
JP 4949231 B2 2012.6.6

10

20

(57)【特許請求の範囲】
【請求項１】
　第一のオペレーティング・システム（OS）生成スレッドを実行する段階であって、ここ
で、前記第一のOS生成スレッドは第一のシステム状態に関連付けられている、オペレーテ
ィング・システムによって生成されたスレッドである、段階と、
　非特権ユーザーレベルプログラミング命令に遭遇する段階と、
　非特権レベルプログラミング命令に反応して、第一のアプリケーション状態の第一の専
有部分に関連付けられた第一の共有リソース・スレッド（シュレッド）を生成する段階で
あって、前記第一のシュレッドは、前記第一のアプリケーション状態の共有部分および前
記第一のシステム状態を少なくとも第二のシュレッドと共有し、前記非特権レベルプログ
ラミング命令は、OSの介入なしにハードウェアにおいてシュレッドを生成するためにハー
ドウェアによって認識可能な命令セットアーキテクチャ（ISA）に含まれるものである、
段階と、
　前記ユーザーレベルプログラミング命令に反応して、前記第一のシュレッドを少なくと
も前記第二のシュレッドと並行して実行する段階と、
　前記第一のシュレッドと前記第二のシュレッドとの間で、前記第一のシュレッドおよび
前記第二のシュレッドによって更新されることができるよう適応されている一つまたは複
数の共有レジスタを介して通信する段階とを含み、前記一つまたは複数の共有レジスタは
、前記第一のアプリケーション状態の共有部分および前記第一のシステム状態を共有する
シュレッドの専有である、方法。

(2) JP 4949231 B2 2012.6.6

10

20

30

40

50

【請求項２】
　前記第一のアプリケーション状態の前記第一の専有部分が、汎用レジスタ、浮動小数点
レジスタ、MMXレジスタ、セグメント・レジスタ、フラグ・レジスタ、命令ポインタ、制
御および状態レジスタ、SSEレジスタおよびMXCSRレジスタを含む複数のレジスタのうちの
少なくとも一つと関連付けられていることを特徴とする、請求項１記載の方法。
【請求項３】
　前記第一のシュレッドおよび前記第二のシュレッドが、現在の特権レベルを共有し、共
通のアドレス変換を共有することを特徴とする、請求項１記載の方法。
【請求項４】
　シュレッド破棄動作をエンコードする非特権ユーザーレベルプログラミング命令を受け
取ることをさらに含むことを特徴とする、請求項１記載の方法。
【請求項５】
　前記通信がユーザーレベルのシュレッド信号伝送命令を介して実行されることを特徴と
する、請求項１記載の方法。
【請求項６】
　ユーザーレベルのプログラミング命令に反応して、オペレーティング・システムの介入
なしに前記第一のシュレッドおよび前記第二のシュレッドをスケジューリングすることさ
らに含むことを特徴とする、請求項１記載の方法。
【請求項７】
　コンテキスト切り換え要求の受領に反応して、前記一つまたは複数のシュレッドに対応
する一つまたは複数の状態を保存する、ことをさらに含むことを特徴とする、請求項１記
載の方法。
【請求項８】
　オペレーティング・システムの介入なしに、ユーザーレベルの例外ハンドラコードによ
り、前記第一のシュレッドの実行の間に発生した例外を扱う、ことをさらに含むことを特
徴とする、請求項１記載の方法。
【請求項９】
　ある命令セットアーキテクチャ（ISA）を実装するマイクロプロセッサであって、前記
マイクロプロセッサは複数のOS生成スレッドを実行し、前記マイクロプロセッサはまた、
前記複数のOS生成スレッドのうちのあるOS生成スレッドに関連付けられた複数の共有リソ
ース・スレッド（シュレッド）を並行して実行し、前記複数のシュレッドのそれぞれは前
記OS生成スレッド内のある専有状態および前記OS生成スレッドの共有状態に関連付けられ
ており、前記シュレッドのそれぞれは、前記ISAのアプリケーション・プログラム命令に
反応して前記マイクロプロセッサのハードウェアを利用して生成され、前記OS生成スレッ
ドの共有状態の一部であるレジスタが、前記複数のシュレッドによって直接更新可能であ
るよう適応されており、それにより前記複数のシュレッドの間の通信を許容するとともに
、前記OS生成スレッドの共有状態に関連付けられていないスレッドによってはアクセス可
能でない、マイクロプロセッサと、
　ユーザーレベルのマルチスレッド動作を許容するための、前記ISAの一つまたは複数の
命令を記憶するメモリとを有することを特徴とする、
システム。
【請求項１０】
　前記一つまたは複数の命令が、オペレーティング・システムの介入なしにシュレッドを
生成する命令を含むことを特徴とする、請求項９記載のシステム。
【請求項１１】
　前記一つまたは複数の命令が、オペレーティング・システムの介入なしにシュレッドを
破棄する命令を含むことを特徴とする、請求項９記載のシステム。
【請求項１２】
　前記ユーザーレベルのマルチスレッド動作が、同一のスレッドに関連付けられた二つ以
上のシュレッドの並行的な実行を含むことを特徴とする、請求項９記載のシステム。

(3) JP 4949231 B2 2012.6.6

10

20

30

40

50

【発明の詳細な説明】
【技術分野】
【０００１】
　本発明のここでの諸実施形態はコンピュータシステムの分野に関する。特に、ここでの
諸実施形態はユーザーレベルのマルチスレッドを提供するための方法およびシステムに関
する。
【背景技術】
【０００２】
　マルチスレッドは、プログラムまたはOS（オペレーティングシステム）が命令のシーケ
ンスを一時に二つ以上実行する機能である。各ユーザー（ここではユーザーは別のプログ
ラムでもよい）からのプログラムまたはシステムサービスの要求は、別個の素性をもつス
レッドとして追跡される。プログラムはそのスレッドに対する初期要求のために動作し、
他の要求によって中断されるので、そのスレッドのための作業の状態は、その作業が完了
するまで追跡される。
【０００３】
　コンピュータ処理の種別には、単一命令ストリーム・単一データストリームが含まれる
が、これは命令の単一のストリームを含む従来のシリアル式フォンノイマンコンピュータ
である。第二の処理種別は単一命令ストリーム・多重データストリーム（SIMD:　single
　instruction　stream,　multiple　data　streams）処理である。この処理方式には、
多重算術論理プロセッサおよび単一制御プロセッサが含まれる。算術論理プロセッサのそ
れぞれがデータに対して演算をロックステップで実行し、制御プロセッサによって同期さ
れる。第三の種別は多重命令ストリーム・単一データストリーム（MISD:　multiple　ins
truction　streams,　single　data　stream）処理であるが、これは同じデータストリー
ムの流れを異なる命令ストリームを実行する諸プロセッサの線形配列を通じて処理するこ
とに関わる。第四の処理種別は、多重命令ストリーム・多重データストリーム（MIMD:　m
ultiple　instruction　streams,　multiple　data　streams）処理であり、これは複数
のプロセッサを使用し、そのそれぞれが該それぞれのプロセッサに供給されたデータスト
リームを処理するための独自の命令ストリームを実行する。MIMDプロセッサはいくつかの
命令処理ユニット、複数の命令シーケンサ、よっていくつかのデータストリームを有しう
る。
【発明の開示】
【発明が解決しようとする課題】
【０００４】
　今日のマルチスレッド・マイクロプロセッサによって採用されているプログラミング・
モデルは、伝統的な共有メモリ・マルチプロセッサと同じである：複数のスレッドがあた
かも独立のCPUで走るかのようにプログラムされる。スレッド間の通信はメインメモリを
通じて実行され、スレッド生成／破棄／スケジューリングはOSによって実行される。マル
チスレッドはこれまで、プログラマーが直接スレッドにアクセスできるような、アーキテ
クチャ的に目に見える仕方では供給されていなかった。
【０００５】
　本発明のここでの諸実施形態は、以下の詳細な記述を図面とともに参照することからよ
り完全に理解され、認識されるであろう。
【課題を解決するための手段】
【０００６】
　ユーザーレベルのマルチスレッドを提供する方法およびシステムが開示される。本技法
に基づく方法は、命令セットアーキテクチャ（ISA:　instruction　set　architecture）
を介して一つまたは複数の共有リソース・スレッド（shared　resource　thread）（シュ
レッド［shred］）を実行するためのプログラミング命令を受け取ることを含む。一つま
たは複数の命令ポインタがISAを介して構成設定され、前記一つまたは複数のシュレッド
がマイクロプロセッサにより同時的に実行される。ここで、マイクロプロセッサは複数の

(4) JP 4949231 B2 2012.6.6

10

20

30

40

50

命令シーケンサを含んでいる。
【発明を実施するための最良の形態】
【０００７】
　以下の記述では、説明の目的で個別的な述語が述べられる。しかし、こうした個別的な
詳細が必須でないことは当業者には明らかであろう。以下の詳細な記述のいくつかの部分
はアルゴリズムおよびコンピュータメモリ内のデータビットに対する演算の記号表現を用
いて呈示されている。これらのアルゴリズム的記述および表現は、データ処理分野の当業
者が自らの仕事の内容を他の当業者に最も効率的に伝達するために使っている手段である
。アルゴリズムとはここでは、そして一般にも、所望の結果に導く一連の自己完結的な処
理の系列であると考えられる。前記処理は物理量の物理的な操作を要求するものである。
必須ではないが通例、そうした量は、保存、転送、組み合わせおよびその他の操作ができ
る電気信号または磁気信号の形をとる。時には主として慣用上の理由のため、これらの信
号をビット、値、要素、記号、文字、項、数などと称することが便利であることがわかっ
ている。
【０００８】
　しかし、これらの、そして同様の用語はすべて適切な物理量と関連しており、単にそれ
らの量に適用される便利なラベルにすぎないことを留意すべきである。以下の議論から明
らかなように、特別に断らない限り、本記載を通じて、「処理」または「計算」または「
計数」または「決定」または「表示」などといった用語を用いた議論は、コンピュータシ
ステムのレジスタおよびメモリ内の物理的な（電子的な）量として表現されているデータ
を操作し、コンピュータシステムメモリまたはレジスタまたはその他のそのような情報記
憶、伝送もしくは表示装置内の物理的な量として同様に表現される他のデータに変換する
コンピュータシステムまたは同様の電子計算装置の動作およびプロセスを言っていること
が了解される。
【０００９】
　本発明の諸実施形態はまた、ここの動作を実行するための装置にも関する。この装置は
必要とされる目的のために特別に構築されたものでもよいし、あるいは汎用コンピュータ
であって該コンピュータ内に保存されるコンピュータプログラムによって選択的に活性化
もしくは再構成設定されるのでもよい。そのようなコンピュータプログラムはコンピュー
タ可読記憶媒体に保存されうる。そのような媒体としては、これに限定されるものではな
いが、フロッピー（登録商標）ディスク、光ディスク、CD-ROM、光磁気ディスクを含む任
意の種類のディスク、読み出し専用メモリ（ROM）、ランダムアクセスメモリ（RAM）、EP
ROM、EEPROM、磁気もしくは光カードまたは電子的な命令を保存するのに好適な任意の種
類の媒体であってそれぞれコンピュータシステムバスに結合されているものがある。
【００１０】
　ここに呈示される動作および表示はいかなる特定のコンピュータまたはその他の装置に
本来的に関係しているものでもない。さまざまな汎用システムがここの思想に従ったプロ
グラムとともに使用されうるし、あるいは必要とされる動作を実行するためにより特化し
た装置を構築することが便利であると判明することもありうる。多様なこれらのシステム
のための必要とされる構造は以下の記述から明らかとなろう。さらに、本発明の実施形態
はいかなる特定のプログラミング言語との関連で記載されているのでもない。ここに記載
される本発明の諸実施形態の思想を実現するためには多様なプログラミング言語が使用さ
れうることは理解されるであろう。
【００１１】
　この明細書を通じて使用される「ユーザー」は、アプリケーション・プログラム、非特
権コードおよび同様なソフトウェアといったユーザーレベル・ソフトウェアのことを述べ
ている。ユーザーレベル・ソフトウェアはOSまたは同様の特権ソフトウェアからは区別さ
れる。本発明のある実施形態によれば、以下の記述は上述したMIMDプロセッサに適用され
る。
【００１２】

(5) JP 4949231 B2 2012.6.6

10

20

30

40

50

　図１は、本発明のある実施形態に基づく、本方法および装置を利用する例示的なコンピ
ュータシステム１００のブロック図を示している。コンピュータシステムはプロセッサ１
０５を含む。チップセット１１０がシステム１００にメモリおよびI/O機能を提供する。
より具体的には、チップセット１１０はグラフィックおよびメモリ・コントローラ・ハブ
（GMCH:　Graphics　and　Memory　Controller　Hub）１１５を含む。GMCH１１５は、プ
ロセッサ１０５と通信するホストコントローラとしてはたらき、さらにメインメモリ１２
０のためのコントローラとしてはたらく。本発明のある実施形態によれば、プロセッサ１
０５はマルチスレッドのユーザーレベルへの拡張を可能にする。GMCH１１５はまた、それ
に結合されている先進グラフィックポート（AGP:　Advanced　Graphics　Port）コントロ
ーラ１２５へのインターフェースをも提供する。チップセット１１０はさらに、数多くの
I/O機能を実行するI/Oコントローラ・ハブ（ICH:　I/O　Controller　Hub）を含む。ICH
１３５はシステム管理バス（SMバス：System　Management　Bus）１４０に結合されてい
る。
【００１３】
　ICH１３５は、周辺コンポーネント相互接続（PCI:　Peripheral　Component　Intercon
nect）バス１５５に結合されている。スーパーI/O（S/O:　super　I/O）コントローラ１
７０がICH１３５に結合されて、キーボードおよびマウス１７５のような入力装置への接
続性を提供する。汎用I/O（GPIO:　general-purpose　I/O）バス１９５がICH１３５に結
合されている。USBポート２００が図のようにICH１３５に結合されている。プリンタ、ス
キャナ、ジョイスティックなどのようなUSBデバイスはこのバス上でシステム構成に追加
されることができる。IDEドライブ２１０をコンピュータシステムに接続するために統合
ドライブエレクトロニクス（IDE:　integrated　drive　electronics）バス２０５がICH
１３５に結合されている。論理的にはICH１３５は、単一の物理コンポーネント内の複数P
CIデバイスのように見える。
【００１４】
　プロセッサ１０５には命令セットアーキテクチャが含まれている。命令セットアーキテ
クチャ（ISA:　instruction　set　architecture）はプロセッサ１０５のようなマイクロ
プロセッサの抽象モデルで、状態要素（レジスタ）およびそれらの状態要素を動作させる
命令からなる。命令セットアーキテクチャは、マイクロプロセッサの振る舞いの抽象的な
仕様を提供することによって、プログラマーおよびマイクロプロセッサ設計者の両方に対
して、ソフトウェアとハードウェアの間の境界のはたらきをする。
【００１５】
　シリコンチップ上で利用可能なトランジスタ数の向上は、汎用マイクロプロセッサへの
マルチスレッドの導入を可能にした。マルチスレッドは２つの異なる仕方で実装されうる
：チップレベル・マルチプロセッサ（CMP:　chip-level　multiprocessor）および同時マ
ルチスレッド・プロセッサ（SMT:　simultaneous　multithreaded　processor）である。
このどちらもプロセッサ１０５として使用されうる。
【００１６】
　図２は、本発明のある実施形態に基づく、例示的なチップレベル・マルチプロセッサを
示している。プロセッサ２００のようなチップレベル・マルチプロセッサにおいては、複
数のCPUコア２１０～２１３が単一のシリコンチップ２００に集積されている。CPUコア２
１０～２１３のそれぞれは独立した実行スレッド２２０～２２３を実行できるが、一部の
リソース（キャッシュなど）がCPUコア２１０～２１３のうちの二つ以上によって共有さ
れていてもよい。
【００１７】
　図３は、本発明のある実施形態に基づく、例示的な同時マルチスレッド・プロセッサ３
００を示している。プロセッサ１０５はプロセッサ３００のような同時マルチスレッド・
プロセッサであることができる。同時マルチスレッド・プロセッサ３００においては、単
一のCPUコア３１０が、複数の実行スレッドを実行できる。CPUコア３１０は、極度に細か
い粒度でCPUリソースを共有する（しばしば各リソースでどのスレッドを処理するかをク

(6) JP 4949231 B2 2012.6.6

10

20

30

40

50

ロックごとに決定する）ことによって、ソフトウェアには二つ以上のプロセッサのように
見える。
【００１８】
　図４は、本発明のある実施形態に基づく、例示的な非対称マルチプロセッサ４００を示
している。プロセッサ１０５はマルチプロセッサ４００のような非対称マルチプロセッサ
であることができる。CPUコア４１０～４２７が異なるマイクロアーキテクチャを有する
がISAは同じであるようなチップレベル・マルチプロセッサ４００を構築することが可能
である。たとえば、少数の高性能CPUコア４１０～４１１が多数の低パワーCPUコア４２０
～４２７と一緒に集積されてもよい。この種の設計は、高いスカラー性能とともに高い総
スループットを実現できる。２つの種類のCPUコアはソフトウェアには、通常の共有メモ
リ・スレッドとして、あるいはシュレッドとして、あるいは両者の何らかの組み合わせと
して見える。命令セットアーキテクチャ（ISA）はプロセッサ１０５のようなマイクロプ
ロセッサの抽象モデルであり、状態要素（レジスタ）およびそれらの状態要素に作用する
命令からなる。ISAはマイクロプロセッサの振る舞いの抽象的な仕様を提供することによ
って、プログラマーおよびマイクロプロセッサ設計者の両方に対して、ソフトウェアとハ
ードウェアの間の境界のはたらきをする。本プログラミング・モデルは、アプリケーショ
ン・プログラムが、直接的に複数の非対称CPUコアを制御することを可能にする。
　
【００１９】
〈共有メモリ・プログラミング・モデル〉
　従来のマルチスレッド・マイクロプロセッサは、従来の共有メモリ・マルチプロセッサ
・システムと同じプログラミング・モデルを採用している。プログラミング・モデルは次
のとおりである。マイクロプロセッサがOSに複数の実行スレッドを提供する。OSはこれら
のスレッドを使って複数のアプリケーション（「プロセス」）を並行して走らせる、およ
び／または単一のアプリケーションからの複数のスレッド（「マルチスレッド」）を並行
して走らせる。いずれの場合にも、複数のスレッドはソフトウェアには独立したCPUのよ
うに見える。メインメモリはすべてのスレッドによって共有され、スレッド間の通信はメ
インメモリを通じて実行される。CPU内のハードウェアリソースも共有されうるが、共有
はマイクロアーキテクチャによりソフトウェアからは隠されている。
【００２０】
　伝統的な共有メモリ・マイクロプロセッサのプログラミング・モデルは広く理解され、
多くのOSおよびアプリケーション・プログラムによってサポートされているものの、その
モデルはいくつかの不都合な点がある。それは：
１）スレッド間の通信がメインメモリを介して実行され、よって著しく遅い。キャッシン
グによって遅延の一部を軽減しうるが、共有を容易にするためにしばしばキャッシュライ
ンをあるCPUコアから別のCPUコアに渡す必要がある。
２）スレッド間の同期がメモリベースのセマフォを使って実行され、よって著しく遅い。
３）スレッドの生成、破棄、サスペンドおよび再開がOSの介入を必要とし、よって著しく
遅い。
４）CPUマルチスレッド機能の改良が上述したメモリ遅延およびOS遅延によって薄められ
てしまうため、マイクロプロセッサ発売元が最も効率的なマルチスレッド機能を提供でき
ない。
　
【００２１】
〈マルチスレッド・アーキテクチャ拡張〉
　従来システムに関する上に述べた理由のため、本方法およびシステムは、プロセッサの
アーキテクチャを拡張して、マルチスレッド・アーキテクチャ拡張を通じてアーキテクチ
ャ的に目に見えるマルチスレッド機能を含めるようにする。複数の同時的な実行スレッド
、複数の命令ポインタ、単一の処理要素内のある種のアプリケーション状態（レジスタ）
の複数のコピーが提供される。複数の実行スレッドは、既存の共有メモリ・スレッドとは

(7) JP 4949231 B2 2012.6.6

10

20

30

40

50

区別できるものであり、シュレッド（shred）すなわち共有リソース・スレッド（shared
　resource　thread）と称される。
【００２２】
　本マルチスレッド・アーキテクチャ拡張（multithreading　architecture　extensions
）（その例は以下ではMAXと称される）は、既存のアーキテクチャ機能を含み、加えて複
数の同時シュレッドをサポートすることになる。各シュレッドは独自の命令ポインタ、一
般レジスタ、FPレジスタ、分枝レジスタ、述語レジスタおよびある種のアプリケーション
レジスタを有している。シュレッドを生成および破棄するために非特権命令が生成される
。シュレッド間の通信は、共有メモリに加えて共有レジスタを通じて実行される。本マル
チスレッド・アーキテクチャ拡張は共有レジスタへの原子的なアクセスを保証するため、
セマフォの必要性は低下する。さらに、本マルチスレッド・アーキテクチャ拡張は、イン
テル（登録商標）による３２ビットアーキテクチャのような３２ビットアーキテクチャと
、やはりインテル（登録商標）による６４ビットアーキテクチャのような６４ビットアー
キテクチャと、あるいは１６ビットアーキテクチャとさえも使用できる。
【００２３】
　本発明のある実施形態に基づく、従来の共有メモリ・マルチプロセッサ・スレッドとシ
ュレッドとの比較を次の表に示す。
【００２４】
　　　表１
【００２５】
【表１】

【００２６】
　本マルチスレッド・アーキテクチャ拡張が従来のアーキテクチャ拡張とは根本的に異な
っていることに気づかれるであろう。従来のアーキテクチャ拡張がより多くの命令および
より多くのレジスタ（状態）を提供していたのに対し、マルチスレッド・アーキテクチャ
拡張はより多くの実行単位を提供する。
　
【００２７】
〈アプリケーションおよびシステム状態〉
　プログラマーに見えるCPU状態は、２つの範疇に分けられる：アプリケーション状態お
よびシステム状態である。アプリケーション状態はアプリケーション・プログラムとOSの
両方によって使用され、制御される一方、システム状態はOSによってのみ制御される。
【００２８】
　図５は、本発明のある実施形態に基づく、ユーザーレベルのマルチスレッドを提供する
ための例示的な実行環境を示す。実行環境６００に含まれるレジスタのアプリケーション
状態は次の表のようにまとめられる。
【００２９】
　　　表２

(8) JP 4949231 B2 2012.6.6

10

20

30

【００３０】
【表２】

【００３１】
　ユーザーレベル・マルチスレッド・レジスタ６５０～６６５は、以下に、より詳細に述
べる。
【００３２】
　３２ビットアーキテクチャシステム状態は次のようにまとめられる。
【００３３】
　　　表３
【００３４】

(9) JP 4949231 B2 2012.6.6

10

20

30

40

50

【表３】

　各シュレッドについて、アプリケーション状態は２つの範疇に分けられる：シュレッド
毎アプリケーション状態および共有アプリケーション状態である。ここで述べるMAXプロ
グラミング・モデルはシュレッド毎アプリケーション状態の特有なインスタンスを提供す
る一方、共有アプリケーション状態は複数のシュレッドの間で共有される。システム状態
のコピーは一つしかなく、所与のスレッドに対応するすべてのシュレッドが同じシステム
状態を共有する。アプリケーションおよび状態の近似的な分割は次の表に呈示されている
。
【００３５】
　　　表４
【００３６】

【表４】

(10) JP 4949231 B2 2012.6.6

10

20

30

40

50

【００３７】
　本マルチスレッド・アーキテクチャ拡張は、ほとんどのアプリケーション状態のプログ
ラム可能な共有（sharing）または専有（privacy）を提供し、ソフトウェアが最良の分割
を選択できる。プログラムはビットベクトルによって行われ、個々のレジスタが共有また
は専有のいずれかとして選択されることができる。ハードウェアの名称変更手段が、ビッ
トベクトルによって指定される共有プールまたは専有プールのいずれかからレジスタを割
り当てることができる。
【００３８】
　MAXの全体としての記憶要求は従来の同時マルチスレッド・プロセッサおよびチップレ
ベル・マルチプロセッサより少ない。伝統的な共有メモリ・マルチプロセッサ・プログラ
ミング・モデルを実装する同時マルチスレッド・プロセッサまたはチップレベル・マルチ
プロセッサではアプリケーションおよびシステム状態全体が複製される必要があるのに対
し、MAXではシュレッド毎の専有アプリケーション状態だけが複製される。
【００３９】
〈シュレッド／スレッド階層〉
　各共有メモリ・スレッドは複数のシュレッドからなる。シュレッドと共有メモリ・スレ
ッドは２レベルの階層をなす。別の実施形態では、３レベルの階層が共有メモリMAXプロ
セッサのクラスタから構築できる。クラスタはメッセージ渡しを使って通信する。OSがス
レッドのスケジューリングを扱い、一方、アプリケーション・プログラムがシュレッドの
スケジューリングを扱う。任意の所与のシュレッドから見た他のシュレッドがローカルま
たはリモートであるという意味において、シュレッドは非一様である。シュレッド毎アプ
リケーション状態は各シュレッドについて複製される。共有アプリケーションおよびシス
テム状態はローカルなシュレッドに共通であり、各共有メモリ・スレッドについて複製さ
れる。メモリ状態は一つのコピーのみを有する。
【００４０】
　図６は、本発明のある実施形態に基づく、シュレッドと共有メモリ・スレッドとの例示
的な関係を示している。シュレッド毎アプリケーション状態５１０は各シュレッドについ
て複製される。共有アプリケーションおよびシステム状態５２０はローカルなシュレッド
に共通であり、各共有メモリ・スレッドについて複製される。メモリ状態５３０は一つの
コピーのみを有する。
【００４１】
　MAXプログラミング・モデルではシステム状態５２０が複数のシュレッドの間で共有さ
れるため、該複数のシュレッドは同じプロセスに属する。本マルチスレッド・アーキテク
チャ拡張は、マルチスレッド・アプリケーション、ライブラリおよび仮想マシンによって
使用されることが意図されている。MAXプログラミング・モデルはこの種のソフトウェア
に、そのシュレッドに対する先例のない度合いの制御および共有メモリでは実現できない
パフォーマンス潜在力を与える。
【００４２】
　シュレッドはみな同じ特権レベルで走り、同じアドレス変換を共有するので、シュレッ
ド間では保護確認は必要とされない。よって、伝統的な保護機構はシュレッド間通信の間
には回避しうる。
【００４３】
　共有システム状態のため、同じスレッド上で異なるプロセスを走らせるためにMAXプロ
グラミング・モデルを使うことはできない。このため、MAXプログラミング・モデルおよ
び従来の共有メモリ・プログラミング・モデルは同じシステム内で共存する。
【００４４】
　所与のCPUは有限個の物理シュレッドを提供するため、ソフトウェアは利用可能なシュ
レッド数を、ハードウェアスレッドの可視化と同様の仕方で可視化する。可視化の結果は
、有限個の、並行して走っている物理シュレッドとともに潜在的には限りない数の仮想シ
ュレッドを与える。

(11) JP 4949231 B2 2012.6.6

10

20

30

40

50

　
【００４５】
〈システムコール〉
　OSコールは、アプリケーション・プログラムからOSに制御を移し、コンテキスト切り換
えを実行することにより、従来式の仕方で処理されてもよい。MAXアーキテクチャでは、
一つの主要な相違は、どのシュレッドでOSをコールしても、所与のスレッドに関連するす
べてのシュレッドの実行がサスペンドされるということである。同じスレッドに属するす
べてのシュレッドの状態を保存し、復元するのはOSの責任である。
【００４６】
　追加的な状態のため、コンテキスト切り換えのオーバーヘッドが増大する。コンテキス
ト切り換えのメモリ・フットプリントはシュレッド数に比例して増える。しかし、コンテ
キスト切り換え時間はあまり増加しない。各シュレッドが、他のシュレッドと並列に自分
の状態を保存／復元するからである。コンテキスト切り換え機構は、複数のシーケンサを
使った並列的な、状態の保存／復元を可能にする。OSそのものは複数のシュレッドを使用
する。
【００４７】
　OSをコールするコストが増大するため、OSによって実行されていたある種の機能性はア
プリケーション・プログラムに移行される。この機能性には、スレッド維持およびある種
の例外および割り込みの処理が含まれる。
【００４８】
　システムコールを実行するための代替的な実施形態は、コンテキスト切り換えが高価に
なりつつある一方、スレッドが安価になりつつあるという観察に基づいている。この実施
形態では、あるスレッドがOSを走らせるのに専用とされ、第二のスレッドがアプリケーシ
ョン・プログラムを走らせるのに専用とされる。アプリケーション・プログラムのシュレ
ッドがシステムコールを実行すると、それはOSシュレッドに（共有メモリを介して）メッ
セージを送り、応答メッセージを待つ。このようにして、メッセージ交換・待機機構が、
従来式の制御移行・コンテキスト切り換え機構に取って代わる。どのスレッドのアドレス
変換も変更は必要とされない。恩恵は、あるシュレッドによってOSに送られたメッセージ
がローカルな他のシュレッドを乱さないということである。
　
【００４９】
〈例外〉
　従来のアーキテクチャでは、例外はアプリケーション・プログラムの実行をサスペンド
し、OSの例外ハンドラを呼び出す。MAXプログラミング・モデルのもとでは、この振る舞
いは望ましくない。あるシュレッドをサスペンドしてOSを呼び出すことは、（所与のスレ
ッドに関連する）あらゆるシュレッドもサスペンドしてしまうからである。
【００５０】
　この問題を解決するため、多くのタイプの例外を手当てする最初の機会をアプリケーシ
ョン・プログラムに与える、新しいユーザーレベルの例外機構を導入する。ユーザーレベ
ルの例外機構は、既存の例外タイプのいくつかが究極的にはアプリケーションそのものに
よって手当てされているとの観察に基づいている。
【００５１】
　ユーザーレベルの例外機構のためには、例外がどう報告されるかが、例外がどう手当て
されるかから区別される。例外は次のように３つの範疇に分けられる。
１．アプリケーション・プログラムに報告され、アプリケーション・プログラムによって
手当てされる例外。たとえば、０による除算例外はその例外を引き起こしたアプリケーシ
ョンに報告され、手当てもそのアプリケーションによってなされる。OSの関与は必要でも
ないし、望ましくもない。
２．アプリケーション・プログラムに報告され、その後、アプリケーション・プログラム
が手当てのためにOSをコールする必要のある例外。アプリケーションによって起こされる

(12) JP 4949231 B2 2012.6.6

10

20

30

40

50

ページフォールトはアプリケーションに報告されてもよいが、ページ内でスワップするた
めにはアプリケーション・プログラムはOSをコールする必要がある。
３．OSに報告され、OSによって手当てされる必要のある例外。セキュリティ上の理由で、
ハードウェア割り込みはOSに報告される必要がある。システムコール（ソフトウェア割り
込み）は明らかにOSに報告される必要がある。
【００５２】
　次の表は、上記の３つの各範疇の例外を示している。「キャッシュミスに際しての読み
込み例外」および「微細粒度タイマー」の例外タイプは、本発明のある実施形態に関係し
た例外タイプとして与えられている。
【００５３】
　　　表５
【００５４】
【表５】

【００５５】
　アプリケーション・プログラムに報告された例外は、選択的にアプリケーション内で処
理され、あるいは処理のためにOSに渡される。後者の場合、アプリケーション・プログラ
ムは例外（ページフォールトのような）に応答してOSに手当てを明示的に要求するシステ
ムコールを実行する。これは、暗黙のうちにOSがアプリケーションに代わってそのような
手当てを実行する伝統的なアプローチとは対照的である。ネストされた例外を避けるため
、例外をOSに中継するアプリケーション・コードはそれ自身が追加的な例外を招くことは
ないという特別な規定が設けられる。ユーザーレベルの例外機構は、影のレジスタセット
におけるCPUレジスタの最少数およびプロセッサ・ベクトルを固定位置に保存する。
　
【００５６】
〈仮想マシン〉
　仮想マシンとマルチスレッド・アーキテクチャ拡張のここでの諸実施形態とは、互いに
制約を課す。仮想マシンは、ソフトウェアが仮想化されているリソースにアクセスしよう
とするときには常に例外を発生させ、例外処理はシュレッドに対して著しいパフォーマン
ス上の影響をもつ。
【００５７】
　仮想マシンでは、特権命令の実行または特権プロセッサ状態へのアクセスが例外を発生

(13) JP 4949231 B2 2012.6.6

10

20

30

させる。例外は仮想マシン・モニタに報告される（そしてそれによって手当てされる）必
要がある。MAXでは、OS（および仮想マシン・モニタ）によって手当てされる例外は、所
与のスレッドに関連するあらゆるシュレッドをサスペンドさせる。仮想マシン・モニタは
複数のシュレッドの存在を理解する。仮想マシンのアーキテクチャは、非特権命令および
プロセッサ・リソースについて発生される例外の数を最小化する。
　
【００５８】
〈デッドロック〉
　MAXアーキテクチャではシュレッドがローカルな他のシュレッドによってサスペンドさ
れることができるので、デッドロック回避が複雑になる。アプリケーション・ソフトウェ
アは、一つのシュレッドがOSに手当てされる例外またはシステムコールを被っても、ロー
カルなすべてのシュレッドをサスペンドしてしまうデッドロックが生じないことを保証す
る。
【００５９】
　ローカルな（シュレッド間の）通信および同期は、リモートの（スレッド間の）通信お
よび同期とは区別される。ローカルな通信は、共有レジスタ６５５（図５に示してある）
または共有メモリのいずれかを使って実行される。リモートの通信は共有メモリを使って
実行される。ローカルなデータ同期は原子的なレジスタ更新、レジスタ・セマフォまたは
メモリ・セマフォを使って実行される。リモートのデータ同期はメモリ・セマフォを使っ
て実行される。
【００６０】
　ローカルおよびリモートのシュレッド制御（生成、破棄）はいずれもMAX命令を使って
実行される。シュレッド制御は、wait()またはyield()のためにOSをコールすることはし
ない。それは所与のスレッド上のあらゆるシュレッドをサスペンドするという意図しない
効果を有しうるからである。スレッド維持のために使われるOSコールは、ユーザーレベル
のシュレッド・ライブラリへのコールで置き換えられる。シュレッド・ライブラリは今度
は、必要に応じてスレッドを生成および破棄するためにOSをコールする。
　
【００６１】
〈シュレッドとファイバ〉
　シュレッドは、従来のOSで実装されるファイバとは異なる。相違は次の表にまとめられ
ている。
【００６２】
　　　表６
【００６３】

(14) JP 4949231 B2 2012.6.6

10

20

30

40

50

【表６】

【００６４】
〈ハードウェア実装〉
　マルチスレッド・アーキテクチャ拡張をサポートするマイクロプロセッサの実装は、チ
ップレベル・マルチプロセッサ（CMP:　chip-level　multiprocessor）および同時マルチ
スレッド・プロセッサ（SMT:　simultaneous　multithreaded　processor）の形をとるこ
とができる。従来のCMPおよびSMTプロセッサは、CPUリソースの共有をソフトウェアから
隠そうとしている。これに対し、マルチスレッド・アーキテクチャ拡張のここでの諸実施
形態を実装されたときには、プロセッサは共有をアーキテクチャの一部としてさらけ出す
。
【００６５】
　MAXプロセッサをチップレベル・マルチプロセッサとして実装するため、システム状態
の複数のコピーをCPUコアどうしの間で同期状態に保つために、ブロードキャスト機構が
使われる。共有されるアプリケーションおよびシステム状態のために高速通信バスが導入
される。オンチップ通信はオフチップのメモリに比べて高速なため、これらの通信バスは
MAXプロセッサに、共有メモリ・マルチプロセッサに対するパフォーマンス上の優位性を
与える。
【００６６】
　MAXプロセッサを同時マルチスレッド・プロセッサとして実装することは、ハードウェ
アがすでに必要なリソース共有を提供しているので可能である。MAXの実装を、マルチス
レッドの３２ビットプロセッサ上でほとんど完全にマイクロコードで行うことも可能であ
る。
【００６７】
　ある実施形態によれば、本方法およびシステムは、複数のシュレッドの間でシステムコ
ールおよび例外（OSに報告されるもの）の優先順位付けを可能にする。それにより、いか
なる時点においても、一つのシュレッドの要求だけが手当てされる。システム状態は一時
には一つのOSサービス要求しか扱えないので、優先順位付けおよび一つの要求の選択は必

(15) JP 4949231 B2 2012.6.6

10

20

要である。たとえば、シュレッド１およびシュレッド２が同時にシステムコールを行うと
する。優先順位付け手段が、シュレッド１のシステムコールだけが実行されたがシュレッ
ド２のシステムコールはまだ実行が始まっていないことを保証する。公正さへの配慮のた
め、優先順位付け手段はラウンドロビン選択アルゴリズムを採用するが、他の選択アルゴ
リズムを使ってもよい。
　
【００６８】
〈スケーラビリティ〉
　MAXプログラミング・モデルのスケーラビリティは次によって決定される。
１）コンテキスト切り換えに際して保存／復元するのが実行可能である状態の量
２）コンテキスト切り換えの間に所与のスレッドに関連するあらゆるシュレッドをサスペ
ンドすることから帰結する、並列度の減少
３）シュレッド間通信
　シュレッド数が増加するにつれ、コンテキスト切り換えに際して保存／復元される必要
のある状態の量が増加し、全シュレッドをサスペンドする結果として失われる潜在的な並
列度が増加する。これら２つの因子が実際的なシュレッド数を制限することになる。
【００６９】
　シュレッド間通信もスケーラビリティを制限する。該通信はオンチップリソースを使っ
て実行されるからである。対照的に、伝統的な共有メモリ・マルチプロセッサ・モデルの
スケーラビリティはオフチップ通信によって制限される。
　
【００７０】
〈共有分類〉
　次の表には、シュレッドのアーキテクチャ、実装およびソフトウェア使用におけるさま
ざまな自由度での分類が呈示されている。
【００７１】
　　　表７
【００７２】

(16) JP 4949231 B2 2012.6.6

10

20

30

40

【表７】

【００７３】
　MAXアーキテクチャの２つの異なる種類が区別される：均一と不均一である。均一シュ
レッドは、すべてのシュレッドが同じ命令セットを実行するという点で均一マルチプロセ
ッサと同様である。不均一マルチプロセッサと同様の仕方で、不均一シュレッドも可能で
ある。たとえば、不均一シュレッドは：
・３２ビットプロセッサとネットワークプロセッサ、
・３２ビットプロセッサと６４ビットプロセッサ、
の間で構築されうる。
【００７４】
　同様に、根底にあるマイクロアーキテクチャは対称的または非対称的のどちらでもあり
うる。後者の場合の例としては、若干の大規模な高性能CPUコアと多数の小型低パワーCPU
コアを含む、図４に示したようなチップレベル・マルチプロセッサがある。
　
【００７５】
〈用途モデル〉
　次の表は、本マルチスレッド・アーキテクチャ拡張の諸実施形態のためのいくつかの用
途モデルをまとめている。
【００７６】
　　　表８
【００７７】

(17) JP 4949231 B2 2012.6.6

10

20

30

40

50

【表８】

【００７８】
〈プリフェッチ〉
　プリフェッチ用途モデルでは、メイン・スレッドは一つまたは複数のヘルパー・スレッ

(18) JP 4949231 B2 2012.6.6

10

20

30

40

50

ドを生み、それがメインメモリからキャッシュラインをプリフェッチするのに使われる。
ヘルパー・スレッドが生み出されるのは、メイン・スレッドでのキャッシュミスに応答し
てである。メインメモリへのアクセスは完了するのに数百から1000CPUクロックを必要と
するので、キャッシュミスになった読み込みを失敗としてメインメモリに進むためのアー
キテクチャ上の備えがされていない限り、スカラーコードの実行はメインメモリアクセス
の間事実上停止することになる。
　
【００７９】
〈従来式スレッドの置き換え〉
　シュレッドは、従来式スレッドの高性能な置き換えとして、マルチスレッド・アプリケ
ーションによって使われることがありうる。ユーザーレベルのソフトウェア・ライブラリ
が、以前にOSによって実行されたシュレッド管理機能（生成、破棄など）を実行するため
に提供される。ライブラリは追加的なスレッドを要求するために、必要に応じてOSをコー
ルするほか、シュレッド命令を使用する。ソフトウェア・ライブラリのコールは、コンテ
キスト切り換えが必要ないためOSコールよりもずっと高速である。
　
【００８０】
〈コンパイラのための専用実行リソース〉
　コンパイラは、レジスタのようなほかのプロセッサ・リソースを使用するのと同じ仕方
でシュレッドを使ってもよい。たとえば、コンパイラはプロセッサを８つの整数レジスタ
、８つの浮動小数点レジスタ、８つのSSEレジスタおよび４つのシュレッドをもつものと
見ることができる。シュレッドをリソースとして扱うことにより、コンパイラは、レジス
タ割り当てと類似の仕方でシュレッドを割り当てる。レジスタと同様、アプリケーション
・プログラムがハードウェアが提供するよりも多くの仮想シュレッドを要求する場合にシ
ュレッドを補助記憶に散布／充填するための何らかの機構が必要である。従来のアーキテ
クチャでは、制御の流れは一つしかないので、通常プロセッサ・リソースとは見なされな
い。
　
【００８１】
〈管理されたランタイム環境のための専用スレッド〉
　管理されたランタイム環境では、シュレッドはガーベッジ・コレクション、ジャストイ
ンタイム（just-in-time）コンパイルおよびプロファイリングのような機能の専用とされ
る。シュレッドはそのような機能を本質的に「無償で」実行する。シュレッドは命令セッ
トアーキテクチャ（ISA）の一部として提供されているからである。ISAは、プロセッサの
うち、プログラマーまたはコンパイラ作者に見える部分である。ISAはソフトウェアおよ
びハードウェアの間の境界のはたらきをする。
　
【００８２】
〈並列プログラミング言語〉
　MAXは並列プログラミング言語およびハードウェア記述言語を直接サポートする。たと
えば、iHDLまたはVerilogコンパイラは、ソースコードが明示的に並列であるため、直接
的に複数シュレッドのためのコードを生成する。
【００８３】
　チップレベル・マルチプロセッサによって可能となったスレッドの増殖はマルチスレッ
ドのための言語サポートにつながる。そのようなサポートはOSおよびランタイム・ライブ
ラリのコールを通じて提供される。マルチスレッドのための言語サポートはメインストリ
ームの汎用プログラミング言語に移行される。
　
【００８４】
〈統合されたI/O機能をもつCPU〉

(19) JP 4949231 B2 2012.6.6

10

20

30

40

50

　シュレッドはネットワーク・コプロセッサのようなI/O機能を実装するために使われる
。シュレッドとして実装されるネットワーク・コプロセッサの一つの重要な相違点は、I/
Oデバイスとしてではなく、CPUの一部として見えるということである。
【００８５】
　従来システムでは、アプリケーション・プログラムが入出力を要求するとき、アプリケ
ーション・プログラムはAPI（application　program　interface［アプリケーション・プ
ログラム・インターフェース］）を使ってOSをコールする。OSは今度はデバイスドライバ
をコールして、そのデバイスドライバが要求をI/Oデバイスに送る。OSは複数のアプリケ
ーション・プログラムからのI/O要求を待ち行列化またはシリアル化し、I/Oデバイスが一
時には一つの（あるいは有限個の）要求のみを処理することを保証する役目を負う。これ
は、CPU状態が複数のアプリケーションの間で時間多重化されるのに対してI/Oデバイスの
状態がシステムにとってグローバルであるため、必要なことである。
【００８６】
　不均一シュレッドとして実装されるI/Oデバイスでは、I/Oデバイスの状態はCPUのアプ
リケーション状態の拡張として扱われる。アプリケーション・プログラムは、CPUのアプ
リケーション状態およびI/Oデバイス状態の両方を直接制御する。アプリケーション状態
およびI/O状態の両方がコンテキスト切り換えに際してはOSによって保存／復元される。I
/Oデバイスは、その状態がいくつかのアプリケーションの間で悪影響なしに時間多重化さ
れることができるよう構成される。
　
【００８７】
〈同時マルチISAのCPU〉
　６４ビットアーキテクチャが、３２ビットアーキテクチャ・アプリケーション・アーキ
テクチャならびに新しい６４ビット命令セットを「シームレス」として知られる機構を通
じて含むよう定義される。３２ビットアーキテクチャの命令セットとの両立により、６４
ビットアーキテクチャのプロセッサは新しい６４ビットアーキテクチャのアプリケーショ
ンのほか既存の３２ビットアーキテクチャのアプリケーションも走らせることができる。
【００８８】
　現行の定義のもとでは、６４ビットアーキテクチャのCPUは、どの時点でも、６４ビッ
トアーキテクチャのスレッドまたは３２ビットアーキテクチャのスレッドのいずれかを走
らせる。２つのISAの間の切り換えは、６４ビットアーキテクチャbr.ia（３２ビットアー
キテクチャへの分岐）および３２ビットアーキテクチャjmpe（６４ビットアーキテクチャ
へのジャンプ）を介して達成される。３２ビットアーキテクチャのレジスタは６４ビット
アーキテクチャのレジスタにマッピングされるので、状態のコピーは一つしか必要とされ
ない。
【００８９】
　いかなる時点においても二つ以上の命令セットアーキテクチャが走っているマルチISA
のCPUを創り出すことが可能である。これは、６４ビットアーキテクチャISAのためのシュ
レッドと３２ビットアーキテクチャISAのための第二のシュレッドを使うことによって達
成しうる。均一シュレッドの場合のように、６４ビットアーキテクチャのシュレッドと３
２ビットアーキテクチャのシュレッドの両方のために相異なるアプリケーション状態を提
供する必要がある。６４ビットアーキテクチャのシュレッドと３２ビットアーキテクチャ
のシュレッドは同時に走る。
【００９０】
　上記のマルチスレッド・アーキテクチャ拡張を通じたユーザーレベルのマルチスレッド
を提供するための本方法およびシステムの諸特徴を述べたので、以下では３２ビットシス
テムのための実施形態を提供する。
　
【００９１】
〈３２ビットアーキテクチャの実施形態〉

(20) JP 4949231 B2 2012.6.6

10

20

30

40

　IA-32アーキテクチャを参照しつつ記述しているが、ここに記載される方法およびシス
テムはIA-64アーキテクチャのような他のアーキテクチャにも適用されうることを読者は
理解する。さらに、読者は、本発明のある実施形態に基づく例示的な実行環境を理解する
ために図５に戻るよう指示される。IA-32にユーザーレベルのマルチスレッド機能をもた
らすために、いくつかのレジスタ６５０～６６０とともに、少数の命令が、IA-32のISAに
追加される。
【００９２】
　マルチスレッド・アーキテクチャ拡張は次の諸状態からなる：
・拡張を有効／無効にするためにOSまたはBIOSによって使われるモデル固有レジスタ６５
０（MAX_SHRED_ENABLE）
・プロセッサが拡張を実装しているかどうかと利用可能な物理シュレッド数とを示す、CP
UID拡張機能情報の３ビット
・各シュレッドが独自に専有アプリケーション状態のコピーを有するようにする、アプリ
ケーション状態（EAX,　EBXなど）のほとんどの複製
・シュレッド間の通信および同期のために使われうる、共有レジスタSH0-SH7　６５５の
組
・シュレッド管理のために使われる制御レジスタSC0-SC4　６６０の組
【００９３】
　このマルチスレッド・アーキテクチャ拡張は次の命令を有する。
・シュレッドの生成／破棄：forkshred、haltshred、killshred、joinshred、getshred
・通信：共有レジスタ６５５への／からの移動（mov）、共有レジスタ６５５への／から
の同期移動
・同期（セマフォ）：cmpxshgsh、xaddsh、xchgsh
・信号伝送：signalshred
・マルチシュレッドモード（multi-shredded　mode）への／からの遷移：entermsm、exit
msm
・状態管理：shsave、shrestore
・雑：シュレッド制御レジスタへの／からの移動
【００９４】
　さらに、IA-32機構には以下の機能が設けられる。
・IA-32例外機構は、例外に際して（あてはまる場合には）マルチシュレッドモードを終
了して全シュレッド状態を保存する
・IA-32のIRET命令は（あてはまる場合には）全シュレッド状態を復元してマルチシュレ
ッドモードに戻る
・ユーザーレベルの例外機構が導入されている。
　
【００９５】
〈構成設定〉
　モデル固有レジスタ（MSR:　model　specific　register）６５０はマルチスレッド・
アーキテクチャ拡張を可能にするために使われる。MSRは下記に記述される。
【００９６】
　　　表９
【００９７】

(21) JP 4949231 B2 2012.6.6

10

20

30

40

【表９】

【００９８】
　シュレッドMSR６５０のようなモデル固有レジスタは、特権レベル０でのみ書き込みお
よび読み出しが行われる。マルチスレッド・アーキテクチャ拡張が有効にされていなけれ
ば、旧来のコードの実行はシュレッド番号０に制限される。
【００９９】
　　　表１０
【０１００】
【表１０】

【０１０１】
〈CPUID〉
　IA-32のCPUID命令は、設けられている物理スレッド数の計数とともに、プロセッサがマ
ルチスレッド・アーキテクチャ拡張をサポートしていることの指標を返すよう修正される
。これはECXにおいて返される拡張機能情報に３ビット（NSHRED）を追加することによっ
てなされる。CPUID命令によって返される情報は次の表に与えられている。
【０１０２】
　　　表１１
【０１０３】

(22) JP 4949231 B2 2012.6.6

10

20

30

40

50

【表１１】

【０１０４】
　　　表１２
【０１０５】

【表１２】

【０１０６】
　マルチスレッド・アーキテクチャ拡張が（MAX_SHRED_ENABLE　MSRを通じて）有効にさ
れていない場合、拡張機能情報はNSHREDについては000を返す。
　
【０１０７】
〈アーキテクチャ状態〉
　マルチスレッド・アーキテクチャ拡張は、全状態を３つの範疇のうちの一つに置く。
・各シュレッドの専有
・ローカルなシュレッドの間で共有
・全シュレッドの間で共有
　IA-32状態の前記範疇のそれぞれの内訳は上掲の表２に示されている。シュレッドの専
有という状態は、シュレッドごとに一回繰り返される。シュレッドの専有という状態は、
各シュレッドにとっての完全な専有である。特に、アーキテクチャは、よそのシュレッド
からあるシュレッドの専有レジスタの読み出しや書き込みを個々に行ういかなる命令も提
供しない。アーキテクチャが提供するshsaveおよびshrestore命令は、全シュレッドの専
有状態のメモリへの読み出しおよび書き込みを集合的に行うためのものであるが、これら
の命令は単一シュレッドモードにおいてしか実行されない。シュレッドの共有状態は上掲
の表３に示されている。
【０１０８】
　共有レジスタの組SH0-SH7　６５５は、シュレッド間の通信および同期のために使われ
る。これらのレジスタ６５５は共有レジスタへのMOV命令および共有レジスタからのMOV命

(23) JP 4949231 B2 2012.6.6

10

20

30

令を通じて書き込みおよび読み出しが行われる。SH0-SH7レジスタ６５５は３２ビットの
整数値を保存する。ある実施形態によれば、８０ビットの浮動小数点６２５および１２８
ビットのSSEデータ６４０がメインメモリを通じて共有される。
【０１０９】
　シュレッド制御レジスタの組SC0-SC4　６６０が提供される。これらのレジスタは次の
ように定義される。
【０１１０】
　　　表１３
【０１１１】
【表１３】

【０１１２】
　　　表１４
【０１１３】

(24) JP 4949231 B2 2012.6.6

10

20

30

40

50

【表１４】

【０１１４】
　Yと記されたフラグはシュレッドごとに複製される。Nと記されたフラグは全シュレッド
によって共有される単一のコピーを有する。
【０１１５】
　３２ビットのEFLAGSレジスタ６１５は一群の状態フラグ、一つの制御フラグおよび一群
のシステムフラグを含んでいる。プロセッサ１０５の初期化（RESETピンまたはINITピン
をアサートすることによる）直後のEFLAGSレジスタ６１５は00000002Hである。このレジ
スタ６１５のビット１，３、５、１５および２２から３１まではリザーブされており、ソ
フトウェアはこれらのビットのいずれの状態も使ったり依存したりするべきではない。
【０１１６】
　EFLAGSレジスタ６１５におけるフラグのいくつかは、専用の命令を使って直接修正でき
る。レジスタ全体を直接調査または修正できるようにするための命令はない。しかし、次
の諸命令は、一群のフラグをプロシージャ・スタックまたはEAXレジスタへ、そしてそれ
らから移動させるのに使うことができる：LAHF、SAHF、PUSHF、PUSHFD、POPFおよびPOPFD
。EFAGSレジスタ６１５の内容がプロシージャ・スタックまたはEAXレジスタに転送された
のち、フラグは、プロセッサのビット操作命令（BT、BTS、BTR、BTC）を使って調査およ
び修正できる。
【０１１７】
　タスクをサスペンドするとき（プロセッサのマルチタスク機能を使って）、プロセッサ
は自動的に、EFLAGSレジスタ６１５の状態を、サスペンドされるタスクのためのタスク状
態セグメント（TSS:　task　state　segment）に保存する。プロセッサは、自らを新しい
タスクにバインドするとき、EFLAGSレジスタ６１５に新しいタスクのTSSからデータをロ
ードする。
【０１１８】
　割り込みまたは例外ハンドラ・プロシージャへのコールが行われるとき、プロセッサは
自動的に、EFLAGSレジスタ６１５の状態をプロシージャ・スタックに保存する。割り込み
または例外がタスク切り替えを用いて扱われるときは、EFLAGSレジスタ６１５の状態はサ
スペンドされるタスクのためのTSSに保存される。

(25) JP 4949231 B2 2012.6.6

10

20

30

40

50

　
【０１１９】
〈シュレッド生成／破棄〉
　シュレッドはforkshred命令を使って生成されうる。書式は次のとおり。
【０１２０】
　　　forkshred　imm16,　目標IP
　　　forkshred　r16,　目標IP
　２つの形が与えられている。一方はシュレッド番号を即値オペランド（immediate　ope
rand）としてもち、第二のものはシュレッド番号をレジスタオペランド（register　oper
and）としてもつ。いずれの形についても、目標IPは即値オペランドとして指定され、そ
の値は現在のIPではなく、コードセグメントの先頭（名目上０）を基準とする。
【０１２１】
　forkshred　imm16,　目標IPというエンコードは、長距離ジャンプ（far　jump）命令と
同様で、シュレッド番号が16ビットのセレクタの代わりに、目標IPが16/32ビットオフセ
ットの代わりになっている。
【０１２２】
　forkshred命令は適切な実行ビットをSC0に設定し、指定されたアドレスで実行を開始す
る。ユニックスのfork()システムコールとは異なり、forkshred命令は親シュレッドの状
態をコピーしない。新しいシュレッドの実行は、他のすべての専有レジスタの現在の値と
ともに更新されたEIPを用いて開始される。新しいシュレッドがそのスタックをESPをロー
ドすることによって初期化し、はいってくるパラメータを共有レジスタまたはメモリから
取得するべきことが期待されている。forkshred命令は自動的にパラメータを渡すことは
しない。
【０１２３】
　目標シュレッドがすでに走っている場合、forkshredは#SNA（シュレッド利用不能）例
外を発生させる。これはのちに述べるようにユーザーレベルの例外である。ソフトウェア
は、すでに走っているシュレッドを開始させようとしないことを保証するか、あるいは代
替的に、既存のシュレッドを停止させる#SNAハンドラを提供して改めてforkshredの実行
に戻る。シュレッド番号がハードウェアによってサポートされる最大シュレッド数より大
きい場合には、#GP(0)例外が発生する。
【０１２４】
　現在のシュレッドの実行を終了させるためには、haltshred命令が使われる。haltshred
はSC0における現在のシュレッドの実行ビットをクリアし、現在のシュレッドの実行を終
わらせる。シュレッドの専有状態は停止中でさえも保持される。あるシュレッドが別のシ
ュレッドの専有状態にアクセスするいかなる機構も存在しないので、停止したシュレッド
の専有状態は見ることができない。しかし、その状態は持続し、そのシュレッドがforksh
redを通じて再び実行を開始したときに見えるようになる。
【０１２５】
　別のシュレッドの実行を途中で打ち切るためには、killshred命令が導入される。書式
は次のとおり。
【０１２６】
　　　killshred　imm16
　　　killshred　r16
【０１２７】
　ある実施形態によれば、シュレッド番号は１６ビットのレジスタまたは即値オペランド
である。killshredはSC0における指定されたシュレッドの実行ビットをクリアして、その
シュレッドの実行を打ち切る。停止中、そのシュレッドの専有状態は保持される。
【０１２８】
　目標シュレッドが走っていない場合には、killshredは黙って無視される。この振る舞
いは、killshredと通常に終了するシュレッドとの間の競合を避けるために必要である。k

(26) JP 4949231 B2 2012.6.6

10

20

30

40

50

illshredを実行したのち、ソフトウェアは、目標シュレッドがもはや走っていないことを
保証される。シュレッドはhaltshredを実行する代わりに自らを打ち切る（kill）ことも
できる。シュレッド番号がハードウェアによってサポートされる最大シュレッド数より大
きい場合には、#GP(0)例外が発生する。
【０１２９】
　指定されたシュレッドが終了する（SC0ビットがクリアされることで示される）まで待
つため、joinshred命令が導入される。書式は次の通り。
【０１３０】
　　　joinshred　imm16
　　　joinshred　r16
【０１３１】
　目標シュレッドが走っていなければ、joinshredはすぐに戻る。この振る舞いが、joins
hredと通常に終了するシュレッドとの間の競合を避ける。joinshredを実行したのち、ソ
フトウェアは、目標シュレッドがもはや走っていないことを保証される。シュレッドがjo
inshredを自らに行うことも許される（役には立たないが）。シュレッド番号がハードウ
ェアによってサポートされる最大シュレッド数より大きい場合には、#GP(0)例外が発生す
る。joinshred命令は自動的に戻り値を渡しはしない。
【０１３２】
　シュレッドが自らのシュレッド番号を決定できるようにするため、getshred命令が導入
される。書式は次のとおり。
【０１３３】
　　　getshred　r32
【０１３４】
　getshredは現在のシュレッドの番号を返す。getshredは、シュレッド番号によって指定
されるメモリ配列にアクセスするために使われうる。getshred　zeroは目的レジスタの全
ビットに書き込むために１６ビットシュレッド番号を拡張する。
【０１３５】
　全シュレッド生成／破棄命令のためには、シュレッド番号はレジスタオペランドまたは
即値オペランドのどちらで指定されてもよい。即値形の実行のほうがレジスタ形の実行よ
りも高速であることが期待される。シュレッド番号が実行時ではなくデコード時において
得られるであろうからである。即値形では、コンパイラがシュレッド番号を割り当てる。
レジスタ形ではランタイムの割り当てが使用される。
【０１３６】
　次の表はシュレッドの生成／破棄命令のまとめを呈示している。
【０１３７】
　　　表１５
【０１３８】
【表１５】

【０１３９】

(27) JP 4949231 B2 2012.6.6

10

20

30

40

50

　forkshred、haltshred、killshred、joinshred、getshred命令はいかなる特権レベルで
実行されてもよい。既存のIA-32のhlt命令が特権命令であるのに対して、haltshredは非
特権命令である。
【０１４０】
　killshredまたはhaltshredの実行の結果走っているシュレッドが０個になる可能性があ
る。この状態（SC0に0）は既存のIA-32の停止状態とは異なる。SC0は認められている状態
である。ただし、ユーザーレベルのタイマー割り込みが生成されるまで有用ではない。
　
【０１４１】
〈通信〉
　シュレッドは互いとの通信を、既存の共有メモリを通じて、およびその目的のために特
別に導入されたレジスタの組を通じて行う。共有レジスタSH0-SH7　６５５は同じスレッ
ドに属するすべてのローカルシュレッドによってアクセス可能である。SH0-SH7レジスタ
６５５は、はいってくるパラメータをシュレッドに渡し、シュレッドからの戻り値を通信
し、セマフォ動作を実行するために使われうる。各目的のために特定の共有レジスタ６５
５はソフトウェアの慣例によって割り当てられる。
【０１４２】
　各共有レジスタ６５５は対応する空き／充満ビットをSC3に有している。共有レジスタ
６５５に書き込みおよび読み出しをするためには、共有レジスタ６５５にMOV、および共
有レジスタ６５５からMOVの命令が使われる。これらは次のようにまとめられる。
【０１４３】
　mov　r32,sh0-sh7
　mov　sh0-sh7,r32
【０１４４】
　命令のエンコードは既存の制御レジスタ６６０への／からのMOV、およびデバッグ・レ
ジスタへの／からのMOVの命令と同様である。共有レジスタへの／からのMOV命令はいかな
る特権レベルで実行されてもよい。これらの命令は、ソフトウェアが追加的な命令を使っ
て同期を明示的に実行することを想定している。共有レジスタへの／からのmovは、SC3の
空き／充満ビットの状態を調べることも、修正することもしない。
【０１４５】
　共有レジスタ６５５へのMOV、および共有レジスタ６５５からのMOVの遅延は、共有メモ
リへのロードおよび保存の遅延より低いことが期待される。ハードウェア実装は、共有レ
ジスタ６５５を見込みで読んで、他のシュレッド書き込みをせんさくすることがありそう
である。ハードウェアは、共有レジスタ６５５に書き込むときには、強い順序付けの等価
物を保証しなければならない。代替的な実施形態では、共有レジスタ６５５にアクセスす
るためにバリア命令が生成されることができる。
【０１４６】
　あるアーキテクチャ特徴により、共有レジスタの順序付けとメモリの順序付けは互いか
ら別個のものに保たれる。よって、あるシュレッドが共有レジスタ６５５に書き込み、次
いでメモリ１２０に書き込む場合、共有レジスタ６５５の内容が共有メモリ内容より先に
見える保証はない。この定義の理由は、不必要なメモリバリアを創り出すことなく、共有
レジスタ６５５におけるループカウンタの高速アクセス／更新を可能にすることである。
ソフトウェアが共有レジスタ６５５とメモリの両方にバリアを要求する場合、ソフトウェ
アは共有レジスタ・セマフォをメモリ・セマフォとともに両方実行する。メモリ・セマフ
ォはバリアとしてはたらくことのほかは冗長である。
【０１４７】
　同期のほかに迅速な通信を提供するため、共有レジスタへの／からの同期mov命令が使
われる。これらの命令は次のようにまとめられる。
【０１４８】
　syncmov　r32,sh0-sh7

(28) JP 4949231 B2 2012.6.6

10

20

30

40

50

　syncmov　sh0-sh7,r32
【０１４９】
　命令エンコードは、既存の制御レジスタ６６０への／からのMOV、およびデバッグ・レ
ジスタへの／からのMOVの命令とパラレルである。共有レジスタ６５５への同期movは、共
有レジスタ６５５への書き込みの前に空き／充満ビットが空きを示すまで待つということ
のほかは、その非同期の対応物と同様である。共有レジスタ６５５への書き込み後、空き
／充満ビットは充満に設定される。共有レジスタ６５５からの同期movは、共有レジスタ
６５５から読む前に空き／充満ビットが充満を示すまで待つということのほかは、その非
同期の対応物と同様である。共有レジスタ６５５から読んだのち、空き／充満ビットはク
リアされて空きにされる。
【０１５０】
　空き／充満ビットは、下記に述べるようにSC3への移動を用いて初期化されうる。共有
レジスタへの／からの同期MOV命令はいかなる特権レベルで実行されてもよい。共有レジ
スタ通信命令は次のようにまとめられる。
【０１５１】
　　　表１６
【０１５２】
【表１６】

【０１５３】
〈同期〉
　一組の同期プリミティブが共有レジスタ６５５に作用する。同期プリミティブは、メモ
リでなく共有レジスタ６５５に作用するということのほかは、既存のセマフォ命令と同様
である。命令は次の通り。
【０１５４】
　　　表１７
【０１５５】
【表１７】

(29) JP 4949231 B2 2012.6.6

10

20

30

40

50

【０１５６】
　同期プリミティブはいかなる特権レベルでも実行される。これらの命令は、SC3の空き
／充満ビットの状態を調べることも、修正することもしない。
　
【０１５７】
〈マルチシュレッドモードの開始／終了〉
　MAXアーキテクチャはマルチシュレッドモードと単一シュレッドモードの間の切り換え
をする機構を提供する。単一シュレッドモードは、プロセッサが、一つを除いたすべての
シュレッドの実行を停止することによって秩序だった仕方でコンテキスト切り換えを実行
できるようにする。SC0は現在の動作モードを次のように示す：
・どのビット位置であれちょうど一つの1を含むSC0は単一シュレッドモードを含意する。
・どのビット位置であれ一つの1という以外のパターンを含むSC0はマルチシュレッドモー
ドを表す。
【０１５８】
　コンテキスト切り換えを実行するためには次のことが必要である：
１）単一シュレッドモードに切り換えることによって一つを除いたすべてのシュレッドを
サスペンドする。
２）シュレッド状態を保存する。
３）新しいシュレッド状態をロードする。
４）マルチシュレッドモードに切り換えることによってすべてのシュレッドの実行を再開
する。
【０１５９】
　マルチシュレッドモード（multi-shredded　mode）および単一シュレッドモードに切り
換えるためには、それぞれentermsmおよびexitmsmが使われる。entermsmはマルチシュレ
ッドモードにはいるために使われる。この命令の実行に先立って、全シュレッドの状態が
ロードされる必要がある。entermsmはSC1の新しいシュレッド実行ベクトルをSC0にコピー
する。entermsmは次いで指定された諸シュレッドを開始させる。
【０１６０】
　entermsmの実行後、SC1の内容が全く追加的なシュレッドの実行をもたらさないことも
可能である。この場合、プロセッサは単一シュレッドモードに留まる。entermsmを実行し
た結果として、entermsmが実行されたシュレッドがもはや走っていなくなることも可能で
ある。マルチシュレッドモードを終了するにはexitmsmが使われる。exitmsmはSC0の現在
のシュレッド実行ベクトルをSC1にコピーする。exitmsmを実行するシュレッドに対応する
もの以外のすべてのSC0実行ビットはクリアされる。exitmsmを実行するシュレッド以外の
すべてのシュレッドは停止される。これらの動作は原子的なシーケンスで実行される。SC
0状態は単一シュレッドモードを示す。entermsmおよびexitmsmはいかなる特権レベルで実
行されてもよい。
　
【０１６１】
〈状態管理〉
　命令（shsaveおよびshrestore）は、集合的なシュレッド状態をそれぞれ保存および復
元するため、すなわち全シュレッドの専有状態の内容をメモリに書き込むため、および全
シュレッドの専有状態をメモリから読み出すために使われる。書式は次のとおり。
【０１６２】
　shsave　m16384
　shrestore　m16384
【０１６３】
　メモリ保存領域のアドレスは、命令中の偏位によって指定される。アドレスは１６バイ
トの境界に整列させられる。メモリ保存領域は将来の拡張を許容するため、16キロバイト
である。メモリ保存領域は、既存のFXSAVE／FXRESTOR書式を整数レジスタを追加すること

(30) JP 4949231 B2 2012.6.6

10

20

30

40

50

によって拡張する。各シュレッドのためのメモリ保存領域は次のように定義される。
【０１６４】
　　　表１８
【０１６５】
【表１８】

【０１６６】
　全シュレッドの内容は次式で与えられるアドレスに保存／復元される：
　　アドレス＝512×（シュレッド番号）＋（ベースアドレス）
　メモリ保存領域は現在走っているシュレッドのEIPおよびESPを含む。shsaveは現在のEI
PおよびESPをメモリに書き込む。分岐を避けるため、shrestore命令は現在のシュレッド
のEIPやESPを上書きすることはしない。shrestore関数は、IRETの一部として実行された
とき、現在のシュレッドのEIPおよびESPを上書きする。
【０１６７】
　shsaveおよびshrestoreはいかなる特権レベルで実行されてもよいが、単一シュレッド
モードにあるときのみである。マルチシュレッドモードにあるときにshsaveまたはshrest
oreが試みられると、#GP(0)例外が発生する。実装では、shsave／shrestoreの保存／ロー
ド動作を実行するために利用可能な全ハードウェアリソースを自由に使用できる。
【０１６８】
　shrestoreは無条件に、全シュレッドの状態をメモリからロードする。この振る舞いは
、シュレッドの専有状態が一つのタスクから次のタスクへ漏れないことを保証するために
必要である。shsaveは、無条件にまたは条件付きで、全シュレッドの状態をメモリに保存
する。ある実装では、専有状態が修正されなかった場合にshsaveの保存動作の一部または
全部をスキップするよう非アーキテクチャ的可視のダーティー・ビット（dirty　bits）
を維持しうる。
【０１６９】
　shsaveおよびshrestore命令はシュレッドの専有状態のみを保存および復元する。共有
レジスタ６５５を保存および復元することはOSの責任である。
【０１７０】
〈シュレッド制御レジスタ６６０への／からの移動〉

(31) JP 4949231 B2 2012.6.6

10

20

30

40

50

　シュレッド制御レジスタSC0-SC4　６６０に書き込み、そこから読み出すための命令が
提供されている。それは次のようにまとめられる。
【０１７１】
　mov　r32,sc-sc4
　mov　sc0-sc4,r32
　命令エンコードは既存の制御レジスタ６６０への／からのMOV、およびデバッグ・レジ
スタへの／からのMOVの命令と同様である。シュレッド制御レジスタへの／からのMOV命令
はいかなる特権レベルで実行されてもよい。悪意のあるアプリケーション・プログラムが
シュレッド制御レジスタに書き込むことによって自分以外の何らかのプロセスに影響でき
ないことを保証するための安全措置が設けられる。
【０１７２】
　アプリケーション・プログラムは、SC0の内容を直接操作するのではなく、forkshredお
よびjoinshredを使う。exitmsmはマルチシュレッドモードから単一シュレッドモードへの
遷移を原子的な仕方で行う。現在のシュレッド実行状態を読むためにSC0からのmovを使い
、次いでシュレッド実行状態を書き込むためにSC0へのmovを使うことのでは、シュレッド
実行状態が読み出しと書き込みの間で変化しうるので、所望の結果が得られないのである
。
　
【０１７３】
〈OS例外〉
　MAXは、IA-32例外機構のためにいくつかの関わりを有する。まず、ユーザーレベルの例
外機構により、いくつかの型の例外がそれを発生させたシュレッドに直接報告されること
が可能になる。この機構については後述する。
【０１７４】
　次に、IA-32例外機構は、コンテキスト切り換えを必要とする例外が存在する場合に複
数のシュレッドを適正に処理するよう修正される。従来のIA-32例外機構に関する一つの
問題は、ちょうど一つの実行中スレッドのためにCS、EIP、SS、ESP、EFLAGSを自動的に保
存および復元するよう定義されているということである。
【０１７５】
　既存のIA-32例外機構は、entermsm、exitmsm、shsave、shrestore命令の機能性を含む
よう拡張される。コンテキスト切り換えを必要とする割り込みまたは例外が発生させられ
ると、例外機構は次のことをする：
１）exitmsmを実行することによりマルチシュレッドモードを終了する。exitmsmは、その
割り込みまたは例外を引き起こしているもの以外のすべてのシュレッドを停止させる。OS
はその割り込みまたは例外を引き起こしたシュレッドを使ってはいられる。
２）SC2によって与えられる開始アドレスでshsaveを実行することにより、全シュレッド
の現在の状態をメモリに保存する。
３）現在定義されているようなIA-32コンテキスト切り換えを実行する。
【０１７６】
　マルチシュレッドプログラムに戻るためには、修正されたIRET命令は次のことを実行す
る：
１）現在定義されているようなIA-32コンテキスト切り換えを実行する。
２）SC2によって与えられる開始アドレスでshrestoreを実行することにより、全シュレッ
ドの現在の状態をメモリから復元する。これはIA-32コンテキスト切り換えにおいて保存
されたEIPおよびESPを上書きする。
３）entermsmを実行することによりマルチシュレッドモードにはいる。SC1の状態によっ
ては、entermsmの実行は、プロセッサをして単一シュレッドモードに留まらせることもあ
る。
【０１７７】
　OSは、IRETを実行するのに先立って、メモリ中にシュレッド状態の保存／復元領域を設

(32) JP 4949231 B2 2012.6.6

10

20

30

40

50

定してそのアドレスをSC2にロードするよう要求される。OSはまた、SC1、SC3、SC4の状態
を保存／復元することも要求される。
【０１７８】
　複数のシュレッドがOSのサービスを必要とする例外に同時に遭遇する可能性がある。MA
Xアーキテクチャは一時には一つのOS例外しか報告できないので、ハードウェアは複数の
シュレッドにわたるOS例外を優先順位付けし、ちょうど一つを報告して、他のすべてのシ
ュレッドの状態を例外を発生させた命令がまだ実行されていない時点に設定する必要があ
る。
　
【０１７９】
〈ユーザーレベルの例外〉
　MAXは、ある型の例外が完全にアプリケーション・プログラム内で処理されることを可
能にする、ユーザーレベルの例外機構を導入する。いかなるOS関与、特権レベル遷移ある
いはコンテキスト切り換えも必要でない。
【０１８０】
　ユーザーレベルの例外が生起すると、次の未実行命令のEIPがスタックにプッシュされ
、プロセッサは指定されたハンドラに差し向けられる。ユーザーレベルの例外ハンドラは
そのタスクを実行し、次いで既存のRET命令を介して戻る。ある実施形態によれば、ユー
ザーレベルの例外をマスクするためにいかなる機構も設けられない。アプリケーションが
ユーザーレベルの例外を発生させるのは、該アプリケーションがそれを手当てする用意が
あるときのみであると想定されるからである。
【０１８１】
　最初の二つのユーザーレベル例外を生成するために、２つの命令が提供される：signal
shredおよびforkshredである。これらについて以下の節で述べる。
　
【０１８２】
〈信号伝送〉
　signalshred命令は、指定されたシュレッドに信号を送るために使用される。書式は次
のとおり。
【０１８３】
　signalshred　imm16,　目標IP
　signalshred　r16,　目標IP
　目標シュレッドはレジスタオペランドまたは即値オペランドとして指定されうる。sign
alshred　imm16,　目標IPという命令のエンコードは、既存の長距離ジャンプ命令と同様
で、シュレッド番号が16ビットのセレクタの代わりに、目標IPが16/32ビットオフセット
の代わりになっている。長距離ジャンプの場合と同様、signalshredの目標IPは、現在のI
Pを基準にするのではなく、コードセグメントの先頭（名目上０）を基準として指定され
る。
【０１８４】
　signalshredに応答して、目標シュレッドは、次の未実行命令のEIPをスタックにプッシ
ュし、指定されたアドレスに差し向けられる。シュレッドは自分に信号を送ってもよく、
その場合、効果は近距離コール（near　call）命令を実行するのと同じである。目標シュ
レッドが走っていない場合には、signalshredは黙って無視される。シュレッド番号がハ
ードウェアによってサポートされる最大シュレッド数より大きい場合には、#GP(0)例外が
発生する。
【０１８５】
　signalshred命令はいかなる特権レベルで実行されてもよい。signalshred命令は目標シ
ュレッドにパラメータを自動的に渡すことはしない。signalshredをブロックするための
いかなる機構も設けられていない。よって、ソフトウェアは、signalshredを発する前に
ブロック機構を実装するか、あるいはネスト可能なsignalshredハンドラを設けるかする

(33) JP 4949231 B2 2012.6.6

10

20

30

40

50

必要がありうる。
　
【０１８６】
〈シュレッド利用不能（SNA:　Shred　Not　Available）〉
　forkshredは、プログラムがすでに走っているシュレッドを開始させようとした場合に
は#SNA例外を発生させる。ソフトウェアの#SNAハンドラは既存のシュレッドに対してkill
shredを実行して、forkshred命令に戻りうる。
【０１８７】
　#SNA例外は、forkshred命令のEIPをスタックにプッシュし、SC4+0によって与えられる
アドレスに差し向けることによって処理される。SC4+0のところにあるコードは実際のハ
ンドラに分岐すべきである。例外ベクトルはSC4+16、SC4+32などに置かれる。ソフトウェ
アは、256とおりの可能なユーザーレベル例外をカバーするためにSC4+4095までのメモリ
をリザーブしている。メモリ／SC4機構内の割り込み表は、のちの時刻においてよりクリ
ーンな機構で置き換えられる。
　
【０１８８】
〈サスペンド／再開とシュレッド可視化〉
　マルチスレッド・アーキテクチャ拡張は、ユーザーレベルのソフトウェアが以下のよう
な命令を使ってシュレッドをサスペンドまたは再開することを許容する。シュレッドをサ
スペンドするための命令：
１）メモリ中のシュレッド状態保存領域を初期化する。これは、サスペンド動作のために
アプリケーション・プログラムによって設定されたメモリ領域であって、SC2とポイント
されるコンテキスト切り換えシュレッド状態領域とは異なる。
２）サスペンド・ハンドラをポイントするシュレッドに信号を送る。これはsignalshred
　目標シュレッド,　サスペンド・ハンドラIP　を通じて行われる。
３）サスペンド・ハンドラが既存のmov,　pusha,　fxsave命令を使ってそのシュレッドの
専有状態をメモリに保存する。
４）サスペンド・ハンドラがhaltshredを実行する。
５）オリジナルコードがjoinshredを実行してシュレッドが停止するまで待つ。
【０１８９】
　サスペンド動作の時点でシュレッドがすでに停止されているかもしれないことが可能で
ある。この場合、signalshredは無視され、サスペンド・ハンドラは呼び出されることが
なく、joinshredが待つこともない。メモリ中のシュレッド状態保存領域はその初期値を
保持するが、該初期値はすぐにhaltshredを実行するダミーシュレッドをポイントする必
要がある。シュレッドを再開するには、逆の動作が実行される。
１）再開ハンドラをポイントするシュレッドをフォークする。これは、forkshred　目標
シュレッド,　再開ハンドラIP　を通じて行われる。
２）再開ハンドラが既存のmov,　popa,　fxrestor命令を使ってシュレッドの専有状態を
メモリから復元する。
３）再開ハンドラが既存のRET命令を通じてシュレッドに復帰する。
【０１９０】
　再開先のスレッドがすでに停止されているときには、再開ハンドラは、すぐにhaltshre
dを実行するダミーシュレッドにRETする。サスペンド／再開機能は、シュレッド可視化の
可能性を開く。forkshredを実行する前に、ソフトウェアは同じシュレッド番号をもつ既
存のシュレッドをサスペンドすることを選ぶことができる。joinshredを実行したのちに
、ソフトウェアは同じシュレッド番号をもつ既存のシュレッドを再開することを選ぶこと
ができる。サスペンド／再開シーケンスは再入可能ではないので、いかなる所与の時刻に
もいかなる所与のシュレッドについても実行されているサスペンド／再開が一つだけであ
ることを保証するための、ソフトウェアの決定的なセクションが必要である。これらの機
構を使って、アプリケーション・プログラムが独自のプリエンプティブなシュレッド・ス

(34) JP 4949231 B2 2012.6.6

10

20

30

40

50

ケジューラを生成することが可能である。
【０１９１】
　MAXの代替的な実施形態では、最初の利用可能なシュレッドを使ってフォークするため
の命令が存在する（allocforkshred　r32）。ここでr32は割り当てられたシュレッド番号
を用いて書かれる（forkshredではr32はフォークすべきシュレッド番号を指定する）。al
locforkshredは、利用可能なハードウェア・シュレッドがあるかどうかを示すフラグをも
返す。
【０１９２】
　別の実施形態では、waitshred命令が、共有レジスタを使った待機同期を提供する（wai
tshred　sh0-sh7,　imm）。wait命令は待機機能を命令として提供する。この命令がなけ
れば、次のようなループを使う必要がある。
【０１９３】
　loop:　mov　eax,　sh0
　　　　and　eax,　mask
　　　　jz　loop
　別の実施形態では、joinshredは、複数のシュレッド上で待機するためのビットマスク
を与えられる。ビットマスクがなければ、joinshredは一つのシュレッドが終了するのを
待ち、複数のシュレッド上で待機するためには複数のjoinshredが必要とされる。
【０１９４】
　ある代替的な実施形態では、killshredは使用されない。signalshredとそれに続くjoin
shredがkillshredの代わりに使用されうる。signalshredハンドラはhaltshred命令からな
る。
【０１９５】
　さらに別の実施形態では、forkshredとsignalshredを組み合わせることが可能である。
forkshredとsignalshredは、シュレッドが現在走っているか停止しているかに関する振る
舞いでしか違わない。signalshredが停止されているシュレッドを開始させることを許容
されれば、signalshredは可能性としてはforkshredの代わりになることができる。
【０１９６】
　図７は、本発明のある実施形態に基づく、ユーザーレベルのマルチスレッドの例示的な
プロセスの流れ図である。次に述べるプロセスはアプリケーションまたはソフトウェア・
プログラムによって開始されたと想定されている。次に述べるプロセスはいかなる特定の
プログラムとの関連でもなく、上記の命令およびアーキテクチャによって達成されるユー
ザーレベルのマルチスレッドの一つの実施形態として記述される。さらに、次に述べるプ
ロセスは、１６ビット、３２ビット、６４ビット、１２８ビットあるいはそれ以上のいず
れのアーキテクチャであろうと、マルチプロセッサのようなマイクロプロセッサのISAと
の関連で実行される。マルチプロセッサ（プロセッサ１０５のような）は、共有レジスタ
、たとえば上掲の表３のレジスタの値を初期化する（処理ブロック７０５）。プロセッサ
１０５はシュレッドを生成するforkshred命令を実行する（処理ブロック７１０）。複数
の並行動作がプロセッサ１０５によって実行される。主（親）シュレッドがプロセッサ１
０５によって実行される（処理ブロック７１５）。joinshred動作が実行されて、新しい
目標シュレッドが実行を完了するのを待つ（処理ブロック７３０）。その間、新しい目標
シュレッドはそのスタックを初期化し、はいってくるパラメータを共有レジスタおよび／
またはメモリから取得し（処理ブロック７２０）、実行する（処理ブロック７２１）。現
在の目標シュレッドの実行はhaltshred命令を使って終了される（処理ブロック７２３）
。プロセッサ１０５は、実行結果を、シュレッドの実行結果が保存されているレジスタか
らプログラムまたはアプリケーションに返す（処理ブロック７３５）。ひとたびすべての
実行されたデータが返されたら、プロセスは完了する（終了ブロック７９９）。
【０１９７】
　ユーザーレベルのマルチスレッドを提供するための方法およびシステムが開示されてい
る。本発明のここでの諸実施形態は、特定の例およびサブシステムに関連して述べられて

(35) JP 4949231 B2 2012.6.6

10

20

30

きたが、当業者には、本発明のここでの諸実施形態がそれらの特定の例またはサブシステ
ムに限定されるものではなく、他の実施形態にも広がることは明らかであろう。本発明の
ここでの諸実施形態は、付属の請求項において規定される、これらの他の諸実施形態のす
べてを含むものである。

【図面の簡単な説明】
【０１９８】
【図１】本発明のある実施形態に基づく、本方法および装置を利用する例示的なコンピュ
ータシステムのブロック図である。
【図２】本発明のある実施形態に基づく、例示的なチップレベルのマイクロプロセッサを
示す図である。
【図３】本発明のある実施形態に基づく、例示的な同時マルチスレッド・プロセッサを示
す図である。
【図４】本発明のある実施形態に基づく、例示的な非対称マルチプロセッサを示す図であ
る。
【図５】本発明のある実施形態に基づく、ユーザーレベルのマルチスレッド機能を提供す
るための例示的な実行環境を示す図である。
【図６】本発明のある実施形態に基づく、シュレッドと共有メモリ・スレッドとの間の例
示的な関係を示す図である。
【図７】本発明のある実施形態に基づく、ユーザーレベルのマルチスレッド機能の例示的
なプロセスの流れ図である。
【符号の説明】
【０１９９】
７０１　開始
７０５　共有レジスタの値を初期化
７１０　forkshredを実行
７１５　主シュレッドを実行
７２０　共有レジスタから値を読む
７２１　シュレッドを実行
７２２　共有レジスタにシュレッド実行結果を書き込む
７２３　haltshredを実行
７３０　join動作を実行
７３５　シュレッド実行から返される値をレジスタから読む
７９９　終了

(36) JP 4949231 B2 2012.6.6

【図１】 【図２】

【図３】

【図４】 【図５】

(37) JP 4949231 B2 2012.6.6

【図６】 【図７】

(38) JP 4949231 B2 2012.6.6

10

20

30

40

フロントページの続き

(72)発明者 ワン，ホン
 アメリカ合衆国　９４５３８　カリフォルニア州　フリモント　サンデール　ドライヴ　３９８７
 ７　１０５号
(72)発明者 シェン，ジョン，ピー
 アメリカ合衆国　９５１２１　カリフォルニア州　サンノゼ　クウェイル　ブラフ　プレイス　２
 ３０３
(72)発明者 ワン，ペリー，エイチ
 アメリカ合衆国　９５１３３　カリフォルニア州　サンノゼ　キペラッシュ　ドライヴ　２９０７
(72)発明者 コリンズ，ジャミソン，ディー
 アメリカ合衆国　９５０３２　カリフォルニア州　ロス　ガトス　オールド　アドビー　ウェイ　
 １３４
(72)発明者 ヘルド，ジェイムズ，ピー
 アメリカ合衆国　９７２２９　オレゴン州　ポートランド　ノースウェスト　１７５ス　プレイス
 　３８９１
(72)発明者 クンドゥ，パルサ
 アメリカ合衆国　９４３０３　カリフォルニア州　パロ　アルト　エッジウッド　ドライヴ　１９
 ０６
(72)発明者 レヴィアザン，ラヤ
 イスラエル国　５６５２８　サヴィヨン　マガル　ストリート　１０
(72)発明者 ガイ，ティン－フーク
 アメリカ合衆国　９５１２９　カリフォルニア州　サンノゼ　オーク　パーク　アヴェニュー　５
 ５４４

 審査官 漆原　孝治

(56)参考文献 特開２０００－２０７２３３（ＪＰ，Ａ）
 米国特許第０５４８５６２６（ＵＳ，Ａ）
 笹田 耕一 ，マルチスレッドアーキテクチャにおけるスレッドライブラリの実装と評価，先進
 的計算基盤システムシンポジウム ＳＡＣＳＩＳ２００３ 論文集 Symposium on Advanced Co
 mputing Systems and Infrastructures，社団法人情報処理学会，２００３年　５月２８日，第2
 003巻，第９号，ｐ１３－２０
 河原 章二，Ｓｉｍｕｌｔａｎｅｏｕｓ Ｍｕｌｔｉｔｈｒｅａｄ（ＳＭＴ）アーキテクチャの
 実現方式，情報処理学会論文誌 IPSJ Journal，社団法人情報処理学会，２００２年　４月１５
 日，第43巻，第4号，p829-843
 REDSTONE, J., et al.，Mini-threads: Increasing TLP on Small-Scale SMP Processors，High
 -Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth Internat
 ional Symposium on，IEEE，２００３年　２月１２日，pp. 19 - 30
 佐藤未来子、外６名，マルチスレッドアーキテクチャ向けＯＳ「Ｆｕｔｕｒｅ」におけるプロセ
 ス管理，コンピュータシステム・シンポジウム論文集，日本，社団法人情報処理学会，２００３
 年１２月１１日，Vol. 2001, No. 20，pp. 61 - 70
 HANKINS, R. A. et al.，Multiple Instruction Stream Processor，Proceedings of the 33rd
 annual international symposium on Computer Architecture，IEEE，２００６年　６月２１日

(58)調査した分野(Int.Cl.，ＤＢ名)
 G06F 9/46
 G06F 9/38

	biblio-graphic-data
	claims
	description
	drawings
	overflow

