发明名称

海泡石纳米阻燃纤维及其制备方法和用其增强增韧的阻燃复合材料

摘要

本发明公开的海泡石纳米阻燃纤维的直径为10～60nm，其中海泡石纳米纤维与双螺环基膨胀型阻燃聚合物的质量比为1：0.1～0.5，且其红外光谱图900～1000cm⁻¹之间的Si-O伸缩振动峰明显增强，1000～1100cm⁻¹之间的Si-O-Si伸缩振动峰明显变弱。本发明公开了制备上述海泡石纳米阻燃纤维的方法和用其增强增韧的阻燃复合材料。由于本发明将海泡石纳米纤维与膨胀型阻燃剂通过接枝有机的结合在一起，改善了海泡石纳米纤维在聚合物基材中的相容性，因而不仅有助于膨胀型阻燃剂在聚合物基材中的均匀分配，充分发挥二者之间协同阻燃作用，提高阻燃效率，且还可起到提高聚合物材料的强度和韧性的作用。
1. 一种海泡石纳米阻燃纤维，该阻燃纤维的直径为 10～60nm，其中海泡石纳米纤维与
双螺环基膨胀型阻燃聚合物的质量比为 1：0.1～0.5，且其红外光谱图 900～1000cm⁻¹ 之
间的 Si-O 伸缩振动峰明显增强，1000～1100cm⁻¹ 之间的 Si-O-Si 伸缩振动峰明显变弱，其
中双螺环基膨胀型阻燃聚合物的结构通式如下：

式中 R 代表有双活性官能团的芳族基或碳原子数为 2~6 的直链或支链烷基，聚合度
n 为 1～40，该双活性官能团的芳族基或烷基在聚合反应之前为以下化合物中的任一种：

\[
\begin{align*}
\text{R} & = \text{H}_2N\text{C}_6\text{H}_4\text{NH}_2, \\
\text{R} & = \text{HO}\text{C}_2\text{H}_5\text{OH}
\end{align*}
\]

其中 X 为碳原子数 1~6 的直链或支链烷基、烯基或硫原子。

2. 一种制备权利要求 1 所述的海泡石纳米阻燃纤维的方法，该方法的工艺步骤和条件
如下：

(1) 将海泡石纤维束放入质量浓度为 3~8% 的无机酸溶液中，在温度 50～100℃下搅
拌酸化处理 5～16 小时，海泡石纤维束与无机酸溶液的质量比为 1：25～50；

(2) 将酸化处理后的海泡石纤维束放入水中，于压力 1～3MPa，温度 120～180℃下搅
拌处理 3～10 小时，得到初步分散的海泡石纤维，海泡石纤维束与水的质量比为 1：100～
200；

(3) 先将表面活性剂加入水中进行搅拌、活化，然后将初步分散的海泡石纤维放入其
中，在超声波作用下，于温度 25～100℃下处理 3~10 小时后，抽滤、水洗、烘干即得到分散
的海泡石纳米纤维，其中按质量比计表面活性剂：海泡石纤维：水为 1：2～10：100～
1000；

(4) 先将海泡石纳米纤维和双螺环基膨胀型阻燃聚合物放入分散剂中，然后在氮气保
护下，于温度 50～120℃接枝反应 2～24 小时，再用分散剂洗涤，60～100℃真空干燥即得
海泡石纳米阻燃纤维，其中按质量比计海泡石纳米纤维：双螺环基膨胀型阻燃聚合物：分
散剂为 1：0.5～3：200～500。

3. 根据权利要求 2 所述的方法，该方法中所用的无机酸为硫酸或盐酸，所用的表面
活性剂为十六烷基三甲基溴化铵，十八烷基三甲基溴化铵，十二烷基二甲基苄基氯化铵和
十二烷基苯磺酸钠中的至少一种；所用的分散剂为苯、甲苯、二甲苯、乙醇、四氢呋喃、二甲
基甲酰胺或二甲亚砜中的任一种。

4. 一种用权利要求 1 所述的海泡石纳米阻燃纤维增强增强的阻燃复合材料，该阻燃复
合材料是按以下配方经共混制得：

<table>
<thead>
<tr>
<th>成分</th>
<th>含量（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚合物基材</td>
<td>65~99.5%</td>
</tr>
<tr>
<td>海泡石阻燃纳米纤维</td>
<td>0.5~20%</td>
</tr>
<tr>
<td>聚磷酸铵</td>
<td>0~15%</td>
</tr>
<tr>
<td>增容剂</td>
<td>0~5%</td>
</tr>
<tr>
<td>固化剂</td>
<td>0~25%</td>
</tr>
<tr>
<td>稀释剂</td>
<td>0~5%</td>
</tr>
</tbody>
</table>

5. 根据权利要求4所述的阻燃复合材料，该材料中所含的增容剂为马来酸酐接枝聚乙烯、马来酸酐接枝聚丙烯或乙烯醋酸乙烯酯共聚物中的任一种。

6. 根据权利要求4或5所述的阻燃复合材料，该材料中所含的固化剂为二乙烯三胺、二氯二胺、对苯二胺、间苯二胺、邻苯二甲酸酯、四氢苯酐、甲基环己烯基四酸二酐或十二烯基琥珀酸酐中的任一种。

7. 根据权利要求4或5所述的阻燃复合材料，该材料中所含的稀释剂为丁基醚、苄基醚、乙二醇醚、苯酚醚、12-14醇醚、二溴甲酚醚、丙酮、苯、苯乙烯、正丁醇或二丁酯中的任一种。

8. 根据权利要求6所述的阻燃复合材料，该材料中所含的稀释剂为丁基醚、苄基醚、乙二醇醚、苯酚醚、12-14醇醚、二溴甲酚醚、丙酮、苯、苯乙烯、正丁醇或二丁酯中的任一种。
海泡石纳米阻燃纤维及其制备方法和用其增强增韧的阻燃
复合材料

技术领域
[0001] 本发明属于海泡石纳米纤维和无卤阻燃复合材料技术领域，具体涉及到一种无机
矿物海泡石纳米阻燃纤维及其制备方法和用其增强增韧的阻燃复合材料。

背景技术
[0002] 目前，聚合物材料虽已广泛应用于各种工业材料、电子电气、电线电缆、汽车部件、
包装材料等领域中，但由于大多数聚合物材料都具有易燃性，这就使得其不能应用于对材
料有阻燃性要求的场合。
[0003] 针对这一问题，人们开始对聚合物材料进行了各种阻燃改性，其中最常见的是在
其中添加阻燃剂，如添加卤系阻燃剂或大量金属氢氧化物等。但含卤素的添加型阻燃剂，
特别是含氯、溴的阻燃剂，虽然应用广泛且阻燃效果好，但是在燃烧时会释放大量烟雾和
有毒、带腐蚀性的卤化氢气体，如高浓度的溴化二噁英和其他溴系有毒物质，造成“二次灾
害”。现随着人类对环境安全意识的提高，特别是欧盟“绿色指令”（RoHS, WEEE 和 REACH）的
全面实施，已被逐渐摒弃。氢氧化铝、氢氧化镁等虽是一类较为安全的无机阻燃剂，但因添
加量需达到组分的 50% 左右才能起到有效的阻燃作用，而添加量大又带来许多生产加工
上的困难，并导致材料的强度大大降低。即使是近年来在阻燃聚合物中应用越来越广泛的
膨胀型阻燃剂，也存在添加量较高，进一步也要引起阻燃聚合物力学性能的一定下降而成本
大为提高的问题。
[0004] 作为无机材料之一的海泡石的理论结构式为 Si_{12}Mg_{8}O_{30} (OH)_{4} (OH_{2})_{4} • 8H_{2}O，在其结
构单元中，硅氧四面体和镁氧八面体相互交替，具有链状和层状的过渡型特征，即在链状结
构中又含有层状结构，如图 1 所示。而且海泡石单位晶层中既有类似于碳纳米管的一维纳
米纤维结构，又有类似蒙脱土 2：1 的层状结构，还具有载面积为 0.36nm～1.06nm 的管状
贯穿通道及高达 900m^{2}/g 的理论表面积。
[0005] 如将海泡石用粉碎、超声分散、吸附改性、酸化等物理及化学方法可制备直径为纳米
级，长度为微米级的海泡石—纳米纤维。该纳米海泡石纤维独特的微结构是化学组成使其不
但可对聚合物进行增强改性，而且在高聚物阻燃研究表明中也成为一种潜在的阻
燃剂或阻燃协效剂，可促进聚合物材料的燃烧成炭，使炭层的结构更加致密、稳定，从而在
基体树脂表面形成非常有效的隔离保护层，可阻止燃烧进一步进行，减少产烟量，这对火灾
过程中的人员逃生和救援有着重要的现实意义。虽然海泡石纤维的密度比传统玻璃纤维的
密度低得多，但强度仍然很高，因而采用海泡石纤维对聚合物进行增强改性，在提高力学性
能的同时，还可以大大减轻材料的重量。
[0006] 目前，有关聚合物 / 海泡石复合材料及其制备方法的报道，如 JP 昭 63-251461，
JP 平 2-86828，JP 平 2-208357 上公开了以海泡石为增强剂的尼龙 6 复合材料的制备方法，
US2006/0205856A1 公开了一种原位聚合合法制备热塑性聚酯 / 海泡石纳米复合材料的方法，
这些方法虽在获得了各种物理性能较好的复合材料，但均未涉及聚合物的阻燃改性。又如
公开了一种聚酰胺/海泡石纳米复合材料及制备方法，该方法是利用熔融法将热塑性聚酰胺、改性海泡石及金属铝化合物等组分进行共混，得到了拉伸强度和断裂伸长率都有一定提高的纳米复合材料。CN1786071A公开的一种含有机海泡石纳米复合材料及其制备方法，则是先将粗海泡石进行有机化处理，然后采用熔融插层聚合物法制备含有机海泡石环氧树脂纳米复合材料，该复合材料的弯曲强度和冲击强度都大幅度提高，从而使该复合材料的玻璃化温度也获得了大幅度提高。

另外，有关聚合物/海泡石阻燃复合材料，CN101368000A公开了一种海泡石基聚合物阻燃材料，该材料是由海泡石、聚磷酸铵、季戊四醇和三聚氰胺等与树脂直接共混获得，其虽然阻燃效果好、产烟量小，但强度和韧性较差。

发明内容

针对现有技术的不足，本发明的首要目的是提供一种用双螺环基膨胀型阻燃聚合物进行表面接枝改性的海泡石纳米阻燃纤维，以用于阻燃领域提供一种新型的同时具有阻燃和增强作用的海泡石纳米纤维/膨胀阻燃协同体系。

本发明的次要目的是提供一种制备上述的海泡石纳米阻燃纤维的方法。

本发明再一目的是提供一种用上述海泡石纳米阻燃纤维来增强增韧的阻燃复合材料。

为达到本发明首要目的而提供的海泡石纳米阻燃纤维的直径为10～60nm，其中海泡石纳米纤维与双螺环基膨胀型阻燃聚合物的质量比为1：0.1～0.5，且其红外光谱图900～1000cm⁻¹之间的Si-O伸缩振动峰明显增强，1000～1100cm⁻¹之间的Si-O-Si伸缩振动峰明显减弱，这表明双螺环基聚合物阻燃剂已接枝于海泡石纳米纤维上生成了新键Si-O-P。

本发明提供的制备上述海泡石纳米阻燃纤维的方法，该方法首先对海泡石纤维束进行酸化、分散、有机化改性得到有机化海泡石纳米纤维，然后利用有机化海泡石纳米纤维上的Si-OH或Mg-OH基团与双螺环基聚合型阻燃剂中一侧的活性端基进行接枝反应来制得海泡石阻燃纳米纤维，该方法具备的工艺步骤和条件如下：

（1）将海泡石纤维束放入质量浓度为3～8%的无机酸溶液中，在温度50～100℃下搅拌酸化处理5～16小时，海泡石纤维束与无机酸溶液的质量比为1：25～50；

（2）将酸化处理后的海泡石纤维束放入水中，于压力1～3MPa、温度120～180℃下搅拌处理3～10小时，得到初步分散的海泡石纤维，海泡石纤维束与水的质量比为1：100～200；

（3）先将表面活性剂加入水中进行搅拌、活化，然后将初步分散的海泡石纤维放入其中，于超声波作用下，于温度25～100℃下处理3～10小时后，抽滤、水洗、烘干即得到分散的海泡石纳米纤维，其中按质量比计表面活性剂：海泡石纤维：水为1：2～10：100～1000；

（4）先将海泡石纳米纤维和双螺环基膨胀型阻燃聚合物放入分散剂中，然后在氮气保护下，于温度50～120℃下接枝反应2～24小时，再用分散剂洗涤，60～100℃真空干燥即得海泡石纳米阻燃纤维，其中按质量比计海泡石纳米纤维：双螺环基膨胀型阻燃聚合物：分散剂为1：0.5～3：200～500。
上述方法中所用的无机酸为硫酸或盐酸；所用的表面活性剂为十六烷基三甲基溴化铵、十八烷基三甲基溴化铵、十二烷基二甲基苄基氯化铵和十二烷基苯磺酸钠中的至少一种，如果加两种以上的表面活性剂，可以任意质量比；所用的分散剂为苯、甲苯、二甲苯、乙腈、四氢呋喃（THF）、二甲基甲酰胺（DMF）或二甲亚砜（DMSO）中的任一种。

上述方法中所用的双螺环基膨胀型阻燃聚合物的结构通式如下：

式中 R 代表有双活性官能团的芳族基或碳原子数为 2-6 的直链或支链烷基，聚合度 n 为 1～40，该双活性官能团的芳族基或烷基在聚合反应之前为以下化合物中的任一种：

H₂N—CH₁₋₋₋之內容
说明

[0026] 聚合物基材 65 ~ 99.5%
[0027] 海泡石阻燃纳米纤维 0.5 ~ 20%
[0028] 聚磷酸铵 0 ~ 15%
[0029] 增容剂 0 ~ 5%
[0030] 固化剂 0 ~ 25%
[0031] 稀释剂 0 ~ 5%。
[0032] 其中海泡石阻燃纳米纤维的加入量优选3 ~ 15%，更优选5 ~ 15%，对应的聚合物基材的加入量分别优选为65 ~ 97%和65 ~ 95%。
[0033] 上述阻燃复合材料中所含的聚合物基材为环氧树脂、聚乙烯、聚丙烯、尼龙6或聚对苯二甲酸丁二酯等热固性或热塑性聚合物。
[0034] 上述阻燃复合材料中所含的增容剂为马来酸酐接枝聚乙烯 (PE-g-MA)、马来酸酐
接枝聚丙烯 (PE-g-MA) 或乙烯酯酸乙烯酯共聚物 (EVA) 等高分子增容剂中的任一种。
[0035] 上述阻燃复合材料中所含的固化剂为二乙烯三胺、二氯二胺、对苯二胺、间苯二胺、苯二甲酸酐、四氢化醇、甲基环已烯基四酸二酯或十二烯基琥珀酸酐等中的任一种。
[0036] 上述阻燃复合材料中所含的稀释剂为丁基醚、苯基醚乙醇醚、苯酚醚、12-14醇醚、二溴甲酚醚、丙酮、苯、苯乙烯、正丁醇或二丁酯中的任一种。
[0037] 由于本发明将海泡石纳米纤维与聚合型膨胀阻燃剂通过接枝反应有机的结合在一起，改良了海泡石纳米纤维在复合物基材中的兼容性，因而不仅有利于膨胀型阻燃剂在
聚合物基材中的均匀分散，充分发挥二者之间协同阻燃作用，提高阻燃效率，降低阻燃剂用量，且还可同时起到提高聚合物材料的强度和韧性的作用。

附图说明
[0038] 图1为海泡石纤维的晶体结构和纤维结构示意图；
[0039] 图2为接枝改性的海泡石纳米纤维和接枝改性的海泡石阻燃纳米纤维的红外
光谱图，其中的接枝物 PSPhD 为双螺环 SPDPC (3,9- 二氯 -2,4,8,10- 四氧代 -3,9- 二磷螺
环 -3,9- 二氧 [5,5]- 十一烷) 与己二胺共聚物；
[0040] 图3为接枝改性的海泡石纳米阻燃纤维的透射电镜照片。

具体实施方式
[0041] 下面给出实施例以对本发明作进一步描述，需指出的是以下实施例不能理解为对
本发明保护范围的限制，本领域的技术熟练人员根据本发明的上述内容对本发明作出的
一些非本质的改进和调整仍属于本发明的保护范围。
[0042] 本实施例中的阻燃复合材料的阻燃性能是按标准GB8624-2006 和
GB20286-2006进行测试的；拉伸强度、断裂伸长率和弯曲强度是按标准ISO 527 和 ISO
178 进行测试的；悬梁梁缺口冲击强度是按标准ISO 180 进行测试的。
[0043] 实施例1
[0044] 本实施例制备的是海泡石阻燃纳米纤维PSPhD-SEP，具体步骤和条件为：
[0045] (1) 将海泡石纤维束放入质量浓度为4%的盐酸溶液中，在温度70℃下搅拌酸化处
理10小时，海泡石纤维束与盐酸溶液的质量比为1：40；
说明书

[0046] (2) 将酸化处理后的海泡石纤维束放入水中，于压力 2MPa、温度 150°C 下搅拌处理 7 小时，得到初步分散的海泡石纤维，海泡石纤维束与水的质量比为 1 : 140；

[0047] (3) 先将表面活性剂十六烷基三甲基溴化铵和十八烷基三甲基溴化铵（质量比 1 : 1）加入水中进行搅拌、活化，然后将初步分散的海泡石纤维放入其中，在超声波作用下，于温度 50°C 下处理 3 小时后，抽滤、水洗、烘干即得到分散的海泡石纳米纤维，其中按质量比计表面活性剂：海泡石纤维为水 1 : 4 : 200，超声功率 100W，频率 40KHz。

[0048] (4) 先将海泡石纳米纤维和双螺环与乙二胺共聚物 (PSPHD) 放入甲苯中，然后在氮气保护下，于温度 80°C 接枝反应 10 小时，抽滤，用甲苯洗涤，80°C 真空干燥，得海泡石纳米阻燃纤维 PSPHD-SEP，其中按质量比计海泡石纳米纤维：双螺环与乙二胺共聚物：甲苯为 1 : 3 : 500。接枝后的海泡石阻燃纳米纤维中海泡石纳米纤维与双螺环聚合物的质量比为 1 : 0.5。

[0049] 双螺环与乙二胺共聚物 PSPHD 的合成方法参考 ZL 200510021217.1。

[0050] 实施例 2

[0051] 本实施例制备的是海泡石阻燃纳米纤维 PSPMPD-SEP，具体步骤和条件为：

[0052] (1) 将海泡石纤维束放入质量浓度为 3% 的硫酸溶液中，在温度 50°C 下搅拌酸化处理 5 小时，海泡石纤维束与硫酸溶液的质量比为 1 : 25；

[0053] (2) 将酸化处理后的海泡石纤维束放入水中，于压力 3MPa、温度 120°C 下搅拌处理 10 小时，得到初步分散的海泡石纤维，海泡石纤维束与水的质量比为 1 : 200；

[0054] (3) 先将表面活性剂十六烷基三甲基溴化铵和十二烷基苯磺酸钠（质量比 2 : 1）加入水中进行搅拌、活化，然后将初步分散的海泡石纤维放入其中，在超声波作用下，于温度 60°C 下处理 10 小时后，抽滤、水洗、烘干即得到分散的海泡石纳米纤维，其中按质量比计表面活性剂：海泡石纤维：水为 1 : 2 : 100，超声功率 500W，频率 60KHz。

[0055] (4) 先将海泡石纳米纤维和双螺环与间苯二胺共聚物 (PSPMPD) 放入 THF 中，然后在氮气保护下，于温度 110°C 接枝反应 2 小时，抽滤，用 THF 洗涤，90°C 真空干燥，得海泡石纳米阻燃纤维 PSPMPD-SEP，其中按质量比计海泡石纳米纤维：双螺环与间苯二胺共聚物：THF 为 1 : 2 : 400。接枝后的海泡石阻燃纳米纤维中海泡石纳米纤维与双螺环聚合物的质量比为 1 : 0.3。

[0056] 双螺环与间苯二胺共聚物 PSPMPD 的合成方法参考 ZL 200510021217.1。

[0057] 实施例 3

[0058] 本实施例制备的是海泡石阻燃纳米纤维 PSPHQ-SEP，具体步骤和条件为：

[0059] (1) 将海泡石纤维束放入质量浓度为 8% 的盐酸溶液中，在温度 100°C 下搅拌酸化处理 16 小时，海泡石纤维束与盐酸溶液的质量比为 1 : 50；

[0060] (2) 将酸化处理后的海泡石纤维束放入水中，于压力 1MPa、温度 180°C 下搅拌处理 3 小时，得到初步分散的海泡石纤维，海泡石纤维束与水的质量比为 1 : 100；

[0061] (3) 先将表面活性剂十八烷基三甲基溴化铵和十二烷基二甲基二甲基氯化铵（质量比 1 : 3）加入水中进行搅拌、活化，然后将初步分散的海泡石纤维放入其中，在超声波作用下，于温度 25°C 下处理 5 小时后，抽滤、水洗、烘干即得到分散的海泡石纳米纤维，其中按质量比计表面活性剂：海泡石纤维：水为 1 : 10 : 1000，超声功率 1000W，频率 80KHz。

[0062] (4) 先将海泡石纳米纤维和双螺环与对苯二酚共聚物 (PSPHQ) 放入二甲苯中，然
后在氮气保护下，于温度 120°C 接枝反应 24 小时，抽滤，用甲苯洗涤，100°C 真空干燥，得海泡石纳米阻燃纤维 PSPIQ–SEP，其中按质量比计海泡石纳米纤维：双螺环基膨胀型阻燃聚合物：甲苯为 1 : 0.5 : 200。接枝后的海泡石阻燃纳米纤维中海泡石纳米纤维与双螺环基聚合型阻燃剂的质量比为 1 : 0.1。

[0063] 双螺环与对苯二酚共聚物 PSPIQ 的合成方法参考 ZL 200510021217.1。

[0064] 实施例 4

[0065] 本实施例制备的是海泡石阻燃纳米纤维 PSPHD–SEP，具体步骤和条件为：

[0066] (1) 将海泡石纤维束放入质量浓度为 4% 的盐酸溶液中，在温度 70°C 下搅拌酸化处理 10 小时，海泡石纤维束与盐酸溶液的质量比为 1 : 40；

[0067] (2) 将酸化处理后的海泡石纤维束放入水中，于压力 2MPa、温度 150°C 下搅拌处理 7 小时，得到初步分散的海泡石纤维，海泡石纤维束与水的质量比为 1 : 140；

[0068] (3) 先将表面活性剂十二烷基二甲基苄基氯化铵和十二烷基苯磺酸钠（质量比 1 : 4）加入水中进行搅拌、活化，然后将初步分散的海泡石纤维放入其中，在超声波作用下，于温度 70°C 下处理 3 小时后，抽滤、水洗、烘干即得到分散的海泡石纳米纤维，其中按质量比计表面活性剂：海泡石纤维：水为 1 : 4 : 200，超声功率 100W，频率 40KHz。

[0069] (4) 先将海泡石纳米纤维和双螺环与乙二胺共聚物 (PSPHD) 放入苯中，然后在氮气保护下，于温度 60°C 接枝反应 12 小时，抽滤，用苯洗涤，60°C 真空干燥，得海泡石纳米阻燃纤维 PSPHD–SEP，其中按质量比计海泡石纳米纤维：双螺环与乙二胺共聚物：甲苯为 1 : 3 : 300。接枝后的海泡石阻燃纳米纤维中海泡石纳米纤维与双螺环基聚合型阻燃剂的质量比为 1 : 0.5。

[0070] 双螺环与乙二胺共聚物 PSPIQ 的制备方法参考专利 ZL 200510021217.1。

[0071] 实施例 5

[0072] 本实施例制备的是海泡石阻燃纳米纤维 PSBPB–SEP，具体步骤和条件为：

[0073] (1) 将海泡石纤维束放入质量浓度为 5% 的盐酸溶液中，在温度 80°C 下搅拌酸化处理 9 小时，海泡石纤维束与盐酸溶液的质量比为 1 : 30；

[0074] (2) 将酸化处理后的海泡石纤维束放入水中，于压力 2MPa、温度 160°C 下搅拌处理 5 小时，得到初步分散的海泡石纤维，海泡石纤维束与水的质量比为 1 : 160；

[0075] (3) 先将表面活性剂十八烷基三甲基溴化铵加入水中进行搅拌、活化，然后将初步分散的海泡石纤维放入其中，在超声波作用下，于温度 100°C 下处理 7 小时后，抽滤、水洗、烘干即得到分散的海泡石纳米纤维，其中按质量比计表面活性剂：海泡石纤维：水为 1 : 6 : 1000，超声功率 700W，频率 60KHz。

[0076] (4) 先将海泡石纳米纤维和双螺环与双酚 A 共聚物 (PSBPB) 放入乙腈中，然后在氮气保护下，于温度 50°C 接枝反应 24 小时，抽滤，用乙腈洗涤，60°C 真空干燥，得海泡石纳米阻燃纤维 PSBPB–SEP，其中按质量比计海泡石纳米纤维：双酚 A 共聚物：乙腈为 1 : 1 : 200。接枝后的海泡石阻燃纳米纤维中海泡石纳米纤维与双螺环基聚合型阻燃剂的质量比为 1 : 0.4。

[0077] 双螺环与双酚 A 的共聚物 PSBPB 的制备方法参考专利 ZL 200510021217.1。

[0078] 实施例 6

[0079] 本实施例制备的是海泡石阻燃纳米纤维 PSPPPD–SEP，具体步骤和条件为：
[0080] (1) 将海泡石纤维束放入质量浓度为 5% 的硫酸溶液中，在温度 70℃ 下搅拌酸化处理 13 小时，海泡石纤维束与盐酸溶液的质量比为 1：30；
[0081] (2) 将酸化处理后的海泡石纤维束放入水中，于压力 2MPa、温度 150℃ 下搅拌处理 7 小时，得到初步分散的海泡石纤维，海泡石纤维束与水的质量比为 1：140；
[0082] (3) 先将表面活性剂十二烷基苯磺酸钠加入水中进行搅拌、活化，然后将初步分散的海泡石纤维束放入其中，在超声波作用下，于温度 80℃ 下处理 3 小时后，抽滤、水洗、烘干即得到分散的海泡石纳米纤维，其中按质量比计表面活性剂：海泡石纤维：水为 1：6：600，超声功率：400W，频率：60KHz。
[0083] (4) 先将海泡石纳米纤维和双螺环与对苯二胺共聚物 (PSPPPD) 放入 DMSO 中，然后在氮气保护下，于温度 80℃ 接枝反应 10 小时，抽滤，用 DMSO 洗涤，80℃ 真空干燥，得海泡石纳米阻燃纤维 PSPPPD-SEP，其中按质量比计海泡石纳米纤维：双螺环与对苯二胺共聚物：DMSO 为 1：2：500。接枝后的海泡石阻燃纳米纤维海泡石纳米纤维与双螺环基聚合型阻燃剂的质量比为 1：0.4。
[0084] 双螺环与对苯二胺共聚物 PSPPPD 的合成方法参考专利 ZL 200510021217.1。
[0085] 实施例 7-11
[0086] 本组实施例制备的是海泡石纳米阻燃纤维 / 环氧树脂 (EP) 复合材料，具体步骤和条件为 (本组及以下实施例中物料的配比均为质量百分比)：
[0087] ①将实施例 2 所制备的海泡石纳米阻燃纤维 PSPMPD-SEP 和稀释剂正丁醇按表 1 的配比依次加入环氧树脂 E-51 中，然后超声分散 10 分钟，再在沸水浴中超声分散 30 分钟，70℃ 真空条件下脱泡。
[0088] ②按表 1 的配比加入固化剂间苯二胺 (MPD)，搅拌均匀后常温下真空脱气 15 分钟，备用。
[0089] ③将模具在烘箱 80℃ 下预热半小时，然后将第②步所得物料缓慢注入模具中，注
入完后将其再放入烘箱中，按 90℃/3h+110℃/2h+160℃/3h 的工艺固化即得海泡石纳米阻燃纤维 / 环氧树脂复合材料。该材料的力学性能和阻燃性能见表 1。
[0090] 表 1
[0091]
说明书

<table>
<thead>
<tr>
<th>对比例</th>
<th>实施例7</th>
<th>实施例8</th>
<th>实施例9</th>
<th>实施例10</th>
<th>实施例11</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-51/%</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>68</td>
</tr>
<tr>
<td>PSPMPD-SEP/%</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>MPD/%</td>
<td>25</td>
<td>23</td>
<td>21</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>正丁醇/%</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>弯曲强度 MPa</td>
<td>64.0</td>
<td>110.6</td>
<td>128.8</td>
<td>131.7</td>
<td>116.3</td>
</tr>
<tr>
<td>冲击强度 KJ/m²</td>
<td>4.2</td>
<td>20.2</td>
<td>21.17</td>
<td>23.26</td>
<td>20.21</td>
</tr>
<tr>
<td>LOI</td>
<td>19.5</td>
<td>24.0</td>
<td>26.7</td>
<td>29.5</td>
<td>30.1</td>
</tr>
<tr>
<td>UL-94</td>
<td>V-2</td>
<td>V-2</td>
<td>V-1</td>
<td>V-0</td>
<td>V-0</td>
</tr>
</tbody>
</table>

[0092] 实施例 12-16

[0093] 本组实施例制备的是海泡石纳米阻燃纤维/低密度聚乙烯 (LDPE) 复合材料，具体步骤和条件为：

[0094] 将实施例 3 所制备的海泡石纳米阻燃纤维 PSPHQ-SEP、聚磷酸铵 (APP)、PE-g-MA 与 LDPE 按表 2 的配比一起预混后，放入双螺杆挤出机中在 180-200℃下熔融共混挤出、造粒即得海泡石纳米阻燃纤维/低密度聚乙烯复合材料。该材料的力学性能和阻燃性能见表 2。

[0095] 表 2

<table>
<thead>
<tr>
<th>对比例</th>
<th>实施例12</th>
<th>实施例13</th>
<th>实施例14</th>
<th>实施例15</th>
<th>实施例16</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPE/%</td>
<td>100</td>
<td>95.5</td>
<td>89</td>
<td>82</td>
<td>73</td>
</tr>
<tr>
<td>PSPHQ-SEP/%</td>
<td>0</td>
<td>1.5</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>PE-g-MA/%</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>APP/%</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>弯曲强度 MPa</td>
<td>3.82</td>
<td>4.57</td>
<td>4.97</td>
<td>5.51</td>
<td>5.78</td>
</tr>
<tr>
<td>拉伸强度 MPa</td>
<td>9.86</td>
<td>12.7</td>
<td>13.4</td>
<td>14.1</td>
<td>16.7</td>
</tr>
<tr>
<td>断裂伸长率/%</td>
<td>520</td>
<td>560</td>
<td>607</td>
<td>637</td>
<td>705</td>
</tr>
<tr>
<td>LOI</td>
<td>17.3</td>
<td>23.0</td>
<td>25.1</td>
<td>27.7</td>
<td>29.1</td>
</tr>
<tr>
<td>UL-94</td>
<td>V-2</td>
<td>V-2</td>
<td>V-1</td>
<td>V-0</td>
<td>V-0</td>
</tr>
</tbody>
</table>

[0097] 实施例 17-21

[0098] 本组实施例制备的是海泡石纳米阻燃纤维/聚丙烯 (PP) 复合材料，具体步骤和条件为：

[0099] 按表 3 的配比将实施例 4 所制备的海泡石纳米阻燃纤维 PSPHD-SEP、马来酸酐接枝
聚丙烯 (PP-g-MA)、聚磷酸铵 (APP) 和 PP 一起预混后，放入双螺杆挤出机中在 200°C - 210°C 下熔融共混挤出，造粒即得海泡石纳米阻燃纤维 / 低密度聚乙烯复合材料。该材料的力学性能和阻燃性能见表 3。

表 3 的性能测试结果表明随着海泡石纳米阻燃纤维含量的增加，PSHDP-SEP/PP 复合材料的拉伸强度和断裂伸长率先升后降，当海泡石添加剂量为 5% 时拉伸强度、冲击强度和断裂伸长率均达到最大值，断裂伸长率增长尤为明显，氧指数和 UL-94 级别均有一定提高。

<table>
<thead>
<tr>
<th>对比例</th>
<th>实施例 17</th>
<th>实施例 18</th>
<th>实施例 19</th>
<th>实施例 20</th>
<th>实施例 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP/%</td>
<td>100</td>
<td>96</td>
<td>89</td>
<td>82</td>
<td>74</td>
</tr>
<tr>
<td>PSPHD-SEP/%</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>PP-g-MA/%</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>APP/%</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>冲击强度 KJ/m²</td>
<td>2.12</td>
<td>2.45</td>
<td>3.84</td>
<td>4.37</td>
<td>4.11</td>
</tr>
<tr>
<td>拉伸强度 MPA</td>
<td>29.8</td>
<td>32.5</td>
<td>34</td>
<td>35.6</td>
<td>32.4</td>
</tr>
<tr>
<td>断裂伸长率/%</td>
<td>60</td>
<td>61</td>
<td>100</td>
<td>170</td>
<td>113</td>
</tr>
<tr>
<td>LOI</td>
<td>18.9</td>
<td>23.4</td>
<td>26.0</td>
<td>29.5</td>
<td>31.2</td>
</tr>
<tr>
<td>UL-94</td>
<td>V-2</td>
<td>V-1</td>
<td>V-0</td>
<td>V-0</td>
<td>V-0</td>
</tr>
</tbody>
</table>

[0103] 实施例 22-26
[0104] 本组实施例制备的是海泡石纳米阻燃纤维 /MC 尼龙 6 (PA6) 复合材料，具体步骤和条件为：

[0105] 先将己内酰胺在抽真空条件下加热升温于 120°C 下搅拌熔融，待完全熔融后，按表 4 的配比加入实施例 5 所制备的海泡石纳米阻燃纤维 PSPBPA-SEP，然后快速搅拌并抽真空减压蒸馏 20min，以除去水分；其后加入按与己内酰胺的摩尔比计为 1：0.004 的氢氧化钠，并升温至 138°C，继续减压蒸馏 1h（真空度 ≥ 0.1MPa），再加入按表 4 配比的 APP，又升温至 148°C，加入按与己内酰胺的摩尔比计为 1：0.003 的引发剂苯二苯二氨基二硫化氧 (TDI)，最后倒入 170°C 预热的钢腔中，放入烘箱于 170°C 烘焙 1h，冷却至室温，即制得纳米 PSPBPA-SEP/MC 尼龙 6 阻燃复合材料，所加物料的配比和其力学性能和阻燃性能见表 4。

[0106] 实施例 27-31
[0107] 本组实施例制备的是海泡石纳米阻燃纤维 / 对苯二甲酸丁二醇酯 (PBT) 复合材料，具体步骤和条件为：

[0108] 按表 5 的配比将实施例 6 制备的海泡石纳米阻燃纤维 PSPPP-SEP、APP、EVA 与 PBT 粉料置于热风干燥箱中干燥 12h，然后放入高速混合机混合均匀，再放入双螺杆挤出机中进行熔融共混并于温度 210-225°C 挤出、造粒，即得海泡石纳米阻燃纤维 /PBT 复合材料。该材料的力学性能和阻燃性能见表 5。
表 4

<table>
<thead>
<tr>
<th>对比例</th>
<th>实施例 22</th>
<th>实施例 23</th>
<th>实施例 24</th>
<th>实施例 25</th>
<th>实施例 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA6/%</td>
<td>100</td>
<td>98.5</td>
<td>92</td>
<td>87</td>
<td>78</td>
</tr>
<tr>
<td>PSPBPA-SEP/%</td>
<td>0</td>
<td>1.5</td>
<td>3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>APP</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>弯曲强度 MPa</td>
<td>29.5</td>
<td>37.6</td>
<td>43.7</td>
<td>51.2</td>
<td>62.3</td>
</tr>
<tr>
<td>拉伸强度 MPa</td>
<td>55.2</td>
<td>64</td>
<td>67.7</td>
<td>74.1</td>
<td>83.6</td>
</tr>
<tr>
<td>LOI</td>
<td>24.1</td>
<td>25.0</td>
<td>25.7</td>
<td>28.3</td>
<td>31.5</td>
</tr>
<tr>
<td>UL-94</td>
<td>V-2</td>
<td>V-1</td>
<td>V-0</td>
<td>V-0</td>
<td>V-0</td>
</tr>
</tbody>
</table>

表 5

<table>
<thead>
<tr>
<th>对比例</th>
<th>实施例 27</th>
<th>实施例 28</th>
<th>实施例 29</th>
<th>实施例 30</th>
<th>实施例 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBT/%</td>
<td>100</td>
<td>99.5</td>
<td>93</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>PSPPPD-SEP/%</td>
<td>0</td>
<td>0.5</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>APP/％</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>EVA/％</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>冲击强度 KJ/m²</td>
<td>2.14</td>
<td>2.77</td>
<td>2.97</td>
<td>3.26</td>
<td>3.43</td>
</tr>
<tr>
<td>拉伸强度 MPa</td>
<td>44.8</td>
<td>54.1</td>
<td>57.7</td>
<td>62.1</td>
<td>59.3</td>
</tr>
<tr>
<td>弯曲强度 MPa</td>
<td>59.3</td>
<td>73.9</td>
<td>77.5</td>
<td>81.1</td>
<td>79.1</td>
</tr>
<tr>
<td>LOI</td>
<td>22.3</td>
<td>22.8</td>
<td>25.1</td>
<td>29.3</td>
<td>30.6</td>
</tr>
<tr>
<td>UL-94</td>
<td>V-2</td>
<td>V-2</td>
<td>V-1</td>
<td>V-0</td>
<td>V-0</td>
</tr>
</tbody>
</table>