METHOD OF CASTING BARS

Evans M. Staples, Cincinnati, Ohio, assignor to
Aluminum Industries, Inc., Cincinnati, Ohio, a
Corporation of Ohio

Application October 20, 1933, Serial No. 694,439

2 Claims. (Cl. 22—190)

This invention relates to a machine for, and a
method of casting long narrow objects. More
specifically, it relates to means and a method for
preparing a sand mold for a casting operation by
forcing a pattern, in this instance made bar
shaped, by way of example, into the packed mold-
ing sand, and then withdrawing the bar or pat-
tern.

My Patent 1,979,581 of November 6, 1934, which
covers apparatus suitable for making molds pre-
liminary to casting by the present method, has
been carved out of this application.

Among the objects of the invention is the pro-
vision of both a machine and a method for cast-
ing bars, especially in bronze and other alloys
or metals which cannot be conveniently worked,
(but possibly in other metals such as steel).

Briefly stated, the method comprises forcing a
pattern into a flask of packed molding sand by
hydraulic means and simultaneously opening the
sand for the entrance of the pattern by vibrating
or oscillating a wedge or pointed shaped part on
the end of said pattern. The pattern is hydrau-
lically withdrawn after the mold cavity has been
formed, the mold then tilted, and a pouring cup
mounted on the front of the mold and the casting
poured.

Reference is now had to the accompanying
drawing in which:

Fig. 1 is a side elevation of the molding machine
and sectionally of the flask containing sand, and
before closing the flask.

Fig. 2 is a side elevation of the same with the
flask top board clamped in place and the pattern
at the furthest extent of the stroke.

Fig. 3 is a side elevation showing the pattern
withdrawn and the resultant mold cavity.

Fig. 4 is a longitudinal section of the flask with
a pouring cup added, the assembly being in tilted
position for pouring the casting.

Fig. 5 is a cross section of the molding machine
taken along the line 5—5 of Fig. 3, this view show-
ing the arrangement of the bar vibrating means.

Fig. 6 is a plan view of that portion of the
molding machine lying between the vertical ar-
rows on Fig. 3. It shows in detail the vibrator
and pattern construction.

In the drawing, 41 is a flask containing mold-
ing sand 11, which is indicated by stippling.
The structure shown to the right of the flask is for
the purpose of forcing the pattern 12, through
the sand of bottle that on the left side is merely for
holding the flask against the pressure created
by the pattern, 13 and 14 are strong uprights, 13
being anchored to the floor, while 14 is movable
laterally. 15 is a toggle, the function of which
is to hold the flask in place against a stripping
plate 10, in which an opening 17 is provided
which is in alignment with the pattern 12. Align-
ment or slide bar 16 fits in a blind hole 18 in the
stripping plate 10, by a driving fit so that the bar
and plate are practically integral.

The function of the alignment or slide bar 16
is to guide the pattern and the pattern head oscil-
ating mechanism 20. 22 is the frame of the lat-
ter, this frame fitting about slide bar 16 and be-
ing slidable thereon.

The motivating force for pushing pattern 12
is derived from a horizontal hydraulic cylinder
19. This is of conventional design, so that its
piping connections are not shown. Pattern 12
is connected to the cylinder piston rod 12a (Fig.
2) which is shown as of larger diameter. The
alignment bar 16 extends outwardly from the
base of cylinder 19 parallel to the pattern 12,
while 20 is a vibrating mechanism carried by both
bar 16 and the cylinder piston rod. Mechanism
20 is slidable on the bar 16 so that the latter serves
the double function of aligning the plate 10 and
holding the vibrating mechanism upright. The
means by which the vibrating mechanism 20 can
be slid along bar 16 is a cylindrical bearing 21
carried in the frame 22 of the said mechanism.
It will be observed that the frame 22 is carried
along by the piston rod, but slidable mounted on
alignment bar 16.

The pattern 12 is not solid but comprises an
inner solid bar 32 which is surrounded by a tube
33. The latter at its outer extremity has fitted
into it a pointed solid oscillating head 34 having
a cylindrical rear portion 34a which is provided
on its inner end with a recess (not shown) to
receive the outer end of bar 32. A cross hold
35 is provided in both of these for the reception
of a pin (not shown) to hold them together. At
the inner end of bar 12 (the right hand end on
Fig. 6) the construction is similar, a recess is
provided in the end of the T head 30 to receive
the end of the bar 32 and a hole 36 is provided
through both for the reception of a pin (not
shown) to hold them together. The hollow cyl-
drical rear portion 34b is of a diameter adapted
to allow it to slide within the tube 33 up to the
limit set by the shoulder 34c. The outer con-
tour of tube 33 is that of the desired mold cavity.

The vibrating mechanism itself comprises the
above mentioned frame 22, an electric motor 23
mounted above it, a pulley 24 on the motor, a
55
pulley 28 on the side of the frame, and a belt 26 transmitting power from the motor to the latter pulley.

Referring now to Fig. 5, pulley 28 is keyed to an eccentric shaft 27 which is mounted in the frame 22 crosswise thereof. In the middle of this shaft are carried two connecting rods 28 and 29 which together form a clevis in the arms of which the T head 30 of the oscillating head rod 32 is hung so that its cylindrical ends are free to oscillate in the extremities of the clevis. A pin 31 is provided to hold parts 28 and 29 together. These details are shown in Fig. 6.

Pattern head 34 is thus connected to the actuating bar 32 within the patterns so as to have a bearing within the latter when oscillated. In this way a bearing surface is provided which is fairly well protected against the entrance of sand particles. Actuating bar 32 is in turn connected to the oscillatable T head by pin 36 and the head is in turn attached to connecting rods 28 and 29 by pin 31. Pattern tube 33 is clamped to a cylindrical extension 38 of the T head by means of a ring 37 welded to the outside of the tube. This ring also protects the edge of the tube 33 against splitting. Extension 38 is oscillatable within tube 33 which forms a bearing for said extension.

In operating the machine functions as follows and the casting steps occur in the following order:

Flask 41 is placed in position and toggle 16 is depressed, thereby holding the flask against the stripping plate 10 and holding it rigidly. Flask 41 filled with sand and rammed lightly, after which the mold cover 38 is placed in position and clamped.

Electric motor 25 is now energized and the hydraulic pump (not shown) started. The hydraulic valve (not shown) is then opened to advance pattern 12 and vibrating mechanism 28.

Rotation of eccentric shaft 27 by pulley 28 now imparts a back and forth vibratory motion to pattern head 34, assisting its passage into the sand in box 41 by a hammer action. This action is brought about by the rotation of shaft 27 in members 28 and 29 of the clevis, which transmits the motion to the bar 32 and so to the pointed head 34.

After the pattern 12 has reached its extreme position as shown in Fig. 2, the hydraulic valve is reversed and the pattern withdrawn to the position shown in Fig. 3. The vibratory action is preferably stopped during this retraction. Toggle 16 is then lifted upward and the flask taken out and tilted at an angle between 5° and 60°, preferably 20°. A gate 39 contained within a pouring cup 48 is attached to the end of the flask 41 from which stripping plate 10 has been removed. Pouring is now done through gate 38.

Since the sand is highly compressed along the path of pattern 12, it follows that bars of even diameter may be cast.

Not only bars, but other castings which are much longer than they are wide, can be made by this method. To do so, the bar 12 is replaced by a different shaped pattern of the shape that it is desired to reproduce.

It is to be understood that my machine can be made in the so-called "gang" type, i.e. to ram several molds at once by having one hydraulic cylinder actuate several patterns which are attached to a header. Any competent mechanical engineer can, in view of this disclosure success, fully design such a gang type machine.

I claim as my invention:

1. The method of reproducing long narrow objects which comprises forcing a pattern of the shape which it is desired to reproduce into a tightly packed sand mold thru a stripping plate while oscillating the head of the pattern along the axis of travel of said pattern, then withdrawing the pattern, gating the mold, tilting it and then pouring metal into the cavity formed by the pattern.

2. The method of casting bars which comprises forcing a bar shaped pattern into a lightly packed flask of molding sand thru a stripping plate while vibrating the head of the pattern along the axis of travel of the pattern, withdrawing the pattern, tilting the flask, attaching a pouring cup thereon in communication with the formed cavity and then filling said cavity with molten metal while the flask is tilted at such an angle as to facilitate the inflow of metal.

EVANS M. STAPLES.