Reduced parasitic inductance through magnetic return path arrangement

The power loop path includes a return portion passing underneath an inner portion of the power loop path. This reduces parasitic inductance compared to conventional designs where return paths may be distant from the power loop path, especially through adjacent layers. The inner return path is physically located underneath the power loop path, allowing for a more efficient power delivery system, which is particularly advantageous in multilayered semi-conductor devices.
PARASITIC INDUCTANCE REDUCTION CIRCUIT BOARD LAYOUT DESIGNS FOR MULTILAYERED SEMICONDUCTOR DEVICES

BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

[0001] The present invention relates generally to power converters and circuits, e.g., printed circuit boards and, more particularly, to circuit board layouts for improving power converter performance.

2. Description of the Related Art

[0002] The improvement of power field effect transistor (FET) technologies such as silicon metal oxide semiconductor FETs and the introduction of gallium nitride (GaN) based transistors allow switching power supplies to achieve faster switching speeds by reducing switching related charges and package parasitic inductance. With higher switching speeds and lower package parasitic inductance, the printed circuit board (PCB) layout of converter components becomes a limiting factor in converter performance because the PCB layout of components has a significant effect on the overall level of parasitic inductance. An improved PCB layout is needed to minimize the high frequency loop inductance in a multilayer PCB design and improve converter performance.

[0003] High frequency power loop inductance, controlled by PCB layout, is a major contributor to loss of power converter efficiency. Consequently, the layout of the devices and input capacitors is critical to high frequency performance. To verify the relationship between loop inductance and efficiency loss, different layouts with similar common source inductances and different loop inductances were compared. FIG. 1 is a graph charting the impact of high frequency power loop inductance on power converter efficiency for an eGaN® FET design at 1 MHz. Specifically, as shown in FIG. 1, an increase in the high frequency loop inductance from approximately 0.4 nH to approximately 2.9 nH resulted in a decrease in efficiency by over 4%.

[0004] Another impact of the faster switching speeds provided by lower figure of merit devices is an increase in voltage overshoot when compared to devices with slower switching speeds. Decreasing the high frequency loop inductance results in lower voltage overshoot, increased input voltage capability, and reduced electromagnetic interference. FIG. 2A and FIG. 2B depict drain to source voltage waveforms of a synchronous rectifier for designs with
high frequency loop inductances of 1.6 nH and 0.4 nH, respectively. As shown in FIGS. 2A and 2B, a decrease in high frequency loop inductance from 1.6 nH (FIG. 2A) to 0.4 nH (FIG. 2B) results in a 75% decrease in voltage overshoot.

[0005] Conventionally, two PCB layouts have been employed to minimize the high frequency loop inductance as described below in connection with FIGS. 3A-3B and 4A-4C. In the first conventional layout design, illustrated in FIGS. 3A and 3B, input capacitors and devices are arranged on a top layer of the PCB board. The high frequency power loop for this design is disposed on a top layer of the PCB board and is considered a lateral power loop because the loop flows parallel to the board plane on a single layer. In this design, an inductor connection is created through internal layers by using vias located between a top switch and a synchronous rectifier. A driver is located in close proximity to the eGaN® FETs to minimize and stabilize the common source inductance.

[0006] FIGS. 3A and 3B depict the part placement of an eGaN® FET design resulting in a lateral high frequency power loop 302. In this design, capacitors 303 and eGaN® FETs 306, 307 are located on a top layer 305 of a PCB 310. A power loop current 302 flows through the capacitors 303 and the eGaN® FETs 306, 307. An inductor connection is created through internal layers by using vias 311 extending between the top switch 306 and synchronous rectifier 307. A driver 308 is located in close proximity to the eGaN® FETs 306, 307 to minimize and stabilize the common source inductance.

[0007] While minimizing the physical size of the loop is important to reduce parasitic inductance, the design of inner layers is also critical. For the lateral power loop design, illustrated in FIG. 3B, a first inner layer serves as a "shield layer" 309. The shield layer 309 has a critical role to shield the circuit from magnetic fields generated by the high frequency power loop 302. To perform this shielding function, the high frequency power loop 302 generates a magnetic field that induces a current, opposite in direction to the power loop current, within the shield layer 309. The current induced in the shield layer 309 generates a magnetic field of opposite polarity to the magnetic field of the power loop. The magnetic fields created within the shield layer 309 and the power loop 302 neutralize each other translating into a reduction in parasitic inductance.

[0008] The lateral power loop design provides advantages and disadvantages. For example, the level of high frequency loop inductance should show little dependence on board thickness since the power loop is located on the top layer 305. The lateral power loop
design’s lack of dependence on board thickness allows for thicker board design. On the other hand, the level of loop inductance in this design is likely very dependent on the distance from the power loop to the shield layer. This dependence on distance limits the thickness of a top layer 305.

[0009] In the second conventional layout design illustrated in FIGS. 4A-4C, the input capacitors and devices are disposed on opposite sides of a PCB board, with capacitors generally being located directly underneath the devices to minimize physical loop size. This layout creates a vertical power loop because the power loop travels perpendicular to the board plane through vias which complete the power loop through the board.

[0010] FIGS. 4A-4C depict an eGaN® FET design resulting in a vertical high frequency power loop 400. In this design, eGaN® FETs 401, 408 are arranged on a top layer 402 of a PCB 403 and capacitors 404 are arranged on a bottom layer 405 of the PCB 403. High frequency power loop current 406 flows through the eGaN® FETs 401, 408 located on the top layer 402 of the PCB 403. The loop current 406 then flows through vias 409 and through the capacitors 404 located on the bottom layer 405 of the PCB 403. The current 406 then flows back to the eGaN® FETs 401, 408 through vias 410. Space 407 is left between the eGaN® FETs 401, 408 to allow for inductor connection.

[0011] The FIGS. 4A-4C eGaN® FET design does not contain a shield layer due to the vertical structure of the power loop. As opposed to the use of a shield plane to reduce loop inductance, the vertical power loop uses a self-cancellation method to reduce inductance. For the PCB layout, the board thickness is generally much thinner than the horizontal length of the power loop paths on the top and bottom side of the board. As the thickness of the board decreases, the area of the vertical power loop shrinks significantly when compared to the lateral power loop, and the current flowing in opposing directions on the top and bottom layers begins to provide magnetic field self-cancellation, further reducing parasitic inductance. Accordingly, the board thickness must be minimized in this design to create an effective vertical power loop.

[0012] Like the lateral power loop design illustrated in FIGS. 3A-3B, the vertical power loop design also has advantages and disadvantages. For example, the distance between the first inner layer and top layer has little impact on the loop inductance. Therefore, the thickness of the top layer does not significantly affect the level of loop inductance. On the
other hand, the level of loop inductance is heavily dependent on the overall board thickness because the power loop paths are located on the top and bottom layers of the PCB.

Accordingly, a semiconductor device layout for minimizing parasitic inductance and improving converter performance is desired.

SUMMARY OF THE INVENTION

The present invention provides a circuit board layout design which eliminates the above-noted disadvantages of the prior art designs. Specifically, the circuit board of the present invention comprises a top layer, a bottom layer, and at least one inner layer connected by vias to the top layer so that a high frequency power loop is formed in a path extending between the top layer and the inner layer. Advantageously, the layout design according to the present invention minimizes parasitic inductance independent of board thickness and without requiring a shield layer.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly elements and in which:

- FIG. 1 is a line graph illustrating the impact of high frequency loop inductance on efficiency of designs with similar common source inductance.
- FIGS. 2A and 2B are waveforms showing the voltage overshoot of a synchronous rectifier with an inductance of 1.6 nH and 0.4 nH, respectively.
- FIGS. 3A and 3B are top and side views, respectively, of a PCB having a conventional lateral power loop.
- FIGS. 4A, 4B, and 4C are top, bottom, and side views, respectively, of a PCB having a conventional vertical power loop.
- FIGS. 5A and 5B are top views of the top layer and the first inner layer, respectively, of the PCB layout of a first embodiment of the present invention, and FIG. 5C is a side view of the PCB layout of the first embodiment.
- FIGS. 6A and 6B are top views of the top layer and the first inner layer, respectively, of the PCB layout of a second embodiment of the present invention with a
capacitor between two switches, and FIG. 6C shows a side view of the PCB layout of the second embodiment.

[0022] FIG. 7 is a cross sectional drawing of a multilayer board design of a PCB identifying board thickness and inner layer distance.

[0023] FIG. 8 is a graph showing simulated high frequency loop inductance values for lateral, vertical, and optimal power loops with different board thickness and inner layer distance.

[0024] FIG. 9 is a power loss plot of the prior art lateral and vertical power loop designs, and the optimal power loop design of the present invention.

[0025] FIG. 10 is a chart showing measured voltage overshoots for the lateral, vertical, and optimal power loop designs.

[0026] FIG. 11 is a chart showing the effect of a loop inductance on switching speed.

[0027] FIG. 12 is a chart showing the improved efficiency of the circuit board layout design of the present invention as compared to the prior art vertical and lateral loop designs.

[0028] FIG. 13 shows the power loop topology of a basic unit cell of the present invention.

[0029] FIG. 14 shows the topology of a buck converter incorporating the optimal loop of the present invention.

[0030] FIGS. 15 and 16 show the topology of a bridge converter incorporating the optimal loop of the present invention.

[0031] FIG. 17 shows the topology of a boost circuit unit cell (with a boost inductor and a capacitor) incorporating the optimal loop of the present invention.

[0032] FIG. 18 shows the topology of a buck-boost converter incorporating the optimal loop of the present invention.

[0033] FIG. 19 shows a parallel arrangement of switches in a circuit incorporating the optimal loop of the present invention.

[0034] FIG. 20 shows a series arrangement of switches in a circuit incorporating the optimal loop of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0035] In the following detailed description, reference is made to certain embodiments. These embodiments are described with sufficient detail to enable those skilled in the art to practice them. It is to be understood that other embodiments may be employed and that various structural, logical, and electrical changes may be made.

[0036] The PCB layout designs of the present invention described below provide reduced loop size, field self-cancellation, consistent inductance independent of board thickness, a single sided PCB design, and high efficiency for a multi-layer structure. The PCB layout design of the present invention utilizes the first inner layer as a power loop return patent. This return path is located directly underneath the power loop of the top loop, allowing for the smallest physical loop size combined with field self-cancellation.

[0037] While embodiments described herein are described in connection with certain types of devices, specifically GaN devices, it should be understood that the invention is not so limited. For example, the described embodiments may be applicable to transistor devices and other types of semiconductor devices that use different conductive materials, such as, for example, silicon (Si) or silicon-containing materials, grapheme, germanium (Ge), gallium arsenide (GaAs). Described embodiments are also applicable to other types of semiconductor devices, such as other field effect transistor (FET)-type semiconductor devices, bipolar junction transistor (BJT) devices, and insulated-gate bipolar transistor (IGBT) devices. The described concepts are also equally applicable to both enhancement mode and depletion mode transistor devices. In addition, while specific embodiments are described in connection with paralleled switching devices, it should be understood that features described herein are generally applicable to other types of circuits, such as RF amplifiers, switching converters, and other circuits.

[0038] FIGS. 5A, 5B, and 5C illustrate simplified schematic diagrams of an exemplary multilayer PCB design 500 according to an embodiment of the present invention. In this embodiment, the PCB design 500 contains a top layer 501, a bottom layer 502, and four inner layers 503-506 including a first inner layer 503. Although four inner layers are shown, fewer or additional inner layers may be included. Capacitors 510 and eGaN® FETs 507, 511 are located on the top layer 501. FIG. 5A is a top view of the PCB design 500 showing a power loop current path 516 on the top layer 501 of the PCB 500. The power loop current 512 flows from the capacitors 510, through the eGaN® FETs 507, 511 and finally to a portion of the interleaved inductor node and ground vias 513 of the eGaN® FETs 507, 511, which are
used to connect the top layer 501 to the first inner layer 503. The first inner layer 503 is utilized as a return path for the power loop current 512 by connecting the portion of the eGaN® FET’s vias 513 to at least a portion of the capacitors’ 510 vias 514.

[0039] FIG. 5B is a top view of the first inner layer 503, used as a return path 515 for the power loop current path 512. Return path portion 515 of the power loop path 512 may be located directly underneath at least a portion of the top layer’s 501 power loop path 516, allowing for the smallest physical loop size combined with field self-cancellation.

[0040] FIG. 5C is a side view of the low profile self-cancelling loop of an exemplary multilayer PCB design 500. The distance between the first inner layer 503 and the top layer 501 is preferably between 1 mil and 20 mil. FIG. 5C shows the current flow of a PCB layout with a negative capacitor node, but the invention can also be implemented with a positive capacitor node having the opposite current flow.

[0041] FIGS. 6A, 6B, and 6C illustrate an exemplary multilayer PCB design 600 according to another embodiment of the present invention. In this embodiment, capacitors 510 are located between the two eGaN® FETs 507, 511. FIG. 6A is a top view of the PCB design 600, with a power loop current path 616 on the top layer 501 of the PCB 600. The power loop current 612 flows from one eGaN® FET 507, through the capacitors 510, and another eGaN® FET 511, to the first inner layer 503 through vias 613 that connect the top layer 501 to the first inner layer 503. As shown in FIG. 6B, the first inner layer 503 is utilized as a return path 615 for the power loop. FIG. 6C is a side view of the low profile self-cancelling loop of an exemplary multilayer design 600. As shown, the magnetic effect of the power loop path 616 of the top layer is self-cancelled by the return path 615 underneath the top layer 501.

[0042] Table I compares the electrical characteristics of the conventional layout designs (FIGS. 3A-3B and 4A-4C) and the optimized layout design of the present invention (FIGS. 5A-5C). The optimized layout design shares the traits of the lateral power loop by showing little dependence on board thickness and a strong dependence on inner layer distance. Additionally, the embodiment of FIGS. 5A-5C shares the traits of the vertical power loop by removing the shield layer and reducing the physical size of the power loop which translates into a significant reduction in loop inductance. By combining the strengths of both conventional designs, and limiting the weaknesses, the proposed layout design can provide a
reduction in inductance on the order of 65% compared to the conventional lateral or vertical power loops (FIGS. 3A-3B and 4A-4C).

| Table I |
|-----------------|----------------|-----------------|-----------------|
| Electrical characteristic | Lateral Loop (FIGS. 3A-3B) | Vertical Loop (FIGS. 4A-4C) | Optimal Loop (FIGS. 5A-5C) |
| Single Sided PCB Capability | Yes | No | Yes |
| Field Cancellation | No | Yes | Yes |
| Inductance Independent of Board Thickness | Yes | No | Yes |
| Shield Layer Required | Yes | No | No |

[0043] To compare the performance of the FIGS. 5A-5C embodiment with conventional lateral (FIGS.3A-3B) and vertical (FIGS. 4A-4C) layout designs for a wide range of applications, twelve different test PCB board designs, four different boards for each of the three layouts, were created and tested. The four types of test boards varied the overall thickness of the board and the distance between the top layer and the first inner layer within the board. These board parameters are defined by illustration in FIG. 7, where a first inner layer 703 and a second inner layer 704 are disposed between a top layer 701 and bottom layer 702. Inner layer distance 705 is the distance between the top layer 701 and the first inner layer 703. Board thickness 706 is the distance between the top layer 701 and the bottom layer 702. The specifications for the test boards are contained in Table II below.

| Table II |
|-----------------|-----------------|
| Test Board 1 | Board Thickness (mil) | Inner Layer Distance (mil) |
| Test Board 2 | 31 | 4 |
| Test Board 3 | 62 | 4 |
| Test Board 4 | 62 | 26 |

[0044] FIG. 8 shows the values of the high frequency loop inductance for the twelve test PCB board designs. The data shows that for the lateral power loop, the board thickness has little impact on the high frequency loop inductance while the inner layer distance, the distance from the power loop to the shield layer, significantly impacts the inductance. In contrast, the data shows that for the vertical power loop, the inner layer distance has very little impact on the inductance of the design, while the board thickness significantly increases the inductance by as much as 80% when the board thickness is doubled. As also shown, the
parasitic inductance of optimal power loop is lower than lateral power loop and vertical power loop. The board thickness has little impact on optimal power loop, and the parasitic inductance of optimal power loop of inner layer distance of 26 mil is lower than lateral power loop of inner layer distance of 4 mil.

[0045] FIG. 9 illustrates the power loss for the twelve test PCB board designs. This data shows that for similar parasitic inductances, the power loss of the lateral loop is higher than the power loss of the vertical loop. The higher power loss in the lateral loop is attributed to loss caused by the addition of the shield layer, a layer not required in the vertical or optimal power loop. The data also shows that for similar parasitic inductances, the power loss of the optimal power loop is lower than both the lateral power loop and the vertical power loop.

[0046] FIG. 10 shows the voltage overshoot for the twelve test PCB board designs. As loop inductance increases toward 1.4 nH, the voltage overshoot increases. Once the loop inductance increases over 1.4 nH, the voltage overshoot does not significantly increase further for this given example. The data shows that for similar parasitic inductances, the voltage overshoot of the lateral power loop is higher than vertical power loop. Also, the voltage overshoot of the optimal loop is lower than lateral power loop in general.

[0047] FIG. 11 partially explains this change in voltage overshoot by showing the measured switching speed of the twelve test PCB designs. As the loop inductance increases, the dV/dt of the device decreases significantly for lateral power loop, vertical power loop, and optimal power loop. This decrease results in higher power loss but a more limited voltage overshoot. For the two vertical loop designs with the highest loop inductance, the switching speed is reduced over 60% when compared to the remaining designs.

[0048] FIG. 12 shows the efficiency results of Design 1 for the optimal power loop, vertical power loop, and lateral power loop compared to a Si MOSFET implementation utilizing a vertical power loop with the smallest commercial package, a 3x3mm TSDSON-8, to minimize the size of the power loop. For the Si MOSFET design, the high frequency loop inductance was measured to be around 2 nH, compared to 1 nH for a similar power loop using eGaN® FETs. The high level of inductance present in the Si MOSFET design is due to the large packaging inductance of the Si MOSFET. As a result of the superior figure of merit and packaging of the eGaN® FETs, all of the eGaN® FET power loop designs outperform the Si MOSFET benchmark design. Using the proposed optimal power loop design, the
efficiency can be improved 3\% full load and 4\% peak efficiency by using the eGaN® FETs instead of the Si MOSFET.

[0049] The optimal power loop described in connection with the FIGS. 5A-5C embodiment provides a 0.8\% and 1\% full load efficiency improvement over the conventional vertical and lateral power loop designs, respectively. In addition, the FIGS. 5A-5C embodiment provides greater power efficiency and lower device voltage overshoot compared to conventional devices with lateral and vertical power loops.

[0050] FIG. 13 shows the power loop topology of a basic unit cell of the present invention. As has been noted, the optimal loop of the present invention can be formed on any of the multiple inner layers. Additionally, the length of the path may change according to the location of vias connecting the top layer of a PCB to inner layers. The physical size of the power loop L_{loop} may also change by forming the power loop in different inner layers. Accordingly, various low-profile circuits with the optimal loop of the present invention can be designed.

[0051] FIGS. 14-20 show implementations of the optimal loop of the present invention in various circuits design. It should be noted that the present invention is not limited to these topologies.

[0052] FIG. 14 shows the topology of an exemplary buck converter incorporating the optimal loop of the present invention. FIGS. 15 and 16 show the topology of a bridge converter incorporating the optimal loop of the present invention. As described above, the physical size of the optimal loop may change depending on the location of vias connecting the top layer of a PCB to inner layers or the location of the inner layer where the optimal loop is formed. The physical size of the power loop L_{loopA} of FIG. 15 is smaller than the physical size of the power loop L_{loopB} of FIG. 16.

[0053] FIG. 17 shows the topology of a boost circuit unit cell with a boost inductor L_{BOOST} and a capacitor C_i, incorporating the optimal loop of the present invention. FIG. 18 shows the topology of a buck-boost convertor incorporating the optimal loop of the present invention. As has been noted, the physical size of the power loop L_{LOOP} can change according to the specific need of the circuit incorporating the optimal loop of the present invention. Furthermore, as shown in FIGS. 19 and 20, in the circuit incorporating the optimal loop of the present invention, the switches can be arranged in parallel or in series, respectively.
The above description and drawings are only to be considered illustrative of specific embodiments, which achieve the features and advantages described herein. Modifications and substitutions to specific process conditions can be made. Accordingly, the embodiments of the invention are not considered as being limited by the foregoing description and drawings.
What is claimed is:

1. A printed circuit board for circuits including at least one passive device and at least one active device, comprising:

 a top layer on which the passive device and the active device are mounted and electrically connected as part of a power loop,

 a bottom layer; and

 an inner layer having an electrical path connected to the top layer through vias, such that the inner layer serves as a return path of the power loop on the top layer.

2. The printed circuit board of claim 1, wherein the return path of the inner layer is located so as to reduce the magnetic effect of the power loop of the top layer.

3. The printed circuit board of claim 1, wherein the inner layer return path is located directly underneath the path of the power loop of the top layer.

4. The printed circuit board of claim 1, wherein both the active and passive devices, and input capacitance, are located on the top layer of the printed circuit board.

5. The printed circuit board of claim 1, wherein the active device is a GaN transistor.

6. The printed circuit board of claim 1, wherein the passive device forms a switching circuit with the active device.

7. The printed circuit board of claim 1, wherein the passive device and the active device are components of a switching circuit.

8. The printed circuit board of claim 1, wherein the passive device and the active device are components of a power converter.

9. The printed circuit board of claim 1, wherein the passive device and the active device are components of a RF amplifier.
FIG. 7

FIG. 8

Parasitic Inductance (nH) vs. Board Thickness (mil)

- Inner Layer Distance:
 - 4 mils
 - 12 mils
 - 26 mils

- Vertical Power Loop
- Lateral Power Loop
- Optimal Power Loop

Board Thickness (mil):
20 | 30 | 40 | 50 | 60 | 70

Parasitic Inductance (nH):
0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | 2.2
FIG. 9

- Lateral Power Loop
- Vertical Power Loop
- Optimal Power Loop

Power Loss (W) vs. High Frequency Loop Inductance (L_{Loop})

FIG. 10

- Lateral Power Loop
- Vertical Power Loop
- Optimal Power Loop

Voltage overshoot (%) vs. High Frequency Loop Inductance (L_{Loop})
FIG. 11

Optimal Power Loop
Lateral Power Loop
Vertical Power Loop

High Frequency Loop Inductance (L_{Loop})

FIG. 12

Efficiency (%) vs. Output Current (I_{OUT})

Optimal Design 1
Vertical Design 1
Lateral Design 1
40V MOSFET Design 1
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - H05K1/1 (2014.01)
USPC - 361/794

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - H05K1/1, H05K1/10, 10H05K3/46 (2014.01)
USPC - 361/736, 748, 760, 794

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

CPC - H05K3/429, H05K1/00 (2013.01)

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

PatBase, Google Patents, Google Scholar.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
10 April 2014

Date of mailing of the international search report
29 APR 2014

Authorized officer:
Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/2 10 (second sheet) (July 2009)