

MINISTERO DELLO SVILUPPO ECONÓMICO DREZIONE GENERALE PER LA TUTELA DELLA PROPRIETA INDUSTRIALE UFFICIO ITALIANO BREVETTI E MARCHI

DOMANDA NUMERO	101997900611660		
Data Deposito	16/07/1997		
Data Pubblicazione	16/01/1999		

Priorità			187	295/96		
Nazione Priorità		JP				
Data De	posito l	Priorità				
Sezione	Classe	Sottocla	asse	Grupp	0	Sottogruppo
В	62	K				
Sezione	Classe	Sottocla	asse	Grupp	0	Sottogruppo
F	02	M				

Titolo

REGOLATORE DEL CARBURANTE DI AVVIAMENTO PER UN CARBURATORE.

DESCRIZIONE dell'invenzione industriale dal titolo:
 "Regolatore del carburante di avviamento per un carburatore "

di: HONDA GIKEN KOGYO KABUSHIKI KAISHA, nazionalità giapponese, 1-1, Minamiaoyama 2-chome, Minato-ku, Tokyo (GIAPPONE)

Inventori designati: UEDA, Minoru; AKAMATSU, Shunji; TAHATA, Michio

Depositata il: 16 LUG. 1997 TO 97A 000645

DESCRIZIONE

La presente invenzione si riferisce ad un regolatore del carburante di avviamento per un carburatore. Il regolatore del carburante di avviamento comprende: una valvola di regolazione per regolare un'area libera di un percorso di ammissione di aria di
avviamento; un organo di ritenuta estendentesi lungo
una direzione di scorrimento della valvola di regolazione ed avente una base supportata rigidamente da un
corpo del carburatore; mezzi di comando termosensibili comprendenti un involucro inserito nell'organo di
ritenuta con una sua estremità sporgente verso l'esterno da una estremità dell'organo di ritenuta, una
cera alloggiata in una prima estremità dell'involucro, ed uno stantuffo mobile assialmente in funzione

della dilatazione o della contrazione della cera con variazioni di temperatura e sporgente dall'altra estremità dell'involucro, accoppiato alla valvola di regolazione ed azionabile seguendo il funzionamento della valvola di regolazione; un riscaldatore elettrico per riscaldare la cera, ed accoppiato alla prima estremità dell'involucro; ed un coperchio di resina sintetica comprendente un organo tubolare che ricopre l'organo di ritenuta, la prima estremità dell'involucro ed il riscaldatore elettrico, e fissato in modo smontabile all'organo di ritenuta.

Il regolatore del carburante di avviamento precedente è ben noto ed è descritto ad esempio nella pubblicazione di Modello di Utilità giapponese n. Hei 3-6.844.

Nel regolatore del carburante di avviamento precedente, una miscela aria-carburante avente una concentrazione che dipende dalla temperatura ambiente è alimentata ad un motore. Dopo l'avviamento del motore, la cera è riscaldata da un riscaldatore elettrico e si dilata, azionando così una valvola di regolazione in una posizione completamente chiusa. Ciò è dovuto al fatto che la cera generalmente si dilata o si contrae in risposta alla temperatura ambiente quando il motore è avviato, ed un percorso

di ammissione di aria di avviamento è aperto dalla valvola di regolazione che è azionata in funzione della dilatazione o contrazione della cera. Si suppone a questo punto che il motore sia temporaneamente arrestato per breve tempo e sia quindi riavviato in una condizione calda. Se la cera diventa calda troppo rapidamente quando la temperatura del motore è relativamente elevata, la miscela aria-carburante alimentata al motore tende ad essere troppo ricca. Allo scopo di superare questo problema nella tecnica anteriore, uno spazio adiabatico pneumatico è mantenuto tra la cera ed un coperchio, ed il coperchio è protetto da un organo di isolamento termico. Talvolta, si impedisce sostanzialmente che la cera diventi fredda tramite una massa termica metallica.

Tuttavia, lo spazio adiabatico pneumatico o la massa termica metallica per l'isolamento termico della cera è grande, e tende a rendere più grande il regolatore del carburante di avviamento. La massa termica metallica richiede anche un notevole spazio, il che rende inevitabilmente più grande il regolatore del carburante di avviamento. Viceversa, quando lo spazio adiabatico pneumatico è rimpicciolito, un organo di comando termosensibile dovrebbe migliorare la sua efficienza di isolamento termico allo scopo di

compensare uno svantaggio prodotto da una massa termica ridotta. Ciò non condurrebbe ad una riduzione delle dimensioni del regolatore del carburante di avviamento.

La presente invenzione è diretta al superamento dei problemi della tecnica anteriore, ed alla realizzazione di un regolatore del carburante di avviamento per un carburatore, che ha una migliore capacità di conservazione del calore per la cera, è compatto, ed è facilmente regolabile.

Nell'invenzione descritta nella rivendicazione

1, si realizza un regolatore del carburante di avviamento comprendente: una valvola di regolazione per
regolare un'area libera di un percorso di ammissione
di aria di avviamento; un organo di ritenuta estendentesi lungo una direzione di scorrimento della
valvola di regolazione ed avente una base supportata
rigidamente da un corpo del carburatore; mezzi di
comando termosensibili comprendenti un involucro
inserito nell'organo di ritenuta con una prima estremità sporgente verso l'esterno da una estremità dell'organo di ritenuta, una cera alloggiata in una
prima estremità dell'involucro, ed uno stantuffo
mobile assialmente in funzione della dilatazione o
della contrazione della cera con variazioni di tempe-

ratura e sporgente dall'altra estremità dell'involucro, accoppiato alla valvola di regolazione e funzionante seguendo il funzionamento della valvola di regolazione; un riscaldatore elettrico per riscaldare la cera, ed accoppiato alla prima estremità dell'involucro; ed un coperchio di resina sintetica comprendente un organo tubolare che ricopre l'organo di ritenuta, la prima estremità dell'involucro ed il riscaldatore elettrico, e collegato in modo smontabile all'organo di ritenuta. L'organo tubolare del coperchio comprende una porzione cilindrica per ricoprire l'organo di ritenuta ed una porzione di parete di estremità che blocca una prima estremità della porzione cilindrica, e la porzione di parete di estremità è più spessa della porzione cilindrica e funge da accumulatore di calore.

Nell'invenzione descritta nella rivendicazione 2, in aggiunta alla configurazione dell'invenzione descritta nella rivendicazione 1, il coperchio di resina sintetica comprende, come parte integrale, una coppia di morsetti del riscaldatore destinati ad essere collegati con il riscaldatore elettrico, ed un connettore che fronteggia i morsetti del riscaldatore.

L'invenzione sarà descritta con riferimento ad

una forma di attuazione illustrata nei disegni annessi.

La figura 1 rappresenta una vista in sezione del regolatore del carburante di avviamento, lungo la linea 1-1 nella figura 2.

La figura 2 rappresenta una vista in sezione trasversale lungo la linea 2-2 nella figura 1.

La figura 3 rappresenta una vista in sezione trasversale ingrandita, lungo la linea 3-3 nella figura 2.

La figura 4 rappresenta una grafico che mostra caratteristiche di portata di aria in risposta all'azionamento della valvola di regolazione.

La figura 5 rappresenta un grafico che mostra la relazione tra la temperatura ambiente ed il rapporto aria-carburante.

La figura 6 rappresenta una vista in sezione trasversale che mostra una parte del carburatore immediatamente dopo la sua colata.

La figura 7 rappresenta un grafico che mostra una entità di azionamento della valvola di regolazione in funzione di variazioni di temperatura.

La figura 8 rappresenta una vista simile alla figura 1, che mostra un organo di comando termosensibile modificato.

Le figure da 1 a 7 mostrano una prima forma di attuazione dell'invenzione. In particolare, la figura 1 rappresenta una vista in sezione di un regolatore del carburante di avviamento, lungo la linea 1-1 nella figura 2. La figura 2 rappresenta una vista in sezione trasversale di un corpo del carburatore, lungo la linea 2-2 nella figura 1. La figura 3 rappresenta una vista in sezione ingrandita lungo la linea 3-3 nella figura 2. La figura 4 rappresenta un grafico che mostra caratteristiche di portata di aria in funzione dell'azionamento di una valvola di regolazione. La figura 5 rappresenta una grafico che mostra la relazione tra una temperatura ambiente ed il rapporto aria-carburante. La figura 6 rappresenta una vista in sezione di un corpo del carburatore immediatamente dopo la sua colata. La figura 7 rappresenta un grafico che mostra una entità di azionamento della valvola di regolazione in funzione di variazioni di temperatura.

Con riferimento alle figure 1 e 2, una vaschetta 12 limitata da un corpo 11 della vaschetta è accoppiata ad un corpo 10 del carburatore destinato ad essere montato in un motociclo. Il corpo 11 della vaschetta è realizzato in metallo leggero, come lega di alluminio, ed è prodotto per pressofusione.

Il corpo 10 del carburatore comprende un percorso di ammissione di aria principale 13, ed un percorso di ammissione di aria di avviamento 15 comunicante con estremità di monte e di valle del percorso di ammissione di aria principale 13 in una direzione di ammissione dell'aria 14. Un regolatore del carburante di avviamento 21 è disposto all'interno del percorso di ammissione di aria di avviamento 15.

Il percorso di ammissione di aria di avviamento 15 comprende: una porzione di monte 16 che comunica con l'estremità di monte del percorso di ammissione di aria 13, si estende linearmente dal percorso di ammissione di aria principale 13 verso un lato di valle, ed ha una sezione trasversale circolare; un percorso di valle 17 che comunica con l'estremità di valle del percorso di ammissione di aria principale 13 e si estende linearmente dal percorso di ammissione di aria principale 13 verso un lato di monte; una regione di regolazione dell'entità di apertura di monte 18 comunicante con una estremità superiore della porzione di monte 16; ed una regione di regolazione dell'entità di apertura di valle 19 comunicante con una estremità inferiore del percorso di valle 17. Le regioni di regolazione dell'entità di apertura di monte e di valle 18 e 19 sono parallele al percorso

di ammissione di aria principale 13, e sono distanziate dal percorso di ammissione di aria principale 13 alle loro estremità di monte e di valle.

comprende un ugello del carburante di avviamento 21 comprende un ugello del carburante di avviamento 22, una valvola di regolazione 23 per regolare un'area libera del percorso di ammissione di aria di avviamento 15, una valvola a spillo 24 supportata dalla valvola di regolazione 23 e mobile nell'ugello del carburante di avviamento 22, un organo di comando termosensibile 25 per azionare la valvola di regolazione 23, ed un riscaldatore elettrico del tipo PTC 26 accoppiato ad una prima estremità di un involucro 46 dell'organo di comando termosensibile 25.

La valvola di regolazione 23 è inserita in una cavità 20 nel corpo 10 del carburatore. La cavità 20 ha una sezione trasversale circolare, ed è ortogonale alle regioni di regolazione dell'entità di apertura di monte e di valle 18 e 19, in modo che queste regioni di regolazione dell'entità di apertura 18 e 19 sbocchino su una superficie interna della cavità 20 e si fronteggino attraverso la cavità 20.

Una camera del carburante di avviamento 28 è formata tra il corpo 10 del carburatore ed il corpo 11 della vaschetta, e si estende coassialmente con la

cavità 20. La camera del carburante di avviamento 28 comunica con la cavità 20 attraverso un diaframma 27 sul fondo della cavità 20. L'ugello del carburante di avviamento 22 è inserito e fissato in un foro 29 sul diaframma 27, e si estende nella camera del carburante di avviamento 28 alla sua estremità inferiore. L'estremità superiore dell'ugello del carburante di avviamento 22 è posizionata sopra il fondo della cavità 20.

Il corpo 11 della vaschetta comprende un getto del carburante 30 che è inserito a forza e fissato in esso, e comunica con la parte inferiore della camera del carburante di avviamento 28 e con la parte inferiore della vaschetta 12. Il corpo 10 del carburatore comprende un percorso 31 comunicante con la vaschetta 12 in un'area sopra un livello di carburante L e con la parte superiore della camera del carburante di avviamento 28.

Le regioni di regolazione dell'entità di apertura di monte e di valle 18 e 19 hanno forme in sezione trasversale come illustrato nella figura 3. In particolare, le regioni di regolazione dell'entità di apertura 18 e 19 hanno porzioni superiori semicircolari 18a e 19a e porzioni inferiori ovali allungate 18b e 19b estendentisi dalle porzioni superiori 18a

e 19a.lungo la periferia della cavità 20. Le porzioni inferiori ovali 18b e 19b sono più larghe delle porzioni superiori 18a e 19a in una direzione ortogonale alla periferia della cavità 20, ossia nella direzione di movimento della valvola di regolazione 23. Inoltre, il fondo della regione di regolazione dell'entità di apertura di valle 19, ossia il fondo della porzione inferiore ovale allungata 19b, è situato ad una differenza di altezza h più in basso del fondo della regione di regolazione dell'entità di apertura di monte 18 (ossia del fondo della porzione inferiore ovale allungata 18b).

Le regioni di regolazione dell'entità di apertura di monte e di valle 18 e 19 permettono che l'area libera del percorso di ammissione di aria di avviamento 15 sia relativamente grande quando una temperatura ambiente è relativamente elevata. Con riferimento alla figura 4, una quantità di aria introdotta attraverso il percorso di ammissione di aria di avviamento 15 può essere aumentata (come illustrato con linee continue) rispetto a quando le regioni di regolazione dell'entità di apertura di monte e di valle 18 e 19 sono coassiali l'una con l'altra ed hanno sezioni trasversali completamente circolari (come illustrato con linee tratteggiate). Così, è possibile

impedire efficacemente che la miscela aria-carburante diventi troppo ricca, e migliorare l'efficienza di avviamento del motore durante condizioni di tempo caldo.

Si suppone che la valvola di regolazione 23 chiuda gradualmente le regioni di regolazione dell'entità di apertura di monte e di valle 18 e 19 con l'aumento della temperatura ambiente. Se le regioni di regolazione dell'entità di apertura 18 e 19 sono simultaneamente chiuse, poiché non vi è differenza di altezza tra loro, una pressione negativa agente sull'ugello del carburante di avviamento 22 sarà ridotta. Ciò fa sì che una quantità ridotta di carburante sia aspirata, il che conduce ad una brusca diminuzione del rapporto aria-carburante, come indicato da una linea tratteggiata nella figura 5. Tuttavia, il fondo della regione di regolazione dell'entità di apertura di valle 19 è più basso della differenza di altezza h del fondo della regione di regolazione dell'entità di apertura di monte 18. Così, la regione di regolazione dell'entità di apertura sul lato di valle 19 rimane leggermente aperta anche quando la regione di regolazione dell'entità di apertura 18 è chiusa. Così, un'area a monte dell'ugello del carburante di avviamento 22 è soggetta a strozzamento allo scopo di aumentare la pressione negativa agente sull'ugello del carburante di avviamento 22 ed impedire una brusca diminuzione del rapporto aria-carburante, come indicato da una linea continua nella figura 5.

Non soltanto le regioni di regolazione dell'entità di apertura di monte e di valle 18 e 19 aventi le forme speciali, ma anche una apertura circolare 32 su un lato del corpo 10 del carburatore, sono formate utilizzando anime (non rappresentate) durante la colata del corpo 10 del carburatore. Vedere figura 6. Le regioni di regolazione dell'entità di apertura 18, 19 ed il foro circolare 32 dovrebbero essere paralleli al percorso di ammissione di aria principale 13. In altre parole, quando il corpo 10 del carburatore è colato, le regioni di regolazione dell'entità di apertura 18, 19 ed il foro circolare 32 sono formati estraendo le anime nella direzione (indicata da una freccia 34) dalla regione di regolazione dell'entità di apertura di monte 18 alla regione di regolazione dell'entità di apertura di valle 19, ossia in una direzione parallela alla direzione in cui è estratta l'anima per il percorso di ammissione di aria principale 13. Inoltre, un foro di fusione 20' che è più piccolo della cavità 20 è formato nel corpo 10 del carburatore insieme con le regioni di regolazione di

apertura di monte e di valle 18 e 19, ed il foro circolare 23, come indicato da una linea tratteggiata. Il foro di fusione 20' è sgrossato allo scopo di formare la cavità 20. Il foro circolare 32 è bloccato da una sfera 33 inserita a forza in esso, come illustrato nelle figure 1 e 2.

Ritornando alla figura 1, la valvola di regolazione 23 ha una piastra di supporto 35 vicino al suo fondo, che ne costituisce un organo integrale. Una valvola a spillo 24 passa attraverso la piastra di supporto 35, e comprende un anello di arresto 36 fissato alla sua sommità. L'anello di arresto 36 è in impegno con la superficie superiore della piastra di supporto 35, ed è premuto sulla piastra di supporto 35 da una molla 37, in modo che la valvola a spillo 24 sia trattenuta dalla valvola di regolazione 23. La valvola di regolazione 23 presenta alla sua sommità un orlo 38 che si estende radialmente verso il suo centro. Una sporgenza 40 che è presente all'estremità inferiore di un collare di posizionamento 39 si può impegnare con la superficie inferiore dell'orlo 38. La molla 37 è disposta, in una condizione di contrazione, tra il collare di posizionamento 39 e l'anello di arresto 36, spingendo l'anello di arresto 39 verso la piastra di supporto 35, e permettendo che la sporgenza 40 si impegni con l'orlo 38.

Nel corpo 10 del carburatore, una ghiera di ritenuta 41 più grande della cavità 20 è presente intorno alla cavità 20, è coassiale con la cavità 20, e forma uno spallamento 42 che circonda la periferia della cavità 20. L'organo di ritenuta 43 estendentesi nella direzione di scorrimento della valvola di regolazione 23 è inserito nella ghiera di ritenuta 41 in modo che la base dell'organo di ritenuta 43 entri in contatto con lo spallamento 42. Un arresto 44 è fissato rigidamente alla sommità della ghiera di ritenuta 41 mediante un organo a vite (non rappresentato). L'arresto 44 si impegna con uno spallamento di regolazione 45 che circonda la periferia dell'organo di ritenuta 43. Così, la base dell'organo di ritenuta 43 è fissata rigidamente al corpo 10 del carburatore.

L'organo di comando termosensibile 25 comprende un involucro 46 che è alloggiato nell'organo di ritenuta 43, con una prima estremità sporgente dall'organo di ritenuta 43. L'involucro 46 comprende un corpo principale cilindrico di involucro 47 che ha uno spallamento, realizzato in un metallo conduttore, ed un organo a cappuccio 48 che è realizzato in metallo conduttore, ed è accoppiato con, e cianfrinato su una prima estremità del corpo principale di involucro 47.

La periferia del diaframma 49 è racchiusa tra il corpo principale di involucro 47 e l'organo a cappuccio 48. Così, il riscaldatore elettrico del tipo PTC 26 entra in contatto con la prima estremità dell'involucro 46 o l'organo a cappuccio 48.

Una cera 50 è alloggiata tra l'organo a cappuccio 48 ed il diaframma 49. Entro il corpo principale
di involucro 47, vi sono un organo non rigido 51,
costituito ad esempio da gomma, silicone o simile, in
contatto con il diaframma 49 sul lato opposto alla
cera 50, un sigillante 52, ed uno stantuffo 53, che
sono tutti disposti l'uno sopra l'altro. Lo stantuffo
53 sporge parzialmente dall'involucro 46, ossia dall'altra estremità del corpo principale 47.

L'involucro 46 è accoppiato a tenuta stagna nell'organo di ritenuta 43 con l'organo a cappuccio 48
sporgente dall'estremità dell'organo di ritenuta 43.
Nell'organo di ritenuta 43, il corpo principale di
involucro 47 è inserito ed è scorrevole nella parte
superiore del collare di posizionamento 39. Lo stantuffo 53 è coassiale con il collare di posizionamento
39, ed una estremità dello stantuffo 53 sporgente
dall'involucro 46 è in contatto con il collare di
posizionamento 39. Una molla 54 è inserita, in una
condizione di contrazione, tra la base dell'organo di

ritenuta 43 ed il collare di posizionamento 39. La molla 54 spinge l'involucro 46 verso l'alto attraverso il collare di posizionamento 39 e lo stantuffo 53, in modo che lo stantuffo 53 sia continuamente in contatto con il collare di posizionamento 53. Così, lo stantuffo 53 è collegato con la valvola di regolazione 23 attraverso il collare di posizionamento 39, ed è così azionabile attraverso la valvola di regolazione 23.

Un coperchio di resina sintetica 55 è fissato in modo smontabile all'organo di ritenuta 43, e comprende un organo tubolare 56 che circonda l'organo di ritenuta 43, una prima estremità dell'involucro 46 ed il riscaldatore del tipo PTC 26. Il coperchio 55 è, ad esempio, avvitato sull'organo di ritenuta 43.

L'organo tubolare 56 comprende una porzione cilindrica 56a che circonda l'organo di ritenuta 43 ed una porzione di parete di estremità 56b che arresta l'estremità della porzione cilindrica 56a. La porzione di parete di estremità 56b è più spessa della porzione cilindrica 56a, e funge da accumulatore di calore.

La porzione di parete di estremità 56b presenta, sulla sua superficie interna, una cavità 57 per ricevere una prima estremità dell'involucro 46 (ossia una

parte dell'organo a cappuccio 48), ed una cavità 58, ed una sporgenza cilindrica 59. La cavità 58 è più piccola della cavità 57, ed è coassiale con la cavità 57. La sommità della sporgenza cilindrica 59 è a filo con il fondo della cavità 57.

Un foro 60 è ricavato in un'area in cui la porzione cilindrica 56a e la porzione di parete di estremità 56b si uniscono l'una all'altra. La sporgenza cilindrica 59 è inserita nel foro 60, in modo che un morsetto 62 del riscaldatore possa essere inserito nel coperchio 55 senza allentarsi. Inoltre, la porzione di parete di estremità 56b presenta un foro 61 per ricevere un morsetto 63 del riscaldatore. Il morsetto 63 del riscaldatore ha un dente 63a che si può impegnare e liberare elasticamente dalla cavità 58. Così, il morsetto 63 del riscaldatore può essere inserito nel coperchio 55 senza allentarsi.

L'organo a cappuccio 48 è inserito nella cavità 57 in modo da racchiudere il riscaldatore del tipo PTC 26 tra tale organo ed il morsetto 63 del riscaldatore. Poiché l'involucro 46 è spinto verso l'alto dalla molla 54, il morsetto 63 del riscaldatore è spinto verso, e fissato sulla porzione di parete di estremità 56b in modo da stabilire un collegamento elettrico con il riscaldatore 26. Una molla 64 in una

condizione compressa è disposta tra l'involucro 46 ed il morsetto 62 del riscaldatore. La molla 64 è realizzata in metallo conduttore ed ha una costante elastica inferiore a quella della molla 54. Il morsetto 62 del riscaldatore è spinto verso, e fissato sulla porzione di parete di estremità 56b dalla molla 64. Il riscaldatore 26 è collegato elettricamente al morsetto 62 del riscaldatore attraverso la molla 64 e l'involucro 46.

Il coperchio 55 è protetto da un coperchio di protezione di resina sintetica 68, mantenendo tra loro uno spazio di aria 70. Il coperchio di protezione 68 presenta una molteplicità di sporgenze 69 sulla sua superficie interna in modo da essere in contatto elastico con il bordo inferiore del coperchio 55. Il coperchio 55 presenta, come organi integrali, una molteplicità di nervature 66 per mantenere un intervallo tra il coperchio 55 ed il coperchio di protezione 68. Inoltre, il coperchio di protezione 68 presenta una molteplicità di sporgenze 71 sulla sua superficie interna in modo da mantenere un intervallo tra il coperchio 55 ed il coperchio di protezione 68.

Il coperchio 55 comprende un connettore maschio 65 che si estende verso l'esterno dall'organo tubolare 56. Una coppia di morsetti 62, 63 del riscaldatore

fronteggiano il connettore maschio 65. Un connettore femmina 67 è accoppiato in modo separabile con il connettore maschio 65. Una coppia di cavi 72 sono utilizzati per collegare elettricamente i morsetti 62, 63 del riscaldatore dopo che il connettore femmina 67 è stato accoppiato con il connettore maschio 65. I cavi 72 passano attraverso, e sono supportati da una guida di cavo 73 formata sulla superficie esterna del coperchio di protezione 68 come parte integrale. Uno dei cavi 72 è collegato ad un avvolgimento di carica/generazione di energia elettrica di un alternatore montato sul motociclo, mentre l'altro cavo è collegato a massa. Così, quando il motore è azionato, il riscaldatore del tipo PTC 26 è attivato elettricamente. Mentre si riscalda, il riscaldatore 26 acquisisce una maggiore resistenza. Quando il riscaldatore 26 ha un elevato valore di resistenza, la quantità di corrente che lo attraversa è regolata.

Sarà descritto nel seguito il funzionamento della prima forma di attuazione. Durante il funzionamento iniziale del motore, la cera 50 nell'organo di comando termosensibile 25 si dilata in funzione della temperatura ambiente. Lo stantuffo 53 sporge anche dall'involucro 46 in funzione della temperatura ambiente. Così, la posizione di azionamento della val-

vola di regolazione 23 dipende anch'essa dalla temperatura ambiente.

Quando un interruttore principale è azionato in modo da avviare il motore, l'aria è introdotta nel motore attraverso il percorso di ammissione di aria di avviamento 15 in funzione della posizione di azionamento della valvola di regolazione 23. L'aria introdotta è miscelata con il carburante aspirato attraverso l'ugello del carburante di avviamento 22, producendo così una miscela aria-carburante, che è alimentata al motore.

In risposta al funzionamento del motore, l'alternatore aziona elettricamente il riscaldatore 26. La cera 50 è riscaldata dal riscaldatore 26, e quindi si dilata, e fa in modo che lo stantuffo 53 spinga la valvola di regolazione 23 verso il basso attraverso il collare di posizionamento 39 e la molla 37. La valvola di regolazione 23 agisce in modo da ridurre l'area libera del percorso di ammissione di aria di avviamento 15. Infine, il percorso di ammissione di aria di avviamento 15 è completamente chiuso, interrompendo così l'alimentazione del carburante di avviamento.

Con questo regolatore del carburante di avviamento 21, le regioni di regolazione dell'entità di apertura di monte e di valle 18, 19, che si trovano al centro del percorso di ammissione di aria di avviamento 15, sono formate nel corpo 10 del carburatore. La valvola di regolazione 23 è inserita in modo scorrevole nella cavità 20, in cui le due regioni di regolazione dell'entità di apertura 18 e 19 si fronteggiano. La cavità 20 è formata nel corpo 10 del carburatore. La valvola di regolazione 23 controlla direttamente le aree libere delle regioni di regolazione dell'entità di apertura 18 e 19. Questa valvola di regolazione 23 è vantaggiosa con riferimento alla riduzione del numero di componenti e del numero di fasi di assemblaggio, rispetto ad una valvola di regolazione che è fissata in modo scorrevole su un manicotto inserito in modo forzato nel corpo 10 del carburatore. Ciò è dovuto al fatto che non si utilizza un manicotto per la valvola di regolazione 23 secondo la presente invenzione. Inoltre, quando si utilizza un manicotto, un'area tra il corpo 10 del carburatore ed il manicotto per l'introduzione di aria varia inevitabilmente lungo il percorso di ammissione di aria di avviamento 15 a causa di errori di fabbricazione del manicotto, ed errori di assemblaggio di un manicotto nel percorso di ammissione di aria di avviamento 15. Perciò, il controllo della portata e della concentrazione della miscela ariacarburante può essere compromesso dall'area variabile
per l'introduzione di aria. Invece, secondo la presente invenzione, la valvola di regolazione 23 controlla direttamente e precisamente le aree libere
delle regioni di regolazione dell'entità di apertura
18 e 19 rispetto alla cavità 20.

Le regioni di regolazione dell'entità di apertura 18 e 19 hanno forme in sezione trasversale definite dalle porzioni semicircolari superiori 18a e 19a e dalla porzioni inferiori ovali allungate 18b e 19b che si estendono dalle porzioni superiori 18a e 19a lungo la periferia della cavità 20. Inoltre, il fondo della regione di regolazione dell'entità di apertura di valle 19 è posizionato con una differenza di altezza h più in basso del fondo della regione di regolazione dell'entità di apertura di monte 18. Le regioni di regolazione dell'entità di apertura 18 e 19 sono realizzate utilizzando anime (non rappresentate) insieme con il foro circolare 32 sulla superficie laterale esterna del corpo 10 del carburatore, durante la colata del corpo 10 del carburatore. Così, le regioni di regolazione dell'entità di apertura 18 e 19 possono essere realizzate senza difficoltà. Inoltre, le regioni di regolazione dell'entità di apertura 18, 19 ed il foro circolare 32 si estendono parallelamente al foro di fusione per il percorso di ammissione di aria principale 13, per cui un dispositivo di colata può esser semplificato, il che è efficace per migliorare la produttività e ridurre i costi di fabbricazione.

La resina sintetica 55 avente l'organo tubolare 56 è fissata in modo smontabile sull'organo di ritenuta 43. L'organo tubolare 56 comprende la porzione cilindrica 56a che ricopre una prima estremità dell'involucro 46, e la porzione di parete di estremità 56b che è più spessa della porzione cilindrica 56a e funge da accumulatore di calore. Così, è possibile aumentare una massa termica della porzione di parete di estremità 56b. Ciò permette che la cera 50 nell'involucro 46 sia mantenuta calda. Inoltre, è possibile rendere il più sottile possibile lo spazio di aria 70 tra l'organo tubolare 56 ed il coperchio di protezione 68. Il regolatore del carburante di avviamento 21 può essere reso compatto. Le caratteristiche di aumento e diminuzione di temperatura del riscaldatore 26 possono essere moderate, il che permette che la cera 50 sia controllata in un ampio campo di temperature.

La struttura precedente è in grado di mantenere

calda la cera 50, come precedentemente menzionato, in modo che l'organo di comando termosensibile 25 possa essere reso compatto, e le dimensioni del regolatore del carburante di avviamento 21 possano essere ulteriormente ridotte. Con riferimento alla figura 7, una corsa dello stantuffo 53 è abitualmente grande nell'organo di comando termosensibile 25 secondo la tecnica anteriore, come indicato da una linea tratteggiata. E' possibile spostare un punto di flesso tra una corsa necessaria ed una corsa inutile sul lato delle temperature inferiori, e rendere minore la corsa inutile dopo il punto di flesso. Nella tecnica anteriore, quando il regolatore del carburante di avviamento 21 è reso compatto, anche la sua massa termica è ridotta. Perciò, è stato molto difficile rendere più piccolo il regolatore del carburante di avviamento 21. Invece, secondo la presente invenzione, poiché la capacità di conservazione del calore della cera 50 è migliorata a causa della maggiore massa termica del coperchio 55, la riduzione della massa termica dell'organo di comando termosensibile 25 può essere compensata minimizzando la corsa inutile dello stantuffo, come illustrato con una linea continua nella figura 7. Le caratteristiche di aumento e diminuzione di temperatura dell'organo di comando termosensibile 21 possono essere mantenute uguali a quelle della tecnica anteriore anche quando il regolatore del carburante di avviamento 21 è reso compatto.

Tuttavia, quando la massa termica dell'involucro 46 nell'organo di comando termosensibile 25 è ridotta, è necessario impedire che la valvola di regolazione 23 si chiuda rapidamente quando il riscaldatore 26 diventa più caldo, rispetto alla valvola di regolazione secondo la tecnica anteriore. Questo problema può essere superato impostando una resistenza interna del riscaldatore 26 più grande di quella del riscaldatore secondo la tecnica anteriore, o disponendo un resistore tra il riscaldatore 26 e l'avvolgimento di carica/generazione di energia elettrica.

Il coperchio 55 comprende, come parte integrale, il connettore 65 che fronteggia i morsetti 62 e 63 del riscaldatore. Il connettore 67 è accoppiato in modo separabile con il connettore 65. Così, i connettori 65 e 67 aumentano notevolmente la massa termica del coperchio 55, per cui la cera riscaldata può essere mantenuta calda in modo affidabile. Questa struttura facilita il collegamento elettrico verso il riscaldatore 26, e la manutenzione del regolatore del carburante di avviamento.

La figura 8 mostra un esempio modificato dell'organo di comando termosensibile. Componenti identici sono indicati con numeri di riferimento identici a quelli utilizzati nella forma di attuazione precedente.

Un regolatore del carburante di avviamento 21₂ comprende un ugello del carburante di avviamento 22, una valvola di regolazione 23 per controllare un'area libera di un percorso di ammissione di aria di avviamento 15, una valvola a spillo 24 supportata dalla valvola di regolazione 23 e mobile nell'ugello del carburante di avviamento 22, un organo di comando termosensibile 25₂, un involucro 76 ed un riscaldatore del tipo PTC 26 accoppiato ad una prima estremità dell'involucro 76.

L'involucro 76 è alloggiato in un organo di ritenuta 43 con una prima estremità sporgente da quest'ultimo, e comprende un corpo cilindrico 77 ed un cappuccio 78. Il corpo cilindrico 77 è realizzato in metallo conduttore, ed ha un fondo. Il cappuccio 78 è cianfrinato sul corpo cilindrico 77 in modo da bloccarlo. Un'estremità aperta in un organo a forma di sacca 79 è trattenuta tra il corpo cilindrico 77 ed il cappuccio 78, in modo che l'organo a forma di sacca 79 sia inserito nel corpo cilindrico 77. L'or-

gano a forma di sacca 79 è realizzato in un materiale flessibile, quale gomma. Un riscaldatore del tipo PTC 26 è in contatto con l'estremità bloccata del corpo cilindrico 77.

Una cera 50 è alloggiata in una parte dell'involucro 76, ossia tra il corpo cilindrico 77 e l'organo
a forma di sacca 79. Uno stantuffo 80 è mobile coassialmente attraverso il cappuccio 78, e si estende
entro l'organo a forma di sacca 79. Lo stantuffo 80
è in contatto coassiale con un collare di posizionamento 39 alla sua estremità sporgente dal cappuccio
78.

Una prima estremità dell'involucro 76 o una parte del corpo cilindrico 77 è inserita nella porzione di parete di estremità 56b in modo da racchiudere il riscaldatore 26 insieme con un morsetto 63 del riscaldatore. Inoltre, il corpo cilindrico 77 è in contatto con un morsetto 62' del riscaldatore. I morsetti 63 e 62' del riscaldatore sono affiancati di fronte ad un connettore 65 che è integrale con il coperchio 55.

Questo esempio modificato è altrettanto vantaggioso del regolatore del carburante di avviamento secondo la forma di attuazione precedente.

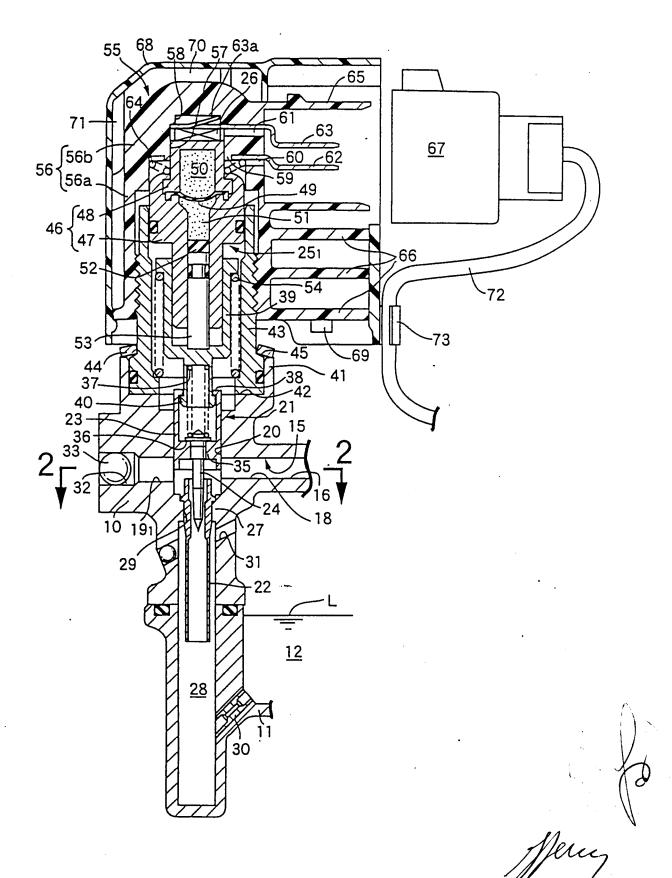
L'invenzione è stata descritta con riferimento

alla forma di attuazione illustrata nella presente. Essa non è limitata ai dettagli esposti, e la presente domanda è intesa per coprire tutte le modifiche o varianti che possono rientrare nei limiti dei miglioramenti o nell'ambito delle rivendicazioni seguenti.

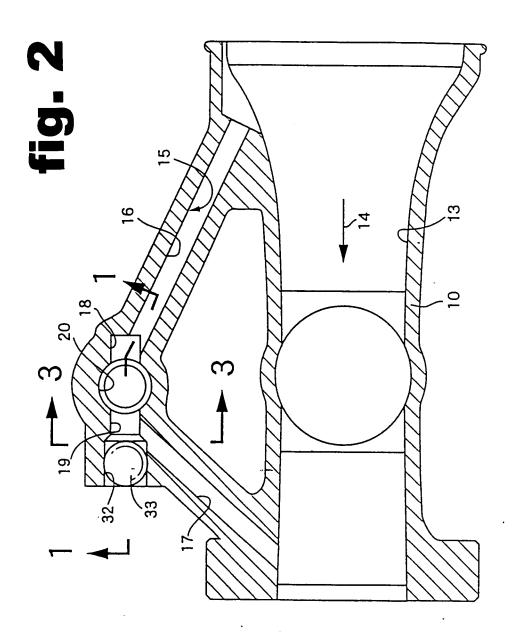
L'organo di ritenuta 43 può essere accoppiato con il corpo 10 del carburatore come misura alternativa.

Secondo l'invenzione descritta nella rivendicazione 1, nel coperchio, la porzione cilindrica dell'organo tubolare è parzialmente bloccata sul suo fondo dalla porzione di parete di estremità spessa, che funge da accumulatore di calore. E' possibile rendere relativamente grande la massa termica del coperchio intorno alla cera. Ciò migliora le capacità di conservazione del calore per la cera. Così è possibile mantenere la cera in un ampio campo di temperature quando le caratteristiche di aumento e riduzione della temperatura del riscaldatore sono controllate in modo da essere moderate. Inoltre, è possibile ridurre corse inutili della valvola di regolazione. L'organo di comando termosensibile compatto avente una massa termica limitata è efficace per azionare con precisione il regolatore del carburante di avviamento e ridurne le dimensioni.

Secondo l'invenzione descritta nella rivendicazione 2, in aggiunta alla configurazione dell'invenzione descritta nella rivendicazione 1, una coppia di morsetti del riscaldatore sono fissati rigidamente al coperchio. Il coperchio comprende, come parte integrale, il connettore che fronteggia i morsetti del riscaldatore. Ciò aumenta notevolmente la massa termica del coperchio, e migliora la capacità di conservazione del calore per la cera. La struttura precedente facilita i collegamenti elettrici verso il riscaldatore, e semplifica la manutenzione del regolatore del carburante di avviamento.

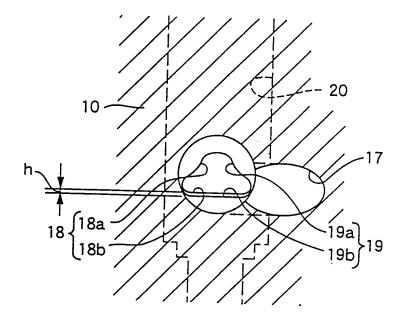

RIVENDICAZIONI

Regolatore del carburante di avviamento per un carburatore, in cui il regolatore del carburante di avviamento comprende: una valvola di regolazione (23) per controllare un'area libera di un percorso di ammissione di aria di avviamento (15); un organo di ritenuta (43) estendentesi lungo una direzione di scorrimento della valvola di regolazione (23) ed avente una base supportata rigidamente da un corpo (10) del carburatore; mezzi di comando termosensibili (25₁, 25₂) comprendenti un involucro (46, 76) inserito nell'organo di ritenuta (43) con una prima estremità sporgente verso l'esterno da una estremità dell'organo di ritenuta (43), una cera (50) alloggiata in una prima estremità dell'involucro (46, 76), ed uno stantuffo (53, 80) mobile assialmente in funzione della dilatazione o della contrazione della cera (50) con variazioni di temperatura, sporgente dall'altra estremità dell'involucro (46, 76), accoppiato alla valvola di regolazione (23) ed azionabile seguendo il funzionamento della valvola di regolazione (23); un riscaldatore elettrico (26) per riscaldare la cera (50), ed accoppiato alla prima estremità dell'involucro (46, 76); ed un coperchio di resina sintetica (55) comprendente un organo tubolare (56) che copre l'organo di ritenuta (43), la prima estremità dell'involucro (46, 76) ed il riscaldatore elettrico (26), e fissato in modo smontabile all'organo di ritenuta (43);

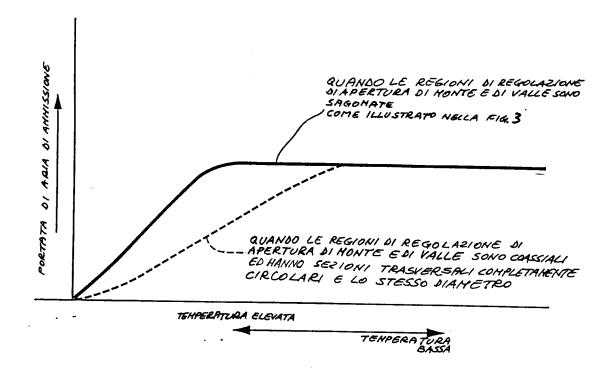

in cui l'organo tubolare (56) del coperchio (55) comprende una porzione cilindrica (56a) che copre l'organo di ritenuta (43) ed una porzione di parete di estremità (56b) per bloccare una prima estremità della porzione cilindrica (56a), e la porzione di parete di estremità (56b) è più spessa della porzione cilindrica (56a) e funge da accumulatore di calore.

2. Regolatore del carburante di avviamento secondo la rivendicazione 1, in cui il coperchio di resina sintetica (55) comprende come parte integrale una coppia di morsetti del riscaldatore (62, 63; 62', 63) destinati ad essere collegati al riscaldatore elettrico (26), ed un connettore (65) che fronteggia i morsetti del riscaldatore (62, 63; 62', 63).

PER PROCURA
Dott. francesco SERRA
N. Isatz. ALBO 96
[In proprio e per gli albi]

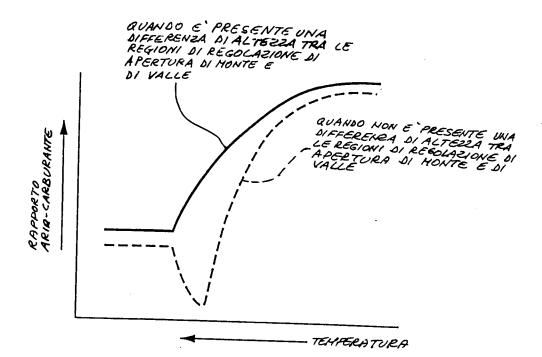


Dott. Francesco SERRA
N. Iscriz. ALBO 90
(In proprio e per gli altri)

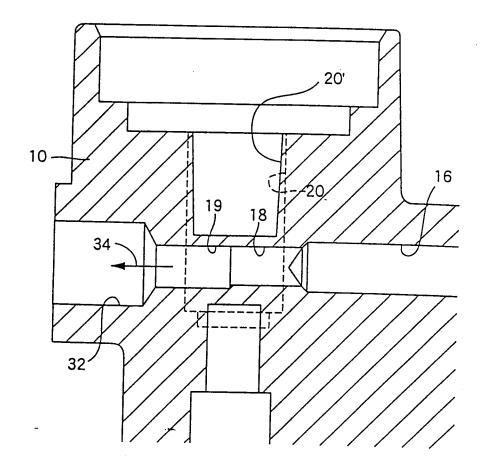


Dott. Francesco SERRA

Dott. Francesco SERRA
N. Iscrtz. ALBO 90
(In proprio e per gli alta)



Dott. Francesco SERRA N. Iscriz. ALBO 90 (In proprio e per gli alut)


Dott. Francesco SERRA
N. Iscriz. ALBO 90
(In proprio e per gli chill)

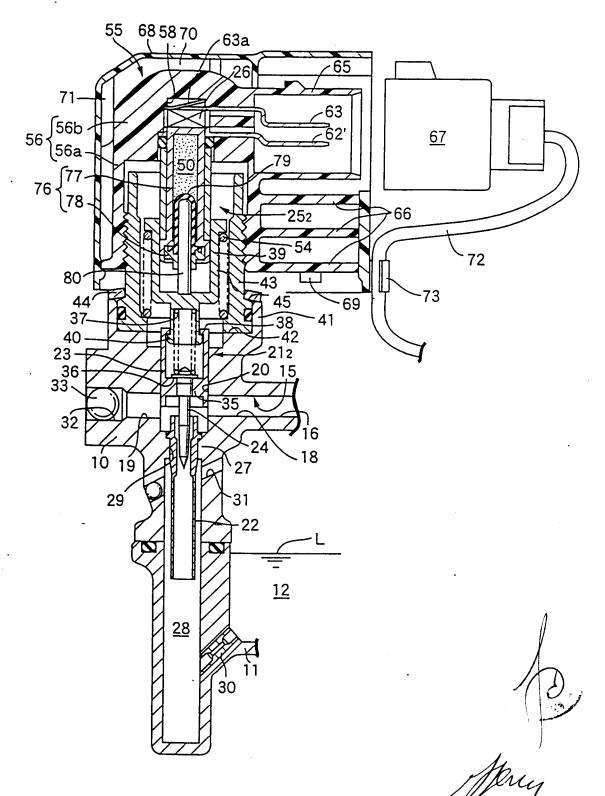
Per procura di HONDA GIKEN KOGYO KABUSHIKI KAISHA

Per procura di HONDA GIKEN KOGYO KABUSHIKI KAISHA

Dott. Francesco SERRA N. Iscriz. ALBO 90 (In proprio e per gli alm)

Per procura di HONDA GIKEN KOGYO KABUSHIKI KAISHA

Dott. Francesco SERRA


N. Iscriz. ALBO 90

(in proprio e per gli altri)

Per procura di HONDA GIKEN KOGYO KABUSHIKI KAISHA

Detr. Prancesco SERRA N. Iscrtz. ALBO 90 (In proprio e per gli alta)

Per procura di HONDA GIKEN KOGYO KABUSHIKI KAISHA

Dott. Francesco SERRA N. Iscriz. ALBO 90 (In proprio e per gli altri)