,			
73 74	5	3	5				
75	5	, •	5	•			
76	5	5	5	•			
77	5	5	5	3			
78	5	5	5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
79	5	5	5	5			
80	5	5	5	5			
81	5	5	5	5			
82	5	5	5	5			
84	5	5	5	5			
85	5	5	5	5			
86	5	5	5	5 5			
87	5	5	5 5	5			
88	5	5	5	5			
89	5	5	5 5 5 5	5			
90	5	5	5	5			
92	5	5	5	5			
93	5	5	5	5			
94	5	5	5	5			
95	5	5	5	5			
96	5	5	5	5			
97	5	5	5	5			
98 99	5	5	5	5			
100	5 5	5 5	5	5 5 5			
100	5	5	5 5	3			
102	5	5	5	5			
103	5	5	5	5			
104	>	3	5	3			

TABLE 8-continued

TABLE	8-continued
--------------	-------------

	IAI	PE 0-COII	unucu		_		1731	, D.D. 0 00		
		Herbici	dal effects		_			Herbici	dal effects	
Compound No.	Barnyard- grass	Umbrelia plant	Monochoria	Bulrush		Compound No.	Barnyard- grass	Umbrella plant	Monochoria	Bulrush
105	5	5	5	5		144	5	5	5	5
106	5	5	5	5						
107	5	5	5	5						
108	5	5	5	5			T	ext Examp	le 6	
109	5	5	5	5				ext Examp	ne o	
110	5	5	5	5	10	Low dose	test in the	soil treatn	nent of irrigat	ed paddy
111	5	5	5	5		2011 0000	1001 131 1210	rice field		
112	5	5	5	5				rice nero	<u>,</u>	
113	5	5	5	5		Into a	1/5.000a W	agner pot	, paddy field	soil was
114	5	5	5	5		filled and	nuddled or	d then wa	ter was intro	fuced to
115	5	5	5	5				id then wa	tel was millor	auccu to t
122	5	5	5	5	15	depth of 3	cm.			_
123	5	5	5	5	13	In pot A	A, three ge	rminated t	ubers of each	of wate
124	5	5	5	5		nutgrass a	nd sagittar	ia. were ei	mbedded in the	he surface
125	5	5	5	5		layer of th	e soil and	two seedl	ings of two p	addy field
126	5	5	5	5		layer or the	-63 3 16	two seeds	tennenlanted	in a dant
127	5	5	5	5			of 2.2 leaf	stage, were	transplanted	in a dept
128	5	5	5	5	20	of 2 cm.				
129	5	5	5	5	20	In pot B	, seeds of b	arnyardgra	ass, bulrush, v	vater plan
130	5	5	5	5					plant, were so	
131	5	5	5	3					p.a ,	
132	5	5	5	5			yer of the s		•	
133	5	5	5	3					d transplantat	
136	5	5	3	3		scribed ar	nount of a	wettable	powder of e	each com
137	5	5	3	2	25	pound for	rmulated i	n accorda	nce with Fo	rmulatio
138	5	5	5	3					vater and dro	
139	5	5	5	3				icu wiiii v	vater and die	pwise ap
140	5	5	3	2		plied by a				
141	5	5	5	3		Thirty (days after 1	the applica	ation, the her	bicidal el
142	5	5	3	2		fects were	evaluated	in accorda	ance with the	standard
143	5	5	3	3	30	identified	in Table 3.	The result	ts are shown	n Table 9

TABLE 9

Compound No.	Dose of active ingredient (g/10 a)	Barnyard- grass	Umbrella plant	Monochoria	Bulrush	Water plantain	Sagittaria	Flat sedge	Transplanted paddy field rice
57	25	5	5	5	5	5	5	5	0
٥,	12.5	5	5	5	5	5	5	5	0
58	25	5	5	5	5	5	5	5	0
50	12.5	5	5	5	5	5	5	5	0
59	25	5	5	5	5	5	5	5	1
60	12.5	5	5	5	5	5	5	5	1
•	6.3	5	5	5	5	5	5	5	0
61	5 0	5	5	5	5	5	5	5	0
01	25	5	5	5	5	5	5	5	0
63	25	5	5	5	5	5	5	5	0
03	12.5	5	5	5	5	5	5	5	0
64	25	5	5	5	5	5	5	5	0
•	12.5	5	5	5	5	5	5	5	0
67	6.3	5	5	5	5	5	5	5	1
68	50	5	5	5	5	5	5	5	0
00	25	5	5	5	5	5	4	5	0
69	50	5	5	5	5	5	5	4	0
0,5	25	5	5	5	5	5	5	4	0
72	50	5	5	5	5	5	5	5	1
73	50	5	5	5	5	5	5	3	0
76	25	5	5	5	5	5	5	5	0
	12.5	5	5	5	5	5	5	5	0
77	25	5	5	5	5	5	5	5	0
• • •	12.5	5	5	5	5	5	5	5	0
79	50	5	5	5	5	5	5	5	0
1,7	25	5	5	5	5	5	5	5	0
81	50	5	5	5	5	5	5	5	0.5
0.	25	5	5	5	5	5	5	5	0.5
94	25	5	5	5	5	5	5	5	1
~	12.5	5	5	5	5	5	4	4	1
95	50	5	5	5	5	5	5	5	2
,,	25	5	5	5	5	5	5	5	1
98	50	5	5	5	5	5	5	5	0
103	50	5	5	5	5	5	5	4	ı
122	25	5	5	5	5	5	5	5	0
	12.5	5	5	5	5	5	5	5	0
123	50	5	5	5	5	5	5	5	0
14.5	25	5	5	5	5	5	5	5	0
124	50	5	5	5	5	5	5	5	1

139

TABLE 9-continued

Compound No.	Dose of active ingredient (g/10 a)	Barnyard- grass	Umbrella plant	Monochoria	Bulrush	Water plantain	Sagittaria	Flat sedge	Transplanted paddy field rice
	25	5	5	5	5	5	5	5	0
141	6.3	5	4	5	5	5	5	5	1
143	50	5	5	5	5	5	5	5	0
	25	5	5	5	5	5	5	5	0
144	50	5	5	5	5	5	5	5	2
	25	5	5	5	5	5	5	5	1
Ronstar	50	5	5	5	5	5	5	5	2
	25	5	5	5	5	5	ź	5	2
	12.5	5	5	5	5	5	ĩ	2	ī

Test Example 7

Herbicidal test in the soil treatment of upland field

To a 120 cm² plastic pot, upland field soil was filled and seeds of barnyardgrass, large crabgrass, smart weed, pigweed, lambsquater and rice flatsedge were 20 sown and covered with soil. A wettable powder of each compound formulated in accordance with Formulation Example 1, was diluted with water in an amount of 100 liter/10a and uniformly applied to the surface of the soil by a small size spray at a dose of 400 g/10a of the active 2 ingredient. After the treatment, the pot was left in a green house for 21 days, and then the herbicidal effects were evaluated in accordance with the standards identified in Table 3. The results are shown in Table 10.

TABLE 10 Com-Herbicidal effects pound Barnyard-Large Smart Pig-Lambs-No. crabgrass weed weed quaters flatsedge 58 3 59 63 3 5 5 5 64 67 71 3 5 5 5 5 5 5 5 5 76 81 95 103 3 107 3 5 5 5 5 108 5 112 113 123 3 128 5 5 5 129 130 133 50

Text Example 8

142

Herbicidal test in the foliage treatment of upland field

Into a 120 cm² plastic pot, upland field soil was filled, and seeds of barnyardgrass, large crabgrass, smart weed, pigweed, lambsquater and rice flatsedge, were sown, and grown in a green house until barnyardgrass 60 grew to the 3 leaf stage. When barnyardgrass reached the 3 leaf stage, a wettable powder of each test compound prepared in accordance with Formulation Example 1 was diluted with water in an amount of 100 liter/-10a and applied to the foliage of the plants from above 65 by a small size spray at a dose of 400 g/10a of the active ingredient. After the application, the pot was left in a green house for 21 days, and then the herbicidal effects

were evaluated in accordance with the standards identified in Table 3. The results are shown in Table 11.

TABLE 11

	-		He	rbicidal	effects		
20	Com- pound No.	Barnyard- grass	Large crabgrass	Smart weed	Pig- weed	Lambs- quarters	Rice flat- sedge
	57	4	5	5	5	5	5 5
	58	5	5	5	5	5	5
.5	59	5	5	5	5	5	5
	60 61	4 5	5 5	5 5	5	5 5	3
	63	3	5	5	5	5	3
	64	5 5	5	5	5	5	5
	67	5	5	5	ς.	5	5
	68	5	4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5	5
Ю	69	5 5 5 5		5	5	5	5
	70	5	5 5 5	5	5	5	5
	71	5	5	5	5	5 5	5
	72	5	5	5	5	5	5
	73	4	4	5	5	5	5
5	76	4	5	5	5	5	5
	77	4	4	5	5	5 5	5
	80	4	4	3	,	2	5
	81 84	3	3	3	,	5 5	3
	85	, •	, \$	3		5	3
	86	5	5 5 5 5 5	3	4	5	5
0	87	5	5	5	5	5	5
•	88	3	3	5	5	5	5
	89	5 5 5 5 5 3 3 5	4	5	5	5 5 5 5	5
	92	5	4	5	5	5	5
	93	5	5	5	5	5	5
	94	4	5	5	5 -	5	5
5	95	5	5	5	5	5	5
	97	5	5	5	5	5	5
	98 99	5 4	5	5 5	5	5	5
	102	4	5 4	5	5	5	3
	103	5	5	5	5	5	5
_	104	4	5	5	5 5 5 5	5	•
0	105	4	5	5	5	5	5
	106	4	4	5	5	5	5
	107	5	5	5	5	5 5 5	5
	108	5 5 5 5	5	5 5 5 5 5	5 5 5 5 5 5	5	5
	109	5	5	5	5	5 5	5
5	110	5	5	5	5	5	5
_	111 112	4	5	5	5	5	5
	113	5 5 5	5	5	5	5	3
	114	٠,	5	5	5	5	
	123	5	5	5	5	5	5
	123	5	5	5	5	5	5
0	125	5	5	5	5	5	5
	126	5 5 5 5 5 5 5 5 5 5	5	5	5	5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	127	5	5	5	5	5	5
	128	5	5	5	5	5	5
	129	5	5	5	5	5	5
_	130	5	5	5 5 5	5	5	5 5
5	132 133	3	5 5	3	5	5	5
	133	3	3 4	5 5	5 5	5 5	5 5
	130		7	٠	٠	3	3

TABLE 11-continued

	Herbicidal effects									
Com- pound No.	Barnyard- grass	Large crabgrass		-	Lambs- quarters	Rice flat- sedge				
142	5	5	5	5	5	5				
144	4	5	5	5	5	5				

We claim

1. A 9-phenylimino-8-thia-1,6-diazabicyclo[4.3.0]no-nane-7-(one or thione) compound having the formula:

$$\begin{array}{c|c}
 & Y_n & (1) & 15 \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

wherein Y which may be the same or different, represents chlorine, bromine, fluorine, hydroxyl, lower alkyl, lower alkoxy which may be substituted by chlorine, bromine or fluorine, lower alkenyloxy which may be substituted by chlorine, bromine or fluorine, lower alkynyloxy, phenoxy, lower cycloalkyloxy, lower alkox- 30 yearbonyl-lower alkenyloxy, lower alkylthiocarbonyllower alkyloxy, lower alkynyloxycarbonyl-lower alkyloxy, benzyloxycarbonyl-lower alkyloxy, trifluoromethyl, benzyloxy which may be substituted by chlorine or lower alkyl, lower alkenyl, cyano-lower alkyl, 35 lower alkylcarbamoyloxy, benzyl which may be substituted by one or two lower alkyl, lower alkoxy-lower alkyl, lower alkynyloxy-lower alkyl, lower cycloalkylmethyloxy which may be substituted by chlorine, bromine or fluorine, lower alkoxy-lower alkyloxy, phenethyloxy, lower cycloalkyloxycarbonyl-lower alkyloxy, pyrrolidinocarbonyl, phenylcarbonyl which may be substituted by lower alkyl,

wherein R_1 is hydrogen, lower alkyl, phenyl, lower 50 cycloalkyl, lower alkoxy-lower alkyl, lower alkoxycar-bonyl-lower alkyl or

(wherein R_2 is hydrogen or lower alkoxy), X is oxygen 60 or sulfur,

(wherein R_3 is lower alkyl, lower alkenyl or lower alkynyl, and m is 0 or 2),

wherein R₄ is hydrogen or lower alkyl, and R₅ is hydrogen, lower alkyl, lower alkoxy-lower alkyl, tetrahydrofurfuryl, lower alkoxy-lower alkyloxy-lower alkyl, lower alkoxycarbonyl-lower alkyl or N=C(CH₃)-R₆ (wherein R₆ is lower alkyl or phenyl), -NHR₇ (wherein R₇ is lower alkylcarbonyl or lower alkoxycarbonyl-lower alkyl),

20 (wherein R₈ is hydrogen or lower alkyl, and R₉ is lower alkoxy, lower cycloalkyloxy or pyrrolidinyl), or

(wherein X is as defined above); n is an integer or from 0 to 3; and X is oxygen or sulfur.

2. The compound according to claim 1, wherein Y is chlorine, bromine or fluorine, lower alkoxy which may be substituted by chlorine, bromine or fluorine, lower alkenyloxy which may be substituted by chlorine, bromine or fluorine, lower alkynyloxy, phenoxy, benxyloxy which may be substituted by chlorine or lower alkyl,

wherein R₁ is hydrogen, lower alkyl, phenyl, lower cycloalkyl, lower alkoxy-lower alkyl, lower alkoxycar-bonyl-lower alkyl or

(wherein R_2 is hydrogen or lower alkoxy), X is oxygen or sulfur,

wherein R₄ is hydrogen or lower alkyl, and R₅ is hydrogen, lower alkyl, lower alkynyl, benzyl, lower alkoxylower alkyl, tetrahydrofurfuryl, lower alkoxylower alkyloxylower alkyl, lower alkoxycarbonyllower alkyl, lower cycloalkyl, or —N=C(CH₃)R₆ (wherein R₆ is lower alkyl or phenyl).

3. The compound according to claim 1, which has the formula:

25

45

wherein A is hydrogen, chlorine, bromine or fluorine, B is chlorine, bromine or fluorine, and R₅ is hydrogen, lower alkyl, lower alkynyl, benzyl, lower alkoxy-lower 15 alkyl, tetrahydrofurfuryl, lower alkoxy-lower alkyloxy-lower alkyl, lower alkoxycarbonyl-lower alkyl, lower cycloalkyl, or —N=C(CH₃)R₆ (wherein R₆ is lower alkyl or phenyl).

4. The compound according to claim 1, which has the formula:

wherein A is hydrogen, chlorine, bromine or fluorine, B 35 is chlorine, bromine or fluorine, and R₁₀ is hydrogen, lower alkyl, lower alkynyl, lower alkoxy-lower alkyl, lower alkoxy-lower alkyl, or tetrahydrofurfuryl.

5. The compound according to claim 1, which has the formula:

wherein A is hydrogen, chlorine, bromine or fluorine, B is chlorine, bromine or fluorine, and R_1 is hydrogen, lower alkyl, phenyl, lower cycloalkyl, lower alkoxylower alkyl, lower alkoxylower alkyl, or

(wherein R2 is hydrogen or lower alkoxy).

6. The compound according to claim 1, which has the formula:

wherein [Hal is chlorine, bromine or fluorine, and] R₁₁ is hydrogen or lower alkyl.

7. A herbicidal composition comprising a herbicidally effective amount of a compound of the formula I as defined in claim 1 and a carrier.

8. A 9-phenylimino-8-thia-1,6-diazabicyclo[4.3.0]no-nane-7-(one or thione) compound having the formula:

$$\begin{array}{c|c}
 & Y_n & (1) \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

wherein Y is at least one halogen and a group represented by the formula:

wherein R₈ is hydrogen or lower alkyl, and R₉ is lower alkoxy, lower cycloalkyloxy or pyrrolidinyl; X is oxygen or sulfur, and n is an integer from 2 to 3.

9. The compound according to claim 8, wherein R9 is 40 lower alkoxy.

10. The compound according to claim 8, wherein n is 3 having two chlorine or fluorine radicals and one radical of the formula

wherein R_8 is hydrogen or lower alkyl, and R_9 is lower 50 alkoxy, lower cycloalkoxy or pyrrolidinyl.

11. The compound according to claim 9, wherein n is an integer from 2 to 3.

12. The compound according to claim 11, wherein n is 3 having two chlorine or fluorine radicals and one radical of the formula:

wherein R₈ is hydrogen or lower alkyl, and R₉ is lower alkoxy, lower cycloalkoxy or pyrrolidinyl.

13. The compound according to claim 6, wherein R_{11} is ethyl.

14. The compound according to claim 6, wherein R₁₁ is 65 hydrogen.

15. The compound according to claim 6, wherein R_{11} is isopropyl.